JP2004351486A - Method and apparatus for manufacturing magnesium alloy plate - Google Patents

Method and apparatus for manufacturing magnesium alloy plate Download PDF

Info

Publication number
JP2004351486A
JP2004351486A JP2003153197A JP2003153197A JP2004351486A JP 2004351486 A JP2004351486 A JP 2004351486A JP 2003153197 A JP2003153197 A JP 2003153197A JP 2003153197 A JP2003153197 A JP 2003153197A JP 2004351486 A JP2004351486 A JP 2004351486A
Authority
JP
Japan
Prior art keywords
plate
magnesium alloy
bending
plate material
alloy sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003153197A
Other languages
Japanese (ja)
Inventor
Yukio Nishikawa
幸男 西川
Akira Takara
晃 宝
Koichi Yamazaki
幸一 山崎
Kenji Azuma
健司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003153197A priority Critical patent/JP2004351486A/en
Publication of JP2004351486A publication Critical patent/JP2004351486A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/001Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Of Metal (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a magnesium alloy plate wherein the magnesium alloy plate has an excellent formability in a plastic forming and is manufactured in the largest area ever manufactured and good productivity. <P>SOLUTION: In the method for manufacturing the magnesium alloy plate, following two processes are performed once or more, the same times respectively in that order; the first process to introduce the magnesium alloy plate 2 into a bending apparatus, to press the plate from the inlet side and pull the plate from the outlet side, to make the plate pass through the inlet and outlet at the same speed, and to bend the plate at a 0-90° inner angle in a plate thickness direction without changing the plate thickness; and the second process to bend the plate processed in the first process in the same way, but in the opposite direction of the plate thickness. By giving the plate shearing deformation like this, the magnesium alloy plate having the excellent formability is manufactured in the large area and good productivity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、塑性加工に用いられるマグネシウム合金板材の製造方法及び製造装置に関するものである。
【0002】
【従来の技術】
金属材料の中でマグネシウム合金は、他の金属と比較して軽量で、高強度であり、振動減衰性や加工性にも優れ、比較的低融点であることから、リサイクルに要するエネルギーも少なくて済むという特徴を有している。マグネシウム合金の成形品は、ダイカストや射出成形など鋳造法でほとんどが製造されている。これらの成形品は、表面や内部に鋳造欠陥を有するため、特に外装部品において塗装歩留りを高くするのに困難を要する。
【0003】
一方、プレスなどによる成形品では、そのような表面欠陥は非常に少なくなる。しかし、マグネシウム合金は、稠密六方晶を有することから、変形のすべり面が少なく、圧延、曲げなどの塑性加工性に難がある。そのため、マグネシウム合金を素材とするプレス加工は、実用化例が少ない。最近になって、一部で展伸材(ASTM規格のAZ31合金)や特殊材料(ASTM規格のLA141合金)のようなマグネシウム合金について、鍛造やプレス加工による成形事例がある。材料面に関して、結晶粒径や方位などの金属組織の差異によって延性に違いが現れ、改善できることが報告されている(山野井らの非特許文献1参照)。
【0004】
例えば、結晶粒を小さくするか、X線回折パターンにおいて、(100)面の存在に基づく回折強度が弱く、(101)面などの存在に基づく回折強度が強くなるようにすることである。すなわち、引張り軸と45°傾いた方向に結晶の底面(0001)面(X線回折パターンでは(001)面と等価な面として現れる)を並べることで、底面のすべり方向と最大せん断すべり方向を一致させ、変形能を向上させるという考え方である。X線回折パターンで(100)面の回折強度が強い板材に比べ(101)面の回折強度が強い材料であると、すべり方向の自由度が増し、室温での塑性加工性が向上することが知られている。さらに、結晶粒径が小さくなると、延性は一層向上する。これを具体的に実現する手段として、ECAE(Equal−Channnel−Angular−Extrusion)法がある。ECAE法で作製したマグネシウム合金板材については、例えば、向井らの非特許文献2に詳細に述べられている。アルミニウム3重量%と亜鉛重量1%を含むAZ31合金において、ECAE法により200℃で90°の折り曲げを行うことで、上記した(101)面の回折強度が、他の面のそれに比べて大きくなるようにし、かつ通常板材の結晶粒径が10μm以上であるのに対し1μm程度の微細結晶組織を形成できることが示されている。
【0005】
図4は、従来のアルミニウム合金に対する側方押出法、すなわちECAE法を実施するための装置の構成を示す(特許文献1参照)。図4において、一方のコンテナ21にアルミニウム合金材料24を挿入し、ラム23によって次のコンテナまたはダイ22に向けて押出しすることによって、アルミニウム合金材料24に側方方向のせん断変形を加えることができる。これにより、非常に単純な工程で結晶粒を微細化することができる。また、加工用材料にマグネシウム合金を用いた場合には、上記したように加工性にとって好ましい(101)面の回折強度を強くすることもできる。
また、マグネシウム合金を液体もしくは固液共存状態から板状に成形すると同時に板厚方向に圧縮しながら凝固させると、加工性にとって好ましい(101)面の比率が高い板材を得ることができる(特許文献2参照)。
【0006】
【非特許文献1】
日本金属学会2000年秋季講演概要495頁
【非特許文献2】
Scripta Materialia, vol.45(2001),p.89−94
【特許文献1】
特開平10−258334号公報(第6頁、図1)
【特許文献2】
特開2003−027173号公報(第7頁、図9)
【0007】
【発明が解決しようとする課題】
しかしながら、図4に示すような方法では、現実的に加工できる材料の大きさや形状が、直径20mm、長さ100mm程度の丸棒状に限定される。そのため実用上必要性の高い大きな面積の板状で供給することができず、また生産性も低いため製造原価が高価になる。
また、特許文献2の方法では、凝固時に板材内部に微小な空隙が導入されると、板材の延性が低下し易く、また、装置も燃焼防止の部分が高価になるという問題を有している。
【0008】
本発明は、前記従来の課題を解決するもので、塑性加工における成形性が良いマグネシウム合金板材を、従来得られない大面積で、生産性良く製造できるマグネシウム合金板材の製造方法を提供することを目的とする。
本発明は、またそのようなマグネシウム合金板材の製造装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、マグネシウム合金板材に成形性を付与するものであって、マグネシウム合金板材を折り曲げに適した温度に加熱し、前記板材を折り曲げ装置内に誘導して、入口側から押圧を加えるとともに出口側から引張りを与えて、入口と出口を同速度で連続的に通過させて、板厚を変化させずに内角0°以上90°以下の角度で板厚方向に折り曲げ加工をする工程と、次に前記の加工をされた板材に、前記と同じ折り曲げ加工を板厚の逆方向に施す工程とを、その順にそれぞれ1回以上同数回ずつ行うことを特徴とするマグネシウム合金板材の製造方法に関する。
本発明によれば、成形性の良いマグネシウム合金板材を大面積で生産性良く製造することができる。
【0010】
ここに用いるマグネシウム合金板材は、アルミニウムを2〜10重量%、亜鉛を0.5〜1.0重量%含むMg−Al−Zn系合金からなり、折り曲げ加工をする温度は180〜300℃が適している。
上記の折り曲げ加工の施された板材に焼鈍処理をする工程をさらに有することが好ましい。この焼鈍処理により、マグネシウム合金板材の内部歪を開放し、一層成形性を向上させることができる。
焼鈍処理の温度は、前記の加工温度を超え、再結晶終了温度360℃以下が好ましい。
【0011】
本発明は、マグネシウム合金板材を連続的に供給する装置と、前記板材を加熱する装置と、入口側および出口側にそれぞれ押圧機構および引張機構を有し板材を板厚方向に折り曲げる折り曲げ部からなる第1の折り曲げ機構と、入口側および出口側にそれぞれ押圧機構および引張機構を有し第1の折り曲げ機構とは反対方向に折り曲げる折り曲げ部からなる第2の折り曲げ機構と、板材を連続的に回収する装置とを具備し、前記加熱装置により加熱されたマグネシウム合金板材を板厚方向に連続的な折り曲げを施し、次いで逆の板厚方向に折り曲げ加工を施した後回収することを特徴とするマグネシウム合金板材の製造装置を提供する。
【0012】
【発明の実施の形態】
以下本発明の実施の形態について、図面を参照しながら説明する。
実施の形態1
図1は、本実施の形態におけるマグネシウム合金板材の製造装置の概略構成を示す。図1において、1はマグネシウム合金板材2を巻き付けたロールで構成された、マグネシウム合金板材の供給装置であり、マグネシウム合金板材2を連続的に供給する。供給装置1から繰り出されるマグネシウム合金板材2の移動経路には、加熱装置3a、折り曲げ用金型4a、金型4aの前後に設けられた押圧機構5aおよび引張機構6a、加熱装置3b、折り曲げ用金型4b、金型4bの前後に設けられた押圧機構5bおよび引張機構6b、加熱装置3c、並びに板材を巻き付けるロールで構成された板材の回収装置7が設けられている。8aおよび8bはそれぞれ金型4aおよび4bを加熱するヒータである。
【0013】
ASTM規格のAZ31合金からなる板厚1mmのマグネシウム合金板材2は、まず加熱装置3aを通過させながら200℃に加熱する。
AZ31は展伸材と呼ばれ,プレス加工に良く用いられる材料である。加工の原理は、従来の棒材におけるECAE法と同じで、これを板材に適用したものである。加工温度としては、本合金の場合、加工性の良くなる180℃以上が必要であるが、あまり温度が高すぎると導入したせん断歪みが拡散により消えてしまうので300℃以下が望ましい。
【0014】
加熱装置3aは、例えばヒータによる輻射加熱のような方式でも、他の方式でも良い。加熱温度を保ったままで、板材2を一対のロールから構成された押圧機構5aにより、折り曲げ用金型4aの内部に送り込む。折り曲げ用金型4aは、内部に板材2の板厚に等しい隙間の流路を有している。この流路は、内部でほぼ直角に折れ曲がっている。板材2の厚みが1mmの場合、流路の長さは10mm程度あればよい。あまり長すぎると、途中の摩擦抵抗が多くなり、送りが困難となる。この流路に板材2を押し込むと同時に、同じく一対のロールから構成された引張機構6aにより、押し込み速度と同じ速度で引張り出す。
【0015】
折り曲げ金型への押し込みの最適速度は加工温度によって変化するが、本実施例では20mm/秒で行った。条件幅としては3〜100mm/秒が望ましい。加工速度が小さすぎるとせん断変形を十分に起こすことができない。また、加工速度が大きすぎると板材が破断する。押し込み速度と引張り速度を同じにすることで、板材2は板圧を一定に保ち引張り方向の変形が生じることを防ぎ、せん断変形のみを起こすことができる。この場合、引張り速度の方を速めにし、引張り出される板材に加工温度での降伏応力以下、例えば0〜5kg/mmの引張り応力がかかるように制御すれば、板材内に引張り変形が起こらず、せん断変形のみを与えることができる。曲り角ですべりがないという状態において、45°のせん断変形を起こすには内角90°で折り曲げれば良い。
【0016】
曲り角でのすべりがある場合や、大きな歪を付与したい場合には、折り曲げ角度をより小さくすれば良い。しかし、内角をあまり小さくして板材どうしが干渉すると、板材2の連続的引張り出しにとって、板材2自身が障害となる。また、金型4aは、内部の板材2が冷却されないように、例えば金型用ヒータ8aなどの手段で加熱することが望ましい。
【0017】
次に、同じような手順で加熱機構3bにより板材2を200℃の温度を保ち、押圧機構5bのロールで金型4b内に押し込み、金型4aとは板厚の逆方向に折り曲げると同時に引張機構6bで引張り出す。速度は同じく100mm/秒である。
このように一対の板厚方向の折り曲げを複数回行うと、板材2にせん断変形がより一層確実に付与される。引張り出された板材2は、再度、加熱機構3cで300℃に加熱する焼鈍処理が施される。この処理により内部歪みだけが取り除かれる。せん断変形によって生じた方位は維持される。調質された後、ロール状の巻き取り装置である回収装置7に巻き取られる。
【0018】
AZ31合金のX線回折パターンにおいては、(100)面、(002)面および(101)面に主回折ピークを有し、(102)面、(110)面、(103)面および(112)面に弱い回折ピークを有する。
上記の加工をした板材2のX線回折パターンにおいては、(101)面の回折ピークと(110)面の回折ピークとの和が、すべての面の回折ピークの総和に占める割合は約46%である。この割合は、(100)面の回折ピークと(002)面の回折ピークとの和が占める割合の39%よりも高い。これは従来の通常圧延で作製した板材が(100)面を主とするのに対し、結晶方位としてはより好ましい。現実には、それぞれの面方位は完全にそろわず、±0.5°以下の幅を有していた。また、平均粒径は5μmで、通常の圧延材で10μm以上であるのに対し小さくできている。
【0019】
調質工程の温度が高く、時間が長いほど板材2の結晶粒径は大きくなる。この調質工程は、本システムとは別の工程で行っても良い。また、金型4a内部に板材2を通すには、図2に示すように、最初金型4aを41と42に開いた状態にしておき、板材2を通した後、両金型を閉じれば良い。図2は、金型41は金型42の端部を係合する段部43を有し、金型41と42との間に板材2の流路44が形成されることを示している。
本実施の形態では、ASTM規格のAZ31合金からなる板材を用いたが、他のマグネシウム合金組成の板材、例えばアルミニウム含量が9%と多いAZ91合金などに対しても適用できることはいうまでもない。このAZ91合金はAZ31合金より変形性は劣るが、耐食性に優れている。
【0020】
実施の形態2
本実施の形態の製造装置について、図3を参照して説明する。
図3は、本実施の形態のマグネシウム合金板材の製造装置のロール式折り曲げ機構部を拡大した図である。本実施の形態の実施の形態1と異なる点は、折り曲げ機構としてロール式機構を用いた点である。図3において、内周ロール9は固定されており、複数の外周駆動ロール10で板材2を走行させるものである。板材2は、固定された内周ロール9の摩擦があるため、小さな速度でしか進行しないのに対し、外周側は駆動ロール10で前方に押し出されるため、内周と外周の速度差によって、板材2はせん断変形を受ける。加工温度、板材2の送り速度などの加工条件は実施の形態1に準ずる。
【0021】
本実施の形態では、外周駆動ロール10で板材2を前方に押し出すことができるため、折り曲げ機構の内周ロール9と外周駆動ロール10の間隔を広げずとも板材2の挿入が可能であるという特有の効果がある。
また、本実施の形態は、通常圧延材が製造されている幅300mm程度の板材に対しても、装置構成が近いため適用が可能であり、一層広幅の加工性に優れた板材を製造することができる。
【0022】
【発明の効果】
以上のように本発明によれば、塑性加工における成形性が良いマグネシウム合金板材を、従来得られない大面積で、生産性良く製造することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1におけるマグネシウム合金板材の製造装置の概略構成を示す図である。
【図2】本発明の実施の形態1における板材の設定方法を示す金型の縦断面略図である。
【図3】本発明の実施の形態2におけるロール式折り曲げ機構部の構成を示す図である。
【図4】従来のECAE法を実施するための装置の構成を示す縦断面略図である。
【符号の説明】
1 連続供給機構
2 マグネシウム合金板材
3 加熱機構
4 折り曲げ用金型
5 押圧機構
6 引張機構
7 連続回収機構
8 金型用ヒータ
9 内周ロール
10 外周駆動ロール
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for manufacturing a magnesium alloy sheet used for plastic working.
[0002]
[Prior art]
Among metal materials, magnesium alloys are lighter, have higher strength, have better vibration damping and workability, and have a relatively low melting point compared to other metals, so they require less energy for recycling. It has the characteristic that it is completed. Most of the magnesium alloy molded products are manufactured by a casting method such as die casting or injection molding. Since these molded articles have casting defects on the surface and inside, it is difficult to increase the coating yield, especially for exterior parts.
[0003]
On the other hand, in a molded product formed by pressing or the like, such surface defects are extremely reduced. However, since the magnesium alloy has a dense hexagonal crystal, the slip surface of deformation is small, and there is a difficulty in plastic workability such as rolling and bending. Therefore, press working using a magnesium alloy as a raw material is rarely practically used. Recently, magnesium alloys such as wrought materials (ASTM-standard AZ31 alloy) and special materials (ASTM-standard LA141 alloy) have been partially formed by forging or pressing. It has been reported that ductility appears on the surface of the material due to differences in metal structure such as crystal grain size and orientation and can be improved (see Non-Patent Document 1 by Yamanoi et al.).
[0004]
For example, the crystal grain size is reduced, or in the X-ray diffraction pattern, the diffraction intensity based on the presence of the (100) plane is weak and the diffraction intensity based on the presence of the (101) plane is increased. That is, by arranging the bottom (0001) plane (appearing as a plane equivalent to the (001) plane in the X-ray diffraction pattern) of the crystal in a direction inclined by 45 ° with respect to the tensile axis, the slip direction of the bottom and the maximum shear slip direction can be determined. The idea is to match them and improve the deformability. When the X-ray diffraction pattern is a material having a stronger diffraction intensity on the (101) plane than a plate material having a higher diffraction intensity on the (100) plane, the degree of freedom in the sliding direction is increased and the plastic workability at room temperature is improved. Are known. Further, as the crystal grain size becomes smaller, ductility is further improved. As a means for specifically realizing this, there is an ECAE (Equal-Channel-Angular-Extrusion) method. The magnesium alloy sheet produced by the ECAE method is described in detail in, for example, Non-Patent Document 2 of Mukai et al. The AZ31 alloy containing 3% by weight of aluminum and 1% by weight of zinc is subjected to 90 ° bending at 200 ° C. by the ECAE method, so that the diffraction intensity of the (101) plane becomes larger than that of the other planes. It is shown that a fine crystal structure of about 1 μm can be formed while the crystal grain size of the sheet material is usually 10 μm or more.
[0005]
FIG. 4 shows a configuration of an apparatus for performing a conventional lateral extrusion method for an aluminum alloy, that is, an ECAE method (see Patent Document 1). In FIG. 4, the aluminum alloy material 24 can be subjected to lateral shear deformation by inserting the aluminum alloy material 24 into one container 21 and extruding the aluminum alloy material 24 toward the next container or die 22 by the ram 23. . Thereby, the crystal grains can be refined by a very simple process. Further, when a magnesium alloy is used as the material for processing, the diffraction intensity of the (101) plane, which is preferable for workability, can be increased as described above.
Further, when a magnesium alloy is formed into a plate shape from a liquid or solid-liquid coexistence state and solidified while compressing in the plate thickness direction, a plate material having a high ratio of the (101) plane preferable for workability can be obtained (Patent Document 1) 2).
[0006]
[Non-patent document 1]
Abstract of 2000 Annual Meeting of the Japan Institute of Metals, 495 pages [Non-Patent Document 2]
Scripta Materialia, vol. 45 (2001), p. 89-94
[Patent Document 1]
JP-A-10-258334 (page 6, FIG. 1)
[Patent Document 2]
JP 2003-027173 A (page 7, FIG. 9)
[0007]
[Problems to be solved by the invention]
However, in the method shown in FIG. 4, the size and shape of a material that can be actually processed are limited to a round bar shape having a diameter of 20 mm and a length of about 100 mm. Therefore, it cannot be supplied in the form of a plate having a large area which is practically necessary, and the production cost is high due to low productivity.
In addition, the method of Patent Document 2 has a problem that if microscopic voids are introduced into the inside of the plate at the time of solidification, the ductility of the plate is likely to be reduced, and the apparatus also requires an expensive part for preventing combustion. .
[0008]
The present invention solves the above-mentioned conventional problems, and provides a magnesium alloy sheet having good formability in plastic working, in a large area that cannot be obtained conventionally, and a method of manufacturing a magnesium alloy sheet that can be manufactured with high productivity. Aim.
Another object of the present invention is to provide an apparatus for producing such a magnesium alloy sheet.
[0009]
[Means for Solving the Problems]
The present invention is to impart formability to a magnesium alloy sheet, and heats the magnesium alloy sheet to a temperature suitable for bending, guides the sheet into a bending apparatus, applies pressure from an inlet side and outlets. Applying a tension from the side, continuously passing the inlet and the outlet at the same speed, and bending the sheet in the sheet thickness direction at an angle of 0 ° or more and 90 ° or less without changing the sheet thickness; And performing the same bending process in the direction opposite to the plate thickness on the processed plate material in the order of one or more times in that order.
According to the present invention, a magnesium alloy sheet having good formability can be manufactured over a large area with high productivity.
[0010]
The magnesium alloy sheet used here is made of a Mg-Al-Zn-based alloy containing 2 to 10% by weight of aluminum and 0.5 to 1.0% by weight of zinc, and the bending temperature is preferably 180 to 300 ° C. ing.
It is preferable that the method further includes a step of performing an annealing treatment on the bent plate material. By this annealing treatment, the internal strain of the magnesium alloy sheet material is released, and the formability can be further improved.
The temperature of the annealing treatment is preferably higher than the above-mentioned processing temperature and not higher than the recrystallization end temperature of 360 ° C.
[0011]
The present invention comprises a device for continuously supplying a magnesium alloy plate material, a device for heating the plate material, and a bending portion that has a pressing mechanism and a tension mechanism on an inlet side and an outlet side, respectively, and that bends the plate material in the thickness direction. A first bending mechanism; a second bending mechanism having a pressing mechanism and a pulling mechanism on the inlet side and the outlet side, respectively, and including a bending portion configured to bend in a direction opposite to the first bending mechanism; The magnesium alloy sheet material heated by the heating apparatus is subjected to continuous bending in the sheet thickness direction, then bent in the opposite sheet thickness direction, and then collected. An apparatus for manufacturing an alloy sheet material is provided.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1
FIG. 1 shows a schematic configuration of an apparatus for manufacturing a magnesium alloy sheet according to the present embodiment. In FIG. 1, reference numeral 1 denotes a magnesium alloy sheet supply device configured by a roll around which the magnesium alloy sheet 2 is wound, and continuously supplies the magnesium alloy sheet 2. The movement path of the magnesium alloy sheet 2 fed from the supply device 1 includes a heating device 3a, a bending mold 4a, a pressing mechanism 5a and a tension mechanism 6a provided before and after the mold 4a, a heating device 3b, a bending metal A mold 4b, a pressing mechanism 5b and a tensioning mechanism 6b provided before and after the mold 4b, a heating device 3c, and a plate material collecting device 7 composed of a roll for winding the plate material are provided. 8a and 8b are heaters for heating the molds 4a and 4b, respectively.
[0013]
First, a magnesium alloy sheet 2 made of ASTM standard AZ31 alloy and having a thickness of 1 mm is heated to 200 ° C. while passing through a heating device 3a.
AZ31 is called a wrought material and is a material often used for press working. The principle of processing is the same as that of the conventional ECAE method for a bar, which is applied to a plate. In the case of the present alloy, the working temperature is required to be 180 ° C. or higher for improving the workability. However, if the temperature is too high, the introduced shear strain disappears due to diffusion, so that the working temperature is desirably 300 ° C. or lower.
[0014]
The heating device 3a may be, for example, a system such as radiation heating by a heater or another system. While maintaining the heating temperature, the plate material 2 is fed into the bending mold 4a by the pressing mechanism 5a composed of a pair of rolls. The bending mold 4a has a flow path with a gap equal to the thickness of the plate material 2 inside. This flow path is bent at a substantially right angle inside. When the thickness of the plate member 2 is 1 mm, the length of the flow path may be about 10 mm. If it is too long, the frictional resistance in the middle increases, and it becomes difficult to feed. At the same time that the plate material 2 is pushed into this flow channel, the plate material 2 is pulled out at the same speed as the pushing speed by the pulling mechanism 6a also composed of a pair of rolls.
[0015]
Although the optimum speed of the pressing into the bending mold changes depending on the processing temperature, in the present embodiment, the pressing was performed at 20 mm / sec. The condition width is desirably 3 to 100 mm / sec. If the processing speed is too low, shear deformation cannot be sufficiently caused. On the other hand, if the processing speed is too high, the plate material will break. By making the pushing speed and the pulling speed the same, the plate material 2 keeps the plate pressure constant, prevents deformation in the pulling direction, and can cause only shear deformation. In this case, if the tensile speed is made higher and the sheet material to be pulled out is controlled so as to apply a tensile stress of not more than the yield stress at the processing temperature, for example, 0 to 5 kg / mm 2 , no tensile deformation occurs in the sheet material. , Only shear deformation can be given. In a state where there is no slippage at a bending angle, in order to cause a shearing deformation of 45 °, the bending may be performed at an inner angle of 90 °.
[0016]
When there is slippage at a corner or when a large distortion is desired, the bending angle may be reduced. However, if the inside angles are too small and the plate members interfere with each other, the plate members 2 themselves become obstacles to the continuous pulling of the plate members 2. The mold 4a is desirably heated by means such as a mold heater 8a so that the internal plate 2 is not cooled.
[0017]
Next, the plate material 2 is kept at a temperature of 200 ° C. by the heating mechanism 3b in the same procedure, and is pushed into the mold 4b by the roll of the pressing mechanism 5b, and is bent in the direction opposite to the thickness of the mold 4a while being pulled. Pull out by the mechanism 6b. The speed is also 100 mm / sec.
When the pair of bending in the thickness direction is performed a plurality of times, the plate member 2 is more reliably subjected to shear deformation. The drawn-out plate member 2 is again subjected to an annealing process of heating to 300 ° C. by the heating mechanism 3c. This process removes only internal distortion. The orientation caused by the shear deformation is maintained. After being tempered, it is taken up by a collecting device 7 which is a roll-shaped take-up device.
[0018]
The X-ray diffraction pattern of the AZ31 alloy has main diffraction peaks on the (100), (002) and (101) planes, and has (102), (110), (103) and (112) planes. The surface has a weak diffraction peak.
In the X-ray diffraction pattern of the plate 2 processed as described above, the ratio of the sum of the diffraction peaks of the (101) plane and the diffraction peak of the (110) plane to the total sum of the diffraction peaks of all the planes is about 46%. It is. This ratio is higher than 39% of the ratio occupied by the sum of the diffraction peak of the (100) plane and the diffraction peak of the (002) plane. This is because the plate material produced by the conventional normal rolling mainly has the (100) plane, whereas the crystal orientation is more preferable. In reality, the plane orientations are not completely aligned, and have a width of ± 0.5 ° or less. The average particle size is 5 μm, which is smaller than 10 μm or more for a normal rolled material.
[0019]
The higher the temperature of the tempering step and the longer the time, the larger the crystal grain size of the plate material 2 becomes. This refining step may be performed in a step different from the present system. In order to pass the plate 2 into the mold 4a, as shown in FIG. 2, the mold 4a is first opened in 41 and 42, and after passing the plate 2, both molds are closed. good. FIG. 2 shows that the mold 41 has a stepped portion 43 that engages the end of the mold 42, and a flow path 44 of the plate 2 is formed between the molds 41 and 42.
In the present embodiment, a plate made of an AST31 standard AZ31 alloy is used. However, it is needless to say that the present invention can be applied to a plate made of another magnesium alloy, for example, an AZ91 alloy having a high aluminum content of 9%. This AZ91 alloy is less deformable than the AZ31 alloy, but is excellent in corrosion resistance.
[0020]
Embodiment 2
The manufacturing apparatus according to the present embodiment will be described with reference to FIG.
FIG. 3 is an enlarged view of a roll-type bending mechanism of the apparatus for manufacturing a magnesium alloy sheet according to the present embodiment. The difference between the present embodiment and the first embodiment is that a roll mechanism is used as a bending mechanism. In FIG. 3, the inner peripheral roll 9 is fixed, and the plate material 2 is caused to travel by a plurality of outer peripheral drive rolls 10. The plate material 2 travels only at a small speed due to the friction of the fixed inner peripheral roll 9, whereas the outer peripheral side is pushed forward by the drive roll 10, so that the speed difference between the inner periphery and the outer periphery causes the plate material 2 to move forward. 2 undergoes shear deformation. The processing conditions such as the processing temperature and the feed speed of the plate 2 are the same as in the first embodiment.
[0021]
In the present embodiment, since the plate member 2 can be pushed forward by the outer peripheral drive roll 10, the plate member 2 can be inserted without increasing the interval between the inner peripheral roll 9 and the outer peripheral drive roll 10 of the bending mechanism. Has the effect of
In addition, the present embodiment can be applied to a plate material having a width of about 300 mm, which is usually used for manufacturing a rolled material, because the device configuration is close to the plate material, and it is possible to manufacture a plate material having a wider width and excellent workability. Can be.
[0022]
【The invention's effect】
As described above, according to the present invention, a magnesium alloy sheet having good formability in plastic working can be manufactured with a large area and high productivity which cannot be obtained conventionally.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a manufacturing apparatus of a magnesium alloy sheet according to Embodiment 1 of the present invention.
FIG. 2 is a schematic longitudinal sectional view of a mold showing a method of setting a plate material according to the first embodiment of the present invention.
FIG. 3 is a diagram illustrating a configuration of a roll-type bending mechanism according to a second embodiment of the present invention.
FIG. 4 is a schematic longitudinal sectional view showing a configuration of an apparatus for performing a conventional ECAE method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Continuous supply mechanism 2 Magnesium alloy plate material 3 Heating mechanism 4 Bending mold 5 Pressing mechanism 6 Pulling mechanism 7 Continuous recovery mechanism 8 Mold heater 9 Inner circumference roll 10 Outer circumference drive roll

Claims (4)

2〜10重量%のアルミニウムおよび0.1〜1.0重量%の亜鉛を含むMg−Al−Zn系合金からなり、180〜300℃に加熱された板材を折り曲げ装置内に誘導して、入口側から押圧を加えるとともに出口側から引張りを与えて、入口と出口を同速度で連続的に通過させて、板厚を変化させずに内角0°以上90°以下の角度で板厚方向に折り曲げ加工をする工程と、次に前記の加工をされた板材に、前記と同じ折り曲げ加工を板厚の逆方向に施す工程とを、その順にそれぞれ1回以上同数回ずつ行うことを特徴とするマグネシウム合金板材の製造方法。A plate material made of an Mg-Al-Zn-based alloy containing 2 to 10% by weight of aluminum and 0.1 to 1.0% by weight of zinc and heated to 180 to 300 ° C is guided into a bending device, and an inlet is provided. Apply pressure from the side and apply tension from the outlet side, continuously pass through the inlet and outlet at the same speed, and bend in the thickness direction at an angle of 0 ° or more and 90 ° or less without changing the thickness. Magnesium, wherein the step of processing and the step of applying the same bending process to the processed plate material in the opposite direction of the plate thickness are performed at least once and the same number of times in this order. Manufacturing method of alloy sheet material. 前記折り曲げ加工の施された板材に、焼鈍処理する工程をさらに有する請求項1記載のマグネシウム合金板材の製造方法。The method for producing a magnesium alloy sheet according to claim 1, further comprising a step of performing an annealing treatment on the bent sheet. マグネシウム合金板材を連続的に供給する装置と、前記板材を加熱する装置と、入口側および出口側にそれぞれ押圧機構および引張機構を有し板材を板厚方向に折り曲げる折り曲げ部からなる第1の折り曲げ機構と、入口側および出口側にそれぞれ押圧機構および引張機構を有し第1の折り曲げ機構とは反対方向に折り曲げる折り曲げ部からなる第2の折り曲げ機構と、板材を連続的に回収する装置とを具備し、前記加熱装置により加熱されたマグネシウム合金板材を板厚方向に連続的な折り曲げを施し、次いで逆の板厚方向に折り曲げ加工を施した後回収することを特徴とするマグネシウム合金板材の製造装置。A first bending device including a device for continuously supplying a magnesium alloy plate material, a device for heating the plate material, and a bending portion having a pressing mechanism and a tension mechanism on an inlet side and an outlet side, respectively, for bending the plate material in the thickness direction. A mechanism, a second bending mechanism having a pressing mechanism and a pulling mechanism on the inlet side and the outlet side, respectively, and including a bending portion configured to bend in a direction opposite to the first bending mechanism, and an apparatus for continuously collecting the plate material. Manufacturing a magnesium alloy sheet material comprising: continuously bending the magnesium alloy sheet material heated by the heating device in a sheet thickness direction, then bending the sheet in an opposite sheet thickness direction, and collecting the magnesium alloy sheet material. apparatus. 前記折り曲げ部の折り曲げ角度が内角0°以上90°以下で、かつ折り曲げ部内の板厚は一定である請求項3記載のマグネシウム合金板材の製造装置。4. The apparatus for manufacturing a magnesium alloy sheet according to claim 3, wherein a bending angle of the bent portion is an inner angle of 0 ° or more and 90 ° or less, and a plate thickness in the bent portion is constant.
JP2003153197A 2003-05-29 2003-05-29 Method and apparatus for manufacturing magnesium alloy plate Pending JP2004351486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153197A JP2004351486A (en) 2003-05-29 2003-05-29 Method and apparatus for manufacturing magnesium alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153197A JP2004351486A (en) 2003-05-29 2003-05-29 Method and apparatus for manufacturing magnesium alloy plate

Publications (1)

Publication Number Publication Date
JP2004351486A true JP2004351486A (en) 2004-12-16

Family

ID=34048220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153197A Pending JP2004351486A (en) 2003-05-29 2003-05-29 Method and apparatus for manufacturing magnesium alloy plate

Country Status (1)

Country Link
JP (1) JP2004351486A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083261A (en) * 2005-09-20 2007-04-05 National Institute Of Advanced Industrial & Technology Press-formed body using magnesium alloy large cross-rolled material
JP2007098470A (en) * 2005-03-28 2007-04-19 Sumitomo Electric Ind Ltd Method for producing magnesium alloy plate
CN100360276C (en) * 2005-04-14 2008-01-09 重庆大学 Machining process capable of improving punching performance of magnesium alloy plate and belt
WO2009001516A1 (en) * 2007-06-28 2008-12-31 Sumitomo Electric Industries, Ltd. Magnesium alloy plate
JP2009172657A (en) * 2008-01-25 2009-08-06 National Institute Of Advanced Industrial & Technology High-performance magnesium alloy member and method of manufacturing it
KR100921118B1 (en) 2007-10-02 2009-10-12 현대자동차주식회사 Improving device magnesium board
JP2010236014A (en) * 2009-03-31 2010-10-21 National Institute Of Advanced Industrial Science & Technology Working and heat treatment method and magnesium alloy plate
CN102127724A (en) * 2010-11-11 2011-07-20 中南大学 Method for preparing magnesium alloy plate strip with grain size in symmetric gradient distribution along plate thickness direction
CN102489958A (en) * 2011-12-08 2012-06-13 李跃华 Process and equipment for manufacturing wide-width magnesium alloy plate in coils
JP2014213379A (en) * 2013-04-30 2014-11-17 権田金属工業株式会社 Magnesium alloy manufacturing device and magnesium alloy manufacturing method used for the device
CN104525598A (en) * 2014-12-10 2015-04-22 中国兵器工业第五九研究所 Preparation technology and device of superfine (fine) crystal bar
CN115369338A (en) * 2022-08-19 2022-11-22 内蒙古工业大学 Magnesium alloy surface toughening equipment

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098470A (en) * 2005-03-28 2007-04-19 Sumitomo Electric Ind Ltd Method for producing magnesium alloy plate
KR101290932B1 (en) 2005-03-28 2013-08-07 스미토모덴키고교가부시키가이샤 Method for producing magnesium alloy plate and magnesium alloy plate
JP4730601B2 (en) * 2005-03-28 2011-07-20 住友電気工業株式会社 Magnesium alloy plate manufacturing method
US7879165B2 (en) 2005-03-28 2011-02-01 Sumitomo Electric Industries, Ltd. Method for producing magnesium alloy plate and magnesium alloy plate
CN100360276C (en) * 2005-04-14 2008-01-09 重庆大学 Machining process capable of improving punching performance of magnesium alloy plate and belt
JP4599594B2 (en) * 2005-09-20 2010-12-15 独立行政法人産業技術総合研究所 Press molded body made of magnesium alloy large cross rolled material
JP2007083261A (en) * 2005-09-20 2007-04-05 National Institute Of Advanced Industrial & Technology Press-formed body using magnesium alloy large cross-rolled material
TWI427157B (en) * 2007-06-28 2014-02-21 Sumitomo Electric Industries Magnesium alloy plate material
RU2459000C2 (en) * 2007-06-28 2012-08-20 Сумитомо Электрик Индастриз, Лтд. Plate made from magnesium alloy
JPWO2009001516A1 (en) * 2007-06-28 2010-08-26 住友電気工業株式会社 Magnesium alloy sheet
US9499887B2 (en) 2007-06-28 2016-11-22 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet
US8828158B2 (en) 2007-06-28 2014-09-09 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet
AU2008268813B2 (en) * 2007-06-28 2011-08-04 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet
JP2011214156A (en) * 2007-06-28 2011-10-27 Sumitomo Electric Ind Ltd Magnesium alloy plate
JP2011214155A (en) * 2007-06-28 2011-10-27 Sumitomo Electric Ind Ltd Magnesium alloy plate
JP4873078B2 (en) * 2007-06-28 2012-02-08 住友電気工業株式会社 Magnesium alloy sheet
JP2012041637A (en) * 2007-06-28 2012-03-01 Sumitomo Electric Ind Ltd Magnesium alloy sheet
JP2014080690A (en) * 2007-06-28 2014-05-08 Sumitomo Electric Ind Ltd Magnesium alloy sheet material, magnesium alloy molded body, and method for producing the magnesium alloy sheet material
WO2009001516A1 (en) * 2007-06-28 2008-12-31 Sumitomo Electric Industries, Ltd. Magnesium alloy plate
KR101318460B1 (en) 2007-06-28 2013-10-16 스미토모덴키고교가부시키가이샤 Magnesium alloy sheet, magnesium alloy formed body and method of producing magnesium alloy sheet
KR100921118B1 (en) 2007-10-02 2009-10-12 현대자동차주식회사 Improving device magnesium board
JP2009172657A (en) * 2008-01-25 2009-08-06 National Institute Of Advanced Industrial & Technology High-performance magnesium alloy member and method of manufacturing it
JP2010236014A (en) * 2009-03-31 2010-10-21 National Institute Of Advanced Industrial Science & Technology Working and heat treatment method and magnesium alloy plate
CN102127724A (en) * 2010-11-11 2011-07-20 中南大学 Method for preparing magnesium alloy plate strip with grain size in symmetric gradient distribution along plate thickness direction
CN102489958A (en) * 2011-12-08 2012-06-13 李跃华 Process and equipment for manufacturing wide-width magnesium alloy plate in coils
JP2014213379A (en) * 2013-04-30 2014-11-17 権田金属工業株式会社 Magnesium alloy manufacturing device and magnesium alloy manufacturing method used for the device
CN104525598A (en) * 2014-12-10 2015-04-22 中国兵器工业第五九研究所 Preparation technology and device of superfine (fine) crystal bar
CN115369338A (en) * 2022-08-19 2022-11-22 内蒙古工业大学 Magnesium alloy surface toughening equipment
CN115369338B (en) * 2022-08-19 2023-01-24 内蒙古工业大学 Magnesium alloy surface toughening equipment

Similar Documents

Publication Publication Date Title
AU2005258658B8 (en) Method of Producing a Magnesium-Alloy Material
JP2004351486A (en) Method and apparatus for manufacturing magnesium alloy plate
KR20090115471A (en) Method and apparatus for the grain refinement of tube-shaped metal material using the ECAE process
US6764559B2 (en) Aluminum automotive frame members
CA2458270C (en) Method for processing a continuously cast metal slab or strip, and plate or strip produced in this way
RU2252088C2 (en) Method for hot rolling of magnesium band
CN1092343A (en) Be used to produce the method for band steel, sheet billet or plate slab
GB2027743A (en) Continuous strip casting of aluminium alloy for container components
JP2005525239A (en) Method and apparatus for producing hot rolled strips from austenitic rust-proof steel
Pouraliakbar et al. Combined effect of heat treatment and rolling on pre-strained and SPDed aluminum sheet
JP2001321825A (en) Method and device for working metallic material
WO2007010564A1 (en) Process and plant for manufacturing steel plates without interruption
JP2002348646A (en) Long size coil of wrought magnesium alloy and manufacturing method therefor
RU2335376C1 (en) Device for continuous casting, rolling and pressing of profiles
JP2005536354A (en) Non-ferrous metal casting
CN107338379A (en) A kind of magnesium Tin-zinc-aluminium manganese wrought magnesium alloy and preparation method thereof
KR101187967B1 (en) Grain refinement apparatus of metal material
CN102400072B (en) Method for producing magnesium and magnesium alloy plates
JP2010229467A (en) Method of producing magnesium alloy thin plate
JP2009256706A (en) Magnesium alloy sheet to be formed and manufacturing method therefor
JP2544682B2 (en) Manufacturing method of deformed strip
US5119660A (en) Method for manufacturing metal objects
JP5212894B2 (en) Continuous casting and rolling apparatus and metal member manufacturing method
JPS6233008B2 (en)
CN111922106B (en) Continuous torsion extrusion large plastic deformation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071115