JP2006289479A - Intensive working method of metal, and die used for intensive working method - Google Patents

Intensive working method of metal, and die used for intensive working method Download PDF

Info

Publication number
JP2006289479A
JP2006289479A JP2005117530A JP2005117530A JP2006289479A JP 2006289479 A JP2006289479 A JP 2006289479A JP 2005117530 A JP2005117530 A JP 2005117530A JP 2005117530 A JP2005117530 A JP 2005117530A JP 2006289479 A JP2006289479 A JP 2006289479A
Authority
JP
Japan
Prior art keywords
die
twisting
metal material
return
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005117530A
Other languages
Japanese (ja)
Other versions
JP4788874B2 (en
Inventor
Toshimoto Mukai
敏司 向井
Hidetoshi Somekawa
英俊 染川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005117530A priority Critical patent/JP4788874B2/en
Publication of JP2006289479A publication Critical patent/JP2006289479A/en
Application granted granted Critical
Publication of JP4788874B2 publication Critical patent/JP4788874B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/001Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Of Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal intensive working method capable of improving the mechanical properties of a metallic material for structural use which is used in an automobile, an aircraft or the like, and improving the workability such as the tensile elongation and ductility. <P>SOLUTION: In the metallic material intensive working method, the metallic material is extruded by using a twist die in which a twist die having spirally formed holes of the same section and a return die having holes of the same section formed in the straight direction are alternately combined with each other. The characteristics of a worked product are adjusted by combining the twist dies of the same twist direction and the opposite twist direction. A mandrel is provided on an end of the return die to form a long hollow product of an arbitrary shape. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この出願の発明は、金属材料、特に自動車や航空機等に用いられる構造用金属材料を押出成形して所定のせん断ひずみを負荷することにより結晶粒組織を微小化し機械的強度を向上するとともに引張り伸び等の延性をも改善する構造用金属材料の新しい強加工法とこれに用いるせん断ひずみを付与する金型に関する。   The invention of this application is to extrude metal materials, especially structural metal materials used in automobiles, aircrafts, etc. and apply a predetermined shear strain to make the crystal grain structure finer and improve mechanical strength and tensile elongation. The present invention relates to a new strong working method of a structural metal material that also improves ductility such as, and a mold for imparting shear strain used therefor.

ねじりダイスを用いて金属材料を押出し成形する方法は従来から知られている。しかしながら、従来から知られているねじりダイスを用いる金属材料の押出成形方法は、ねじり形状が付与された成形品を成形するために用いられるものであり積極的に素材にせん断ひずみを導入して素材の特性を改善するためのものではない(特許文献1〜5)。   A method for extruding a metal material using a twisting die is conventionally known. However, the conventionally known extrusion method for metal materials using a twisting die is used to form a molded product with a twisted shape. This is not intended to improve the characteristics (Patent Documents 1 to 5).

もちろん、金属材料をねじりダイスを用いて押出し成形する場合は成形品にある程度のせん断ひずみが負荷されるため金属材料の特性は改善されることになる。しかしながら、ねじりダイスを用いてねじり形状が負荷された成形品を成形する際には、単一方向へのねじり加工となり負荷されるせん断ひずみ量は、ねじりダイスの先端部の形状だけで決まるためトータルで負荷されるせん断ひずみには限界がある。   Of course, when a metal material is extruded by using a twisting die, a certain amount of shear strain is applied to the molded product, so that the characteristics of the metal material are improved. However, when forming a molded product with a torsional shape loaded using a torsion die, the amount of shear strain that is applied by twisting in a single direction is determined only by the shape of the tip of the torsion die, so the total There is a limit to the shear strain loaded at.

このように、ねじり成形品を成形するためにねじりダイスを用いるのではなく金属材料を曲り孔を有するダイスを用いて積極的にせん断ひずみを導入することにより金属材料の特性を改善する方法も本出願前に知られている(非特許文献2)。   In this way, the method of improving the characteristics of the metal material by actively introducing shear strain using a die having a bent hole instead of using a twisting die to form a torsion molded product is also described. Known before application (Non-Patent Document 2).

たとえば、金属材料に積極的にせん断ひずみを導入して金属材料の特性を改善する方法として、本出願前にECAP(Equal Channel Angular Pressing)法と称される方法が知られているが、このECAP法は入口と出口の形状が等しくて中央部に曲り部が設けられた孔を有する金型の一方から金属材料を押し込み他方から取り出すことで金属材料に大きなせん断変形を負荷する加工法であり、ホールペッチ則に基づき高強度材となるとともに加工前後で材料形状の変化がないのが特徴である。このECAP法は金型内で金属素材の断面積がほとんど変化しないため繰り返しひずみを導入させることが可能となるだけでなく1回の押出しで大きなひずみを負荷することができるため従来達成できなかった領域まで結晶組織を微細化することが可能である。   For example, a method called an ECAP (Equal Channel Angular Pressing) method is known as a method for improving the properties of a metal material by positively introducing shear strain into the metal material. The method is a processing method in which a large shear deformation is applied to the metal material by pushing the metal material from one of the molds having holes having the same shape at the inlet and outlet and having a bent portion at the center, and taking out from the other. It is characterized by a high-strength material based on the Hall Petch rule and no change in material shape before and after processing. This ECAP method could not be achieved in the past because not only the cross-sectional area of the metal material in the mold hardly changes, but it is possible not only to introduce repeated strain but also to load a large strain by one extrusion. It is possible to refine the crystal structure up to the region.

しかしながら、このECAP法はバッチ式(回分式)であり、操作に手間がかかるだけでなく1回での処理量が少ないため生産性が低く研究室レベルでは利用されているが実用的には利用されていない。   However, this ECAP method is a batch type (batch type), which not only takes time and labor, but also has a low throughput and is used at the laboratory level because of low productivity. It has not been.

その他、中実円形断面材料に直接ねじりを付与することにより、せん断ひずみを付与する手段が提案されているが、ねじりと戻しを組み合わせていないために断面形状が円形に限られる点(非特許文献3および4)と型による周方向の拘束が無いことによる寸法精度の点で問題がある(非特許文献1および3)。
特開2002−248518号公報 特開平09−109920号公報 特開平09−104905号公報 特開平06−099215号公報 特開平05−131213号公報 穴田、田中、古井、佐治、「ねじり戻し加工によるアルミニウム合金棒の原形回復現象と変形特性」、軽金属、第33巻(2003)20−26. 向井敏司、東健司「ECAEプロセスによる軽量金属材料の結晶粒微細化と機械的性質の改善」―高強度・高延性化のトレードオフ・バランシング―、金属、Vol.170(2000)No.11、p71−77. 東野、宮原、根石、中村、金子、中垣、堀田、「強ひずみ高速連続加工プロセス“STSP”によるAl-Mg合金の微細粒解析と機械的性質の改善」、第55回塑性加工連合講演会概要集、(2004)pp.395-396. 水沼、「ねじり押出し加工を受けたアルミニウムの変形状態と内部組織」、第55回塑性加工連合講演会概要集、(2004)pp.389-390.
In addition, a means for imparting a shear strain by directly imparting a twist to a solid circular cross-section material has been proposed, but the cross-sectional shape is limited to a circle because no combination of twist and return (non-patent literature) 3 and 4) and there is a problem in terms of dimensional accuracy due to the absence of circumferential constraints by the mold (Non-Patent Documents 1 and 3).
JP 2002-248518 A Japanese Patent Laid-Open No. 09-109920 JP 09-104905 A Japanese Patent Laid-Open No. 06-099215 Japanese Patent Laid-Open No. 05-131213 Anada, Tanaka, Furui, Saji, “Recovery and deformation characteristics of aluminum alloy rods by untwisting”, Light Metal, Vol. 33 (2003) 20-26. Toshiji Mukai, Kenji Higashi “Refining crystal grains and improving mechanical properties of light metal materials by ECAE process”-Tradeoff balancing of high strength and high ductility-Metals, Vol. 170 (2000) No. 11, p71-77. Higashino, Miyahara, Neishi, Nakamura, Kaneko, Nakagaki, Horita, "Fine grain analysis and improvement of mechanical properties of Al-Mg alloy by high strain high speed continuous machining process" STSP "", Summary of the 55th Plastic Working Conference (2004) pp. 395-396. Mizunuma, “Deformation state and internal structure of aluminum subjected to torsion extrusion”, Summary of the 55th Joint Conference on Plastic Working, (2004) pp. 389-390.

そこで上記の通りの事情に鑑み、この出願の発明は大きな負担を要することなく、金属材料、特に構造用金属材料にせん断ひずみを一工程で効率よく導入することができるとともに強加工された金属材料を長尺体や中空体の形状で成形する方法とこれに用いるせん断ひずみを付与する金型を提供するものである。   Therefore, in view of the circumstances as described above, the invention of this application is capable of efficiently introducing shear strain into a metal material, particularly a structural metal material, in one step without requiring a large burden, and is a strongly processed metal material. The present invention provides a method for forming a material in the shape of a long body or a hollow body and a mold for imparting shear strain used therefor.

この出願の発明は上記の課題を解決するものとして、第1には、金属材料をねじりダイスと戻しダイスを交互に組み合わせた金型を用いて押出成形して金属材料にせん断ひずみを連続的に負荷する金属材料の強加工法を提供する。   The invention of this application solves the above-mentioned problems. First, a metal material is extruded by using a mold in which twisting dies and return dies are alternately combined, and shear strain is continuously applied to the metal material. To provide a strong processing method for loading metal materials.

第2には、ねじりダイスのねじり方向が戻しダイスの前後で同じ方向である金型を用いる上記の金属材料の強加工法を提供する。   Secondly, the present invention provides a strong processing method of the above metal material using a mold in which the twisting direction of the twisting die is the same before and after the return die.

第3には、ねじりダイスのねじり方向が戻しダイスの前後で逆の方向になっている金型を用いる上記の金属材料の強加工法を提供する。   Thirdly, the present invention provides a strong processing method of the above metal material using a mold in which the twisting direction of the twisting die is reversed before and after the return die.

第4には、戻しダイスの端部にマンドレルが設けられている金型を用いる上記の金属材料の強加工法を提供する。   Fourthly, a strong processing method of the above metal material using a mold in which a mandrel is provided at an end of a return die is provided.

第5には、上記の金属材料の強加工法に用いる金型であって、同じ横断面の孔が螺旋状に設けられているねじりダイスと同じ横断面の孔が直進方向に設けられている戻しダイスが交互に設けられている金型を提供する。   Fifth, a mold used in the above-described strong processing method of a metal material is provided with a hole having the same cross section as that of a twisting die in which a hole having the same cross section is provided in a spiral shape in a straight direction. Provided is a mold in which return dies are alternately provided.

第6には、ねじりダイスに設けられる孔の横断面が円形、楕円形、方形、歯車形のいずれかである上記の金型を提供する。   Sixth, the above-mentioned mold is provided in which the cross section of the hole provided in the twisting die is any one of a circle, an ellipse, a square, and a gear.

第7には、ねじりダイスの回転軸が断面形状の中心部以外に設けられている上記の金型を提供する。   Seventh, the above-described mold is provided in which the rotational axis of the torsion die is provided in a portion other than the central portion of the cross-sectional shape.

第8には、ねじりダイスに材料供給孔が複数設けられている上記の金型を提供する。   Eighth, the above-described mold in which a plurality of material supply holes are provided in a twisting die is provided.

上記第1の金属材料の強加工法の発明によれば、金属材料をねじりダイスと戻しダイスが交互に組み合わされた金型を用いて押出成形することにより結晶粒組織が微小化して強加工された金属材料を連続的に得ることができる。   According to the first invention of a strong processing method for a metal material, the metal material is extruded by using a mold in which a twisting die and a return die are alternately combined, whereby the crystal grain structure is miniaturized and strongly processed. Metal materials can be obtained continuously.

上記第2の強加工法の発明によれば、ねじりダイスのねじり方向が戻しダイスの前後で同じ方向である金型を用いることにより、集合組織がさらに強化された金属材料を得ることができる。   According to the invention of the second strong working method, a metal material having a further strengthened texture can be obtained by using a mold in which the twisting direction of the twisting die is the same before and after the return die.

上記第3の強加工法の発明によれば、ねじりダイスのねじり方向が戻しダイスの前後で逆の方向になっている金型を用いることにより、比較的ランダムな集合組織が形成された金属材料を得ることができる。   According to the invention of the third strong working method, a metal material in which a relatively random texture is formed by using a mold in which the twisting direction of the twisting die is opposite to that before and after the return die. Can be obtained.

上記第4の強加工法の発明によれば、強加工された金属材料の長尺体や中空体を得ることができる。   According to the invention of the fourth strong processing method, it is possible to obtain an elongated body or hollow body of a strongly processed metal material.

上記第5の金型の発明によれば、機械的強度や延性が改善された金属材料の長尺体や中空体を連続して成形できる金型が得られる。   According to the fifth mold invention, it is possible to obtain a mold capable of continuously molding a long body or hollow body of a metal material with improved mechanical strength and ductility.

上記第6の金型の発明によれば、金属材料の物性に応じて最適の条件で成形できる金型を選択することができる。   According to the sixth mold invention, a mold that can be molded under optimum conditions can be selected according to the physical properties of the metal material.

上記第7の金型の発明によれば、任意の断面をした金属材料の成形体に、せん断ひずみを比較的同等に負荷することができる金型が得られる。   According to the seventh aspect of the present invention, a mold can be obtained in which a shearing strain can be applied relatively equally to a molded body of a metal material having an arbitrary cross section.

上記第8の強加工法の発明によれば、金属材料の強加工法を同時に複数行なうことができる金型が得られる。   According to the eighth invention of strong working method, a mold capable of simultaneously carrying out a plurality of strong working methods of metal material is obtained.


この出願の発明の金属材料の強加工法を従来から知られている方法と比較しながら説明すると、図6は従来から知られているECAP(Equal Channel Angular Pressing)法を模式的に示したものである。このECAP法は同じ横断面積の曲り部を有する孔が設けられた金型(c)に金属材料(b)を入れて上方から荷重(a)をかけることにより孔の曲り部において金属材料にせん断ひずみ(e)を付与して結晶粒組織を微小化する。そして結晶粒組織が微小化することにより強加工された金属材料を出口(d)から取り出すことにより金属材料を強加工する方法である。しかしながら、このECAP法はバッチ式(回分式)であり、生産性が低いだけでなく長尺体の成形ができず、しかもこのECAP法は金型(c)内に設けられた孔の曲り部の内角と外角とでは金属材料に負荷されるせん断ひずみの量が異なるため結晶粒組織の均質な微小化ができないという問題がある。

The strong processing method of the metal material of the invention of this application will be described in comparison with a conventionally known method. FIG. 6 schematically shows a conventionally known ECAP (Equal Channel Angular Pressing) method. It is. In this ECAP method, a metal material (b) is placed in a mold (c) provided with a hole having a bent portion having the same cross-sectional area, and a load (a) is applied from above to shear the metal material at the bent portion of the hole. Strain (e) is applied to refine the crystal grain structure. And it is the method of carrying out the strong processing of the metal material by taking out the metal material strongly processed by the crystal grain structure being miniaturized from the outlet (d). However, this ECAP method is a batch type (batch type), which is not only low in productivity, but also cannot form a long body, and this ECAP method is a bent portion of a hole provided in the mold (c). Since the amount of shear strain applied to the metal material differs between the inner angle and the outer angle, the crystal grain structure cannot be uniformly miniaturized.

本願発明は従来の孔の曲り部を利用して金属材料にせん断ひずみを導入する方法とは違って、金属材料をねじりダイスを用いて押出成形し、ねじりによるせん断ひずみを負荷し、ねじり変形後、戻しダイスを用いて元の形状に戻すことにより金属材料にせん断ひずみを導入する強加工法である。この出願の発明は、ねじりダイスと戻しダイスを組み合わせた金型を用いて金属材料を押出成形して、ねじり・戻しを繰り返すことにより無限にひずみを負荷することを特徴とするものである。そしてこの出願の発明では断面積の大きなものや複雑形状の長尺材料を成形することが可能であり金属材料の大型化にも対応することが可能となる。   The present invention is different from the conventional method in which shear strain is introduced into a metal material by utilizing the bent portion of the hole, and the metal material is extruded using a twisting die, and the shear strain due to torsion is loaded, and after torsional deformation. This is a strong processing method for introducing shear strain into a metal material by returning it to its original shape using a return die. The invention of this application is characterized in that an infinite strain is applied by extruding a metal material using a mold in which a twisting die and a return die are combined, and repeating twisting and returning. In the invention of this application, it is possible to form a long material having a large cross-sectional area or a complicated shape, and it is possible to cope with an increase in the size of a metal material.

この出願の発明を図1〜図5に従って詳細に説明すると、図1はこの出願の発明のせん断ひずみを付与する金型分解した図面であり、所定のねじりが付与されたねじりダイス(1)と戻しダイス(2)から構成されている。なお、このねじりダイス(1)の断面形状は任意に設定することが可能であるが、ねじりダイス(1)の横断面は金属材料が押出されるどの部位においても同じ形状にする必要がある。図2の(A)、(B)および(C)は、本願発明で用いるねじりダイスの断面形状を示したものであるが、図2に示されているようにねじりダイスは長方形(A)だけでなく、楕円形断面(B)や周溝付き円形断面(C)等の形状のものが用いることができる。なお、図2では典型的なねじりダイスを示
したものであり、この他にも様々な形状が考慮されることは言うまでもない。図2における矢印は、ねじりダイスにおけるねじり方向を示したものであり金属材料はこの方向に沿って押出される。図3の(A)、(B)および(C)は、断面形状の中心とは異なる位置にねじりの回転軸を設けることにより任意の断面にせん断ひずみを同等に付与することが可能なねじりダイスを示したものである。また、図3における矢印の方向は、ねじりダイスのねじり方向を、矢印の数は、ねじりダイスに供給する材料供給孔の数を示したものである。図3の(B)および(C)では複数の矢印が図示されているが、このように材料供給口を複数設けることにより、複数の金属材料にせん断ひずみを同時に負荷することが可能となる。図4はねじりダイス(1)と戻しダイス(2)を組み合わせた本願発明の典型的なせん断ひずみ金型を模式的に示したものであり、図5はねじりダイス(1)と戻しダイス(2)を組み合わせた本願発明のせん断ひずみ付与金型の他の態様を示したものである。図4の形態と図5の形態を比較すると、図4で示されている金型のねじりダイス(1)は、戻しダイス(2)の前後においてねじり方向が同じであるのに対し、図5で示されている金型のねじりダイス(1)は、戻しダイス(2)の前後においてねじりダイス(1)のねじり方向が逆になっている点で異なっている。そしてこの出願の発明では、ねじりダイスと戻しダイスを選択して組み合わせることにより成形体の特性を制御することも可能になる。たとえば、ねじりダイス(1)と戻しダイス(2)を図4に示したように組み合わせることにより、ねじり変形により変化する集合組織を強くすることができるのに対し、ねじりダイス(1)と戻しダイス(2)を図5のように組み合わせることにより比較的ランダムな集合組織が形成することが可能となる。また、成形される金属材料の形状においても、図3の(C)の戻しダイスにマンドレル等を設けることにより、角形などの断面形状を有するパイプの成形が可能になる。このように、この出願の発明は、ねじりダイス(1)と戻しダイス(2)を適宜組み合わせることにより種々の形態の強加工された金属材料の長尺体を成形することが可能となる。なお、この出願の発明では押出し過程における加熱処理の温度範囲は使用する金属材料の種類によって異なるが、たとえば純マグネシウムを用いた場合は、90〜150℃程度が好ましい。
The invention of this application will be described in detail with reference to FIGS. 1 to 5. FIG. 1 is an exploded view of a die for imparting shear strain according to the invention of this application, and a twisting die (1) to which a predetermined twist is applied. It consists of a return die (2). In addition, although the cross-sectional shape of this twisting die (1) can be set arbitrarily, the cross-sectional shape of the twisting die (1) needs to be the same shape at any part where the metal material is extruded. 2A, 2B and 2C show the cross-sectional shape of the torsion die used in the present invention. As shown in FIG. 2, the torsion die only has a rectangular shape (A). Instead, a shape such as an elliptical cross section (B) or a circular cross section with a circumferential groove (C) can be used. FIG. 2 shows a typical torsion die, and it goes without saying that various other shapes are considered. The arrows in FIG. 2 indicate the direction of twisting in the twisting die, and the metal material is extruded along this direction. FIGS. 3A, 3B, and 3C show a torsion die that can equally apply a shear strain to an arbitrary cross section by providing a rotational axis of torsion at a position different from the center of the cross section. Is shown. Further, the direction of the arrow in FIG. 3 indicates the twisting direction of the twisting die, and the number of arrows indicates the number of material supply holes supplied to the twisting die. In FIGS. 3B and 3C, a plurality of arrows are shown, but by providing a plurality of material supply ports in this way, it becomes possible to simultaneously apply a shear strain to a plurality of metal materials. FIG. 4 schematically shows a typical shear strain die of the present invention in which a twisting die (1) and a return die (2) are combined, and FIG. 5 shows a twisting die (1) and a return die (2). ) Is another embodiment of the shear strain imparting mold of the present invention. Comparing the configuration of FIG. 4 with the configuration of FIG. 5, the twisting die (1) of the mold shown in FIG. 4 has the same twisting direction before and after the return die (2), whereas FIG. The torsion die (1) of the mold indicated by is different in that the twist direction of the torsion die (1) is reversed before and after the return die (2). In the invention of this application, the characteristics of the molded body can be controlled by selecting and combining the twisting die and the return die. For example, by combining the twisting die (1) and the return die (2) as shown in FIG. 4, the texture that changes due to torsional deformation can be strengthened, whereas the twisting die (1) and the return die By combining (2) as shown in FIG. 5, a relatively random texture can be formed. Also, in the shape of the metal material to be molded, a pipe having a cross-sectional shape such as a square can be formed by providing a mandrel or the like on the return die shown in FIG. As described above, according to the invention of this application, it is possible to form a long body of a strongly processed metal material in various forms by appropriately combining the twisting die (1) and the return die (2). In the invention of this application, the temperature range of the heat treatment in the extrusion process varies depending on the type of metal material to be used. For example, when pure magnesium is used, it is preferably about 90 to 150 ° C.

マグネシウム合金AZ31(Mg-3wt.%Al-1wt.%Zn-0.2wt.%Mn)について、図1に示す正方形断面のねじりダイス・戻しダイスを用いて、押出しを行なった。ダイス穴の正方形の一辺の長さを12mmのものとし、ねじりダイスにより180度ねじりせん断を付与した後に、戻しダイスによりねじり戻しを行なった。押出温度は220℃とした。押出しの結果を組織観察したところ、平均結晶粒径20μmであった初期組織から、平均結晶粒径3μm程度まで微細化が可能であった。また、引張試験の結果、初期材料と比較して約1.5倍の引っ張り伸び値の改善がみられた。   The magnesium alloy AZ31 (Mg-3 wt.% Al-1 wt.% Zn-0.2 wt.% Mn) was extruded using a torsion die / return die having a square cross section shown in FIG. The length of one side of the square of the die hole was set to 12 mm, and after twisting 180 degrees with a twisting die, twisting was performed with a return die. The extrusion temperature was 220 ° C. When the structure of the extrusion was observed, it was possible to refine the structure from an initial structure having an average crystal grain size of 20 μm to an average crystal grain size of about 3 μm. As a result of the tensile test, the tensile elongation value was improved by about 1.5 times compared to the initial material.

構造用金属材料を始めとする機械的強度が大きく、しかも延性等の優れた加工性が要求される自動車や航空機の様々な分野への利用が期待できる。   It can be expected to be used in various fields of automobiles and aircraft that require high mechanical strength such as structural metal materials and excellent workability such as ductility.

ねじりダイスと戻しダイスを模式的に示したものである。A twisting die and a return die are schematically shown. 典型的なねじりダイスの断面形状を示したものであり、(A)は長方形断面ダイス、(B)は楕円形断面ダイス、(C)は周溝付き円形断面ダイスである。The cross-sectional shape of a typical torsion die is shown, (A) is a rectangular cross-sectional die, (B) is an elliptical cross-sectional die, and (C) is a circular cross-sectional die with a circumferential groove. 断面形状の中心とは異なる位置にねじりダイスの回転軸が設けられたねじりダイスの断面とねじり方向を示したものであり、(A)は1個の原料供給口、(B)は2個の原料供給口、(C)は4個の原料供給口を示している。The cross section of the torsion die provided with the rotational axis of the torsion die at a position different from the center of the cross-sectional shape and the twist direction are shown. (A) is one raw material supply port, (B) is two A raw material supply port, (C), shows four raw material supply ports. ねじり方向が同一方向のねじりダイスを組み合わせたねじり金型である。This is a twisting die in which twisting dies having the same twisting direction are combined. ねじり方向が逆方向のねじりダイスを組み合わせたねじり金型である。This is a twisting die in which twisting dies with opposite twisting directions are combined. 従来例のECAP法の断面を示した概略図である。It is the schematic which showed the cross section of the ECAP method of a prior art example.

符号の説明Explanation of symbols

a: 荷重
b: 金属材料
c: 金型
d: 出口
e: 微細化した結晶組織





















a: Load b: Metal material c: Mold d: Outlet e: Refined crystal structure





















Claims (8)

金属材料をねじりダイスと戻しダイスが交互に組み合わされた金型を用いて押出成形することを特徴とする金属材料の強加工法。 A strong processing method for a metal material, characterized in that the metal material is extruded using a mold in which a twisting die and a return die are alternately combined. ねじりダイスのねじり方向が戻しダイスの前後で同じ方向の金型を用いたことを特徴とする請求項1に記載された金属材料の強加工法。 2. The method for strongly processing a metal material according to claim 1, wherein a mold having a twisting direction of the twisting die in the same direction before and after the return die is used. ねじりダイスのねじり方向が戻しダイスの前後で逆の方向の金型を用いたことを特徴とする請求項1に記載された金属材料の強加工法。 2. The method of strongly processing a metal material according to claim 1, wherein a die having a twisting direction of the twisting die opposite to that before and after the return die is used. 戻しダイスの端部にマンドレルが設けられた金型を用いたことを特徴とする請求項1ないし3いずれかに記載された金属材料の強加工法。 4. The method of strongly processing a metal material according to claim 1, wherein a die having a mandrel provided at an end of the return die is used. 同じ横断面を有する孔が螺旋状に設けられているねじりダイスと同じ横断面の孔が直進方向に設けられている戻しダイスが交互に組み合わされていることを特徴とするせん断ひずみ付与金型。 A shear strain imparting die, wherein a twisting die in which holes having the same cross section are provided spirally and a return die in which holes having the same cross section are provided in a straight direction are alternately combined. ねじりダイスに設けられた孔の横断面が円形、楕円形、方形、歯車形のいずれかの1つであることを特徴とする請求項5に記載された金型。 6. The mold according to claim 5, wherein a cross section of the hole provided in the twisting die is one of a circle, an ellipse, a square, and a gear. ねじりダイスの孔の回転軸がねじりダイス孔の中心部以外に設けられていることを特徴とする請求項5または6に記載された金型。 The mold according to claim 5 or 6, wherein a rotation axis of a hole of the twisting die is provided at a portion other than a center portion of the twisting die hole. ねじりダイスに材料供給孔が複数設けられていることを特徴とする請求項5ないし7のいずれかに記載された金型。









The die according to any one of claims 5 to 7, wherein a plurality of material supply holes are provided in the twisting die.









JP2005117530A 2005-04-14 2005-04-14 Strong processing method for metal materials and molds used for strong processing method Expired - Fee Related JP4788874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005117530A JP4788874B2 (en) 2005-04-14 2005-04-14 Strong processing method for metal materials and molds used for strong processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117530A JP4788874B2 (en) 2005-04-14 2005-04-14 Strong processing method for metal materials and molds used for strong processing method

Publications (2)

Publication Number Publication Date
JP2006289479A true JP2006289479A (en) 2006-10-26
JP4788874B2 JP4788874B2 (en) 2011-10-05

Family

ID=37410635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117530A Expired - Fee Related JP4788874B2 (en) 2005-04-14 2005-04-14 Strong processing method for metal materials and molds used for strong processing method

Country Status (1)

Country Link
JP (1) JP4788874B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551415A (en) * 2013-11-13 2014-02-05 哈尔滨理工大学 Variable cross-section twisting and molding device and method for metal material
CN103551411A (en) * 2013-11-14 2014-02-05 上海桦厦实业有限公司 Screw-extrusion-based titanium alloy ultrafine structure implementation device and method
KR101406606B1 (en) * 2012-09-06 2014-06-11 주식회사 포스코 Apparatus for shear deforming
KR101406446B1 (en) * 2012-09-06 2014-06-13 주식회사 포스코 Apparatus for shear deforming
KR101482405B1 (en) 2013-05-29 2015-01-13 주식회사 포스코 Apparatus and Method for manufacturing steel wire
CN104475475A (en) * 2014-11-28 2015-04-01 太原理工大学 Twist extrusion forming die and twist extrusion forming method
CN104874629A (en) * 2015-06-02 2015-09-02 太原理工大学 Equal-channel U-shaped extrusion die and method
CN106111718A (en) * 2016-07-08 2016-11-16 哈尔滨理工大学 A kind of forward extrusion continuously turns round composite forming device and method with squeezing
CN108405647A (en) * 2018-03-14 2018-08-17 哈尔滨理工大学 A kind of circular bar is crowded to turn round shaping dies and its crowded torsion method
CN108435817A (en) * 2018-05-18 2018-08-24 西京学院 A kind of bar extruding mold and its application method
CN111922106A (en) * 2020-05-22 2020-11-13 湖南乾龙新材料有限公司 Continuous torsion extrusion large plastic deformation method and application thereof
CN113560362A (en) * 2021-07-28 2021-10-29 太原理工大学 High-performance magnesium-aluminum alloy variable cross-section extrusion-torsion composite processing device and preparation process thereof
CN113941613A (en) * 2021-09-30 2022-01-18 哈尔滨工业大学(威海) Spiral extrusion device and extrusion process for magnesium and magnesium alloy seamless pipes
CN114011899A (en) * 2021-11-03 2022-02-08 中北大学 Mould for preparing ultra-fine grain pipe by shearing, twisting, extruding and deforming
CN114653770A (en) * 2022-03-28 2022-06-24 太原科技大学 Spiral reducing-continuous twisting extrusion die for magnesium alloy high-performance plate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105436228B (en) * 2015-12-11 2017-07-11 上海交通大学 Two-way continuous confined strip shearing device and method
CN105537307B (en) * 2015-12-11 2018-07-06 上海交通大学 Continuous shear stress prepared by tubing back and forth instead squeezes combined type processing unit (plant) and method
CN106984665B (en) * 2017-05-25 2018-09-28 天津工业大学 A kind of off-axis rotation extruding mold and its moulding material method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437411A (en) * 1990-06-01 1992-02-07 Showa Alum Corp Dies for twist-extruding twisted material
JPH067834A (en) * 1992-06-26 1994-01-18 Furukawa Alum Co Ltd Manufacture of hollow stock having twisted part
JP2003311320A (en) * 2002-04-25 2003-11-05 Mitsui Mining & Smelting Co Ltd Plastic forming device, and plastic forming method
JP2005000990A (en) * 2003-05-16 2005-01-06 Susumu Mizunuma Twist-extrusion working method for material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437411A (en) * 1990-06-01 1992-02-07 Showa Alum Corp Dies for twist-extruding twisted material
JPH067834A (en) * 1992-06-26 1994-01-18 Furukawa Alum Co Ltd Manufacture of hollow stock having twisted part
JP2003311320A (en) * 2002-04-25 2003-11-05 Mitsui Mining & Smelting Co Ltd Plastic forming device, and plastic forming method
JP2005000990A (en) * 2003-05-16 2005-01-06 Susumu Mizunuma Twist-extrusion working method for material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406606B1 (en) * 2012-09-06 2014-06-11 주식회사 포스코 Apparatus for shear deforming
KR101406446B1 (en) * 2012-09-06 2014-06-13 주식회사 포스코 Apparatus for shear deforming
KR101482405B1 (en) 2013-05-29 2015-01-13 주식회사 포스코 Apparatus and Method for manufacturing steel wire
CN103551415A (en) * 2013-11-13 2014-02-05 哈尔滨理工大学 Variable cross-section twisting and molding device and method for metal material
CN103551411A (en) * 2013-11-14 2014-02-05 上海桦厦实业有限公司 Screw-extrusion-based titanium alloy ultrafine structure implementation device and method
CN104475475A (en) * 2014-11-28 2015-04-01 太原理工大学 Twist extrusion forming die and twist extrusion forming method
CN104475475B (en) * 2014-11-28 2016-03-23 太原理工大学 One turns round crowded shaping dies and manufacturing process
CN104874629A (en) * 2015-06-02 2015-09-02 太原理工大学 Equal-channel U-shaped extrusion die and method
CN106111718A (en) * 2016-07-08 2016-11-16 哈尔滨理工大学 A kind of forward extrusion continuously turns round composite forming device and method with squeezing
CN108405647A (en) * 2018-03-14 2018-08-17 哈尔滨理工大学 A kind of circular bar is crowded to turn round shaping dies and its crowded torsion method
CN108435817A (en) * 2018-05-18 2018-08-24 西京学院 A kind of bar extruding mold and its application method
CN111922106A (en) * 2020-05-22 2020-11-13 湖南乾龙新材料有限公司 Continuous torsion extrusion large plastic deformation method and application thereof
CN113560362A (en) * 2021-07-28 2021-10-29 太原理工大学 High-performance magnesium-aluminum alloy variable cross-section extrusion-torsion composite processing device and preparation process thereof
CN113941613A (en) * 2021-09-30 2022-01-18 哈尔滨工业大学(威海) Spiral extrusion device and extrusion process for magnesium and magnesium alloy seamless pipes
CN113941613B (en) * 2021-09-30 2024-01-05 哈尔滨工业大学(威海) Screw extrusion device and extrusion process for magnesium and magnesium alloy seamless pipe
CN114011899A (en) * 2021-11-03 2022-02-08 中北大学 Mould for preparing ultra-fine grain pipe by shearing, twisting, extruding and deforming
CN114653770A (en) * 2022-03-28 2022-06-24 太原科技大学 Spiral reducing-continuous twisting extrusion die for magnesium alloy high-performance plate
CN114653770B (en) * 2022-03-28 2024-02-13 太原科技大学 Spiral reducing-continuous torsion extrusion die for magnesium alloy high-performance plate

Also Published As

Publication number Publication date
JP4788874B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4788874B2 (en) Strong processing method for metal materials and molds used for strong processing method
Kim et al. Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears
CN109772922B (en) Extrusion-upsetting die, extrusion-upsetting processing method and magnesium alloy central jacket
Naizabekov et al. Effect of combined rolling–ECAP on ultrafine-grained structure and properties in 6063 Al alloy
JP2009172657A (en) High-performance magnesium alloy member and method of manufacturing it
EP2380672B1 (en) Dies for shear drawing
JP4696980B2 (en) Hollow material manufacturing apparatus and hollow material manufacturing method
Wang et al. Review on modified and novel techniques of severe plastic deformation
CN1768154A (en) High-strength aluminum-alloy extruded material with excellent corrosion resistance and method of producing the same
CN109290385B (en) Fine-grained and completely recrystallized 6061 aluminum alloy and preparation method thereof
CN105171356B (en) A kind of processing method of the ultra-thin housing of high precision major diameter overlength
JP4332889B2 (en) Method for producing magnesium-based alloy compact
Faraji et al. Accumulative torsion back (ATB) processing as a new plastic deformation technique
WO2012127098A1 (en) Spd process and apparatus
Fakhar et al. Significant improvements in mechanical properties of AA5083 aluminum alloy using dual equal channel lateral extrusion
CN106862863A (en) A kind of preparation processing method of the ultra-thin titanium alloy shell of great diameter and long
JP2006305629A (en) Method for producing forged material for rotating body
Raab The innovation potential of ECAP techniques of severe plastic deformation
JPH1046280A (en) Parts composed of al-mg-si type alloy
Chen et al. Microstructure evolution and mechanical properties of large-scale AZ80 magnesium alloy billets produced by multitemperature multidirectional forging
Karon et al. Microstructure and mechanical properties of the annealed 6060 aluminium alloy processed by ECAP method
CZ304778B6 (en) Method of angular extrusion with twist and apparatus for making the same
WO2013053003A1 (en) Strengthened metal tubes
JP2020131252A (en) Manufacturing method of high strength aluminum alloy bolt
JP2006192451A (en) Die for extrusion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4788874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees