JP2009256706A - Magnesium alloy sheet to be formed and manufacturing method therefor - Google Patents

Magnesium alloy sheet to be formed and manufacturing method therefor Download PDF

Info

Publication number
JP2009256706A
JP2009256706A JP2008105302A JP2008105302A JP2009256706A JP 2009256706 A JP2009256706 A JP 2009256706A JP 2008105302 A JP2008105302 A JP 2008105302A JP 2008105302 A JP2008105302 A JP 2008105302A JP 2009256706 A JP2009256706 A JP 2009256706A
Authority
JP
Japan
Prior art keywords
rolling
plate
thickness
ratio
magnesium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008105302A
Other languages
Japanese (ja)
Inventor
Jo Sugimoto
丈 杉本
Sukenori Nakaura
祐典 中浦
Masayuki Nakamoto
将之 中本
Akira Watabe
晶 渡部
Koichi Ohori
紘一 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2008105302A priority Critical patent/JP2009256706A/en
Publication of JP2009256706A publication Critical patent/JP2009256706A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Mg alloy sheet to be formed which is used for a light electrical product or the like, and is superior in deep drawability. <P>SOLUTION: The magnesium alloy sheet has maximum integration intensities less than 18 for planes ä0002} at a surface layer part in a sheet thickness direction and a center part respectively when they are measured by X-ray diffraction, in which a ratio of that in the surface part to that in the center part is 0.85 to 1.2. When thinning a hot-rolled band-shaped plate to a target sheet thickness, the manufacturing method includes: heating the band-shaped plate to 180 to 350°C; controlling a temperature of a roll to room temperature to 350°C; setting a tension value of an inlet side applied when the coil is rolled, at 50 to 90% of a tensile yield strength at a temperature of each material; and warm-rolling the band-shaped plate in such a state that the tension strength is applied. The warm-rolling step includes at least one pass of differential speed rolling with a peripheral velocity ratio of 1.05 to 1.7, and controls a rolling reduction rate in the differential speed rolling to 10% or more in total. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、弱電製品であるパソコンや携帯電話等の筐体部品など、各種電子・電気機器部品等に使用される成形加工用マグネシウム合金板に関し、特に温間プレス成形における成形性に優れたAlとMnを含有するマグネシウム合金からなる成形加工用マグネシウム合金板およびその製造方法に関するものである。また、弱電製品のみならず、自動車、二輪車等の輸送用機器の部品への適用も可能である。   The present invention relates to a magnesium alloy plate for forming used in various electronic / electric equipment parts such as a housing part of a weak electric product such as a personal computer or a mobile phone, and in particular, Al having excellent formability in warm press forming. The present invention relates to a magnesium alloy sheet for forming and made of a magnesium alloy containing Mn and Mn. Further, it can be applied not only to weak electrical products but also to parts of transportation equipment such as automobiles and motorcycles.

マグネシウムは比重がアルミニウム合金の2/3、鉄の1/4と小さく、しかも比強度が高く、リサイクル性にも優れることから、構造用製品の軽量化に効果的であり、近年、環境負荷低減に向けて軽量化が強く要求される各種自動車部品や電気機器分野のノート型パソコン、携帯電話、デジタルカメラの筐体などその用途が拡大している。さらにマグネシウムは、熱伝導率、耐デント性、電磁波シールド性に優れており、弱電製品に適した材料と言える。   Magnesium has a specific gravity as low as 2/3 that of aluminum alloy and 1/4 that of iron, and has high specific strength and excellent recyclability, so it is effective in reducing the weight of structural products. Applications such as various automotive parts, which are strongly required to be lighter, and notebook PCs, mobile phones, and digital camera housings in the field of electrical equipment are expanding. Furthermore, magnesium is excellent in thermal conductivity, dent resistance, and electromagnetic wave shielding properties, and can be said to be a material suitable for weak electrical products.

ただし、既存のマグネシウム製品の多くはダイカストやチクソなどの鋳造法により製造されたものが大部分であり、鋳造法の場合、複雑形状の物を容易に得ることができるものの、表面品質に問題があり、製品表面に研磨やパテ埋めなどを施すための補修工程が必要となると共に、製品の薄肉化や大型化への対応が困難である。それに対し、マグネシウム合金展伸材を使用した場合は、表面性状に優れ、歩留り向上や薄肉化、大型化への適用が可能となることが期待される。   However, most of the existing magnesium products are manufactured by casting methods such as die casting and thixo, and in the case of casting methods, complicated shapes can be easily obtained, but there is a problem in surface quality. In addition, a repairing process for polishing or filling the surface of the product is required, and it is difficult to cope with the reduction in thickness and size of the product. On the other hand, when a magnesium alloy wrought material is used, it is expected that it has excellent surface properties and can be applied to yield improvement, thinning, and enlargement.

しかしながら、マグネシウムの結晶構造は最密六方格子であるため、常温における優先すべり系が{0002}基底面のみであり、常温における塑性加工は非常に困難である。したがって、大きな塑性変形を得るためには、非底面すべりの活動が容易になる180℃以上に加熱する必要がある。   However, since the crystal structure of magnesium is a close-packed hexagonal lattice, the preferential slip system at room temperature is only the {0002} basal plane, and plastic working at room temperature is very difficult. Therefore, in order to obtain a large plastic deformation, it is necessary to heat to 180 ° C. or higher where the non-bottom sliding activity becomes easy.

現状、マグネシウム合金展伸材の製造方法として、厚スラブを繰り返し圧延し薄肉化するもの、鋳造したビレットを押出してフラットな板材とし、仕上げ圧延により製品板厚とするもの、双ロール法により溶湯から直接、鋳造板を製造し、仕上げ圧延を行なうもの(例えば特許文献1参照)等がある。
特開2006−144043号公報
Currently, magnesium alloy wrought materials are manufactured by repeatedly rolling and thinning a thick slab, extruding a cast billet into a flat plate, and making the product plate thickness by finish rolling. There are those that directly manufacture cast plates and perform finish rolling (see, for example, Patent Document 1).
JP 2006-144043 A

しかし、いずれの製造方法においても板厚1.8〜10mm程度の帯状板を目標板厚まで繰り返し圧延することで、マグネシウム合金圧延板に特有な底面集合組織が形成され、成形加工性、とりわけ深絞り性がある程度以上向上しない。
マグネシウム合金板において、成形性、とりわけ深絞り性の評価として限界絞り比(LDR)が従来から広く使用されている。限界絞り比とは、ブランク直径/パンチ直径で表される値であり、限界絞り比が大きいほど深絞り性が優れている。尚、マグネシウム合金板の深絞り性評価は材料を加熱できる温間プレス装置で行なう。ところで、一般的に成形加工用素材では、深絞り性が集合組織によって大きな影響を受けることが良く知られている。
However, in any of the manufacturing methods, a strip-like plate having a thickness of about 1.8 to 10 mm is repeatedly rolled to the target thickness, thereby forming a bottom texture that is unique to the magnesium alloy rolled plate. The drawability does not improve to some extent.
In a magnesium alloy sheet, a limit drawing ratio (LDR) has been widely used for evaluation of formability, particularly deep drawability. The limit drawing ratio is a value represented by blank diameter / punch diameter. The larger the limit drawing ratio, the better the deep drawability. The deep drawability of the magnesium alloy plate is evaluated with a warm press device that can heat the material. By the way, in general, it is well known that the deep drawability is greatly influenced by the texture in a forming material.

マグネシウムは結晶構造が六方最密構造であり、圧延回数を繰り返すに伴い結晶方位が基底面に揃う傾向がある。特にロールと接触する板厚方向表層部での底面集合組織強化が顕著であり、製品板厚まで圧延した際には圧延板の板厚方向表層部と中心部で{0002}基底面の最大集積強度に大きな差を生じてしまう。この板厚方向における集合組織の不均一がマグネシウム板材における成形性、とりわけ深絞り性がある程度以上向上しない原因であり、この板厚方向における{0002}基底面の集積強度の差を緩和し、さらに板厚方向全体の基底面の集積強度を小さくすることで深絞り性をさらに向上することができる。   Magnesium has a hexagonal close-packed crystal structure, and the crystal orientation tends to align with the basal plane as the number of rolling is repeated. In particular, the strengthening of the bottom texture at the surface layer portion in the plate thickness direction that comes into contact with the roll is remarkable. When rolled to the product plate thickness, the maximum accumulation of {0002} basal planes at the surface layer portion and center portion of the rolled plate A big difference will be produced in intensity. This non-uniform texture in the thickness direction is the reason why the formability in the magnesium plate material, especially deep drawability, is not improved to a certain extent, alleviating the difference in the accumulated strength of the {0002} basal plane in the thickness direction, Deep drawability can be further improved by reducing the integrated strength of the basal plane in the entire plate thickness direction.

板厚方向全体の基底面の集積強度を小さくする方法として、板材の最終焼鈍などの熱処理法が考えられるが、熱処理法では材料が焼き鈍されてしまい、製品強度が確保できない問題が生じる。また、マグネシウム合金板の成形は前記のように温間プレス成形が主であることから、プレス成形時にも若干の強度低下が考えられるため、板材自体の強度は高いことが望ましい。そこで、板厚方向における底面集積強度の差を緩和し、板厚全体での底面集積強度を小さくする方法として、圧延方法による改善が必要である。   As a method for reducing the integrated strength of the basal plane in the entire plate thickness direction, a heat treatment method such as final annealing of the plate material is conceivable. However, the material is annealed by the heat treatment method, and there is a problem that the product strength cannot be secured. Further, since the magnesium alloy plate is formed by warm press forming as described above, a slight reduction in strength can be considered during press forming, so that the strength of the plate material itself is desirably high. Therefore, as a method of reducing the difference in bottom surface integrated strength in the plate thickness direction and reducing the bottom surface integrated strength in the entire plate thickness, improvement by a rolling method is necessary.

前述のように弱電製品や自動車部品等の成形加工用の素材として、従来の通常圧延方法で得られたマグネシウム合金板は、成形性、特に深絞り性がある程度以上向上しない。より厳しい成形形状の要請から、成形性、とりわけ深絞り性を従来よりもさらに向上させたマグネシウム合金板が求められることはもちろんである。   As described above, a magnesium alloy sheet obtained by a conventional normal rolling method as a material for forming a weak electrical product or automobile part does not improve formability, particularly deep drawability, to some extent. Of course, a magnesium alloy plate having a further improved formability, particularly deep drawability, is demanded in response to demands for more severe forming shapes.

この発明は以上の事情を背景としてなされたものであり、弱電製品の筐体をはじめとする各種電子・電気機器部品等として、成形性、とりわけ深絞りによる成形加工用マグネシウム合金板を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and provides a magnesium alloy plate for forming by deep drawing, in particular, as a variety of electronic and electrical equipment parts including a housing of weak electrical products. With the goal.

成形加工用素材の深絞り性を向上させるためには、既に述べたように集合組織を適切に制御して、圧延板の板厚方向における{0002}基底面の集積強度の差を緩和し、さらに板厚方向全体の基底面の集積強度を小さくする必要がある。そこで、最密六方格子であるマグネシウム合金について、板厚方向全体に均一なせん断変形を付与して底面集合組織制御を行ない、深絞り性を改善することとした。   In order to improve the deep drawability of the forming material, the texture is appropriately controlled as described above, and the difference in the accumulated strength of the {0002} basal plane in the thickness direction of the rolled sheet is alleviated, Furthermore, it is necessary to reduce the integrated strength of the basal plane in the entire plate thickness direction. Therefore, for the magnesium alloy which is a close-packed hexagonal lattice, uniform shear deformation is applied to the entire plate thickness direction to control the bottom surface texture, thereby improving the deep drawability.

ここで、通常の圧延工程においても、圧延ロールに接する材料の極表面層では、材料と圧延ロール表面との界面の摩擦によってせん断変形が生じる。板厚1.8〜10mm程度のマグネシウム合金基材に、単に温間圧延を適用するだけでは、前述のような圧延ロール表面と材料との界面の摩擦によるせん断変形領域を材料の板厚方向内部まで充分に拡大させるのは困難である。すなわち、温間圧延は従来の通常の圧延機を用いた圧延手法の一つであるが、このような従来の通常の圧延機を用いた方法では、材料のせん断変形領域を板の内部まで充分に拡大させて、板厚方向全体として{0002}基底面の集積強度の差が小さいマグネシウム合金板を得ることは困難である。   Here, even in a normal rolling process, shear deformation occurs in the extreme surface layer of the material in contact with the rolling roll due to friction at the interface between the material and the rolling roll surface. By simply applying warm rolling to a magnesium alloy substrate with a plate thickness of about 1.8 to 10 mm, the shear deformation region due to friction at the interface between the rolling roll surface and the material as described above is formed inside the plate thickness direction of the material. It is difficult to make it sufficiently large. In other words, warm rolling is one of the rolling methods using a conventional ordinary rolling mill, but in such a method using a conventional ordinary rolling mill, the shear deformation region of the material is sufficiently extended to the inside of the plate. Thus, it is difficult to obtain a magnesium alloy plate having a small difference in the integrated strength of the {0002} basal plane as a whole in the thickness direction.

そこで本発明者等がさらに実験・検討を重ねた結果、圧延温度域を温間圧延温度域として材料の変形抵抗を小さくする手法と併せて、従来の一般的な圧延手法とは異なる、適正張力を付与した異周速圧延、すなわちミル入側の材料に対して各材料温度における引張耐力の50〜90%に設定された張力により拘束した状態で材料に対する上ロールと下ロールの相対速度を異ならしめて、強制的にせん断変形を付与する手法を適用することによって、板厚方向における{0002}基底面の集積強度の差を緩和し、さらに板厚方向全体の基底面の集積強度を小さくすることで、板厚方向に充分均一な集合組織を有するだけでなく、条件によってはその集合組織がシングルピークからダブルピークに変化することもあり、これによって深絞り性を従来の通常の圧延方法により得られたマグネシウム合金板よりも飛躍的に改善し得ることを見出し、この発明をなすに至ったのである。   Therefore, as a result of further experiments and examinations by the present inventors, an appropriate tension, which is different from a conventional general rolling technique, is combined with a technique for reducing the deformation resistance of the material by setting the rolling temperature area as a warm rolling temperature area. Different peripheral speed rolling, that is, the relative speed of the upper roll and the lower roll with respect to the material is different in a state of being constrained by the tension set to 50 to 90% of the tensile strength at each material temperature with respect to the material on the mill entry side. At least, by applying a method for forcibly applying shear deformation, the difference in the accumulated strength of the {0002} basal plane in the thickness direction is alleviated, and the accumulated strength of the basal plane in the entire thickness direction is further reduced. In addition to having a sufficiently uniform texture in the thickness direction, depending on the conditions, the texture may change from a single peak to a double peak. Found that it is possible to dramatically improved over conventional magnesium alloy sheet obtained by the rolling method of years, it was able to complete the present invention.

すなわち、本発明の成形加工用マグネシウム合金板は、板厚方向表層部と板厚方向中心部でX線回折による{0002}面の最大集積強度がそれぞれ18未満かつ該最大集積強度における表層部/中心部の比が0.85〜1.2であることを特徴とする。   That is, the magnesium alloy plate for forming according to the present invention has a maximum integrated strength of {0002} planes by X-ray diffraction of less than 18 in the thickness direction surface layer portion and the thickness direction center portion, and the surface layer portion / The ratio of the central part is 0.85 to 1.2.

第2の本発明の成形加工用マグネシウム合金板の製造方法は、マグネシウム合金からなる帯状板を180〜350℃に加熱し、ロール温度が室温〜350℃の条件で温間でコイル圧延する際に、入側の設定張力値を、各材料温度における引張耐力の50〜90%に設定するとともに、周速比1.05〜1.7の異周速圧延を少なくとも1パス以上含み、該異周速圧延における圧下量比率を合計で10%以上とすることを特徴とする。   The manufacturing method of the magnesium alloy plate for forming according to the second aspect of the present invention comprises heating a band-shaped plate made of a magnesium alloy to 180 to 350 ° C., and performing coil rolling in a warm condition at a roll temperature of room temperature to 350 ° C. The entry side set tension value is set to 50 to 90% of the tensile strength at each material temperature, and includes at least one pass of different peripheral speed rolling with a peripheral speed ratio of 1.05 to 1.7, The reduction ratio in the rapid rolling is 10% or more in total.

以下に、本発明で規定する条件について限定理由とともに説明する。
(1)X線回折による{0002}面の最大集積強度
a)板厚方向表層部と板厚方向中心部での上記最大集積強度:それぞれ18未満
板厚方向表層部および板厚方向中心部ともに{0002}面の最大集積強度を小さくすることで、成形性、特に深絞り性を向上させる。これらの最大集積強度がいずれか一方でも18以上になると、良好な成形性は得られない。
b)表層部/中心部の比:0.85〜1.2
板厚方向表層部と板厚方向中心部での上記最大集積強度の比が大きくなると、成形性が低下する。このため、上記(a)の条件に加えて上記比の適正範囲を定める。
Below, the conditions prescribed | regulated by this invention are demonstrated with the reason for limitation.
(1) Maximum accumulated intensity of {0002} plane by X-ray diffraction a) Maximum accumulated intensity at the surface layer portion in the thickness direction and the central portion in the thickness direction: less than 18 respectively Both in the thickness direction surface layer portion and in the thickness direction central portion By reducing the maximum integrated strength of the {0002} plane, the formability, particularly deep drawability, is improved. If any one of these maximum accumulated strengths is 18 or more, good moldability cannot be obtained.
b) Surface layer / center ratio: 0.85 to 1.2
As the ratio of the maximum integrated strength at the surface layer portion in the plate thickness direction and the central portion in the plate thickness direction increases, the formability decreases. For this reason, an appropriate range of the ratio is determined in addition to the condition (a).

(2)帯状板加熱温度:180〜350℃
帯状板の変形抵抗を小さくして良好に温間圧延するために、帯状板の温度を180℃以上に加熱する。帯状板の温度が180℃未満であると、良好な温間圧延が難しくなる。一方、350℃を超えると、結晶粒の成長が顕著になり、微細な結晶組織が得られなくなる。
(2) Strip plate heating temperature: 180-350 ° C
In order to reduce the deformation resistance of the belt-like plate and to perform warm rolling satisfactorily, the temperature of the belt-like plate is heated to 180 ° C. or higher. When the temperature of the strip plate is less than 180 ° C., good warm rolling becomes difficult. On the other hand, when the temperature exceeds 350 ° C., the growth of crystal grains becomes remarkable and a fine crystal structure cannot be obtained.

(3)ロール温度:室温〜350℃
ロール温度が350℃を超えると、ロールのヒートクラウンにより、シェイプの良い板材が得られないため、ロール温度を350℃以下にする。
(3) Roll temperature: room temperature to 350 ° C
When the roll temperature exceeds 350 ° C., a plate material having a good shape cannot be obtained due to the heat crown of the roll, so the roll temperature is set to 350 ° C. or lower.

(4)異周速圧延:周速比1.05〜1.7
圧下量比率10%以上
温間圧延は、1パス以上の異周速圧延を含むものとする。異周速圧延によって板厚方向全域に亘って大きなせん断変形を付加して板厚方向における{0002}基底面の集積強度の差を緩和し、さらに板厚方向全体の基底面の集積強度を小さくする。ただし、周速比が1.05未満または圧下量比率が10%未満であると、上記作用を十分に得られない。また、周速比が1.7を超えると顕著なはさみ割れを生じ、健全な板材を得るのが難しくなる。このため、周速比と圧下量比率とを上記に定める。なお、圧下量比率は、温間圧延における総圧下量に対する、異周速圧延による圧下量の比率を示すものである。
(4) Different peripheral speed rolling: Peripheral speed ratio 1.05 to 1.7
Rolling ratio 10% or more Warm rolling includes one or more passes of different peripheral speed rolling. Different circumferential speed rolling adds a large shear deformation across the entire thickness direction to alleviate the difference in the accumulated strength of the {0002} basal plane in the thickness direction, and further reduce the accumulated strength of the basal plane in the entire thickness direction. To do. However, when the peripheral speed ratio is less than 1.05 or the reduction amount ratio is less than 10%, the above-described effect cannot be obtained sufficiently. On the other hand, if the peripheral speed ratio exceeds 1.7, remarkable scissor cracking occurs, making it difficult to obtain a sound plate material. Therefore, the peripheral speed ratio and the reduction amount ratio are set as described above. In addition, a reduction amount ratio shows the ratio of the reduction amount by different speed rolling with respect to the total reduction amount in warm rolling.

(5)張力付与
上記温間圧延に際し、張力を付与することでせん断力を帯状板に付加することができる。
特に、上記異周速圧延に際し、入側の張力調整によって板厚方向における{0002}基底面の集積強度の差を緩和し、さらに板厚方向全体の基底面の集積強度を小さくする。該張力として、入側が、各材料温度における引張耐力の50〜90%が望ましい。ここで、張力が50%未満であると、材料の矯正効果が不十分で、適切な材料形状が得られない。90%を超えると圧延前の加熱した材料が高温で引張られ、最悪の場合、破断に至る。
なお、材料温度は圧延前の入側においては、加熱された材料の実体温度のことを指す。材料温度は合金種や圧下率によって異なるため、適宜調整する必要がある。本発明における材料温度は、入り側の材料の実体温度で示すものとする。なお出側張力は材料の形状が悪くならないよう、適宣調整に付加する。
(5) Applying tension During the warm rolling, a shearing force can be applied to the belt-like plate by applying tension.
In particular, during the above-mentioned different peripheral speed rolling, the difference in the accumulated strength of the {0002} basal plane in the sheet thickness direction is reduced by adjusting the tension on the entry side, and the accumulated strength of the basal plane in the entire sheet thickness direction is further reduced. As the tension, the entry side is desirably 50 to 90% of the tensile strength at each material temperature. Here, when the tension is less than 50%, the correction effect of the material is insufficient, and an appropriate material shape cannot be obtained. When it exceeds 90%, the heated material before rolling is pulled at a high temperature, and in the worst case, it breaks.
In addition, material temperature points out the actual temperature of the heated material in the entrance side before rolling. Since the material temperature varies depending on the alloy type and rolling reduction, it is necessary to adjust appropriately. The material temperature in the present invention is indicated by the actual temperature of the material on the entry side. The exit tension is added to the proper adjustment so that the shape of the material does not deteriorate.

以上説明したように、本発明の成形加工用マグネシウム合金板は、板厚方向表層部と板厚方向中心部でX線回折による{0002}面の最大集積強度がそれぞれ18未満かつ該最大集積強度における表層部/中心部の比が0.85〜1.2であるので、弱電製品の筐体部品など、各種電子・電気機器部品等に要求される成形性、とりわけ深絞り性が従来よりも著しく優れている。   As described above, the magnesium alloy plate for forming according to the present invention has a maximum integrated strength of less than 18 on the {0002} plane by X-ray diffraction at the surface layer portion in the plate thickness direction and the central portion in the plate thickness direction. Since the ratio of the surface layer portion / center portion is 0.85 to 1.2, the moldability required for various electronic / electric equipment parts such as housing parts of weak electrical products, especially deep drawability, is higher than the conventional one. Remarkably better.

また、本発明の成形加工用マグネシウム合金板の製造方法によれば、上述のように成形性、とりわけ深絞り性が従来よりも著しく優れたマグネシウム合金板を、量産的規模での装置によって実際的かつ容易に得ることができる。
なお、この発明によるマグネシウム合金板は、弱電製品であるパソコンや携帯電話等の筐体部品など、各種電子・電気機器部品に最適であるが、それに限らず、自動車部品、その他各種の成形加工用部品の用途に使用できることはもちろんである。
Further, according to the method for manufacturing a magnesium alloy plate for forming according to the present invention, as described above, a magnesium alloy plate that is remarkably superior in formability, in particular, deep drawability, can be practically used by a mass production apparatus. And can be easily obtained.
The magnesium alloy sheet according to the present invention is most suitable for various electronic / electric equipment parts such as housing parts for personal computers and mobile phones, which are weak electrical products. Of course, it can be used for parts.

本発明の製造に用いる帯状板は、所定の組成を有するマグネシウム合金から得られる。該マグネシウム合金の組成は、本発明としては特に限定をされるものではないが、好適には、質量%で、Al:1〜11%、Mn:0.15〜0.5%を含有し、残部がMgおよび不可避不純物からなる組成を有し、さらに所望によりZn:0.1〜2.0%を含有するものを挙げることができる。尚、Znは0.1%未満を不純物として含み得る。   The strip plate used for the production of the present invention is obtained from a magnesium alloy having a predetermined composition. The composition of the magnesium alloy is not particularly limited as the present invention, but preferably contains, by mass%, Al: 1 to 11%, Mn: 0.15 to 0.5%, The remainder has a composition composed of Mg and inevitable impurities, and further contains Zn: 0.1 to 2.0% if desired. Zn may contain less than 0.1% as an impurity.

帯状板の製造方法も特に限定されるものではなく、厚スラブを薄肉化したもの、鋳造ビレットを板材状に押し出したもの、双ロールにより溶湯から直接鋳造したものが挙げられる。帯状板は、好適には1.8〜10mm厚の板材とされる。   The production method of the belt-like plate is not particularly limited, and examples include a thin slab thinned, a cast billet extruded into a plate shape, and a cast directly from a molten metal using a twin roll. The belt-like plate is preferably a plate material having a thickness of 1.8 to 10 mm.

上記帯状板は、180〜350℃に加熱され、室温〜350℃のロール温度としたロールによって張力を付与した状態で温間圧延される。帯状板の加熱は、好適にはインライン上で、赤外線加熱、高周波誘導加熱、ヒーターによる高温雰囲気加熱等の加熱装置により行うことができる。また、ロールの温度は、例えばロールに内蔵したシーズヒータなどによって温度調整することができる。
また、ロールは、それぞれ制御可能なツインモータなどによって上下ロールの回転速度を変えて、周速比1.05〜1.7の異周速圧延によって行うのが望ましい。なお、異周速圧延は、温間圧延中の一部パスに限って行うことも可能であり、その場合、異周速圧延の総圧下率を10%以上とする。
The belt-like plate is heated to 180 to 350 ° C. and is warm-rolled in a state where tension is applied by a roll having a roll temperature of room temperature to 350 ° C. The heating of the belt-like plate can be preferably performed in-line by a heating device such as infrared heating, high-frequency induction heating, or high-temperature atmosphere heating with a heater. The temperature of the roll can be adjusted by, for example, a sheathed heater built in the roll.
Further, it is desirable that the rolls are rolled by different peripheral speed rolling with a peripheral speed ratio of 1.05 to 1.7 by changing the rotational speed of the upper and lower rolls by a twin motor that can be controlled. Note that the different peripheral speed rolling can be performed only in a partial pass during the warm rolling, and in that case, the total rolling reduction of the different peripheral speed rolling is set to 10% or more.

また、温間圧延に際しては、帯状板に張力を付与した状態で圧延を行う。この際の張力は、入側が、材料温度における引張耐力の50〜90%になるように前方の張力を設定する。   Moreover, in the case of warm rolling, it rolls in the state which provided the tension | tensile_strength to the strip | belt-shaped board. The tension at this time is set so that the entrance side is 50 to 90% of the tensile yield strength at the material temperature.

上記温間加工によって、帯状板を最終厚さにまで薄肉化する。該最終厚さは本発明としては特に限定されるものではなく、製品やその後の加工に応じた厚さを採用することができる。
得られたマグネシウム合金板は、板厚方向表層部と板厚方向中心部でX線回折による{0002}面の最大集積強度がそれぞれ18未満かつ該最大集積強度における表層部/中心部の比が0.85〜1.2になっており、優れた成形性を示し、深絞り加工においても優れた成形性を有している。
The strip is thinned to the final thickness by the warm processing. The final thickness is not particularly limited in the present invention, and a thickness according to a product or subsequent processing can be adopted.
In the obtained magnesium alloy plate, the maximum integrated strength of the {0002} plane by X-ray diffraction in the plate thickness direction surface layer portion and the plate thickness direction center portion is less than 18 respectively, and the ratio of the surface layer portion / center portion at the maximum integrated strength is It is 0.85 to 1.2, shows excellent moldability, and has excellent moldability even in deep drawing.

以下に、本発明の実施例を説明する。
表1の合金符号A、B、Cに示す成分組成の各合金を溶解し、双ロール法により板厚5mm、板幅450mm、長さ30mの鋳造板コイルを作製した。得られた鋳造板コイルを表2に示す初期板厚まで張力を付与したコイルの状態で熱間圧延を施し、その後、400℃で20時間均質化処理した。
Examples of the present invention will be described below.
Each alloy having the component composition shown in alloy codes A, B, and C in Table 1 was melted, and a cast plate coil having a plate thickness of 5 mm, a plate width of 450 mm, and a length of 30 m was produced by a twin roll method. The obtained cast plate coil was hot-rolled in the state of a coil provided with a tension to the initial plate thickness shown in Table 2, and then homogenized at 400 ° C. for 20 hours.

この帯状板について、表2に示す製造プロセス番号1〜13に示すような種々の条件で温間圧延を施して目標板厚(上がり板厚)を得た。温間圧延工程の中では、表2中に示す周速比、圧下量比率、入側張力で温間異周速圧延を行なった。表2に示すように、温間圧延工程の材料温度(入側温度)は120℃〜400℃、ロール加熱温度は室温〜350℃で任意に変量した。入側設定張力値は、表2に示すように、上記材料温度における引張耐力に対する比率で変量した。
ここで温間異周速圧延は、上下のロールをそれぞれ独立したモーターで駆動された温間異周速圧延機を用い、高速側のロールの回転速度を5m/minで一定とし、低速側ロールの回転速度を、設定した異周速比に応じて変化させた。なお、表2中で示す圧延パススケジュールは、板厚(mm)の変化を示すものであり、下線が引かれた板厚から次の板厚までのパスは異周速圧延を行っていることを示している。
About this strip | belt-shaped board, warm rolling was given on various conditions as shown to the manufacturing process numbers 1-13 shown in Table 2, and target board thickness (rising board thickness) was obtained. In the warm rolling step, warm different peripheral speed rolling was performed with the peripheral speed ratio, the reduction ratio, and the entry side tension shown in Table 2. As shown in Table 2, the material temperature (entrance side temperature) in the warm rolling step was arbitrarily varied from 120 ° C to 400 ° C, and the roll heating temperature was from room temperature to 350 ° C. As shown in Table 2, the entry side set tension value was varied by the ratio to the tensile strength at the material temperature.
Here, the warm different peripheral speed rolling uses a warm different peripheral speed rolling mill in which the upper and lower rolls are driven by independent motors, the rotation speed of the high speed roll is constant at 5 m / min, and the low speed roll The rotational speed of was changed according to the set different peripheral speed ratio. In addition, the rolling pass schedule shown in Table 2 shows a change in the plate thickness (mm), and the pass from the underlined plate thickness to the next plate thickness is performing different peripheral speed rolling. Is shown.

また、異周速圧延における圧下量比率は、温間圧延全体の圧下量に対する、異周速圧延による圧下量の合計比率を示している。
例えば製造プロセス番号1では、
合計圧下量比率=異周速圧延による圧下量合計/温間圧延全体の圧下量×100(%)=(1.0mm−0.7mm+0.7mm−0.5mm)/(2.0mm−0.5mm)×100=約33%となる。
Moreover, the reduction amount ratio in the different peripheral speed rolling indicates the total ratio of the reduction amount by the different peripheral speed rolling to the reduction amount of the whole warm rolling.
For example, in manufacturing process number 1,
Total rolling reduction ratio = Total rolling reduction by different peripheral speed rolling / Total rolling reduction by warm rolling x 100 (%) = (1.0mm-0.7mm + 0.7mm-0.5mm) / (2.0mm-0.5mm) x 100 = About 33%.

ここで、表2において、製造プロセス番号1〜3は、いずれも熱間圧延後、均質化処理を施した帯状板を目標板厚まで温間圧延する間に、この発明で規定する条件範囲内の温間異周速圧延を行なった本発明例、製造プロセス番号4、5は、いずれも温間圧延工程の中にこの発明で規定する温間異周速圧延の異周速比範囲を外れた温間異周速圧延を行なった比較例、製造プロセス番号6は、温間圧延工程の中にこの発明で規定する温間異周速圧延の圧下量比率範囲を外れた温間異周速圧延を行なった比較例、製造プロセス番号7、8は、温間圧延工程の中でこの発明で規定する帯状板の加熱温度範囲を外れた比較例、製造プロセス番号9、10は温間圧延工程の中でこの発明で規定するミル入側における設定張力値から外れた値で圧延した比較例、製造プロセス番号12は温間圧延工程の中でこの発明で規定する温間異周速圧延を含まず行なった従来例、製造プロセス番号13は温間圧延工程の中にこの発明で規定するコイル圧延ではなく、切板圧延を行なった従来例である。11はロール温度が外れた比較例である。   Here, in Table 2, the manufacturing process numbers 1 to 3 are all within the condition range defined in the present invention while hot rolling the strip-shaped plate subjected to homogenization to the target plate thickness. Example of the present invention in which the warm different peripheral speed rolling was performed, and production process numbers 4 and 5 are both out of the different peripheral speed ratio range of the warm different peripheral speed rolling specified in the present invention during the warm rolling step. The comparative example which performed warm different peripheral speed rolling, and the manufacturing process number 6 are the warm different peripheral speeds outside the reduction amount ratio range of the warm different peripheral speed rolling specified in the present invention during the warm rolling step. Comparative example, manufacturing process numbers 7 and 8 in which rolling was performed are comparative examples in which the heating temperature range of the strip-like plate specified in the present invention is out of the warm rolling process, and manufacturing process numbers 9 and 10 are the warm rolling process. Comparison of rolling with a value deviating from the set tension value on the mill entry side specified in this invention The manufacturing process number 12 is a conventional example that does not include the warm different speed rolling specified in the present invention in the warm rolling process, and the manufacturing process number 13 is the coil specified in the present invention in the warm rolling process. It is the conventional example which performed not the rolling but the sheet rolling. 11 is a comparative example in which the roll temperature deviates.

以上のようにして得られた目標板厚まで圧延された各板について、X線回折により板厚方向表層部と中心部の極点図を作成した。X線にはCu−Kα線を用い、0002面について測定し、Schluzの反射法によって極点図を作成し、{0002}基底面における最大集積強度を調べ、表層部/中心部の比を求めた。ここで、板厚方向における{0002}基底面の最大集積強度が小さく、表層部/中心部の比が1に近いほど、成形性への寄与が大きい。また、測定した極点図において、ピークがシングルからダブルに変化しているものの方が成形性に優れる。成形性の評価としては深絞り成形を行ない、限界絞り比(LDR)を調べた。具体的にはパンチ直径50mm一定でブランク直径を変量し、材料加熱温度250℃、パンチ水冷、潤滑にBNを使用してプレス速度5m/minでの各板における限界絞り比(LDR)を調べ、相対比較による評価を行なった。これらの測定結果を表3に示す。   For each plate rolled to the target plate thickness obtained as described above, pole figures of the surface layer portion in the plate thickness direction and the central portion were prepared by X-ray diffraction. X-ray was Cu-Kα ray, measured on 0002 plane, pole figure was created by Schluz reflection method, maximum integrated intensity on {0002} basal plane was examined, and surface layer / center ratio was determined . Here, the smaller the maximum integrated strength of the {0002} basal plane in the plate thickness direction and the closer the surface layer / center ratio is to 1, the greater the contribution to formability. Moreover, in the measured pole figure, the one whose peak changes from single to double is superior in formability. For evaluation of moldability, deep drawing was performed, and the limit drawing ratio (LDR) was examined. Specifically, the punch diameter was fixed at 50 mm, the blank diameter was varied, the material heating temperature 250 ° C., punch water cooling, BN was used for lubrication, and the limit drawing ratio (LDR) of each plate at a press speed of 5 m / min was examined. Evaluation by relative comparison was performed. These measurement results are shown in Table 3.

表3から明らかなように、この発明で規定する温間圧延工程での帯状板加熱温度、温間圧延工程内の異周速圧延の圧下量比率もしくは異周速比を満たす条件で行なった本発明例では、いずれも板厚方向の各位置で{0002}面の最大集積強度が18未満であって、板厚方向表層部と中心部の{0002}面の最大集積強度の比が0.85〜1.2であり、したがって成形性、とりわけ深絞り性に有利な集合組織を有していると言うことができ、またLDRで評価される成形性も実際に従来の通常の温間圧延工程での板材に比べ著しく優れていることが明らかである。これに対して、この発明で規定する温間圧延工程での帯状板加熱温度、設定張力、温間圧延工程内の異周速圧延による圧下量比率もしくは異周速比を満たす条件で行なわれなかった各比較例の場合は、いずれも{0002}面の板厚方向の各位置で{0002}面の最大集積強度が18以上であるか、板厚方向表層部と中心部の{0002}面の最大集積強度の比が規定範囲外であり、深絞り性に不利な集合組織が形成されており、LDRも本発明品に比べ劣る結果であることが判明した。   As is apparent from Table 3, the strip heating temperature in the warm rolling process specified in the present invention, the reduction ratio of the different peripheral speed rolling in the warm rolling process, or the condition of satisfying the different peripheral speed ratio. In each example, the maximum integrated strength of the {0002} plane is less than 18 at each position in the plate thickness direction, and the ratio of the maximum integrated strength of the {0002} plane in the plate thickness direction to the central portion is 0. 0. Therefore, it can be said that it has a texture favorable to formability, particularly deep drawability, and the formability evaluated by LDR is actually the conventional normal warm rolling. It is clear that it is remarkably superior to the plate material in the process. On the other hand, it is not carried out under conditions that satisfy the strip plate heating temperature, the set tension in the warm rolling process specified in the present invention, the reduction ratio by different circumferential speed rolling in the warm rolling process, or the different circumferential speed ratio. In each of the comparative examples, the {0002} plane has a maximum integrated strength of 18 or more at each position in the thickness direction of the {0002} plane, or the {0002} plane in the thickness direction surface layer portion and the central portion. It was found that the maximum integrated strength ratio was outside the specified range, a texture that was disadvantageous to deep drawability was formed, and LDR was inferior to the product of the present invention.

Claims (2)

板厚方向表層部と板厚方向中心部でX線回折による{0002}面の最大集積強度がそれぞれ18未満かつ該最大集積強度における表層部/中心部の比が0.85〜1.2であることを特徴とする、成形加工用マグネシウム合金板。   The maximum integrated strength of the {0002} plane by X-ray diffraction is less than 18 at the thickness direction surface layer portion and the thickness direction center portion, respectively, and the ratio of the surface layer portion / center portion at the maximum integration strength is 0.85 to 1.2. A magnesium alloy sheet for forming, characterized by being. マグネシウム合金からなる帯状板を180〜350℃に加熱し、ロール温度が室温〜350℃の条件で温間でコイル圧延する際に、入側の設定張力値を、各材料温度における引張耐力の50〜90%に設定するとともに、周速比1.05〜1.7の異周速圧延を少なくとも1パス以上含み、該異周速圧延における圧下量比率を合計で10%以上とすることを特徴とする、成形加工用マグネシウム合金板の製造方法。   When a strip-shaped plate made of a magnesium alloy is heated to 180 to 350 ° C. and coil-rolled in a warm condition under a roll temperature of room temperature to 350 ° C., the set tension value on the entry side is set to 50 of the tensile strength at each material temperature. -90% and including at least one pass of different circumferential speed rolling with a circumferential speed ratio of 1.05-1.7, and the reduction ratio in the different circumferential speed rolling is 10% or more in total. The manufacturing method of the magnesium alloy plate for shaping | molding processing.
JP2008105302A 2008-04-15 2008-04-15 Magnesium alloy sheet to be formed and manufacturing method therefor Withdrawn JP2009256706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105302A JP2009256706A (en) 2008-04-15 2008-04-15 Magnesium alloy sheet to be formed and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105302A JP2009256706A (en) 2008-04-15 2008-04-15 Magnesium alloy sheet to be formed and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2009256706A true JP2009256706A (en) 2009-11-05

Family

ID=41384489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105302A Withdrawn JP2009256706A (en) 2008-04-15 2008-04-15 Magnesium alloy sheet to be formed and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2009256706A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058054A (en) * 2009-09-10 2011-03-24 Osaka Prefecture Univ Magnesium alloy-rolled material and method for producing the same
WO2012115190A1 (en) * 2011-02-24 2012-08-30 住友電気工業株式会社 Magnesium alloy and manufacturing method for same
JP2012172255A (en) * 2011-02-24 2012-09-10 Sumitomo Electric Ind Ltd Magnesium alloy material and method for producing the same
CN113477707A (en) * 2021-07-15 2021-10-08 太原理工大学 Asynchronous micro-flexible rolling method for laminated metal composite thin strip

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058054A (en) * 2009-09-10 2011-03-24 Osaka Prefecture Univ Magnesium alloy-rolled material and method for producing the same
WO2012115190A1 (en) * 2011-02-24 2012-08-30 住友電気工業株式会社 Magnesium alloy and manufacturing method for same
JP2012172254A (en) * 2011-02-24 2012-09-10 Sumitomo Electric Ind Ltd Magnesium alloy material and method for producing the same
JP2012172255A (en) * 2011-02-24 2012-09-10 Sumitomo Electric Ind Ltd Magnesium alloy material and method for producing the same
CN113477707A (en) * 2021-07-15 2021-10-08 太原理工大学 Asynchronous micro-flexible rolling method for laminated metal composite thin strip

Similar Documents

Publication Publication Date Title
WO2014168147A1 (en) Aluminum alloy sheet for press forming, process for manufacturing same, and press-formed product thereof
CN105506416B (en) The manufacture method of plate high-strength aluminum alloy band in a kind of support available for mobile phone
WO2017168890A1 (en) Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate
JP6533402B2 (en) Cu-Ni-Si copper alloy sheet, method for producing the same, and lead frame
JP2008045192A (en) Aluminum alloy sheet showing excellent ridging-mark resistance at molding
CN107699756A (en) A kind of Al Zn Mg aluminum alloy thin sheet materials and preparation method thereof
JP2017179457A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP2017179442A (en) Al-Mg-Si-BASED ALLOY MATERIAL
CN105765093A (en) Copper alloy plate, and electronic component for large current applications and electronic component for heat dissipation applications each provided with same
CN111389910A (en) System and method for preparing mixed crystal heterogeneous material based on cam rolling
CN109988948A (en) A kind of car inner plate 5182-O state aluminium alloy boards and its production method
CN104775059A (en) Al-Mg-Si series aluminum-alloy material with long-time natural aging stability, aluminum-alloy plate and manufacturing method thereof
JP5329746B2 (en) Aluminum alloy sheet for warm forming
JP2010121165A (en) Magnesium alloy sheet and method for producing the same
JP2009256706A (en) Magnesium alloy sheet to be formed and manufacturing method therefor
JP2004263253A (en) Aluminum alloy hard sheet for can barrel, and production method therefor
CN110872665B (en) Al-Mg-Si alloy plate
JP2010053386A (en) Magnesium alloy sheet material which is excellent in formability, and producing method therefor
EP3733889A1 (en) Magnesium alloy sheet and method for producing same
JP2017179456A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP5776873B2 (en) Magnesium alloy rolled material, magnesium alloy member, and method for producing magnesium alloy rolled material
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP2008223054A (en) Aluminum alloy sheet for forming-work having excellent deep drawability and burning/softening resistance, and producing method therefor
JP3838504B2 (en) Aluminum alloy plate for panel forming and manufacturing method thereof
JP2010229467A (en) Method of producing magnesium alloy thin plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110401

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

A761 Written withdrawal of application

Effective date: 20120918

Free format text: JAPANESE INTERMEDIATE CODE: A761