JP2009172657A - High-performance magnesium alloy member and method of manufacturing it - Google Patents

High-performance magnesium alloy member and method of manufacturing it Download PDF

Info

Publication number
JP2009172657A
JP2009172657A JP2008015397A JP2008015397A JP2009172657A JP 2009172657 A JP2009172657 A JP 2009172657A JP 2008015397 A JP2008015397 A JP 2008015397A JP 2008015397 A JP2008015397 A JP 2008015397A JP 2009172657 A JP2009172657 A JP 2009172657A
Authority
JP
Japan
Prior art keywords
magnesium alloy
extrusion
performance magnesium
texture
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008015397A
Other languages
Japanese (ja)
Inventor
Yasumasa Chino
千野  靖正
Mamoru Mabuchi
馬渕  守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008015397A priority Critical patent/JP2009172657A/en
Publication of JP2009172657A publication Critical patent/JP2009172657A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/001Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Of Metal (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a high-performance magnesium alloy member by simply controlling the texture of the extruded material of a magnesium alloy and a high-performance magnesium alloy member. <P>SOLUTION: In the method of manufacturing the high-performance magnesium alloy member and the high-performance magnesium alloy member, the ductility of a sample is rapidly improved as compared to an ordinary extruded material by inclining the ä0002} plane not less than 15° to the direction of extrusion and increasing Schmid's factor of the ä0002} plane in the direction of extrusion (tensile direction), by applying a twist extruding method to the extrusion of a magnesium alloy and simultaneously imparting the extrusion and shear deformation to the sample. Various texture can be made by a continuous process and with a single die and the high-performance magnesium alloy member which is remarkably improved in the ductility at the normal temperature is simply manufactured and provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高性能マグネシウム合金の製造方法及び高性能マグネシウム合金部材に関するものであり、更に詳しくは、ねじり押出し法をマグネシウム合金に適用し、集合組織を制御して、常温延性を著しく改善した高性能マグネシウム合金の製造方法及び該方法で製造した高性能マグネシウム合金部材に関するものである。本発明は、例えば、宇宙・航空材料、電子機器材料、自動車部材等、幅広い分野で利用することが可能なマグネシウム合金製部材を提供するものである。   The present invention relates to a method for producing a high-performance magnesium alloy and a high-performance magnesium alloy member. More specifically, the present invention relates to a high-performance magnesium alloy having a significantly improved room temperature ductility by applying a torsion extrusion method to the magnesium alloy and controlling the texture. The present invention relates to a method for producing a performance magnesium alloy and a high performance magnesium alloy member produced by the method. The present invention provides a magnesium alloy member that can be used in a wide range of fields, such as space / aviation materials, electronic equipment materials, automobile members, and the like.

マグネシウムは、実用構造金属材料中、最も低密度(=1.7g/cm)であり、金属材料特有の易リサイクル性を有し、資源も豊富に存在することから、次世代の構造用軽量材料として注目されている。現在、日本におけるマグネシウム製品の多くは、鋳造法(ダイキャスト法、チクソキャスト法)により作製されている。 Magnesium has the lowest density (= 1.7 g / cm 3 ) among practical structural metal materials, has easy recyclability unique to metal materials, and has abundant resources. It is attracting attention as a material. Currently, many magnesium products in Japan are produced by a casting method (die casting method, thixocasting method).

例えば、自動車産業においては、ステアリングホイール、シリンダーヘッドカバー、オイルパン等の部材が、マグネシウム合金鋳造材により作製されている。また、家電製品では、パソコン、携帯電話等の家電製品筐体が、マグネシウム合金鋳造材により作製されている。しかし、鋳造法による生産法には、鋳造欠陥を補うための後処理が必要であること、歩留りが低いこと、部材の強度・剛性に問題があること、等の問題が存在する。   For example, in the automobile industry, members such as a steering wheel, a cylinder head cover, and an oil pan are made of a magnesium alloy casting material. Moreover, in home appliances, home appliance housings such as personal computers and mobile phones are made of a magnesium alloy casting material. However, the production method based on the casting method has problems such as the need for post-processing to compensate for casting defects, a low yield, and problems with the strength and rigidity of the members.

塑性加工プロセスは、一般的に、歩留まりが高く、成形と同時に高強度・高靭性化を図ることができることから、実用構造金属材料の需要拡大の有効な手段と言える。特に、押出し成形は、棒材、パイプ材、板材等の様々な形状の一次成形体を作製可能であり、押出し成形により作製された一次成形体は、家電製品筐体(PC筐体等)、輸送機器部品(クロスメンバー、ブレーキペダルサポート等)、ロボット構造部品等に適用できることが見込まれている。   Since the plastic working process generally has a high yield and can achieve high strength and high toughness at the same time as forming, it can be said that it is an effective means of expanding the demand for practical structural metal materials. In particular, extrusion molding can produce primary molded bodies of various shapes such as rods, pipe materials, plate materials, etc., and the primary molded body produced by extrusion molding is a home appliance housing (such as a PC housing), It is expected to be applicable to transportation equipment parts (cross members, brake pedal supports, etc.), robot structural parts, etc.

しかし、実際に、マグネシウム合金押出し材が製品化された例は、少ないのが現状である。マグネシウム合金押出し材の需要が少ない理由として、最密六方格子構造・集合組織形成に起因する、低い常温延性が挙げられる。   However, in reality, there are few examples of magnesium alloy extruded materials being commercialized. The reason for the low demand for extruded magnesium alloy materials is low room temperature ductility due to the formation of a close-packed hexagonal lattice structure and texture.

マグネシウムの非底面すべりの臨界分解せん断応力は、常温において、底面すべり({0002}面すべり)よりも非常に大きく、その異方性が、常温延性を低める原因となっている。また、押出し成形後のマグネシウム合金には、押出し方向と{0002}面が平行に揃った集合組織が形成される。このような集合組織が形成されると、押出し方向(引張り方向)のシュミット因子が低くなり、常温延性を更に低める原因となる。   The critical decomposition shear stress of non-bottom slip of magnesium is much larger than bottom slip ({0002} plane slip) at room temperature, and the anisotropy causes low temperature ductility. Further, in the extruded magnesium alloy, a texture in which the extrusion direction and the {0002} plane are aligned in parallel is formed. When such a texture is formed, the Schmid factor in the extruding direction (tensile direction) becomes low, which causes the normal temperature ductility to be further reduced.

それゆえに、マグネシウム合金押出し材の常温延性を改善する手段として、集合組織を制御する試みがなされてきた。金属材料に剪断ひずみを導入して、集合組織を制御する手法としては、ECAP(Equal Channel Angular Pressing)法が知られている。   Therefore, attempts have been made to control the texture as a means of improving the room temperature ductility of the extruded magnesium alloy. An ECAP (Equal Channel Angular Pressing) method is known as a method of controlling the texture by introducing shear strain into a metal material.

本ECAP法は、入口と出口の形状が等しくて、中央部に曲り部が設けられた孔を有する金型の一方から金属材料を押し込み、他方から取り出すことで、金属材料に大きな純粋剪断変形を付与する加工法であり、ECAP加工を施したマグネシウム合金には、{0002}面が押出し方向に対して45°傾いた集合組織が形成される。この様な集合組織を有するマグネシウム合金の押出し方向(引張り方向)のシュミット因子は高く、常温延性は改善される(非特許文献1参照)。   In this ECAP method, a metal material is pushed from one side of a mold having a hole having a bent portion at the center and the shape of the inlet and the outlet is the same, and a large pure shear deformation is applied to the metal material. In the magnesium alloy subjected to ECAP processing, a texture in which the {0002} plane is inclined by 45 ° with respect to the extrusion direction is formed. The Schmid factor in the extrusion direction (tensile direction) of the magnesium alloy having such a texture is high, and the room temperature ductility is improved (see Non-Patent Document 1).

シュミット因子とは、材料の引張り方向と結晶すべり面の法線の角度(θ)、及び引張り方向と結晶のすべり方向の角度(φ)により決定されるものであり(シュミット因子=cos(θ)cos(φ))、それぞれの角度が45°の時に、シュミット因子は最大値(0.5)を取る。すなわち、引張り方向に対して、c軸({0002}面)が45°傾くと、{0002}面のすべり系が最も活動しやすい状態となり、理論上、マグネシウム合金の延性は最大値を取る。   The Schmid factor is determined by the angle (θ) between the tensile direction of the material and the normal line of the crystal slip plane, and the angle (φ) between the tensile direction and the crystal slip direction (Schmid factor = cos (θ)). cos (φ)), the Schmid factor takes a maximum value (0.5) when each angle is 45 °. That is, when the c-axis ({0002} plane) is inclined by 45 ° with respect to the tensile direction, the slip system of the {0002} plane becomes the most active state, and theoretically, the ductility of the magnesium alloy takes the maximum value.

マグネシウム合金押出し材の集合組織を改善する他の手法としては、内部に同じ横断面の孔が螺旋状に設けられたねじりダイスと、内部に同じ横断面の孔が直進方向に設けられた戻しダイスを交互に組み合わせた金型(ねじり金型)を用いて、押出し成形する手法が提案されている(ここでは、“ねじり金型押出し法”と呼ぶ)。“ねじり金型押出し法”に供された押出し材の延性は、通常の押出し材と比して、150%改善されることが報告されている(特許文献1参照)。   Other methods for improving the texture of extruded magnesium alloy materials include a torsion die with a spiral hole with the same cross section inside, and a return die with a hole with the same cross section in the straight direction inside. There has been proposed a method of extrusion molding using a mold (twist mold) in which the two are alternately combined (herein referred to as “twist mold extrusion method”). It has been reported that the ductility of an extruded material subjected to the “twisting die extrusion method” is improved by 150% compared to a normal extruded material (see Patent Document 1).

更に、金属材料の押出し成形の際に、押出しと同時に材料にねじり変形を付与する“ねじり押出し法”により、押出し荷重を軽減する方法、また、大きな塑性歪みの印加により結晶粒を微細化する方法、が種々報告されている(特許文献2−7、非特許文献2−6参照)。   Furthermore, when extruding a metal material, a method of reducing the extrusion load by the “torsion extrusion method” that imparts torsional deformation to the material simultaneously with the extrusion, and a method of refining crystal grains by applying a large plastic strain Have been reported in various ways (see Patent Documents 2-7 and Non-Patent Documents 2-6).

従来のECAP法は、バッチプロセスであり、集合組織が制御されたマグネシウム合金押出し材を作製するためには、複数の操作が必要であり、生産性が低く、実用化された例はない。一方、“ねじり金型押出し法”を利用すると、ダイス形状を造り込むことによりマグネシウム合金押出し材の集合組織を連続プロセスで制御することが可能である。しかし、本法では、材料の仕様に合わせて個々にダイスを造り込む必要があり、それゆえに、多品種・少量生産型のマグネシウム合金市場には不向きである。更に、“ねじり押出し法”は、従来、その利用のコンセプトは、特定のコンセプト(荷重軽減、結晶粒微細化)に限られていた。   The conventional ECAP method is a batch process, and in order to produce a magnesium alloy extruded material having a controlled texture, a plurality of operations are required, the productivity is low, and there is no practical example. On the other hand, when the “twisting die extrusion method” is used, the texture of the magnesium alloy extruded material can be controlled by a continuous process by forming a die shape. However, according to this method, it is necessary to individually form dies according to the material specifications, and therefore, it is not suitable for the high-mix, low-volume production type magnesium alloy market. Furthermore, the “twist extrusion method” has conventionally been limited to a specific concept (load reduction, grain refinement).

特開2006−289479号公報JP 2006-289479 A 特開2005−990号公報JP-A-2005-990 特開2005−991号公報JP 2005-991 A 特開2005−992号公報Japanese Patent Laid-Open No. 2005-992 特開2005−993号公報JP-A-2005-993 特開2005−994号公報JP-A-2005-994 特開2005−996号公報JP-A-2005-996 向井敏司、東健司「ECAEプロセスによる軽量金属材料の結晶粒微細化と機械的性質の改善」−高強度・高延性化のトレードオフ・バランシング−、金属、Vol.170,No.11,p.71−77(2000)Toshiji Mukai, Kenji Higashi “Refining crystal grains and improving mechanical properties of light metal materials by ECAE process”-Tradeoff balancing of high strength and high ductility-Metal, Vol. 170, no. 11, p. 71-77 (2000) W.Bochniak,A.Korbel,“Plastic flow of aluminum extruded under complex conditions”,Mater.Sci.Technol.,Vol.16(2000)p.664−669W. Bochniak, A.M. Korbel, “Plastic flow of aluminum extruded under complex conditions”, Mater. Sci. Technol. , Vol. 16 (2000) p. 664-669 L.X.Kong,P.D.Hodgson,“Constitutive modelling of extrusion of lead with cyclic torsion”,Mater.Sci.Eng.A,Vol.276(2000)p.32−38L. X. Kong, P.M. D. Hodgson, “Constitutive modeling of extension of lead with cyclic torsion”, Mater. Sci. Eng. A, Vol. 276 (2000) p. 32-38 L.X.Kong,L.Lin,P.D.Hodgson,“Material properties under drawing and extrusion with cyclic torsion”,Mater.Sci.Eng.A,Vol.308(2001)p.209−215L. X. Kong, L.M. Lin, P .; D. Hodgson, “Material properties under drawing and extension with cyclic torsion”, Mater. Sci. Eng. A, Vol. 308 (2001) p. 209-215 X.Ma,M.R.Barnett,Y.H.Kim,“Forward extrusion through steadily rotating conical dies.Part I:experiments”,Int.J.Mech.Sci.Vol.46(2004)p.449−464X. Ma, M.M. R. Barnett, Y.M. H. Kim, “Forward extrathrough through steady rotating conical supplies. Part I: experiments”, Int. J. et al. Mech. Sci. Vol. 46 (2004) p. 449-464 X.Ma,M.R.Barnett,Y.H.Kim,“Forward extrusion through steadily rotating conical dies.Part II:theoretical analysis”,Int.J.Mech.Sci.Vol.46(2004)p.465−489X. Ma, M.M. R. Barnett, Y.M. H. Kim, “Forward extraction through steady rotating conical supplies. Part II: theoretical analysis”, Int. J. et al. Mech. Sci. Vol. 46 (2004) p. 465-489

このような状況の中で、本発明者らは、上記従来技術に鑑みて、マグネシウム合金の集合組織を制御することが可能な新しい手法を開発することを目標として鋭意研究を重ねた結果、従来、押出し荷重低減の手段及び結晶粒微細化の手段として利用される事例があった“ねじり押出し法”をマグネシウム合金に適用することにより、常温延性が著しく改善された高性能マグネシウム合金を作製できると共に、所期の目標を達成し得ることを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted intensive research with the goal of developing a new method capable of controlling the texture of the magnesium alloy in view of the above-described prior art. By applying the “torsion extrusion method”, which has been used as a means for reducing extrusion load and means for refining crystal grains, to magnesium alloys, it is possible to produce high-performance magnesium alloys with significantly improved room temperature ductility. The present inventors have found that the intended goal can be achieved and have completed the present invention.

本発明は、押出し荷重低減の手段及び結晶粒微細化の手段として知られている“ねじり押出し法”をマグネシウム合金に適用し、本技術をマグネシウム合金の押出し成形に利用することで、単一のダイスを用いて、様々な集合組織を連続的に造り込むことを可能とするものであり、それにより、マグネシウム合金の集合組織を制御して常温延性を著しく改善したマグネシウム合金押出し部材を簡便に造り出すことを可能とするものである。すなわち、本発明は、常温延性が著しく改善された高性能マグネシウム合金部材を提供すると同時に、それを簡便に製造する方法を提供することを目的とするものである。   The present invention applies a “twist extrusion method” known as a means for reducing extrusion load and means for refining crystal grains to a magnesium alloy, and uses this technique for extrusion molding of a magnesium alloy. Using a die, it is possible to continuously build various textures. By doing so, magnesium alloy extruded members with significantly improved cold ductility can be easily created by controlling the texture of the magnesium alloy. It is possible to do that. That is, an object of the present invention is to provide a high-performance magnesium alloy member whose room temperature ductility is remarkably improved, and at the same time, to provide a method for easily producing it.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)マグネシウム合金の集合組織を制御して常温延性が改善された高性能マグネシウム合金部材を製造する方法であって、ねじり押出し法を適用した熱間押出し成形によりマグネシウム合金押出し材を作製する際に、パンチの押し込み速度とダイスの回転速度により剪断応力を制御することを特徴とする上記高性能マグネシウム合金部材の製造方法。
(2)試料温度を200℃以上470℃以下に設定して押出し成形を行う、前記(1)記載の高性能マグネシウム合金部材の製造方法。
(3)パンチの押し込み速度に比して、ダイスの回転数を大きくして、剪断変形成分を大きくして、{0002}面が押出し方向に傾いた集合組織を造り込む、前記(1)記載の高性能マグネシウム部材の製造方法。
(4)押出し成形と同時に試料に剪断変形を付与することにより、{0002}面を押出し方向に対して15°〜30°傾け、押出し方向(引張り方向)の{0002}面シュミット因子を増大させる、前記(1)記載の高性能マグネシウム部材の製造方法。
(5)シュミット因子を、0.25(最大値に対して50%)から0.43(最大値に対して87%)まで上昇させる、前記(4)に記載の高性能マグネシウム部材の製造方法。
(6)前記(1)から(5)のいずれか1項に記載の方法により作製された高性能マグネシウム合金部材を、熱処理に供して焼鈍することを特徴とする高性能マグネシウム合金部材の製造方法。
(7)上記高性能マグネシウム合金部材を、300℃〜450℃の熱処理に供して少なくとも10分焼鈍する、前記(6)記載の高性能マグネシウム合金部材の製造方法。
(8)常温延性が改善されたマグネシウム合金製部材であって、押出し方向に対して垂直な面を測定面として{10−10}面集合組織を測定した時、最大強度を示す結晶方位が、押出し方向に対して15°以上傾いていることを特徴とする高性能マグネシウム合金製部材。
(9){0002}面が、押出し方向に対して15°〜30°傾いた集合組織を有する、前記(8)記載の高性能マグネシウム合金製部材。
(10)押出し方向(引張り方向)に対して、シュミット因子が0.25(最大値に対して50%、θ=75°、φ=15°)から0.43(最大値に対して87%、θ=60°、φ=30°)まで上昇している、前記(8)記載の高性能マグネシウム合金製部材。
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for producing a high-performance magnesium alloy member having improved cold-temperature ductility by controlling the texture of the magnesium alloy, and producing a magnesium alloy extruded material by hot extrusion using a torsion extrusion method In addition, the shear stress is controlled by a punch pressing speed and a die rotating speed.
(2) The method for producing a high performance magnesium alloy member according to (1), wherein the extrusion is performed by setting the sample temperature to 200 ° C. or more and 470 ° C. or less.
(3) The (1) description Manufacturing method of high performance magnesium member.
(4) By applying shear deformation to the sample simultaneously with extrusion molding, the {0002} plane is inclined by 15 ° to 30 ° with respect to the extrusion direction, and the {0002} plane Schmid factor in the extrusion direction (tensile direction) is increased. The manufacturing method of the high performance magnesium member of the said (1) description.
(5) The method for producing a high-performance magnesium member according to (4), wherein the Schmid factor is increased from 0.25 (50% with respect to the maximum value) to 0.43 (87% with respect to the maximum value). .
(6) A method for producing a high-performance magnesium alloy member, comprising subjecting the high-performance magnesium alloy member produced by the method according to any one of (1) to (5) above to heat treatment and annealing. .
(7) The method for producing a high performance magnesium alloy member according to (6), wherein the high performance magnesium alloy member is subjected to a heat treatment at 300 ° C. to 450 ° C. and annealed for at least 10 minutes.
(8) A magnesium alloy member with improved room temperature ductility, and when the {10-10} plane texture is measured using a plane perpendicular to the extrusion direction as the measurement plane, the crystal orientation showing the maximum strength is A high-performance magnesium alloy member characterized by being inclined at least 15 ° with respect to the extrusion direction.
(9) The high-performance magnesium alloy member according to (8) above, wherein the {0002} plane has a texture that is inclined by 15 ° to 30 ° with respect to the extrusion direction.
(10) With respect to the extrusion direction (tensile direction), the Schmid factor is 0.25 (50% with respect to the maximum value, θ = 75 °, φ = 15 °) to 0.43 (87% with respect to the maximum value). , Θ = 60 °, φ = 30 °), the high performance magnesium alloy member according to (8).

次に、本発明について更に詳細に説明する。
本発明は、マグネシウム合金の集合組織を制御して常温延性が改善された高性能マグネシウム合金部材を製造する方法であって、ねじり押出し法を適用した熱間押出し成形によりマグネシウム合金押出し材を作製する際に、パンチの押し込み速度とダイスの回転速度により剪断応力を制御することを特徴とするものである。また、本発明は、上記方法により作製された高性能マグネシウム合金部材を、熱処理に供して焼鈍することを特徴とするものである。更に、本発明は、常温延性が改善されたマグネシウム合金製部材であって、押出し方向に対して垂直な面を測定面として{10−10}面集合組織を測定した時、最大強度を示す結晶方位が、押出し方向に対して15°以上傾いていることを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a method for producing a high-performance magnesium alloy member having improved cold-temperature ductility by controlling the texture of the magnesium alloy, and producing a magnesium alloy extruded material by hot extrusion using a torsion extrusion method In this case, the shear stress is controlled by the pressing speed of the punch and the rotational speed of the die. In addition, the present invention is characterized in that the high-performance magnesium alloy member produced by the above method is subjected to heat treatment and annealed. Furthermore, the present invention is a magnesium alloy member with improved room temperature ductility, wherein the {10-10} plane texture is measured with the plane perpendicular to the extrusion direction as the measurement plane, and the crystal showing the maximum strength The azimuth is inclined by 15 ° or more with respect to the extrusion direction.

本発明では、上記方法において、パンチの押し込み速度に比して、ダイスの回転数を大きくして、剪断変形成分を大きくして、{0002}面が押出し方向に傾いた集合組織を造り込むこと、及び押出し成形と同時に試料に剪断変形を付与することにより、{0002}面を押出し方向に対して15°〜30°傾け、押出し方向(引張り方向)の{0002}面シュミット因子を増大させること、を好ましい実施の態様としている。また、本発明では、上記マグネシウム合金部材において、{0002}面が、15°〜30°傾いた集合組織を有すること、及び押出し方向(引張り方向)に対して、シュミット因子が0.25(最大値に対して50%、θ=75°、φ=15°)から0.43(最大値に対して87%、θ=60°、φ=30°)まで上昇していること、を好ましい実施の態様としている。   In the present invention, in the above method, the rotational speed of the die is increased and the shear deformation component is increased as compared with the pressing speed of the punch, and a texture in which the {0002} plane is inclined in the extrusion direction is formed. , And by applying shear deformation to the sample simultaneously with extrusion, the {0002} plane is inclined 15 ° to 30 ° with respect to the extrusion direction, and the {0002} plane Schmid factor in the extrusion direction (tensile direction) is increased. Is a preferred embodiment. In the present invention, in the magnesium alloy member, the {0002} plane has a texture inclined by 15 ° to 30 °, and the Schmid factor is 0.25 (maximum) with respect to the extrusion direction (tensile direction). Preferably 50% for value, θ = 75 °, φ = 15 °) to 0.43 (87% for maximum value, θ = 60 °, φ = 30 °) It is as an aspect.

本発明者らは、マグネシウム合金押出し材の常温延性を改善する手段として、ねじり押出し法に注目した。ねじり押出し法のコンセプトを図1に示す。本法は、熱間押出しに利用するダイスを物理的に回転させることを特徴とする押出し法である。本法を金属材料の押出し成形に利用すると、前述のように、押出しと同時に材料にねじり変形を付与することが可能であり、見かけ上、押出し荷重が軽減される。また、結果として、大きな塑性歪みを印加することが可能である。   The present inventors have paid attention to the twisting extrusion method as a means for improving the room temperature ductility of the magnesium alloy extruded material. The concept of the twisting extrusion method is shown in FIG. This method is an extrusion method characterized by physically rotating a die used for hot extrusion. When this method is used for extrusion molding of a metal material, as described above, it is possible to impart torsional deformation to the material at the same time as extrusion, and apparently the extrusion load is reduced. As a result, it is possible to apply a large plastic strain.

本発明者らは、上述の“ねじり押出し法”を、その利用のコンセプトを踏まえて、更に、該ねじり押出し法を従来のコンセプト(荷重軽減・結晶粒微細化)とは異なる手段として新たに捉え、本法をマグネシウム合金の集合組織制御に適用することを着想した。そして、本法をマグネシウム合金に適用し、押出し成形に利用した結果、単一のダイスを用いて、様々な集合組織を連続的に造り込むことができること、それにより、常温延性が著しく改善され、集合組織を制御して常温延性が著しく改善された高性能のマグネシウム合金押出し部材を簡便に造り出すことが可能となること、等の新たな知見を得た。ねじり押出し法により、マグネシウム合金の集合組織の制御が可能である理由を、以下に説明する。   The present inventors have taken the above-mentioned “twisting extrusion method” as a means different from the conventional concept (load reduction / grain refinement) based on the concept of its use. The idea was to apply this method to texture control of magnesium alloys. And as a result of applying this method to magnesium alloy and using it for extrusion molding, it is possible to continuously build various textures using a single die, thereby significantly improving the cold ductility, New findings were obtained, such as the ability to control the texture to easily produce high-performance magnesium alloy extruded members with significantly improved room temperature ductility. The reason why the texture of the magnesium alloy can be controlled by the twisting extrusion method will be described below.

通常の押出し加工(図2の(1))では、パンチによる圧縮応力により、押出し材には、{0002}面が押出し方向に平行に揃った集合組織が形成される。ECAP加工(図2の(2))では、チャンネル形状に起因する剪断応力により、押出し材には、{0002}面が押出し方向に対して45°傾いた集合組織が形成される(文献:T.Mukai,M.Yamanoi,H.Watanabe,K.Higashi,“Ductility enhancement in AZ31 magnesium alloy by controlling its grain size”,Scripta Mater.,Vol.45(2001)p.89−94)。   In a normal extrusion process ((1) in FIG. 2), a texture in which {0002} faces are aligned in parallel to the extrusion direction is formed on the extruded material due to the compressive stress of the punch. In ECAP processing ((2) in FIG. 2), a texture in which the {0002} plane is inclined by 45 ° with respect to the extrusion direction is formed in the extruded material due to the shear stress due to the channel shape (reference: T Mukai, M. Yamanoi, H. Watanabe, K. Higashi, “Ductility enhancement in AZ31 magnesium array by control size,” 89, Scrip.

一方、マグネシウム合金の押出し成形に、ねじり押出し法を適用した場合、パンチによる圧縮応力(図3−1)と、ダイス回転による剪断応力(図3−2)が、マグネシウム合金に同時に印加されるため、図3の(1)と(2)の合力が材料に作用することになる。すなわち、剪断応力成分により、押出し方向に対して、{0002}面が傾いた集合組織を形成させることが可能であることが分かった。   On the other hand, when the twist extrusion method is applied to the extrusion molding of the magnesium alloy, the compressive stress due to the punch (FIG. 3-1) and the shear stress due to the die rotation (FIG. 3-2) are simultaneously applied to the magnesium alloy. The resultant force of (1) and (2) in FIG. 3 acts on the material. That is, it has been found that a texture in which the {0002} plane is inclined with respect to the extrusion direction can be formed by the shear stress component.

本発明者らは、鋭意研究開発の結果、マグネシウム合金の押出し成形に、ねじり押出し法を採用し、適当な条件で加工することにより、押出し方向(引張り方向)に対して、{0002}面が15°〜30°傾いた集合組織を造り込むことが可能であることを見出した。押出し方向(引張り方向)に対して、{0002}面が15°傾くと、シュミット因子は0.25(最大値に対して50%)まで上昇し(θ=75°、φ=15°)、押出し方向(引張り方向)に対して、{0002}面が30°傾くと、シュミット因子は0.43(最大値に対して87%)まで上昇する(θ=60°、φ=30°)。   As a result of diligent research and development, the present inventors adopted a torsion extrusion method for extrusion molding of a magnesium alloy and processed it under appropriate conditions, so that the {0002} plane is in the extrusion direction (tensile direction). It has been found that it is possible to build a texture inclined by 15 ° to 30 °. When the {0002} plane is tilted by 15 ° with respect to the extrusion direction (tensile direction), the Schmid factor rises to 0.25 (50% of the maximum value) (θ = 75 °, φ = 15 °), When the {0002} plane is inclined by 30 ° with respect to the extrusion direction (tensile direction), the Schmid factor rises to 0.43 (87% with respect to the maximum value) (θ = 60 °, φ = 30 °).

マグネシウム合金に印加される剪断応力の大小は、ダイスの回転速度とパンチの押込み速度により制御可能であり、これらを調整することで、仕様に合わせた集合組織を造り込むことが可能である。例えば、パンチの押し込み速度に比して、ダイスの回転速度を大きくすると、剪断変形成分が大きくなり、{0002}面が押出し方向に大きく傾いた集合組織を造り込むことが可能となる。   The magnitude of the shear stress applied to the magnesium alloy can be controlled by the rotational speed of the die and the pressing speed of the punch, and by adjusting these, it is possible to build a texture that meets the specifications. For example, when the rotational speed of the die is increased as compared with the pressing speed of the punch, the shear deformation component increases, and it becomes possible to build a texture in which the {0002} plane is greatly inclined in the extrusion direction.

剪断応力の大小を制御する他の因子としては、押出し成形時の試料温度が挙げられる。試料温度が高いと(470℃以上)、試料軟化が激しくなり、ダイスによる剪断変形が試料中央部まで到達しなくなる。その結果として、集合組織の制御が困難となる。そのため、本発明では、試料温度は470℃以下に設定することが重要である。   Another factor that controls the magnitude of the shear stress is the sample temperature during extrusion molding. When the sample temperature is high (470 ° C. or higher), the sample becomes so soft that shear deformation due to the die does not reach the center of the sample. As a result, it becomes difficult to control the texture. Therefore, in the present invention, it is important to set the sample temperature to 470 ° C. or lower.

一方、試料温度を200℃〜300℃に設定すると、剪断変形が試料中央部まで有効に作用し、{0002}面を押出し方向に対して大きく傾けることが可能である。それゆえに、押出し温度は、なるべく低く設定することが望ましい。しかし、試料温度が200℃以下では、非底面すべりの臨界分解剪断応力の値が非常に高く、加工が困難である。マグネシウム合金を、ねじり押出しに供する際は、試料温度を200℃〜470℃に設定することが重要である。   On the other hand, when the sample temperature is set to 200 ° C. to 300 ° C., the shear deformation effectively acts up to the center of the sample, and the {0002} plane can be greatly inclined with respect to the extrusion direction. Therefore, it is desirable to set the extrusion temperature as low as possible. However, when the sample temperature is 200 ° C. or lower, the value of the critical decomposition shear stress of the non-bottom slide is very high and the processing is difficult. When the magnesium alloy is subjected to torsion extrusion, it is important to set the sample temperature to 200 ° C. to 470 ° C.

また、ねじり押出し法により作製したマグネシウム合金部材には、通常の押出し法により作製した部材よりも多くの転位が導入されることが見出された。高密度転位が、押出し材に残留している場合、{0002}面すべり系のシュミット因子を高めても、高密度の転位が障害物となり、{0002}面すべり系の活動が阻害されてしまう。その結果として、健全な伸びを得ることが困難となる。   Further, it has been found that more dislocations are introduced into a magnesium alloy member produced by a torsion extrusion method than a member produced by a normal extrusion method. When high-density dislocations remain in the extruded material, even if the Schmid factor of {0002} plane slip system is increased, the high-density dislocation becomes an obstacle, and the activity of {0002} plane slip system is hindered. . As a result, it becomes difficult to obtain healthy growth.

本発明では、ねじり押出し中に導入される高密度転位を除去するために、ねじり押出し材を熱処理(完全焼き鈍し)に供することが重要である。具体的には、作製したマグネシウム合金を300℃〜450℃で10分以上の熱処理に供することが望ましい。450℃以上に熱処理温度を設定すると、静的再結晶により、結晶粒の異常粒成長が起こる恐れがあるため、留意する必要がある。   In the present invention, it is important to subject the twisted extruded material to heat treatment (complete annealing) in order to remove the high density dislocations introduced during the twisted extrusion. Specifically, it is desirable to subject the produced magnesium alloy to heat treatment at 300 ° C. to 450 ° C. for 10 minutes or longer. When the heat treatment temperature is set to 450 ° C. or higher, there is a possibility that abnormal grain growth of crystal grains may occur due to static recrystallization.

マグネシウム合金押出し材は、比強度特性の高い構造部材であることから、構造部品への利用が見込まれているが、製品化例は少ない。また、押出し材の需要が増加しない原因の一因として、押出し成形時の集合組織形成が挙げられる。従来、マグネシウム合金の集合組織を制御する手法としては、ECAP法、ねじり金型押出し法が知られている。   Magnesium alloy extruded material is a structural member with high specific strength characteristics, and is expected to be used for structural parts, but there are few examples of commercialization. Moreover, as a cause of the increase in the demand for the extruded material, there is a texture formation at the time of extrusion molding. Conventionally, the ECAP method and the twisting die extrusion method are known as methods for controlling the texture of the magnesium alloy.

従来のECAP法は、バッチプロセスであり、集合組織が制御されたマグネシウム合金押出し材を作製するためには、複数の操作が必要であり、生産性が低く、実用化された例はない。一方、“ねじり金型押出し法”を利用すると、ダイス形状を造り込むことによりマグネシウム合金押出し材の集合組織を連続プロセスで制御することが可能であるが、本法では、材料の仕様に合わせて個々にダイスを造り込む必要があり、多品種・少量生産型のマグネシウム合金市場には不向きである。   The conventional ECAP method is a batch process, and in order to produce a magnesium alloy extruded material having a controlled texture, a plurality of operations are required, the productivity is low, and there is no practical example. On the other hand, if the “twisting die extrusion method” is used, it is possible to control the texture of the extruded magnesium alloy material in a continuous process by creating a die shape. It is necessary to build dice individually, and it is not suitable for the high-mix, low-volume production type magnesium alloy market.

これに対して、本発明では、マグネシウム合金の押出し成形に“ねじり押出し法”を採用し、押出し成形と同時に試料に剪断変形を付与することにより、{0002}面を押出し方向に対して15°以上傾け、押出し方向(引張り方向)の{0002}面シュミット因子を増加させる。それにより、本発明では、熱処理を施した試料の延性は、通常の押出し材と比較して飛躍的に改善すると云う格別の効果が得られる。本発明は、例えば、家電製品筐体、輸送機器部品、ロボット等の構造部品の製造法及びその製品を提供するものとして有用である。   On the other hand, in the present invention, the “twist extrusion method” is adopted for the extrusion molding of the magnesium alloy, and the {0002} plane is 15 ° with respect to the extrusion direction by applying shear deformation to the sample simultaneously with the extrusion molding. Tilt to increase the {0002} plane Schmid factor in the extrusion direction (tensile direction). Thereby, in this invention, the special effect that the ductility of the sample which heat-processed improves drastically compared with a normal extruded material is acquired. INDUSTRIAL APPLICABILITY The present invention is useful, for example, as a method for manufacturing a structural part such as a home appliance housing, a transportation equipment part, a robot, or the like and a product thereof.

本発明により、次のような効果が奏される。
(1)本発明は、ねじり押出し法をマグネシウム合金に適用することにより、常温延性が改善された高性能マグネシウム部材及びその製造方法を提供することを可能とするものである。
(2)本発明では、マグネシウム合金にねじり押出し法を適用することにより、押出し方向(引張り方向)の{0002}面シュミット因子を増加させ、延性を飛躍的に増大させ、常温での成形能を飛躍的に改善することが可能となる。
(3)集合組織を制御したマグネシウム合金押出し部材を簡便に造り出すことが可能である。
The present invention has the following effects.
(1) The present invention makes it possible to provide a high-performance magnesium member having improved room temperature ductility and a method for producing the same by applying the twist extrusion method to a magnesium alloy.
(2) In the present invention, by applying the twist extrusion method to the magnesium alloy, the {0002} plane Schmid factor in the extrusion direction (tensile direction) is increased, the ductility is dramatically increased, and the formability at room temperature is increased. It will be possible to dramatically improve.
(3) It is possible to easily produce a magnesium alloy extruded member with controlled texture.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by these Examples.

本実施例でマグネシウム合金に適用したねじり押出し装置の概要は、図1に示した通りである。本実施例において、ねじり押出し装置は、2000kN万能プレス機に設置されており、プレス機の動力を利用して押出しが行われる。試料を挿入するコンテナの内径は26mmであり、コンテナ下部に設置された可動型ダイスの内径は6mmである(押出し比:19)。可動型ダイスは、出力254mNのモータとギア比71:24で接続されている。コンテナの外周には、ヒータが設置されており、450℃までコンテナ(試料)を加熱させることが可能である。   The outline of the torsion extrusion apparatus applied to the magnesium alloy in this example is as shown in FIG. In this embodiment, the torsion extrusion apparatus is installed in a 2000 kN universal press, and extrusion is performed using the power of the press. The inner diameter of the container into which the sample is inserted is 26 mm, and the inner diameter of the movable die installed at the bottom of the container is 6 mm (extrusion ratio: 19). The movable die is connected to a motor with an output of 254 mN at a gear ratio of 71:24. A heater is installed on the outer periphery of the container, and the container (sample) can be heated to 450 ° C.

本実施例では、代表的なマグネシウム合金展伸材であるAZ31B(Mg−3mass%Al−1mass%Zn−0.5mass%Mn)を供試材とした。供試材の初期結晶粒径は140μmである。本供試材を、試料温度250℃〜400℃、ダイス回転速度0.5〜6回転/分(ダイスの回転は一方向)、パンチ速度0.5mm/分の条件で、ねじり押出し成形に供した。比較例(比較材)として、ダイス回転を行わずに作製した試料も用意した。一部の試料については、押出し成形後に、熱処理(345℃、90分)を実施した。   In this example, AZ31B (Mg-3 mass% Al-1 mass% Zn-0.5 mass% Mn), which is a typical magnesium alloy wrought material, was used as a test material. The initial crystal grain size of the test material is 140 μm. This test material is subjected to torsion extrusion molding under the conditions of a sample temperature of 250 ° C. to 400 ° C., a die rotation speed of 0.5 to 6 rotations / minute (the rotation of the die is one direction), and a punch speed of 0.5 mm / minute. did. As a comparative example (comparative material), a sample prepared without rotating the die was also prepared. Some samples were subjected to heat treatment (345 ° C., 90 minutes) after extrusion.

試料温度250℃、ダイス回転速度6回転/分で、ねじり押出しに供した試料(ねじり押出し材)と、試料温度250℃、ダイス回転速度0回転/分で、押出しに供した試料(比較材)の熱処理前の柱面({10−10}面)集合組織を図4に示す。集合組織の測定に際しては、Shulzの反射法を採用し、X線源は、CuKα(40kV、40mA)とした。測定面は、押出し方向に対して垂直な面とした。   Sample that was subjected to torsion extrusion at a sample temperature of 250 ° C. and a die rotation speed of 6 rotations / minute (twisted extrusion material), and sample that was subjected to extrusion at a sample temperature of 250 ° C. and a die rotation speed of 0 rotation / minute (comparative material) FIG. 4 shows a columnar texture ({10-10} plane) texture before heat treatment. In measuring the texture, the Shulz reflection method was adopted, and the X-ray source was CuKα (40 kV, 40 mA). The measurement surface was a surface perpendicular to the extrusion direction.

測定された生データを、マグネシウム粉末の集合組織で規格化したものを測定データとした。集合組織の右上に示した数値は、ピークの相対強度を示している。比較材(比較例1)の結果に注目すると、柱面集合組織が最大強度を示す結晶方位(以後、ピーク角度と呼ぶ)は、押出し方向とほぼ平行(2°)であった。一方、ねじり押出し材のピーク角度は、30°であった。   The measured raw data normalized by the texture of the magnesium powder was used as measurement data. The numerical value shown in the upper right of the texture indicates the relative intensity of the peak. Paying attention to the results of the comparative material (Comparative Example 1), the crystal orientation (hereinafter referred to as the peak angle) at which the columnar texture exhibits the maximum strength was almost parallel (2 °) to the extrusion direction. On the other hand, the peak angle of the twisted extruded material was 30 °.

熱処理を実施した試料の柱面集合組織を図5に示す。試料の押出し条件は、図4(比較例1、実施例1)と同じである。比較材(比較例2)のピーク角度は、2°、ねじり押出し材のピーク角度は、31°であり、柱面集合組織は、熱処理前と同じ傾向を示した。   FIG. 5 shows the columnar texture of the heat-treated sample. The sample extrusion conditions are the same as those in FIG. 4 (Comparative Example 1, Example 1). The peak angle of the comparative material (Comparative Example 2) was 2 °, the peak angle of the twisted extruded material was 31 °, and the columnar texture showed the same tendency as before the heat treatment.

次に、各種条件で、ねじり押出し成形に供した試料の柱面集合組織のピーク角度をまとめて表1に示す。表1の比較例1、2及び実施例1、2は、図4、5で示した結果である。表1の結果より、ねじり押出し材のピーク角度が、15°以上であることが確認できる。また、ピーク角度は、押出し温度の低下、ダイス回転速度の増加に伴ない、増加することが確認できる。   Next, Table 1 summarizes the peak angles of the columnar texture of the samples subjected to torsion extrusion molding under various conditions. Comparative Examples 1 and 2 and Examples 1 and 2 in Table 1 are the results shown in FIGS. From the results in Table 1, it can be confirmed that the peak angle of the twisted extruded material is 15 ° or more. Moreover, it can be confirmed that the peak angle increases as the extrusion temperature decreases and the die rotation speed increases.

比較材(表1の比較例1、2、3)及びねじり押出し材(表1の実施例1、2、5)の常温引張り試験を実施した。平行部長さ10mm、平行部直径2.5mmの丸棒試験片を押出し材から切り出し、初期歪み速度1.7×10−3(s−1)で引張り試験を行った。試験結果を表2にまとめて示す。試料温度(押出し温度)が同じ試料の破断伸びを比較すると、ねじり押出し材の方が比較材よりも優れた延性を示すことが分かる。 A room temperature tensile test was performed on the comparative materials (Comparative Examples 1, 2, and 3 in Table 1) and the twisted extruded materials (Examples 1, 2, and 5 in Table 1). A round bar test piece having a parallel part length of 10 mm and a parallel part diameter of 2.5 mm was cut out from the extruded material, and a tensile test was performed at an initial strain rate of 1.7 × 10 −3 (s −1 ). The test results are summarized in Table 2. Comparing the breaking elongations of the samples having the same sample temperature (extrusion temperature), it can be seen that the torsion extruded material exhibits superior ductility than the comparative material.

以上詳述したように、本発明は、高性能マグネシウム合金部材及びその製造方法に係るものであり、本発明により、高性能マグネシウム合金部材の製造方法及び高性能マグネシウム合金部材を提供することができる。本発明による高性能マグネシウム合金部材は、ねじり押出し法により延性を大幅に改善したものであり、押出し材の成形性・信頼性を飛躍的に向上させることを可能にしたものである。本発明により作製された押出し棒材、パイプ材を、例えば、家電製品筐体、輸送機器部品、ロボット構造部品等に採用すると、それらの部材の軽量化に大きく寄与するため、本発明は、その工業的意義が非常に大きい高性能マグネシウム合金部材及びその製造方法を提供するものとして有用である。   As described above in detail, the present invention relates to a high performance magnesium alloy member and a method for producing the same, and according to the present invention, a method for producing a high performance magnesium alloy member and a high performance magnesium alloy member can be provided. . The high-performance magnesium alloy member according to the present invention has greatly improved ductility by the torsion extrusion method, and can dramatically improve the formability and reliability of the extruded material. When the extruded bar material and pipe material produced according to the present invention are employed in, for example, household appliance housings, transportation equipment parts, robot structural parts, etc., the present invention greatly contributes to the weight reduction of those members. The present invention is useful for providing a high-performance magnesium alloy member having a great industrial significance and a method for producing the same.

本発明の実施に利用したねじり押出し装置の説明図である。It is explanatory drawing of the twist extrusion apparatus utilized for implementation of this invention. マグネシウム合金を通常押出し及びECAPに供した時に、ダイス内部において試料に作用する力を示した図であり、押出し後の結晶方位を示した図である。(1)は、通常押出しの場合を、(2)は、ECAPの場合を示す。It is the figure which showed the force which acts on a sample inside a die | dye when a magnesium alloy is normally used for extrusion and ECAP, and is the figure which showed the crystal orientation after extrusion. (1) shows the case of normal extrusion, and (2) shows the case of ECAP. マグネシウム合金をねじり押出しに供した時に、ダイス内部において試料に作用する力を示した図であり、押出し後の結晶方位を示した図である。It is the figure which showed the force which acts on a sample inside a die | dye when a magnesium alloy is used for torsion extrusion, and is the figure which showed the crystal orientation after extrusion. 試料温度250℃、ダイス回転速度6回転/分、パンチ速度0.5mm/分でねじり押出しに供した試料(ねじり押出し材)と、試料温度250℃、ダイス回転速度0回転/分、パンチ速度0.5mm/分で押出しに供した試料(比較材)の、熱処理前の柱面({10−10}面)集合組織を示した図であり、比較材のピーク角度が、2°であり、ねじり押出し材のピーク角度が、30°であることを示した図である。Sample that was subjected to torsion extrusion at a sample temperature of 250 ° C., a die rotation speed of 6 rotations / minute, and a punch speed of 0.5 mm / minute, a sample temperature of 250 ° C., a die rotation speed of 0 rotations / minute, and a punch speed of 0 It is the figure which showed the column surface ({10-10} plane) texture before heat processing of the sample (comparative material) used for extrusion at .5 mm / min, and the peak angle of the comparative material is 2 °. It is the figure which showed that the peak angle of the twist extrusion material is 30 degrees. 試料温度250℃、ダイス回転速度6回転/分、パンチ速度0.5mm/分でねじり押出しに供した試料(ねじり押出し材)と、試料温度250℃、ダイス回転速度0回転/分、パンチ速度0.5mm/分で押出しに供した試料(比較材)の、熱処理後の柱面({10−10}面)集合組織を示した図であり、比較材のピーク角度が、2°であり、ねじり押出し材のピーク角度が、31°であることを示した図である。Sample that was subjected to torsion extrusion at a sample temperature of 250 ° C., a die rotation speed of 6 rotations / minute, and a punch speed of 0.5 mm / minute, a sample temperature of 250 ° C., a die rotation speed of 0 rotations / minute, and a punch speed of 0 It is the figure which showed the column surface ({10-10} plane) texture after the heat processing of the sample (comparative material) subjected to extrusion at 5 mm / min, and the peak angle of the comparative material is 2 °. It is the figure which showed that the peak angle of the twist extrusion material is 31 degrees.

Claims (10)

マグネシウム合金の集合組織を制御して常温延性が改善された高性能マグネシウム合金部材を製造する方法であって、ねじり押出し法を適用した熱間押出し成形によりマグネシウム合金押出し材を作製する際に、パンチの押し込み速度とダイスの回転速度により剪断応力を制御することを特徴とする上記高性能マグネシウム合金部材の製造方法。   A method for producing a high-performance magnesium alloy member having improved cold ductility by controlling the texture of the magnesium alloy, and when producing a magnesium alloy extruded material by hot extrusion applying a torsion extrusion method. The method for producing a high-performance magnesium alloy member according to claim 1, wherein the shear stress is controlled by the indentation speed and the rotational speed of the die. 試料温度を200℃以上470℃以下に設定して押出し成形を行う、請求項1記載の高性能マグネシウム合金部材の製造方法。   The manufacturing method of the high performance magnesium alloy member of Claim 1 which performs extrusion molding by setting sample temperature to 200 to 470 degreeC. パンチの押し込み速度に比して、ダイスの回転数を大きくして、剪断変形成分を大きくして、{0002}面が押出し方向に傾いた集合組織を造り込む、請求項1記載の高性能マグネシウム部材の製造方法。   The high-performance magnesium according to claim 1, wherein the rotational speed of the die is increased, the shear deformation component is increased, and a texture with {0002} faces inclined in the extrusion direction is formed as compared with the indentation speed of the punch. Manufacturing method of member. 押出し成形と同時に試料に剪断変形を付与することにより、{0002}面を押出し方向に対して15°〜30°傾け、押出し方向(引張り方向)の{0002}面シュミット因子を増大させる、請求項1記載の高性能マグネシウム部材の製造方法。   Claims: By applying shear deformation to a sample simultaneously with extrusion, the {0002} plane is inclined by 15 ° to 30 ° with respect to the extrusion direction to increase the {0002} plane Schmid factor in the extrusion direction (tensile direction). A method for producing a high-performance magnesium member according to 1. シュミット因子を、0.25(最大値に対して50%)から0.43(最大値に対して87%)まで上昇させる、請求項4に記載の高性能マグネシウム部材の製造方法。   The manufacturing method of the high performance magnesium member of Claim 4 which raises a Schmid factor from 0.25 (50% with respect to a maximum value) to 0.43 (87% with respect to a maximum value). 請求項1から5のいずれか1項に記載の方法により作製された高性能マグネシウム合金部材を、熱処理に供して焼鈍することを特徴とする高性能マグネシウム合金部材の製造方法。   A method for producing a high-performance magnesium alloy member, comprising subjecting the high-performance magnesium alloy member produced by the method according to any one of claims 1 to 5 to heat treatment and annealing. 上記高性能マグネシウム合金部材を、300℃〜450℃の熱処理に供して少なくとも10分焼鈍する、請求項6記載の高性能マグネシウム合金部材の製造方法。   The method for producing a high performance magnesium alloy member according to claim 6, wherein the high performance magnesium alloy member is subjected to a heat treatment at 300 ° C to 450 ° C and annealed for at least 10 minutes. 常温延性が改善されたマグネシウム合金製部材であって、押出し方向に対して垂直な面を測定面として{10−10}面集合組織を測定した時、最大強度を示す結晶方位が、押出し方向に対して15°以上傾いていることを特徴とする高性能マグネシウム合金製部材。   This is a magnesium alloy member with improved room temperature ductility, and when the {10-10} plane texture is measured with the plane perpendicular to the extrusion direction as the measurement plane, the crystal orientation showing the maximum strength is in the extrusion direction. A member made of high-performance magnesium alloy, wherein the member is tilted by 15 ° or more. {0002}面が、押出し方向に対して15°〜30°傾いた集合組織を有する、請求項8記載の高性能マグネシウム合金製部材。   The high-performance magnesium alloy member according to claim 8, wherein the {0002} plane has a texture inclined by 15 ° to 30 ° with respect to the extrusion direction. 押出し方向(引張り方向)に対して、シュミット因子が0.25(最大値に対して50%、θ=75°、φ=15°)から0.43(最大値に対して87%、θ=60°、φ=30°)まで上昇している、請求項8記載の高性能マグネシウム合金製部材。   With respect to the extrusion direction (tensile direction), the Schmid factor is 0.25 (50% with respect to the maximum value, θ = 75 °, φ = 15 °) to 0.43 (87% with respect to the maximum value, θ = The member made of high-performance magnesium alloy according to claim 8, wherein the member is elevated to 60 °, φ = 30 °).
JP2008015397A 2008-01-25 2008-01-25 High-performance magnesium alloy member and method of manufacturing it Pending JP2009172657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008015397A JP2009172657A (en) 2008-01-25 2008-01-25 High-performance magnesium alloy member and method of manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008015397A JP2009172657A (en) 2008-01-25 2008-01-25 High-performance magnesium alloy member and method of manufacturing it

Publications (1)

Publication Number Publication Date
JP2009172657A true JP2009172657A (en) 2009-08-06

Family

ID=41028361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008015397A Pending JP2009172657A (en) 2008-01-25 2008-01-25 High-performance magnesium alloy member and method of manufacturing it

Country Status (1)

Country Link
JP (1) JP2009172657A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102069103A (en) * 2010-11-30 2011-05-25 于洋 Plastic processing method for magnesium alloy capillary tube
WO2013002082A1 (en) * 2011-06-28 2013-01-03 国立大学法人電気通信大学 Method for producing high-strength magnesium alloy material and rod produced from magnesium alloy
WO2013145815A1 (en) * 2012-03-29 2013-10-03 株式会社Lixil Spiral pipe extrusion method and spiral pipe extrusion machine
WO2015092969A1 (en) * 2013-12-16 2015-06-25 日本軽金属株式会社 Automotive underbody part and method for manufacturing same
CN105032962A (en) * 2015-07-24 2015-11-11 重庆科技学院 Extrusion machining method capable of improving performance of magnesium alloy sheet
CN105964716A (en) * 2016-05-11 2016-09-28 郑州大学 One-step forming processing method of magnesium alloy small-diameter thin-wall capillary tube used for vascular stent
CN106269971A (en) * 2016-08-17 2017-01-04 中国兵器工业第五九研究所 The method that Compound Extrusion prepares micro-nano copper is reversed in a kind of multidirectional compression
CN107639152A (en) * 2017-10-17 2018-01-30 燕山大学 A kind of laser gain material test specimen friction pressure detrusion device
CN109127754A (en) * 2018-08-29 2019-01-04 重庆大学 A kind of preparation method of ultra-fine grained magnesium alloy extruded bars
JP2020019065A (en) * 2019-11-12 2020-02-06 荻野工業株式会社 Forging apparatus
CN111389944A (en) * 2020-03-26 2020-07-10 燕山大学 Extrusion rotary forming method for thick-wall cylinder
CN111715720A (en) * 2020-06-29 2020-09-29 中北大学 Rotary extrusion forming die for aluminum-magnesium alloy cup-shaped piece
CN112371743A (en) * 2020-10-22 2021-02-19 烟台大学 High-pressure torsion reciprocating extrusion processing device and processing method
CN113215461A (en) * 2021-04-27 2021-08-06 中南大学 Magnesium alloy with high bulging property and high heat resistance and preparation method thereof
CN115846445A (en) * 2023-02-15 2023-03-28 中镁宏海科技有限公司 Efficient hot extrusion device and method for magnesium alloy photovoltaic solar module section

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096549A (en) * 2001-09-25 2003-04-03 Kenji Azuma Alloy with excellent mechanical property and impact ductility, and its manufacturing method
JP2004351486A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing magnesium alloy plate
JP2005298885A (en) * 2004-04-09 2005-10-27 Nippon Kinzoku Co Ltd Magnesium or magnesium alloy sheet having excellent plastic workability and its production method
JP2006247734A (en) * 2005-03-14 2006-09-21 Japan Science & Technology Agency Twist-working method for hollow material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096549A (en) * 2001-09-25 2003-04-03 Kenji Azuma Alloy with excellent mechanical property and impact ductility, and its manufacturing method
JP2004351486A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing magnesium alloy plate
JP2005298885A (en) * 2004-04-09 2005-10-27 Nippon Kinzoku Co Ltd Magnesium or magnesium alloy sheet having excellent plastic workability and its production method
JP2006247734A (en) * 2005-03-14 2006-09-21 Japan Science & Technology Agency Twist-working method for hollow material

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102069103A (en) * 2010-11-30 2011-05-25 于洋 Plastic processing method for magnesium alloy capillary tube
US9574259B2 (en) 2011-06-28 2017-02-21 The University Of Electro-Communications Method for producing high-strength magnesium alloy material and magnesium alloy rod
WO2013002082A1 (en) * 2011-06-28 2013-01-03 国立大学法人電気通信大学 Method for producing high-strength magnesium alloy material and rod produced from magnesium alloy
CN103619506A (en) * 2011-06-28 2014-03-05 国立大学法人电气通信大学 Method for producing magnesium alloy material and rod produced from magnesium alloy
WO2013145815A1 (en) * 2012-03-29 2013-10-03 株式会社Lixil Spiral pipe extrusion method and spiral pipe extrusion machine
JP2013202664A (en) * 2012-03-29 2013-10-07 Lixil Corp Spiral tube extrusion molding method and spiral tube extrusion molding machine
WO2015092969A1 (en) * 2013-12-16 2015-06-25 日本軽金属株式会社 Automotive underbody part and method for manufacturing same
CN105829150A (en) * 2013-12-16 2016-08-03 日本轻金属株式会社 Automotive underbody part and method for manufacturing same
CN105032962A (en) * 2015-07-24 2015-11-11 重庆科技学院 Extrusion machining method capable of improving performance of magnesium alloy sheet
CN105964716A (en) * 2016-05-11 2016-09-28 郑州大学 One-step forming processing method of magnesium alloy small-diameter thin-wall capillary tube used for vascular stent
CN106269971B (en) * 2016-08-17 2018-06-19 中国兵器工业第五九研究所 A kind of method that multidirectional compression torsion Compound Extrusion prepares micro-nano copper
CN106269971A (en) * 2016-08-17 2017-01-04 中国兵器工业第五九研究所 The method that Compound Extrusion prepares micro-nano copper is reversed in a kind of multidirectional compression
CN107639152A (en) * 2017-10-17 2018-01-30 燕山大学 A kind of laser gain material test specimen friction pressure detrusion device
CN107639152B (en) * 2017-10-17 2018-12-07 燕山大学 A kind of shear-deformable device of laser gain material test specimen friction pressure
CN109127754A (en) * 2018-08-29 2019-01-04 重庆大学 A kind of preparation method of ultra-fine grained magnesium alloy extruded bars
JP2020019065A (en) * 2019-11-12 2020-02-06 荻野工業株式会社 Forging apparatus
US11110504B1 (en) 2020-03-26 2021-09-07 Yanshan University Method of forming thick-walled cylinder by spinning
CN111389944A (en) * 2020-03-26 2020-07-10 燕山大学 Extrusion rotary forming method for thick-wall cylinder
CN111715720A (en) * 2020-06-29 2020-09-29 中北大学 Rotary extrusion forming die for aluminum-magnesium alloy cup-shaped piece
CN111715720B (en) * 2020-06-29 2022-05-03 中北大学 Rotary extrusion forming die for aluminum-magnesium alloy cup-shaped piece
CN112371743A (en) * 2020-10-22 2021-02-19 烟台大学 High-pressure torsion reciprocating extrusion processing device and processing method
CN113215461A (en) * 2021-04-27 2021-08-06 中南大学 Magnesium alloy with high bulging property and high heat resistance and preparation method thereof
CN115846445A (en) * 2023-02-15 2023-03-28 中镁宏海科技有限公司 Efficient hot extrusion device and method for magnesium alloy photovoltaic solar module section
CN115846445B (en) * 2023-02-15 2023-07-25 中镁宏海科技有限公司 Efficient hot extrusion device and method for magnesium alloy photovoltaic solar module profile

Similar Documents

Publication Publication Date Title
JP2009172657A (en) High-performance magnesium alloy member and method of manufacturing it
JP5050199B2 (en) Magnesium alloy material manufacturing method and apparatus, and magnesium alloy material
Ivanisenko et al. High pressure torsion extrusion as a new severe plastic deformation process
JP2011084791A (en) High-strength high-ductility magnesium alloy extruded material, and method for producing the same
RU2638139C2 (en) Forging in the open stamp with separate passages of difficult for forging and sensitive to the trajectory of deformation of alloys based on titanium and based on nickel
US9206497B2 (en) Methods for processing titanium alloys
Wang et al. Review on modified and novel techniques of severe plastic deformation
JP2016512173A5 (en)
EP2931930B1 (en) Methods for processing titanium alloys
Wang et al. Severe plastic deformation techniques for bulk ultrafine-grained materials
CN101905251A (en) Extrusion deforming process of high-strength large-diameter magnesium alloy rod
Faraji et al. Accumulative torsion back (ATB) processing as a new plastic deformation technique
El-Garaihy et al. Multi-channel spiral twist extrusion (MCSTE): a novel severe plastic deformation technique for grain refinement
US9447487B2 (en) Torsional extreme-plastic processing method of conic metal pipe
JP2009090359A (en) Twist forward extruding device and twist forward extruding method
JP2004353067A (en) Magnesium-based alloy formed body manufacturing method
CN109898003B (en) High-strength and toughness magnesium alloy based on 18R long-period phase ultrafine reinforcement and preparation method thereof
CN105734471B (en) A kind of Ultra-fine grain copper material homogenizes preparation method
CN111229856B (en) Continuous twisting and drawing device and method for preparing isomeric magnesium alloy bar
JP5941070B2 (en) Method for producing titanium alloy having high strength and high formability, and titanium alloy using the same
CN109596800B (en) High-volume-fraction whisker reinforced 2024 aluminum-based composite sheath thermoforming method
Ciemiorek et al. Ultrafine‐Grained Plates and Sheets: Processing, Anisotropy and Formability
JP2010001538A (en) Method for manufacturing magnesium alloy material
JP2003245712A (en) Die for extrusion, and apparatus and method for manufacturing fine-structured metallic material
Pourbashiri et al. Enhancing mechanical properties of wires by a novel continuous severe plastic deformation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130318