JP2003311320A - Plastic forming device, and plastic forming method - Google Patents

Plastic forming device, and plastic forming method

Info

Publication number
JP2003311320A
JP2003311320A JP2002124327A JP2002124327A JP2003311320A JP 2003311320 A JP2003311320 A JP 2003311320A JP 2002124327 A JP2002124327 A JP 2002124327A JP 2002124327 A JP2002124327 A JP 2002124327A JP 2003311320 A JP2003311320 A JP 2003311320A
Authority
JP
Japan
Prior art keywords
flow path
work material
plastic working
strain
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002124327A
Other languages
Japanese (ja)
Inventor
Makoto Orihara
良 折原
Naoki Niwa
直毅 丹羽
Kazuo Ichinose
和夫 一之瀬
Hidefusa Takahara
秀房 高原
Nobuo Fujikura
信夫 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2002124327A priority Critical patent/JP2003311320A/en
Publication of JP2003311320A publication Critical patent/JP2003311320A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/001Extruding metal; Impact extrusion to improve the material properties, e.g. lateral extrusion

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plastic forming device and a plastic forming method for forming substantially uniform distortion while minimizing the deposit of a work on bent parts. <P>SOLUTION: When performing plastic forming by forcibly distributing a work 37 in flow passages 33a-33c of a cylindrical container, a plurality of pairs of bent parts 34 and 35 having an angle of inclination below 90° are formed in the flow passages, and shearing force is applied to the work at the bent parts a plurality of times. Since the plurality of bent parts are present, the shearing force is applied a plurality of times by a single press-feed of the work, the distortion generation efficiency is improved, the quantity of the work to be deposited on an inner surface of the bent parts is reduced, and a uniform distortion is given to the work. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、塑性加工により金
属の集合組織制御や結晶粒微細化など所定の組織制御の
目的に合わせた所定の歪み状態の材料として得るための
塑性加工装置及び方法に関し、より詳細には歪みを生じ
させる折曲部への被加工材の固着量を最小限に抑えて実
質的に均一な歪みを形成できるようにした塑性加工装置
及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic working apparatus and method for obtaining a material in a predetermined strain state according to the purpose of predetermined texture control such as metal texture control and crystal grain refinement by plastic working. More specifically, the present invention relates to a plastic working apparatus and method capable of forming a substantially uniform strain by minimizing a fixed amount of a workpiece to a bent portion that causes a strain.

【0002】[0002]

【従来の技術】従来の塑性加工は、被加工材に圧延、押
出及び引抜等の強い加工を施こすことにより行われ、該
塑性加工を行うと、いわゆる集合組織の形成は避けられ
ず、加工された材料は異方性を有する材料特性を示す。
該異方性を積極的に利用することもあるが、該異方性が
望ましくない場合は熱処理などにより前記異方性を除く
処理が行われる。従って前記塑性加工状態では等方性材
料は得られない。
2. Description of the Related Art Conventional plastic working is carried out by subjecting a work material to strong working such as rolling, extrusion and drawing. When the plastic working is carried out, the formation of a so-called texture is inevitable. The resulting material exhibits anisotropic material properties.
The anisotropy may be positively utilized, but when the anisotropy is not desired, a treatment for removing the anisotropy is performed by heat treatment or the like. Therefore, an isotropic material cannot be obtained in the plastic working state.

【0003】他方、最近強加工を施して結晶の微細化を
達成する研究開発が活発に行われており、例えば次の文
献にレビューとして開示されている(例えばF.J.Humphr
eys,P.B.Prangnell and R.Priestner, "Fine-Grained A
lloys by ThermomechanicalProcessing", Proceedings
of the Fourth International Conference on Recrysta
llization and Related Phenomena, edited by T.Sakai
and H.G. Suzuki,1999, p69)。
On the other hand, recently, researches and developments have been actively carried out to achieve the refinement of crystals by subjecting it to strong working, and for example, it is disclosed as a review in the following literature (for example, FJHumphr.
eys, PBPrangnell and R.Priestner, "Fine-Grained A
lloys by ThermomechanicalProcessing ", Proceedings
of the Fourth International Conference on Recrysta
llization and Related Phenomena, edited by T.Sakai
and HG Suzuki, 1999, p69).

【0004】前記文献に開示された強加工法のうち、例
えば直角などのある角度を有する曲がった流路(ダイキ
ャビティ)を利用した高剪断歪み付加プロセスが注目さ
れている。このプロセスはECAP(equal-channel-an
gular-processing)法又はECAE(equal-channel-an
gular-extrusion)法と呼ばれ、直角又は傾斜したダイ
キャビティに凝固材を供給して押出し−引抜きを行うこ
とで角度部において高い剪断歪みを付与するように被加
工材を塑性加工する方法であり、強加工により結晶粒の
微細化が達成できることが立証された。しかるに塑性加
工された被加工材には一方向に偏った粒子の微細化やリ
ボン化が起こっているため、等方微細化結晶を得るため
には、傾斜角90°で被加工材の方向を少なくとも4回
(90度ずつ回転)変化させて工程を繰り返す必要がある
ことが前記文献のP301にZ.Horitaらにより開示されてい
る。
Among the strong working methods disclosed in the above document, a high shear strain applying process utilizing a curved flow path (die cavity) having a certain angle such as a right angle is drawing attention. This process is based on ECAP (equal-channel-an
gular-processing) method or ECAE (equal-channel-an
gular-extrusion) method, which is a method of plastically working a work material so as to give a high shear strain at the angle part by supplying a solidified material into a right-angled or inclined die cavity and performing extrusion-drawing. It has been proved that grain refinement can be achieved by strong working. However, in the plastically machined work material, particles that are biased in one direction are becoming finer or ribbons are formed.Therefore, in order to obtain isotropic refined crystals, the direction of the work material is set at an inclination angle of 90 °. It is disclosed by Z. Horita et al. In P301 of the above-mentioned document that the process needs to be repeated at least four times (rotation by 90 degrees).

【0005】このECAP法を図10及び図11に基づいて
説明する。図10はECAPプロセスに使用可能なダイの
斜視図、図11は図10の要部の拡大縦断面図である。図10
に示すように、直方体のダイ1には、上面の開口部2か
ら下降し、右方向に直角に折れ曲がった後に、ダイ1の
側面に達して開口するダイキャビティ(流路)3が穿設さ
れている。このダイ1を加熱しながら、プランジャー
(図示略)を使用して直方体状の被加工材4を前記開口
部2からダイキャビティ3中に圧入すると、該被加工材
はダイキャビティ3中の直角部分に相当する折曲部7で
剪断力を受けて対応するダイキャビティ3の形状に応じ
て図11に示すように変形する。
The ECAP method will be described with reference to FIGS. 10 and 11. FIG. 10 is a perspective view of a die that can be used in the ECAP process, and FIG. 11 is an enlarged vertical sectional view of a main part of FIG. Figure 10
As shown in FIG. 3, the rectangular parallelepiped die 1 is provided with a die cavity (flow passage) 3 that descends from the opening 2 on the upper surface, bends at a right angle to the right, and then reaches the side surface of the die 1 and opens. ing. When a rectangular parallelepiped workpiece 4 is press-fitted into the die cavity 3 from the opening 2 using a plunger (not shown) while heating the die 1, the workpiece is at a right angle in the die cavity 3. The bending portion 7 corresponding to a portion receives a shearing force and is deformed as shown in FIG. 11 according to the shape of the corresponding die cavity 3.

【0006】[0006]

【発明が解決しようとする課題】この際に被加工材4の
結晶粒には圧縮場で滑り帯が生じて旧結晶粒を剪断破壊
して、一定方向に偏った粒子の微細化が起こる。そして
図11の状態にある被加工材4に更に力を加えあるいは引
張応力を加えると、ダイ1の側面の開口部5から塑性加
工された被加工材6として取り出される。この方法によ
り、実際に1μmオーダーの塑性加工された高剪断歪み
を有するアルミニウム合金やマグネシウム合金が実験室
規模で得られており、有効な方法であるといえる。しか
し塑性加工された被加工材には前述した通り一定方向に
偏った粒子の微細化が起こっているため、等方微細化結
晶を得るためには、被加工材の方向(位相)を変化させ
て再度ダイ1を通して塑性加工を行う必要がある。
At this time, a slip band is generated in the crystal grains of the material 4 to be processed in the compression field, and the old crystal grains are sheared and broken, so that the grains deviated in a certain direction are refined. Then, when a force is further applied or a tensile stress is applied to the work material 4 in the state of FIG. 11, it is taken out as the plastic work material 6 from the opening 5 on the side surface of the die 1. According to this method, an aluminum alloy or magnesium alloy having a high shear strain that has been actually plastically processed in the order of 1 μm has been obtained on a laboratory scale, and it can be said that this is an effective method. However, in the plastically machined work material, since grain refinement biased in a certain direction occurs as described above, in order to obtain an isotropic refined crystal, the direction (phase) of the work material is changed. It is necessary to perform plastic working again through the die 1.

【0007】このように前記ECAP法は圧入される材
料のフローの方向が2方向に限定され、繰り返し工程に
より高剪断歪みを被加工材に与えられるという利点はあ
るものの、等方微細化結晶を得るには工程が複雑すぎて
生産性が向上しないという欠点がある。又マグネシウム
のように成形性が悪い材料では、加熱状態で塑性加工す
る必要があるが、前述の工程を繰り返すと、材料の酸化
等による劣化が起こってしまう。
As described above, although the ECAP method has the advantage that the flow direction of the material to be press-fitted is limited to two directions and that high shear strain can be applied to the material to be processed by the repeated steps, it is possible to obtain an isotropic refined crystal. There is a drawback that the process is too complicated to obtain and the productivity is not improved. Further, with a material having poor formability such as magnesium, it is necessary to perform plastic working in a heated state, but if the above-mentioned steps are repeated, deterioration due to oxidation of the material will occur.

【0008】更に被加工材に付与される歪みは材料全体
に均一に分布していることが望ましいが、その歪みの程
度は高ければ良い訳ではなく、被加工材の用途に応じた
歪みが付与できることが望ましい。前述のECAP法で
は材料がダイキャビティ3中の直角部分で剪断力を受け
て対応するダイキャビティ3の形状に変化するため、強
い応力を受けて高歪みが発生し、比較的小さい歪みを有
する材料を塑性加工で得ることは困難である。このよう
に従来は低歪み状態から高歪み状態までの任意の歪み量
を有する被加工材を得ること及び比較的簡単な操作で高
歪み状態の塑性加工した被加工材を得ることが実質的に
不可能であった。従って本発明は、より簡便な手法で被
加工材を塑性加工して、所定の性能、特に低歪み状態か
ら高歪み状態までの任意の歪み量を有する被加工材、あ
るいは高歪みや等方微細化結晶を有する被加工材を得る
ことができる塑性加工装置及び塑性加工方法、特に折曲
部への被加工材の固着量を最小限に抑えて実質的に均一
な歪みを形成できるようにした塑性加工装置及び方法を
提供することを目的とする。
Further, it is desirable that the strain imparted to the work material is evenly distributed throughout the material, but the degree of the strain is not necessarily high, and the strain depending on the intended use of the work material is imparted. It is desirable to be able to. In the above-mentioned ECAP method, since the material is subjected to shearing force at a right angle portion in the die cavity 3 to change into the shape of the corresponding die cavity 3, a high stress is generated to generate a high strain and a material having a relatively small strain. Is difficult to obtain by plastic working. Thus, conventionally, it is practically possible to obtain a work material having an arbitrary strain amount from a low strain state to a high strain state and to obtain a plastically worked work material in a high strain state by a relatively simple operation. It was impossible. Therefore, the present invention is to perform a plastic working of a work material by a simpler method to obtain a predetermined performance, particularly a work material having an arbitrary strain amount from a low strain state to a high strain state, or a high strain or isotropic fine grain. A plastic working apparatus and a plastic working method capable of obtaining a work material having a crystallized crystal, and in particular, an amount of sticking of the work material to a bent portion is minimized so that a substantially uniform strain can be formed. An object is to provide a plastic working apparatus and method.

【0009】[0009]

【課題を解決するための手段】本発明は、筒状コンテナ
の流路に被加工材を強制流通させて塑性加工を行う装置
において、前記流路に傾斜角が90°未満の複数の折曲部
を形成し、前記被加工材に対して該折曲部で複数回剪断
力を加えることを特徴とする塑性加工装置、及び傾斜角
が90°未満である複数の折曲部を有する筒状コンテナの
流路が形成された塑性加工装置に被加工材を強制流通さ
せて塑性加工を行い、前記複数の折曲部ごとに被加工材
に対して複数回剪断力を加えて該被加工材に歪みを生じ
させることを特徴とする塑性加工方法、本発明では筒状
コンテナ流路の内面に複数のバリア体を設置しても良
い。
SUMMARY OF THE INVENTION The present invention is an apparatus for performing plastic working by forcibly flowing a material to be processed through a flow path of a cylindrical container, wherein the flow path has a plurality of bending angles of less than 90 °. Forming part and applying a shearing force to the work piece a plurality of times at the bent part, and a tubular shape having a plurality of bent parts having an inclination angle of less than 90 °. The workpiece is forcibly flowed through the plastic working device in which the flow path of the container is formed to perform the plastic working, and the workpiece is processed by applying a shearing force to the workpiece a plurality of times for each of the plurality of bent portions. In the present invention, a plurality of barrier bodies may be installed on the inner surface of the tubular container flow path.

【0010】以下本発明を詳細に説明する。本発明の塑
性加工の対象となる被加工材は、アルミニウム、マグネ
シウム、鉄及びチタン等の純金属、及びそれらの合金又
は金属間化合物、セラミックス、樹脂及びこれらの複合
体であるハイブリッド材等を含む。この被加工材のサイ
ズは特に限定されず、必要な用途に応じて適宜設定すれ
ば良い。本発明ではこのような材料から成る加工対象材
(被加工材)を、傾斜角が90°未満である複数の折曲部
を形成した筒状コンテナの流路を有する好ましくは加熱
された塑性加工装置の流路にプランジャー等を使用して
圧入する。この塑性加工装置のサイズも特に限定されな
いが、被加工材のサイズに応じて好適なサイズが変動す
る。例えば直径が15cmで高さが30cmの円柱状の被加工材
の塑性加工を行う場合の塑性加工装置(後述するダイの
部分)のサイズは、縦50〜200cm、横縦50〜200cm及び高
さ縦50〜200cmの範囲で選択できる。
The present invention will be described in detail below. Materials to be subjected to plastic working of the present invention include pure metals such as aluminum, magnesium, iron and titanium, and alloys or intermetallic compounds thereof, ceramics, resins and hybrid materials which are composites thereof. . The size of the material to be processed is not particularly limited and may be set appropriately according to the required application. In the present invention, a material to be processed (material to be processed) made of such a material is preferably heated and plastically processed with a flow path of a cylindrical container having a plurality of bent portions with an inclination angle of less than 90 °. Press into the flow path of the device using a plunger. The size of the plastic working device is not particularly limited, but the preferred size varies depending on the size of the work material. For example, the size of the plastic working device (die part to be described later) when performing the plastic working of a cylindrical work piece with a diameter of 15 cm and a height of 30 cm is 50 to 200 cm in length, 50 to 200 cm in width and height, and height. The length can be selected in the range of 50 to 200 cm.

【0011】この装置に圧入された被加工材はまず図10
及び11に示した従来のECAP法の場合と同様にして、
第1の折曲部で第1の剪断力を受けて対応する流路の形
状に応じて変形して第1の歪みが発生して被加工材内に
蓄積される。このようにして第1の剪断変形を受けた被
加工材は前記プランジャー等により更に流路内に深く圧
入されて、第2の折曲部に達する。この第2の折曲部で
も、同様にして第2の剪断力を受けて対応する流路の形
状に応じて変形して第2の歪みが発生して第1及び第2
の歪みが合成されて被加工材内に蓄積される。3以上の
折曲部を有する装置の場合は、更に被加工材に第3の折
曲部で第3の歪みが発生し、これが最後の折曲部まで行
われて被加工材に複数の剪断力による歪みが生じる。
The work material press-fitted into this apparatus is first shown in FIG.
And in the same manner as in the case of the conventional ECAP method shown in 11,
The first bending portion receives the first shearing force and is deformed according to the shape of the corresponding flow path to generate the first strain, which is accumulated in the work material. The work material thus subjected to the first shear deformation is further deeply pressed into the flow path by the plunger or the like and reaches the second bent portion. In the second bent portion as well, similarly, the second shearing force is applied and the second bent portion is deformed in accordance with the shape of the corresponding flow path to generate the second strain.
Strains are combined and accumulated in the work material. In the case of a device having three or more bent portions, a third strain is further generated in the work material at the third bent portion, and this is performed up to the last bend portion, and the work material is subjected to a plurality of shearing forces. Distortion due to force occurs.

【0012】本発明では、複数の前記折曲部での傾斜角
の少なくとも一部が90°未満になるように形成する。つ
まり複数の折曲部の一部の傾斜角を90°未満、他の傾斜
角を90°又は90°を超える角度としても良い。ここで傾
斜角とは、折曲部を形成する2本の流路が実際に形成す
る角度と、該2本の流路が直線状と仮定した場合の角度
差を意味する。傾斜角が90°であると折曲部に荷重が垂
直に加わり固着を起こす。これに対し、傾斜角を90°未
満とすると、荷重が斜めに加わるため流路内での被加工
材の流通が円滑に起こり、これにより固着量が減少し、
又は実質的にゼロになる。なおこの場合には隣接する折
曲部で折曲部対を形成し、折曲部対の傾斜角の合計が90
°になるようにすることが望ましい。本発明における90
°未満とは、限りなく90°に近い角度を含み、傾斜角が
僅かでも90°より小さくなると、被加工材の減少という
本発明固有の効果が生じる。
In the present invention, at least a part of the inclination angle at the plurality of bent portions is formed to be less than 90 °. That is, some of the plurality of bent portions may have an inclination angle of less than 90 ° and the other inclination angles of 90 ° or more than 90 °. Here, the tilt angle means an angle difference between an angle formed by two flow paths forming a bent portion and a linear shape of the two flow paths. If the angle of inclination is 90 °, the load is applied vertically to the bent portion and sticking occurs. On the other hand, when the inclination angle is less than 90 °, the load is obliquely applied, so that the material to be processed is circulated smoothly in the flow path, which reduces the amount of sticking.
Or substantially zero. In this case, the adjacent bent parts form a pair of bent parts, and the total angle of inclination of the bent parts is 90
It is desirable to set it to be °. 90 in the present invention
The angle less than 0 includes an angle close to 90 ° as much as possible, and if the inclination angle is slightly less than 90 °, the effect peculiar to the present invention that the number of materials to be processed is reduced occurs.

【0013】折曲部又は折曲部対の数が多いほど、被加
工材の単一の圧入操作で多数回の剪断力が加わり、生じ
る歪み量を増加できるが、流路内の抵抗が増加するた
め、被加工材の装置内への圧入が困難になる。従って折
曲部又は折曲部対の数は必要な歪み量と被加工材の圧入
を考慮して適宜設定する。折曲部対の傾斜角の合計を90
°に設定する場合には、折曲部対の数を偶数にすると被
加工材の導入部と導出部を同一方向に向けることがで
き、スペースの節約上好ましく、更に力を加える方向が
同一直線上になり、直角方向に成る場合と比べて装置の
安定性が向上する。傾斜角の合計が90°の2個所の隣接
する折曲部対を形成する場合には、折曲方向を同一にす
る形態と逆にする形態がある。
The larger the number of bent portions or pairs of bent portions, the more the shearing force is applied by a single press-fitting operation of the material to be processed, and the more strain can be generated, but the resistance in the flow passage is increased. Therefore, it becomes difficult to press the work material into the device. Therefore, the number of bent portions or bent portion pairs is appropriately set in consideration of the required strain amount and press-fitting of the workpiece. The sum of the tilt angles of the bent parts is 90
When set to °, if the number of pairs of bent parts is an even number, it is possible to direct the lead-in part and the lead-out part of the work piece in the same direction, which is preferable for saving space, and the direction in which force is applied is the same The stability of the device is improved as compared with the case of being on a line and being in a right angle direction. When forming two adjacent bent portion pairs having a total inclination angle of 90 °, there are a form in which the bending directions are the same and a form in which the bending directions are opposite.

【0014】折曲方向を同一にすると流路の断面形状は
「U」字状になり、逆にすると「L」を2個逆向きに組
み合わせた形状になる。折曲方向を同一にすると被加工
材には前記2個所の隣接する折曲部で同一方向からの剪
断力を受けるのに対し、逆にすると逆方向からの剪断力
を受けて歪みがほぼ均一に分散している被加工材が得ら
れる。このように折曲部又は折曲部対の数、傾斜角及び
向きを適宜設定することにより、得られる被加工材に所
望の歪みを生じさせることができる。従来のECAP法
では被加工材の単一回の圧入により剪断力が1回のみ加
えられていたが、本発明では折曲部又は折曲部対が複数
存在するため、剪断力を所望回加えることができる。
When the bending directions are the same, the cross-sectional shape of the flow path becomes a "U" shape, and when the bending directions are the same, two "L" are combined in the reverse direction. When the bending directions are the same, the work material receives shearing force from the same direction at the two adjacent bending parts, but when the bending directions are the same, strain is almost uniform due to shearing force from the opposite direction. A work material dispersed in the can be obtained. In this way, by appropriately setting the number of bent portions or bent portion pairs, the inclination angle, and the direction, it is possible to generate a desired strain in the obtained workpiece. In the conventional ECAP method, the shearing force is applied only once by press-fitting the material to be processed once, but in the present invention, since there are a plurality of bent portions or bent portion pairs, the shearing force is applied a desired number of times. be able to.

【0015】従って従来のように、等方微細化結晶を得
るために、傾斜角90°で被加工材の方向を少なくとも4
回(90°ずつ回転)変化させて工程を繰り返すような必
要がなくなり、4個所の折曲部又は折曲部対を有する装
置では1回の圧入操作で、2個所の折曲部を有する装置
でも1度圧入操作を行って取り出した被加工材の方向を
代えて圧入するという2回の操作で、従来の4回工程を
繰り返す場合とほぼ同様の歪みを有する被加工材が得ら
れる。前述した通り折曲部の傾斜角を90°未満にする
と、傾斜角が小さくなるにつれての固着量も少なくなる
が、その反面歪み発生量も小さくなる。折曲部の傾斜角
を90°にすると歪み発生量はほぼ一定で、折曲部の数を
増やしても歪み発生量はほぼその整数倍に増加するのみ
で、任意量の歪みを発生させることができない。これに
対し傾斜角を90°未満にすると傾斜角と歪み発生量がほ
ぼ比例するするため、傾斜角を調節することにより歪み
発生量を制御できる。従って要求される歪み量と組織の
均一性(固着量の減少)との相関を考慮して折曲部対の
傾斜角を決定すれば良く、歪み発生量の減少を防止する
ためには折曲部の数を増加させること等で対応できる。
Therefore, as in the prior art, in order to obtain an isotropic refined crystal, the direction of the work material should be at least 4 at an inclination angle of 90 °.
There is no need to repeat the process by changing the number of times (rotation by 90 °), and for a device having four bending parts or a pair of bending parts, a device having two bending parts with one press-fitting operation. However, by performing the press-fitting operation once and pressing the workpiece out while changing the direction of the workpiece, a workpiece having substantially the same strain as when the conventional four-step process is repeated can be obtained. As described above, when the angle of inclination of the bent portion is less than 90 °, the amount of sticking decreases as the angle of inclination decreases, but the amount of surface distortion generated also decreases. When the angle of inclination of the bent portion is 90 °, the amount of strain generated is almost constant, and even if the number of bent portions is increased, the amount of strain generated only increases to an integer multiple of that amount, and an arbitrary amount of strain is generated. I can't. On the other hand, when the tilt angle is less than 90 °, the tilt angle and the strain generation amount are substantially proportional to each other, and therefore the strain generation amount can be controlled by adjusting the tilt angle. Therefore, it is sufficient to determine the inclination angle of the bent portion pair in consideration of the correlation between the required strain amount and the uniformity of the tissue (decrease in the adhered amount). This can be dealt with by increasing the number of copies.

【0016】このように本発明により、流路内に複数の
折曲部又は折曲部対を設定することにより、所望の歪み
を有する被加工材が得られるが、前記流路内に複数のバ
リア体を非対称に形成すると、更に容易かつ確実に所望
歪みを有する被加工材が得られる。各バリア体は筒状コ
ンテナの流路の一部を閉塞するように設置され、筒状コ
ンテナの流路に圧入された被加工材は、前記バリア体に
接触して流路が変更され、設置されたバリア体及び筒状
コンテナ内壁で構成された流路を通過させる工程で生ず
る多重応力場で、前記被加工材の塑性加工が行われて、
前述の折曲部又は折曲部対での歪み形成に加えて、該被
加工材中に歪みが生成する。
As described above, according to the present invention, a work material having a desired strain can be obtained by setting a plurality of bent portions or a pair of bent portions in the flow channel. If the barrier body is formed asymmetrically, a work material having a desired strain can be obtained more easily and reliably. Each barrier body is installed so as to close a part of the flow path of the cylindrical container, and the work material press-fitted into the flow path of the cylindrical container is brought into contact with the barrier body to change the flow path and installed. In the multiple stress field generated in the step of passing the flow path constituted by the barrier body and the inner wall of the cylindrical container, the plastic working of the work material is performed,
In addition to the above-described strain formation at the bent portion or the bent portion pair, strain is generated in the work material.

【0017】そして前記バリア体は複数個形成されてい
るため、前記被加工材は各バリア体との接触ごとにこの
ような多重応力系を形成し、かつ塑性加工が行われる。
従ってバリア体の数と同じ回数の塑性加工を受けること
になり、バリア体の数の増加に伴ってより均一でより微
細な構造が得られることになる。更に全てのバリア体が
筒状コンテナ断面内で非対称に配置されているため、各
バリア体により塑性加工中の被加工材が異なった方向に
変形し、加工中の被加工材を筒状コンテナの流路内に再
圧入させることなく、被加工材に印加される応力の方向
を変えることができる。ここで筒状コンテナ断面内の
「断面」とは筒状コンテナ内壁に対して垂直方向の面を
いう。本発明のバリア体は、前述の通り筒状コンテナの
流路の一部を閉塞するような形状を有すれば良く、特に
限定されないが、断面が円弧状、矩形、多角形状又はそ
れらの組合せ等とし、その表面形状が多面体形状や、球
形及び楕円形等の曲面形状であることが好ましい。
Since a plurality of barrier bodies are formed, the work material forms such a multi-stress system each time it contacts each barrier body, and plastic working is performed.
Therefore, plastic working is performed the same number of times as the number of barrier bodies, and a more uniform and finer structure can be obtained as the number of barrier bodies increases. Furthermore, since all barrier bodies are arranged asymmetrically in the cross section of the cylindrical container, the work material being plastically deformed in different directions by each barrier body, and the work material being machined is deformed in the cylindrical container. It is possible to change the direction of the stress applied to the material to be processed without re-press-fitting into the flow path. Here, the "cross section" in the cross section of the tubular container means a surface perpendicular to the inner wall of the tubular container. The barrier body of the present invention is not particularly limited as long as it has a shape that closes a part of the flow path of the cylindrical container as described above, but the cross section has an arc shape, a rectangle, a polygon shape, or a combination thereof. The surface shape is preferably a polyhedron shape or a curved surface shape such as a sphere and an ellipse.

【0018】このバリア体は筒状コンテナの内面に接す
るように設置されるが、該バリア体は筒状コンテナと一
体成形しても、又は筒状コンテナに穿設した孔に嵌合し
ても、あるいは平面又は曲面状の前記筒状コンテナ内面
に接着剤により接着するようにしても良い。又このバリ
ア体は被加工材と接触し流れの方向を変える働きをする
から、該バリア体との接触により被加工材中に空洞が生
じたり、被加工材に欠陥を生じさせたりすることがない
ように配慮することが望ましく、例えばバリア体のコー
ナーに相当する部分に僅かな湾曲を付して加工対象の被
加工材の損傷を防止する。更に該バリア体は加工対象の
被加工材が円滑に接触することが好ましく、所謂デッド
スペースが生じると処理効率が低下する。各バリア体は
被加工材と反応せずかつ被加工材に対する耐性を有すれ
ば、どのような材料であっても良い。
The barrier body is installed so as to be in contact with the inner surface of the tubular container, and the barrier body may be formed integrally with the tubular container or fitted into a hole formed in the tubular container. Alternatively, it may be adhered to the inner surface of the cylindrical container having a flat or curved shape with an adhesive. Further, since the barrier body comes into contact with the work material and functions to change the flow direction, contact with the barrier body may cause a void in the work material or a defect in the work material. It is desirable to take care not to do so. For example, a portion corresponding to a corner of the barrier body is slightly curved to prevent damage to the workpiece to be processed. Further, it is preferable that the work piece to be processed is brought into smooth contact with the barrier body, and if a so-called dead space occurs, the processing efficiency decreases. Each barrier body may be any material as long as it does not react with the work material and has resistance to the work material.

【0019】なお本発明で使用する被加工材は加工前に
は直方体状又は円柱状等の通常の形状を有していること
が望ましく、加工後にも当初の形状と同じ又はそれに近
い取扱いを行いやすい形状とすることが好ましい。本発
明のように筒状流路を有する装置で塑性加工を行うと装
置からは前記筒状流路と同じ断面形状の塑性加工済みの
被加工材として得られ、例えば筒状流路が円筒状流路で
あると円筒形の被加工材として、又四角形の筒状流路で
あると直方体形の被加工材として得られる。これら以外
の形状として被加工材を得たい場合には、装置端部に、
又は装置と連続して所定の型を設置して形状の調節を行
う。しかし単なる押出加工では、強加工により変形した
被加工材が元の形状やサイズに戻りにくくなる。より円
滑に元の又はそれに近い形状に戻すためには、被加工材
の前部側より後部側に大きな応力を加えれば良く、これ
を達成するためには、例えば本発明装置に精密油圧装置
を2個設置し、両油圧装置をリンクしながら駆動して応
力を調節すれば良い。このような構成にすると、加工さ
れる被加工材と筒状コンテナ間にデッドスペースが生じ
にくくなる。
The material to be processed used in the present invention preferably has a normal shape such as a rectangular parallelepiped shape or a cylindrical shape before the processing, and after the processing, the same shape as the original shape or a treatment close to the original shape is performed. It is preferable that the shape is easy. When plastic working is carried out with a device having a tubular flow path as in the present invention, it is obtained from the device as a processed material that has been plastically processed with the same cross-sectional shape as the tubular flow path. A flow path can be obtained as a cylindrical work material, and a square tubular flow path can be obtained as a rectangular parallelepiped work material. If you want to obtain a workpiece with a shape other than these, at the end of the device,
Alternatively, a predetermined mold is installed continuously with the apparatus to adjust the shape. However, the mere extrusion process makes it difficult for the work material deformed by the strong process to return to the original shape and size. In order to more smoothly return to the original shape or a shape close to it, it suffices to apply a large stress to the rear side of the work piece rather than the front side, and in order to achieve this, for example, a precision hydraulic device is added to the device of the present invention. It suffices to install two of them and drive them while linking both hydraulic devices to adjust the stress. With such a configuration, a dead space is less likely to occur between the workpiece to be processed and the tubular container.

【0020】多数のバリア体を設置しておくと多数の塑
性加工を受けることになり、単一回の押出加工で、従来
のECAP法等で、加工対象の被加工材の圧入−単一塑
性加工処理−加工された被加工材の取り出し−被加工材
の再圧入の繰り返し処理を行うのとほぼ同等の処理効果
が得られる。従って筒状コンテナの流路への被加工材の
単一回の圧入により所定特性の塑性加工された被加工材
を得ることも可能になる。しかし単一回の圧入による塑
性加工処理では所定の特性が得られない場合は、従来の
ように装置から取り出し、再度装置の筒状流路に圧入し
ても良いが、塑性加工装置を往復処理が可能なような構
造とし、バリア体が設置されたエリアから離脱したが依
然として前記流路内にある被加工材を再度バリア体が設
置されたエリアに圧力を加えながら戻すことにより、複
数回の塑性加工処理を受けさせても良く、この場合には
更に塑性加工つまり高歪み化が進行し、所定の特性の被
加工材が得られる。
If a large number of barrier bodies are installed, they will undergo a large number of plastic workings, and a single extrusion process is carried out by the conventional ECAP method or the like by press-fitting the work material to be worked-single plasticity. It is possible to obtain substantially the same processing effect as that of repeating the processing-removal of the processed material-reinjection of the processed material. Therefore, it becomes possible to obtain a plastic-worked material having a predetermined characteristic by press-fitting the material into the flow path of the cylindrical container once. However, if the specified characteristics cannot be obtained by a single press-fitting plastic working process, it may be taken out from the device as before and press-fitted again into the tubular flow path of the device. The structure is such that the barrier material is separated from the area where the barrier body is installed, but the work material still in the flow path is returned to the area where the barrier body is installed while applying pressure, so that Plastic working may be performed. In this case, plastic working, that is, higher strain proceeds, and a work material having predetermined characteristics is obtained.

【0021】筒状コンテナの流路中にバリア体が設置さ
れているという特殊性から、往復押出加工を行うために
は、加工対象の被加工材以外にダミー材料を使用する。
このダミー材料自体は加工を意図しないため、被加工材
以外の材料でも良く、適度な硬度を有し、筒状流路内で
変形した加工対象の被加工材をバリア体設置エリア以外
に押し出し、かつ前記流路の内面に応じた形状に変形さ
せる役割を有する。しかしこのダミー材料自身もバリア
体と接触して塑性加工を受けるため、加工対象の被加工
材と同じ材料又は被加工材として使用可能な材料とする
と、該被加工材と同等又はやや劣った塑性加工条件で加
工されて、ある程度の歪みと等方微細化結晶を有する塑
性加工済材料が得られ、用途によっては本来の加工対象
の被加工材と同じようにして高歪み及び等方微細化結晶
を有する塑性加工された被加工材として使用することも
できる。そして、高歪みを有する被加工材が得られるだ
けでなく、バリア体の数や形状(流路を閉塞する度合
い)、及び往復回数等を調節することにより、所定の歪
み度を有し更に該歪みがほぼ均一に分散している被加工
材が得られる。
Due to the peculiarity that the barrier body is installed in the flow path of the tubular container, a dummy material is used in addition to the material to be processed in order to perform the reciprocal extrusion processing.
Since this dummy material itself is not intended for processing, it may be a material other than the material to be processed, has an appropriate hardness, and extrudes the material to be processed that has been deformed in the tubular flow path outside the barrier body installation area, In addition, it has a role of deforming into a shape corresponding to the inner surface of the flow path. However, since this dummy material itself also undergoes plastic working by contacting the barrier body, if the material to be processed is the same as the material to be processed or a material that can be used as the material to be processed, the plasticity is equal to or slightly inferior to the material to be processed. Processed under processing conditions to obtain a plastically processed material with a certain amount of strain and isotropic refined crystals. Depending on the application, high strain and isotropic refined crystals may be used in the same way as the original work material. It can also be used as a plastically worked material having a. Then, not only a work material having a high strain can be obtained, but a predetermined strain degree can be obtained by adjusting the number and shape of the barrier body (degree of blocking the flow path), the number of reciprocations, and the like. It is possible to obtain a work material in which the strain is almost uniformly dispersed.

【0022】次にバリア体を設定する場合の被加工材の
塑性加工の理論解析及びモデル実験に関し、図1のダイ
アグラムを用いて説明する。図1は流路断面が直方体で
あり流路の上面内壁にバリア体を、下面内壁にバリア
体を設置した筒状コンテナに図の左側から被加工材を
圧入して右側から塑性加工を施した被加工材を取り出す
モデルを示している。なお図1中、両端の影の部分及び
両者を結ぶ折れ線部分(中に矢印を含む)は被加工材の
微小部分の移動状況を示す。又バリア体は断面が図示の
通り三角形で図面と垂直方向に延びる三角柱の形状を有
し、三角形の斜面の部分が前記流路の上下の内壁のいず
れかに接触している。
Next, the theoretical analysis and model experiment of the plastic working of the work material when setting the barrier body will be described with reference to the diagram of FIG. In FIG. 1, the cross section of the flow path is a rectangular parallelepiped, the barrier body is installed on the inner wall of the upper surface of the flow path, and the work material is press-fitted from the left side of the figure into a cylindrical container in which the barrier body is installed on the inner wall of the lower surface, and plastic working is performed from the right side. The model which takes out a to-be-processed material is shown. It should be noted that in FIG. 1, the shaded portions at both ends and the polygonal line portion (including an arrow in the figure) connecting the both indicate the movement of a minute portion of the workpiece. The barrier body has a triangular cross section as shown in the drawing, and has a shape of a triangular prism extending in the direction perpendicular to the drawing, and the sloped portion of the triangle is in contact with either the upper or lower inner wall of the flow path.

【0023】このモデルを使用して、金属が受ける歪み
を上界法により説明する。この上界法では次のように仮
定する。 筒状コンテナは剛体とする。 金属はミゼスの応力−歪み速度法則に従う(金属が
弾性変形をせず、一定の降伏応力の値を維持し、加工硬
化もしない剛完全塑性体である)。 金属の変形は運動学的可容である(2つの領域が隣
合う境界面では、この境界面に対する両領域の垂直速度
成分は互いに等しい)。 筒状コンテナと金属の接触面は速度不連続面であ
る。 筒状コンテナ内は金属で満たされている。 筒状コンテナと金属間、及び金属とバリア体間の界
面の摩擦損失を考慮しない。
Using this model, the strain experienced by the metal will be explained by the upper bound method. This upper bound method makes the following assumptions. The cylindrical container shall be rigid. Metals follow Mises's stress-strain rate law (a metal is a rigid perfect plastic body that does not elastically deform, maintains a constant yield stress value, and does not work harden). The deformation of the metal is kinematically acceptable (at the interface where two regions are adjacent, the vertical velocity components of both regions with respect to this interface are equal to each other). The contact surface between the cylindrical container and the metal is a velocity discontinuity surface. The inside of the cylindrical container is filled with metal. The friction loss at the interfaces between the cylindrical container and the metal and between the metal and the barrier body is not considered.

【0024】更に図1では前述の通り筒状コンテナの流
路を4角が全て直角な直方体とし、従って金属は筒状コ
ンテナの流路内で平面歪み変形を被る。図1において、
三角領域BCDは辺BCと辺CDを等辺とする二等辺三
角形であるバリア体を示し、同様に三角領域B′C′
D′はバリア体を示す。両バリア体は同一形状及
び寸法である。バリア体に対するバリア体の点D′
は∠D′CI′=α/2となる軸方向位置に配置されて
いる。向かい合う筒状コンテナの内壁間の間隔をt0と
し、バリア体の頂点Cとそれに向かい合うコンテナ内
壁までの垂直距離をt1とする。
Further, in FIG. 1, as described above, the flow path of the cylindrical container is a rectangular parallelepiped in which all four corners are right angles, and therefore the metal undergoes plane strain deformation in the flow path of the cylindrical container. In FIG.
The triangular area BCD represents a barrier body which is an isosceles triangle having sides BC and CD equal to each other. Similarly, the triangular area B'C '.
D'indicates a barrier body. Both barrier bodies have the same shape and size. Point D ′ of the barrier body with respect to the barrier body
Are arranged at axial positions such that ∠D′CI ′ = α / 2. The distance between the inner walls of the cylindrical containers facing each other is t0, and the vertical distance between the vertex C of the barrier body and the inner wall of the container facing it is t1.

【0025】剪断境界(剪断を受ける境界面)を用い
て、金属の剛体移動(変形せず並進のみ)と変形を次の
領域に分割して算出する(図1参照)。 A.領域I・・・剛体移動(未変形領域)。 B.剪断境界Γ1・・・領域Iからの金属がこの面上で
剪断変形を受け、領域IIでの収斂流れに変わる境界面を
表す。Γ1に沿う速度不連続により剪断歪みを被る。 C.変形領域II・・・扇形の頂点Oに向かってΓ2に至
るまで収斂流れによる歪みを被る領域を表す。 D.剪断境界Γ2・・・領域IIで収斂流れを経た金属が
この面上で剪断変形を受け、領域III の剛体移動に変わ
る境界面を表す。Γ2に沿う速度不連続により 金属は剪断歪みを被る。 E.領域III ・・・剛体移動を行う(コンテナ内壁に平
行な並進)。 F.剪断境界Γ3・・・領域III の金属がこの面上で剪
断変形を受け、領域IVでの剛体移動に変わる境界面を表
す。Γ3に沿う速度不連続により金属は剪断歪みを被
る。
Using the shear boundary (boundary surface subjected to shearing), the rigid body movement (only translation without deformation) and deformation of the metal are divided into the following regions for calculation (see FIG. 1). A. Region I: rigid body movement (non-deformed region). B. Shear boundary Γ1 ... Represents a boundary surface where the metal from region I undergoes shear deformation on this surface and turns into a convergent flow in region II. Shear strain due to velocity discontinuity along Γ1. C. Deformation region II: Represents a region that is subject to distortion due to a convergent flow up to Γ2 toward the apex O of the sector. D. Shear boundary Γ2: A boundary surface where a metal that has undergone a convergent flow in the area II undergoes shear deformation on this surface and changes to rigid body movement in the area III. The metal experiences shear strain due to velocity discontinuities along Γ2. E. Region III: Performs rigid body movement (translation parallel to inner wall of container). F. Shear boundary Γ3 ... A boundary surface where the metal in the region III undergoes shear deformation on this surface and changes into rigid body movement in the region IV. The metal experiences shear strain due to velocity discontinuities along Γ3.

【0026】G.領域IV・・・剛体移動を行う(バリア
体の面CDとバリア体の面D′C′により構成され
た平行領域で金属は並進する)。 H.剪断境界Γ3′・・・領域IVの剛体移動から領域II
I ′の剛体移動に変わる境界面を示す。Γ3′に沿う速
度不連続により金属は剪断歪みを被る。 I.領域III ′・・・剛体移動を行う(コンテナ内壁に
平行な並進)。 J.剪断境界Γ2′・・・領域III の剛体移動から、領
域II′の拡散流れに変わる境界面を表す。Γ2′に沿う
速度不連続により、剪断歪みを被る。 K.変形領域II′・・・扇形の頂点O′を通る半径線上
で、剪断境界Γ2′から発した金属がΓ1′に至るまで
の拡散流れ領域を示す。この領域で拡散流れによる歪み
を被る。 L.剪断境界Γ1′・・・領域II′で拡散流れを経た金
属が剪断変形を受け、領域I′の剛体移動に変わる境界
面を表す。Γ1′に沿う速度不連続により、剪断歪みを
被る。 M.領域I′・・・剛体移動を行う(変形終了域)。
G. Region IV: Rigid body movement is performed (the metal translates in a parallel region constituted by the surface CD of the barrier body and the surface D'C 'of the barrier body). H. Shear boundary Γ3 ′ ・ ・ ・ From rigid body movement in region IV to region II
The boundary surface that changes to the rigid body movement of I'is shown. The metal experiences shear strain due to velocity discontinuities along Γ3 '. I. Region III ': Performs rigid body movement (translation parallel to inner wall of container). J. Shear boundary Γ2 '... Represents a boundary surface that changes from rigid body movement in region III to diffusive flow in region II'. Shear strain is incurred due to velocity discontinuities along Γ2 '. K. Deformation region II '... Indicates a diffusion flow region from the shear boundary Γ2' to the metal Γ1 'on the radial line passing through the fan-shaped apex O'. This region is distorted by the diffuse flow. L. Shear Boundary Γ1 ′ represents a boundary surface in which a metal that has undergone a diffusive flow in a region II ′ undergoes shear deformation and changes into a rigid body movement in a region I ′. Shear strain is incurred due to velocity discontinuities along Γ1 '. M. Region I '... Rigid body movement is performed (deformation end region).

【0027】次に各領域又は境界面で金属が被る歪みに
ついて説明する。a.変形領域II及びII′の歪み 変形領域IIの収斂流れによる平均相当歪みεIIの値は下
式の通りになる。 εII=(2/31/2)×ln(t0/t1) ×Ε(31/2/2,α)/sin α (1) ここでΕ(31/2/2,α)/sin αは楕円積分の値で
ある。変形領域II′の拡散流れによる平均相当歪み
εII′は領域IIの平均相当歪みに等しく、次式となる。 εII=εII′ (2)
Next, the strain that the metal undergoes in each region or boundary will be described. a. Strains in deformation regions II and II ′ The value of the average equivalent strain ε II due to the convergent flow in the deformation region II is as follows. ε II = (2/3 1/2 ) × ln (t0 / t1) × Ε (3 1/2 / 2, α) / sin α (1) where Ε (3 1/2 / 2, α) / sin α is the elliptic integral value. The average equivalent strain ε II ′ due to the diffusive flow in the deformation region II ′ is equal to the average equivalent strain in the region II, and is given by the following equation. ε II = ε II ′ (2)

【0028】b.円弧状剪断境界面Γ1、Γ2、Γ2′
及びΓ1′での平均剪断歪み 円弧状剪断境界面Γ1、Γ2、Γ2′及びΓ1′での平
均剪断歪みγ1 、γ2、γ2′及びγ1′は次のように求
められる。剪断境界面Γ1での相当剪断歪みγ1は式
(3)で与えられる。 γ1=(1/31/2)×〔tan(α/2)〕 (3) 剪断境界面Γ2、Γ2′及びΓ1′での平均剪断歪みも
γ1に等しく式(4)で与えられる。 γ2=γ2′=γ1′=γ1 (4)c.平面剪断境界面Γ3及びΓ3′での歪み 剪断境界面Γ3での剪断歪みγ3は式(5)で与えられ
る。 γ3=(2/31/2)×〔tan(α/2)〕 (5) 剪断境界面Γ3′での歪みγ3′もγ3に等しく式(6)
で与えられる。 γ3′=γ3 (6)
B. Arc-shaped shear boundary surfaces Γ1, Γ2, Γ2 '
And average shear strains at Γ 1 ′ The average shear strains γ 1 , γ 2 , γ 2 ′ and γ 1 ′ at the arcuate shear boundary surfaces Γ 1 , Γ 2 , Γ 2 ′ and Γ 1 ′ are obtained as follows. The equivalent shear strain γ 1 at the shear boundary surface Γ 1 is given by equation (3). It is given by γ 1 = (1/3 1/2) × [tan (alpha / 2)] (3) shear boundary .GAMMA.2, equal equation (4) to the average shear distortion gamma 1 in .GAMMA.2 'and .GAMMA.1' . γ 2 = γ 2 ′ = γ 1 ′ = γ 1 (4) c. Strain at Plane Shear Boundaries Γ3 and Γ3 ′ Shear strain γ 3 at Shear Boundary Γ3 is given by equation (5). γ 3 = (2/3 1/2 ) × [tan (α / 2)] (5) The strain γ 3 ′ at the shearing boundary Γ 3 ′ is also equal to γ 3 and equation (6)
Given in. γ 3 ′ = γ 3 (6)

【0029】d.領域Iから領域I′までに金属が被る
歪み 式(1)から(6)を組合せてそれぞれ特徴ある領域と剪
断境界面での歪みを算出できる。 i)平均相当歪みの値をεcdとすると、領域IIでの歪み
の式(1)と領域II′での歪みの式(2)との和からεcd
が下式のように算出できる。 εcd=(4/31/2 )×ln(t0/t1) ×Ε(31/2/2,α)/sin α (7 ) ii) 円弧状剪断境界面Γ1、Γ2、Γ2′及びΓ1′の
歪みの和をεspとすると、式(3)と式(4)の和からε
spが下式のように算出できる。 εsp=(4/31/2)×〔tan(α/2)〕 (8) iii)平面剪断境界面Γ3及びΓ3′での歪みの和をεp
とすると、式(5)と式(6)によりεpは下式のように
算出できる。 εp=(4/31/2)×〔tan(α/2)〕 (9)
[0029] d. Metal covers from region I to region I '
Distortion Equations (1) to (6) can be combined to calculate the strain at the characteristic region and the shear interface. i) If the value of the average equivalent strain is ε cd, then ε cd is obtained from the sum of the strain equation (1) in the region II and the strain equation (2) in the region II ′.
Can be calculated by the following formula. ε cd = (4/3 1/2 ) × ln (t0 / t1) × Ε (3 1/2 / 2, α) / sin α (7) ii) Arc-shaped shear boundary surfaces Γ1, Γ2, Γ2 'and Γ1 Let εsp be the sum of the distortions of ′, from the sum of equations (3) and (4), ε
sp can be calculated as shown below. εsp = (4/3 1/2 ) × [tan (α / 2)] (8) iii) The sum of strains at the plane shear boundary surfaces Γ3 and Γ3 ′ is εp
Then, εp can be calculated as in the following equation by the equations (5) and (6). εp = (4/3 1/2 ) × [tan (α / 2)] (9)

【0030】次にこれらの値から歪みの総和εsum を計
算すると式(10)のようになる。εsum =(4/31/2
×ln(t0/t1) ×Ε(31/2/2,α)/sin α+(8/ 31/2)×〔tan(α/2)〕 (10) そしてバリア体及びの傾斜角α=20°と仮定する
と、楕円積分(Ε(31/ 2/2,α)/sin α)の値は
1.005 となる。そしてln(t0/t1) =ln(1/0.75)=0.29
である。従ってεsum =0.67+0.81=1.48となり、この
ように図1に示した筒状コンテナを使用して、金属を塑
性加工する場合の上界法モデルにより算出される金属中
に蓄積される歪みが得られる。
Next, the total sum εsum of strains is calculated from these values.
When calculated, it becomes like formula (10). εsum = (4/31/2)
× ln (t0 / t1) × Ε (31/2/ 2, α) / sin α + (8 / Three1/2) × [tan (α / 2)] (10) And it is assumed that the inclination angle α of the barrier body and α is 20 °.
And elliptic integral (Ε (31 / 2The value of / 2, α) / sin α) is
It becomes 1.005. And ln (t0 / t1) = ln (1 / 0.75) = 0.29
Is. Therefore, εsum = 0.67 + 0.81 = 1.48, and this
Use the tubular container shown in Figure 1 to
In metal calculated by the upper-bound method model for elastic processing
The distortion that is accumulated in is obtained.

【0031】断面減少率が99%である強加工での歪みは
約4.6 に相当する。従って図1のモデルの塑性加工を4
回繰り返すこと、例えばバリア体の数を4個とし、プラ
ンジャ(図示略)を1回往復運動させることであるいは
バリア体の数を8個とすることで4.6 を超える歪みを有
する金属を製造できる。更に前述の計算式の傾斜角αを
0に近づけると歪みが小さくなる。そしてこの傾斜角は
連続的に変化させられるため、この傾斜角を調節するこ
とにより任意の歪みを有する金属を提供できる。又この
モデルでは、バリア体を上下のみに設置したが直方体の
4辺に設置したり、筒状コンテナを円筒状としてその内
壁にバリア体を放射状に設置するなどして歪みの分散を
より以上に均一化することもできる。
The strain in the heavy working with a cross-section reduction rate of 99% corresponds to about 4.6. Therefore, the plastic working of the model in Fig. 1 is
A metal having a strain of more than 4.6 can be manufactured by repeating the process once, for example, by setting the number of barrier bodies to four and reciprocating the plunger (not shown) once or by setting the number of barrier bodies to eight. Further, when the tilt angle α in the above-mentioned calculation formula is brought close to 0, the distortion becomes small. Since this inclination angle is continuously changed, a metal having an arbitrary strain can be provided by adjusting this inclination angle. Also, in this model, the barrier body is installed only on the top and bottom, but it is installed on the four sides of the rectangular parallelepiped, or the cylindrical container is made cylindrical and the barrier body is radially installed on the inner wall to further disperse the strain. It can also be made uniform.

【0032】[0032]

【発明の実施の形態】本発明の被加工材の塑性加工装置
及び方法の実施の態様を、添付図面に基づいてより詳細
に説明する。図2a及び2bは、本発明装置の一例によ
り加工対象の被加工材を塑性加工する要領を例示する一
連の縦断面図である。図2a及び2bに示すように、直
方体のダイ31には、上面の開口部32から下降して下端近
傍に達する第1流路33a、第1流路33aの下端が右方向
に折れ曲がって形成される第2流路33b、及び該第2流
路33bの右端が上向きに折り曲げられて形成された第3
流路33cが穿設されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a plastic working apparatus and method for a workpiece according to the present invention will be described in more detail with reference to the accompanying drawings. 2a and 2b are a series of vertical cross-sectional views illustrating the procedure for plastically working a workpiece to be worked by an example of the device of the present invention. As shown in FIGS. 2a and 2b, a rectangular parallelepiped die 31 has a first flow path 33a that descends from an opening 32 on the upper surface and reaches near the lower end, and the lower end of the first flow path 33a is formed by bending rightward. A second flow path 33b, and a third flow path 33b formed by bending the right end of the second flow path 33b upward.
The flow path 33c is provided.

【0033】第1流路33aと第2流路33bとの接合部に
は第1折曲部34が形成され、該折曲部は、図示の例では
傾斜角がそれぞれφ1及びφ2である第1折曲部対として
構成され、φ1=φ2=45°としている。同様にして第2
流路33bと第3流路33cとの接合部には第2折曲部35が
形成され、該折曲部は、傾斜角がそれぞれφ3及びφ4
ある第1折曲部対として構成され、φ3=φ4=45°とし
ている。又各流路33a〜cの両側の内壁には、断面が鈍
角二等辺三角形状のバリア体36が隆起して形成されてい
る。
A first bent portion 34 is formed at a joint portion between the first flow passage 33a and the second flow passage 33b, and the bent portions have inclination angles of φ 1 and φ 2 respectively in the illustrated example. It is configured as a certain first bent portion pair, and φ 1 = φ 2 = 45 °. Similarly, the second
A second bent portion 35 is formed at a joint portion between the flow path 33b and the third flow path 33c, and the bent portion is configured as a first bent portion pair having inclination angles of φ 3 and φ 4 , respectively. And φ 3 = φ 4 = 45 °. Barrier members 36 having obtuse isosceles triangular cross-sections are formed on the inner walls on both sides of each of the channels 33a to 33c.

【0034】図2aに示す加工開始時には、第1流路33
a及び第2流路33b内に充填された被加工材37の基端側
はダイ31表面近くに位置している。このダイ31を加熱し
ながら、プランジャー又は金型38を使用して前記被加工
材37を前記開口部32から流路33a中に圧入すると、該被
加工材37(例えば被加工材37の点37A)はまず流路33a
の両側の内壁のバリア体36により応力を受け、歪みを生
じた後、第1折曲部34に達する。この第1折曲部34は、45
°の傾斜角で折曲した折曲部対が形成され、前記被加工
材37は2度剪断力を受けて対応する折曲部34の形状に応
じて水平方向に変形して歪みが発生し、前記被加工材37
の点37Aは第2流路33b内に達する。
At the start of processing shown in FIG. 2a, the first flow path 33
The base end side of the work piece 37 filled in a and the second flow path 33b is located near the surface of the die 31. While the die 31 is being heated, the work material 37 is pressed into the flow path 33a through the opening 32 by using a plunger or a mold 38, the work material 37 (for example, a point of the work material 37). 37A) is the first channel 33a
After being subjected to stress by the barrier bodies 36 on the inner walls on both sides of the and causing distortion, the first bend portion 34 is reached. The first bent portion 34 is 45
A pair of bent portions bent at an inclination angle of 0 ° is formed, and the work material 37 receives a shearing force of 2 degrees and is deformed in the horizontal direction according to the shape of the corresponding bent portion 34 to cause distortion. , The workpiece 37
Point 37A reaches the inside of the second flow path 33b.

【0035】図2bに示すように、前記金型38と被加工
材37の間にダミー材料39を挿入し前記金型38を押し下げ
ると、被加工材中の点37Aは、第2折曲部35に達し、こ
こで第1折曲部34の場合と同様に剪断力を受けて垂直方
向に変形して更に歪みを発生させた後に、図2bの第3
流路33c内の点37Aに達する。このように図2a及び2
bの例では、被加工材37中の点37Aが金型38による単一
回の圧入により、2箇所の折曲部34及び35で剪断力を受
けて歪みを発生させる。従来のECAP法とは異なって
複数の折曲部を有するため、1回の圧入で所望回の剪断
力発生及びこれに伴う歪み発生を生じさせることがで
き、被加工材を装置から取り出さずに互いに交差した方
向にせん断歪みを生成させることができる。又傾斜角が
90°である単一の折曲部で剪断力を加える場合では、被
加工材が折曲部表面の固着して均一な歪みが付加できな
くなるのに対し、図2の例では、各折曲部34及び35がそ
れぞれの傾斜角が45°である折曲部対で構成されている
ため、固着が完全に防止できるとは限らないが、固着量
を大幅に低減でき、比較的均一な歪みを有する被加工材
が得られる。
As shown in FIG. 2b, when a dummy material 39 is inserted between the mold 38 and the work material 37 and the mold 38 is pushed down, the point 37A in the work material is changed to the second bent portion. 2b, after receiving the shearing force and deforming in the vertical direction to generate further strain as in the case of the first bending portion 34, the third bending portion of FIG.
The point 37A in the flow path 33c is reached. Thus, FIGS. 2a and 2
In the example of b, the point 37A in the material 37 to be processed is subjected to shearing force at the two bent portions 34 and 35 by a single press-fitting by the die 38 to generate strain. Different from the conventional ECAP method, it has multiple bends, so it is possible to generate the desired shearing force and the resulting strain with one press-fitting, without removing the workpiece from the device. Shear strain can be generated in the directions intersecting with each other. Also the tilt angle
When a shearing force is applied at a single bent portion of 90 °, the work material adheres to the surface of the bent portion and uniform strain cannot be added, whereas in the example of FIG. Since the parts 34 and 35 are composed of a pair of bent parts each having an inclination angle of 45 °, it is not always possible to prevent sticking completely, but the sticking amount can be greatly reduced and a relatively uniform strain can be obtained. A work material having is obtained.

【0036】図3a及び3bは、被加工材を塑性加工す
る装置の他の例を示す一連の縦断面図である。図3a及
び3bの装置では、縦長のダイ41の流路は、異なった方
向に延びる縦長の2本の第1長流路42a及び第2長流路4
2bと両長流路を連結する短流路42cから成っている。
第1長流路42aと短流路42cとの接合部には第1折曲部4
3が形成され、該折曲部は、図示の例では傾斜角がそれ
ぞれφ5及びφ6である第1折曲部対として構成され、φ
5=30°、φ6=60°としている。同様にして短流路42c
と第2長流路42bとの接合部には第2折曲部44が形成さ
れ、該折曲部は、傾斜角がそれぞれφ7及びφ8である第
2折曲部対として構成され、φ7=φ8=45°としてい
る。このダイ41を加熱しながら、金型45を使用して被加
工材46を第1長流路42a中に圧入すると、該被加工材46
は、折曲部対が形成された第1折曲部43に達し、前記被
加工材46は2度剪断力を受けて対応する折曲部43の形状
に応じて水平方向に変形して歪みが発生する。
3a and 3b are a series of longitudinal sectional views showing another example of the apparatus for plastically working a work material. In the apparatus of FIGS. 3a and 3b, the channels of the vertically long die 41 are two vertically long first long channels 42a and second vertically long channels 4a extending in different directions.
2b and a short channel 42c connecting both long channels.
The first bent portion 4 is provided at the joint between the first long flow path 42a and the short flow path 42c.
3 is formed, and the bent portion is configured as a first bent portion pair whose inclination angles are φ 5 and φ 6 , respectively in the illustrated example, and φ
5 = 30 °, is set to φ 6 = 60 °. Similarly, the short channel 42c
A second bent portion 44 is formed at the joint between the second long flow path 42b and the second long channel 42b, and the bent portion is configured as a second bent portion pair having inclination angles of φ 7 and φ 8 , respectively. 7 = φ 8 = 45 °. When the workpiece 45 is press-fitted into the first long flow path 42a using the die 45 while heating the die 41, the workpiece 46
Reaches the first bent portion 43 in which a pair of bent portions is formed, and the work material 46 receives a shearing force of 2 degrees and is deformed and deformed in the horizontal direction according to the shape of the corresponding bent portion 43. Occurs.

【0037】前記金型45を更に押し下げると、被加工材
中46は短流路42c内を水平に移動して第2折曲部44に達
し、ここで剪断力を受けて対応する折曲部44の形状に応
じて垂直方向に変形して歪みが発生し、更に下方向に移
動して第2長流路42bの先端部から取り出される。図3
の例でも第1折曲部43及び第2折曲部44が、それぞれの
傾斜角が90°未満である折曲部対で構成されているた
め、固着が大幅に低減でき、比較的均一な歪みを有する
被加工材が得られる。
When the die 45 is further pushed down, the workpiece material 46 moves horizontally in the short flow path 42c and reaches the second bent portion 44, where it receives shearing force and the corresponding bent portion is received. Depending on the shape of 44, it deforms in the vertical direction to generate strain, and further moves downward and is taken out from the tip of the second long flow path 42b. Figure 3
Also in the example, since the first bent portion 43 and the second bent portion 44 are composed of a pair of bent portions each having an inclination angle of less than 90 °, the sticking can be significantly reduced, and the fixing is relatively uniform. A work material having strain can be obtained.

【0038】図4から図6は、それぞれ本発明で使用可
能なダイを示す縦断面図である。図4のダイ51は、上面
の開口部52から下降して下端近傍に達する第1流路53
a、第1流路53aの下端が右方向に90°折れ曲がって形
成される第2流路53b、及び該第2流路53bの右端が上
向きに傾斜角φ9(≒30°)折り曲げられ更に傾斜角φ
10(≒60°)で折り曲げられて折曲部対54が形成され、
該折曲部対54から上方に向かう第3流路53cが形成され
ている。加工開始時には、第1流路53a及び第2流路53
b内に充填された被加工材55の基端側はダイ51表面近く
に位置している。このダイ51を加熱しながら、プランジ
ャー又は金型56を使用して前記被加工材55を前記開口部
52から流路53a中に圧入すると、該被加工材55は傾斜角
が90°である第1流路53aと第2流路53bの交点に達
し、更に第2流路53b内を通って折曲部対54に達する。
この折曲部対54では、傾斜角φ9及び傾斜角φ10に相当
する歪みを発生し、第3流路53cを経てダイ51から取り
出される。
4 to 6 are vertical sectional views showing dies that can be used in the present invention. The die 51 of FIG. 4 has a first flow path 53 that descends from an opening 52 on the upper surface and reaches near the lower end.
a, a second flow path 53b formed by bending the lower end of the first flow path 53a to the right by 90 °, and a right end of the second flow path 53b is bent upward with an inclination angle φ 9 (≈30 °). Inclination angle φ
Bent at 10 (≈60 °) to form a bent pair 54,
A third flow path 53c is formed upward from the bent portion pair 54. At the start of processing, the first channel 53a and the second channel 53a
The base end side of the workpiece 55 filled in b is located near the surface of the die 51. While heating the die 51, the work piece 55 is opened by using a plunger or a mold 56.
When press-fitted into the flow path 53a from 52, the work material 55 reaches the intersection of the first flow path 53a and the second flow path 53b having an inclination angle of 90 °, and further passes through the second flow path 53b to fold. Reach 54.
In the bent portion pair 54, strains corresponding to the inclination angle φ 9 and the inclination angle φ 10 are generated and taken out from the die 51 through the third flow path 53c.

【0039】図5は図4の変形例であるダイを示し、図
4と同一部材には同一符号を付して説明を省略する。図
5のダイ51Aでは、図4の折曲部対の替わりに傾斜角φ
11(≒45°)の単独の折曲部54Aが形成され、該折曲部
54Aで傾斜角90°の折曲部での歪みの半分弱の歪みを発
生させ、斜め方向に延びる第3流路53dを経てダイ51A
から取り出される。この例では、折曲部54Aの傾斜角
(0°から90°)を調節することにより、傾斜角90°の
折曲部での歪みの1〜2倍弱のまでの範囲の歪みを発生
させることができる。
FIG. 5 shows a die which is a modification of FIG. 4, and the same members as those in FIG. In the die 51A shown in FIG. 5, the inclination angle φ is used instead of the bent portion pair shown in FIG.
11 (≈45 °) individual bent portions 54A are formed.
A strain of less than half of the strain at the bent portion with an inclination angle of 90 ° is generated at 54A, and the die 51A is passed through the third flow path 53d extending diagonally.
Taken from. In this example, by adjusting the inclination angle (0 ° to 90 °) of the bent portion 54A, distortion in the range of 1 to 2 times less than the distortion at the bent portion having the inclination angle of 90 ° is generated. be able to.

【0040】図6に示すダイ61では、4本の流路62a、
62b、62c及び62dが順に第1折曲部63a、第2折曲部
63b及び第3折曲部63c(それぞれ傾斜角φ12、傾斜角
φ13及び傾斜角φ14)を有するように形成され(φ12
φ13=φ14=60°)、開口部64から導入される被加工材
64は各折曲部63a、63b及び63cで、90°折曲の場合よ
り歪み発生量は少ないが、被加工材の固着量が少ない加
工を受けて第4流路62dを経てダイ61から取り出され
る。
In the die 61 shown in FIG. 6, four flow paths 62a,
62b, 62c and 62d are the first bent portion 63a and the second bent portion in this order.
63b and the third bent portion 63c (inclination angle φ 12 , inclination angle φ 13 and inclination angle φ 14 respectively ) (φ 12 =
φ 13 = φ 14 = 60 °), the work piece introduced through the opening 64
Reference numeral 64 denotes each of the bent portions 63a, 63b and 63c, which generates less strain than in the case of 90 ° bending, but is processed from the die 61 through the fourth flow path 62d after being processed with a small adherence amount of the work material. Be done.

【0041】次に図7aから7cに基づいてバリア体に
よる歪み生成の原理を説明する。図7aから7cに示す
被加工材の塑性加工装置は、角筒状の流路11を有する筒
状コンテナ12から成り、前記流路11の中央部の上側には
やや離間して、前記筒状コンテナ12と一体成形された三
角柱状の2個のバリア体13が隆起して配置されている。
又前記流路11の中央部の下側にはやや離間して、前記筒
状コンテナ12と一体成形された三角柱状の2個のバリア
体13が、上側のバリア体13とは互い違いに隆起するよう
に配置され、図7aの例では角筒状流路11内に計4個の
バリア体13が設置されている。前記バリア体13は図示の
例では三角柱状としているが、半円柱状等でも良く、な
るべく角部が存在しないゆるやかな湾曲面で形成され、
加工対象の被加工材に損傷を与えないようにすることが
望ましい。
Next, the principle of strain generation by the barrier body will be described with reference to FIGS. 7a to 7c. The plastic working apparatus for a work material shown in FIGS. 7a to 7c is composed of a tubular container 12 having a rectangular tubular flow path 11, and is slightly spaced above the center of the flow path 11 to form the tubular shape. Two triangular prism-shaped barrier bodies 13 integrally formed with the container 12 are arranged in a raised manner.
Two barrier bodies 13 in the shape of a triangular prism integrally formed with the tubular container 12 are erected alternately with the upper barrier body 13 while being slightly spaced below the central portion of the flow path 11. In the example of FIG. 7a, a total of four barrier bodies 13 are installed in the rectangular tubular flow path 11. Although the barrier body 13 has a triangular prism shape in the illustrated example, it may be a semi-cylindrical cylinder or the like, and is formed by a gentle curved surface with as few corners as possible,
It is desirable not to damage the material to be processed.

【0042】角筒状流路11内部の左側には、図7aに示
すように、第1プランジャ20aが、角筒状流路11の内面
に沿って摺動自在に設置され、該プランジャ20aの押圧
面20bが前記4個のバリア体13が設置された流路内に予
め圧入して存在するダミー材料21に接するように位置し
ている。次いで角筒状流路11内に右側の開口部からマグ
ネシウム合金等の角柱状の加工対象の被加工材22を供給
し、更に押圧面23bを有する第2プランジャ23aにより
被加工材22を圧入して加熱下又は室温下で押出加工を行
う。
As shown in FIG. 7a, a first plunger 20a is slidably installed along the inner surface of the rectangular tubular flow passage 11 on the left side of the inside of the rectangular tubular flow passage 11. The pressing surface 20b is positioned so as to come into contact with the dummy material 21 that is press-fitted in advance in the flow path in which the four barrier bodies 13 are installed. Next, the work piece 22 to be processed in the form of a prism such as a magnesium alloy is supplied into the rectangular tubular flow path 11 from the opening on the right side, and the work piece 22 is press-fitted by the second plunger 23a having the pressing surface 23b. And extruding under heating or at room temperature.

【0043】第2プランジャ23aによる圧入で被加工材
22は、まず図7bに示す下側内壁面の右側のバリア体13
に接触する。該バリア体13は角筒状流路11内で下側に偏
位しているため、加工対象の被加工材22は角筒状流路11
内の上半分を移動する。被加工材22は続いて上側内壁面
の右側のバリア体13に接触して、角筒状流路11内の下半
分を移動する。更に加工対象の被加工材22は残りの2個
のバリア体13に接触して同様の加工を受け、最終的に被
加工材22はバリア体13及び筒状コンテナ12の流路11内面
に対応した形状に変形する(図7b)。
Workpiece is press-fitted by the second plunger 23a.
22 is a barrier body 13 on the right side of the lower inner wall surface shown in FIG. 7b.
To contact. Since the barrier body 13 is deviated to the lower side in the rectangular tubular flow passage 11, the work piece 22 to be processed is the rectangular tubular flow passage 11
Move the upper half of the inside. The material 22 to be processed subsequently contacts the barrier body 13 on the right side of the upper inner wall surface, and moves in the lower half of the rectangular tubular flow path 11. Further, the work material 22 to be processed contacts the remaining two barrier bodies 13 and undergoes similar processing, and finally the work material 22 corresponds to the barrier body 13 and the inner surface of the flow passage 11 of the tubular container 12. It deforms into the shape (Fig. 7b).

【0044】図7bの状態から第1プランジャ20aを図
面の右方向に移動させると、ダミー材料21が変形した被
加工材22を右方向に押圧しながら移動する。この際に変
形した被加工材22は再度各バリア体13に接触して変形し
歪みが蓄積される。バリア体13との接触が終了した被加
工材22は更に右方向に移動して流路11の内壁に接触して
成形されて当初の形状に戻る(図7c)。この際にダミ
ー材料21は図7cに示すような形状に戻る。なお、この
際に第2プランジャ23bと第1プランジャ20aの相互の
移動速度のバランスをとってコンテナと被加工材との間
に空隙が生じないようにすることが望ましい。このよう
に加工対象の被加工材22はバリア体13による変形から復
元する。図7cの状態で既に所定の特性を有する被加工
材となっている場合には角筒状流路11の右端の開口部か
ら取り出し原料として使用すれば良い。
When the first plunger 20a is moved to the right in the drawing from the state of FIG. 7b, the work material 22 in which the dummy material 21 is deformed is moved to the right while being pressed. At this time, the deformed work material 22 comes into contact with each barrier body 13 again and is deformed to accumulate strain. The work piece 22 that has finished contacting the barrier body 13 further moves to the right and contacts the inner wall of the flow path 11 to be molded and returns to its original shape (FIG. 7c). At this time, the dummy material 21 returns to the shape shown in FIG. 7c. At this time, it is desirable to balance the moving speeds of the second plunger 23b and the first plunger 20a so that no gap is created between the container and the workpiece. In this way, the material 22 to be processed is restored from the deformation caused by the barrier body 13. In the state shown in FIG. 7c, if the material to be processed already has predetermined characteristics, it may be taken out from the opening at the right end of the rectangular tubular flow path 11 and used as a raw material.

【0045】しかしこの単一の押出による塑性加工で
は、加工対象の被加工材22は十分な特性を付与されない
場合には、再度第2プランジャ23aを左方向に移動させ
図7bに示すように被加工材22に変形を付与し、更に第
1プランジャ20aを右方向に移動させる。これにより加
工対象の被加工材22は再度バリア体13による変形を受
け、更に特性が向上する。図7bと図7cの工程を必要
回数繰り返すと、加工対象の被加工材22に十分な特性が
生じ、角筒状流路11から取り出して適宜の用途に使用で
きる。この繰り返し工程を実施する場合でも、被加工材
22を筒状コンテナ12外に取り出す必要はなく、酸化しや
すい被加工材の場合でも該材料の特性を劣化させること
なく、塑性加工を実行できる。
However, in the plastic working by this single extrusion, when the work material 22 to be worked is not given sufficient characteristics, the second plunger 23a is moved to the left again again and the work material 22 is worked as shown in FIG. 7b. The work material 22 is deformed, and the first plunger 20a is further moved to the right. As a result, the material 22 to be processed is again deformed by the barrier body 13, and the characteristics are further improved. When the steps of FIGS. 7b and 7c are repeated a necessary number of times, sufficient properties are produced in the work piece 22 to be processed, and the work piece 22 can be taken out from the rectangular tubular flow path 11 and used for an appropriate purpose. Even when performing this repeated process,
It is not necessary to take 22 out of the cylindrical container 12, and even in the case of a work material that is easily oxidized, plastic working can be performed without degrading the characteristics of the material.

【0046】なおこれまでの説明でも分かるように、図
示の塑性加工方法では、被加工材22だけでなく、ダミー
材料21もバリア体13による塑性加工を受けて、所定特性
又はそれに近い特性を有する材料となる。従って図示の
通り説明したダミー材料として所定の被加工材を使用す
ると本来の被加工材以外にも同等又はそれに近い被加工
材を得ることができる。又図示の例ではダミー材料を1
個使用する例を示したが、被加工材の両側に2個のダミ
ー材料を位置させても良い。
As can be seen from the above description, in the illustrated plastic working method, not only the work material 22 but also the dummy material 21 undergoes the plastic working by the barrier body 13 and has a predetermined characteristic or a characteristic close thereto. It becomes a material. Therefore, if a predetermined work material is used as the dummy material described as shown in the figure, a work material that is equivalent to or close to the original work material can be obtained. In the illustrated example, the dummy material is 1
Although an example in which one dummy is used is shown, two dummy materials may be located on both sides of the work material.

【0047】又本例では、角筒状流路内の上側及び下側
に交互に位置する4個のバリア体による塑性加工を例示
したが、バリア体の数及び配置はこれに限定されず、例
えば3個のバリア体がそれぞれが120 °ずつ離れた放射
状配置としたり、4個のバリア体がそれぞれが90°ずつ
離れた放射状配置としたりすることができ、これらの場
合には被加工材がより良好に変形して所定の被加工材を
製造できる。
Further, in this example, the plastic working by four barrier bodies which are alternately positioned on the upper side and the lower side in the rectangular tubular flow path is exemplified, but the number and arrangement of the barrier bodies are not limited to this. For example, three barrier bodies can be arranged in a radial arrangement at 120 ° apart, and four barrier bodies can be arranged in a radial arrangement at 90 ° apart. In these cases, the work material is It can be deformed more favorably and a predetermined work material can be manufactured.

【0048】[実施例]次に本発明の実施例につき説明す
るが、該実施例及び比較例は本発明を限定するものでは
ない。
[Examples] Next, examples of the present invention will be described, but the examples and comparative examples do not limit the present invention.

【0049】実施例 試験用被加工材として、展伸用マグネシウムであるMg
−Al−Zn合金AZ31(Al3%、Zn1%)を用
い、有限要素シミュレーションには鍛造専用の2次元解
析ソフト(GRADEForge2D)を使用した。解
析では平面歪み要素を用い、上型と下型は剛体壁として
定義して実験をモデル化した。解析工程では、上型速度
を20mm/秒とし、この速度で20mmを100ステップに分け
て圧入した。摩擦にはクーロン摩擦を用いた。まず単一
折曲部のみを有しその傾斜角(φ)が0°から90°まで
(10°刻み)の10個のダイを用意し、塑性加工を行っ
た。得られた被加工材に幅方法に格子点を付与し、各格
子点における歪み量を測定したところ図8のグラフに示
した結果が得られた。次いで傾斜角が90°である単一折
曲部を有する1個のダイ、及び折曲部対の傾斜角がそれ
ぞれ10°+80°、20°+70°、30°+60°、40°+50°
及び45°+45°である5個のダイを用意して、塑性加工
を行った。得られた被加工材に幅方法に格子点を付与
し、各格子点における歪み量を測定したところ図9のグ
ラフに示した結果が得られた。
Example As a test work material, Mg which is magnesium for wrought
-Al-Zn alloy AZ31 (Al3%, Zn1%) was used, and two-dimensional analysis software (GRADEForge2D) dedicated to forging was used for finite element simulation. In the analysis, plane strain elements were used, and the upper and lower molds were defined as rigid walls to model the experiment. In the analysis process, the upper die speed was set to 20 mm / sec, and 20 mm was press-fitted in 100 steps at this speed. Coulomb friction was used for friction. First, 10 dies having only a single bent portion and having an inclination angle (φ) of 0 ° to 90 ° (in steps of 10 °) were prepared and subjected to plastic working. Lattice points were added to the obtained workpiece by the width method, and the amount of strain at each lattice point was measured. The results shown in the graph of FIG. 8 were obtained. Then one die with a single bend with a tilt angle of 90 °, and the tilt angles of the bend pairs 10 ° + 80 °, 20 ° + 70 °, 30 ° + 60 °, 40 ° + 50 ° respectively
And 5 dies of 45 ° + 45 ° were prepared and subjected to plastic working. Lattice points were added to the obtained workpiece by the width method, and the amount of strain at each lattice point was measured. The results shown in the graph of FIG. 9 were obtained.

【0050】試験後の各ダイの合金固着量を測定したと
ころ、傾斜角が90°である単一折曲部を有するダイが最
大で、折曲部対の傾斜角がそれぞれ10°+80°であるダ
イで急激に減少し、更に徐々に減少し、折曲部対の傾斜
角がそれぞれ45°+45°のダイで最小になった。一方図
9から分かるように、折曲部対の傾斜角の差が小さくな
るにつれて歪み発生量も小さくなる。従って要求される
歪み量と組織の均一性(固着量の減少)との相関を考慮
して折曲部対の傾斜角を決定すれば良いことが分かる。
After the test, the amount of alloy adhered to each die was measured, and the die having a single bent portion with a tilt angle of 90 ° was the largest, and the tilt angle of the bent portion pair was 10 ° + 80 °, respectively. It decreased sharply with one die, and then gradually decreased, and the inclination angle of the bent pair became the minimum at the die with 45 ° + 45 °. On the other hand, as can be seen from FIG. 9, the amount of strain generation decreases as the difference between the inclination angles of the bent portions decreases. Therefore, it is understood that the inclination angle of the bent portion pair may be determined in consideration of the correlation between the required strain amount and the uniformity of the structure (decrease in the adhered amount).

【0051】[0051]

【発明の効果】本発明は、筒状コンテナの流路に被加工
材を強制流通させて塑性加工を行う装置において、前記
流路に傾斜角が90°未満の複数の折曲部を形成し、前記
被加工材に対して該折曲部で複数回剪断力を加えること
を特徴とする塑性加工装置(請求項1)である。本発明
では、折曲部が複数個所存在し、被加工材の単一回の圧
入により剪断力が1回のみ加えられていた従来のECA
P法と異なり、被加工材の単一回の圧入により剪断力を
複数回加えられるため、歪み生成効率が向上する。複数
回の圧入を行うと更に大きい歪みを生成できる。更に折
曲部の傾斜角の少なくとも一部が90°未満であるため、
傾斜角が90°の場合と比較して折曲部内面に固着する被
加工材の量が減少して前記被加工材に均一な歪みが付与
できるようになる。
Industrial Applicability The present invention is an apparatus for performing plastic working by forcibly flowing a work material in a flow path of a cylindrical container, wherein a plurality of bent portions having an inclination angle of less than 90 ° are formed in the flow path. The plastic working apparatus (claim 1) is characterized in that a shearing force is applied to the work material a plurality of times at the bent portion. In the present invention, the conventional ECA has a plurality of bent portions, and the shearing force is applied only once by press-fitting the work piece once.
Unlike the P method, the shearing force can be applied multiple times by a single press-fitting of the material to be processed, so that the strain generation efficiency is improved. Larger strain can be generated by performing press-fitting a plurality of times. Furthermore, since at least part of the angle of inclination of the bent portion is less than 90 °,
As compared with the case where the inclination angle is 90 °, the amount of the work material that adheres to the inner surface of the bent portion is reduced, and uniform strain can be applied to the work material.

【0052】又筒状コンテナ流路の内面に複数のバリア
体を設置しておくと(請求項2)、該バリア体によって
も歪みが発生し、前記折曲部による歪みと合わせて、歪
み発生量が増大する。特にバリア体の数や配置等を工夫
すると、被加工材に所望の歪み分布を生じさせることが
できる。従ってこの態様では低歪み状態から高歪み状態
までの任意の歪み量を有する被加工材を得ることが可能
になる。このバリア体を使用する塑性加工装置では、多
重応力場が生じ、前記被加工材に多重歪みを創出できる
(請求項3)。従って従来のECAP法のように1工程
ごとに外部に取り出し、被加工材の位相を変えて再圧入
するといった煩雑な工程を必要とすることなく、多重歪
みを創出できる。前記バリア体は筒状コンテナ流路の内
面に沿って移動可能としても良く(請求項4)、これに
よりバリア体を交換することなく、歪み量や歪みの方向
性を調節できる。
When a plurality of barrier bodies are installed on the inner surface of the tubular container flow path (claim 2), distortion is also generated by the barrier bodies, and distortion is generated together with the distortion due to the bent portion. The amount increases. Particularly, by devising the number and arrangement of the barrier bodies, a desired strain distribution can be generated in the work material. Therefore, in this aspect, it is possible to obtain a work material having an arbitrary strain amount from a low strain state to a high strain state. In the plastic working apparatus using this barrier body, multiple stress fields are generated, and multiple strains can be created in the work material (claim 3). Therefore, unlike the conventional ECAP method, multiple strains can be created without the need for a complicated process of taking out each process one by one, changing the phase of the work material and press-fitting the work material again. The barrier body may be movable along the inner surface of the tubular container flow path (claim 4), whereby the strain amount and the directionality of the strain can be adjusted without replacing the barrier body.

【0053】又本発明装置では、筒状コンテナの流路内
の被加工材の両側に1対のプランジャを設置し、該プラ
ンジャと前記筒状コンテナの相対移動により筒状コンテ
ナ断面内で対称な被加工材フローを形成することができ
る(請求項5)。この相対移動とは、プランジャ単独又
は筒状コンテナ単独あるいは両者の移動を含み、加工対
象の被加工材がバリア体に接触すればどの部材を移動さ
せても良い。折曲部の外側に湾曲部を形成すると(請求
項6)、折曲部の傾斜角を90°未満にしたことに加え
て、更に被加工材が折曲部を通過しやすくなり通過の際
の抵抗を低減することができる。傾斜角が90°である折
曲部はそれぞれの傾斜角の合計が90°である隣接する折
曲部対として使用すると(請求項7)、歪み形成が容易
になる。
In the apparatus of the present invention, a pair of plungers are installed on both sides of the material to be processed in the flow path of the cylindrical container, and the relative movement of the plunger and the cylindrical container causes symmetry in the cross section of the cylindrical container. A workpiece flow can be formed (Claim 5). This relative movement includes movement of the plunger alone, the tubular container alone, or both, and any member may be moved as long as the workpiece to be processed comes into contact with the barrier body. When the curved portion is formed on the outside of the bent portion (claim 6), in addition to the angle of inclination of the bent portion being less than 90 °, the work piece is more likely to pass through the bent portion, The resistance of can be reduced. When the bent portions having a tilt angle of 90 ° are used as a pair of adjacent bent portions having a total tilt angle of 90 ° (claim 7), strain formation is facilitated.

【0054】本発明方法は、傾斜角が90°未満である複
数の折曲部を有する筒状コンテナの流路が形成された塑
性加工装置に被加工材を強制流通させて塑性加工を行
い、前記複数の折曲部ごとに被加工材に対して複数回剪
断力を加えて該被加工材に歪みを生じさせることを特徴
とする塑性加工方法(請求項8)であり、本発明方法に
よると、被加工材の単一回の圧入により剪断力を複数回
加えられるため、歪み生成効率が向上するとともに、被
加工材の固着による不均一歪みが減少した被加工材が得
られる。
In the method of the present invention, the material to be processed is forcedly flowed through the plastic working apparatus in which the flow path of the cylindrical container having a plurality of bent portions having an inclination angle of less than 90 ° is formed to perform the plastic working, A plastic working method (claim 8), characterized in that a shearing force is applied to the work material a plurality of times for each of the plurality of bent portions to cause distortion in the work material (claim 8). Since the shearing force is applied a plurality of times by a single press-fitting of the work material, it is possible to obtain the work material in which the strain generation efficiency is improved and the non-uniform strain due to the sticking of the work material is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】上界法モデルを説明するための図。FIG. 1 is a diagram for explaining an upper bound method model.

【図2】図2a及び2bは、本発明装置の一例により加
工対象の被加工材を塑性加工する要領を例示する一連の
縦断面図。
2A and 2B are a series of longitudinal cross-sectional views illustrating a procedure for plastically working a work material to be worked by an example of the device of the present invention.

【図3】図3a及び3bは、本発明装置の他の例により
加工対象の被加工材を塑性加工する要領を例示する一連
の縦断面図。
3A and 3B are a series of vertical cross-sectional views illustrating the procedure for plastically working a work material to be worked by another example of the device of the present invention.

【図4】本発明で使用可能なダイを例示する縦断面図。FIG. 4 is a vertical cross-sectional view illustrating a die that can be used in the present invention.

【図5】本発明で使用可能な他のダイを例示する縦断面
図。
FIG. 5 is a vertical cross-sectional view illustrating another die that can be used in the present invention.

【図6】本発明で使用可能な更に他のダイを例示する縦
断面図。
FIG. 6 is a vertical cross-sectional view illustrating still another die that can be used in the present invention.

【図7】図7aから7cはバリア体による歪み生成の原
理を説明する図。
7A to 7C are views for explaining the principle of strain generation by a barrier body.

【図8】実施例における傾斜角を変化させた場合の歪み
分布を示す図。
FIG. 8 is a diagram showing a strain distribution when the tilt angle is changed in the example.

【図9】実施例における折曲部対の傾斜角を変化させた
場合の歪み分布を示す図。
FIG. 9 is a diagram showing a strain distribution when the inclination angle of the bent portion pair is changed in the example.

【図10】従来のECAPプロセスに使用可能なダイの
斜視図。
FIG. 10 is a perspective view of a die that can be used in a conventional ECAP process.

【図11】図10の装置の部分縦断面図。11 is a partial vertical cross-sectional view of the device of FIG.

【符号の説明】[Explanation of symbols]

31 ダイ 33a、b、c 流路 34 第1折曲部 35 第2折曲部 36 バリア体 37 被加工材 39 ダミー材料 φ1〜φ4 傾斜角 41 ダイ 42a、b、c 流路 43 第1折曲部 44 第2折曲部 46 被加工材 φ5〜φ8 傾斜角 51 ダイ 53a、b、c 流路 54 折曲部対 55 被加工材 φ9、φ10 傾斜角 51A ダイ 53d 流路 54A 折曲部 φ11 傾斜角 61 ダイ 62a、b、c、d 流路 63a、b、c 折曲部 φ12、φ13、φ14 傾斜角31 die 33a, b, c flow path 34 first bent portion 35 second bent portion 36 barrier body 37 work material 39 dummy material φ 1 to φ 4 inclination angle 41 die 42a, b, c flow path 43 first Bent part 44 Second bent part 46 Workpiece material φ 5 to φ 8 Inclined angle 51 Die 53a, b, c Flow path 54 Bent part pair 55 Workpiece material φ 9 , φ 10 Inclined angle 51A Die 53d Flow path 54A Bent portion φ 11 Inclination angle 61 Die 62a, b, c, d Flow path 63a, b, c Bent portion φ 12 , φ 13 , φ 14 Inclination angle

───────────────────────────────────────────────────── フロントページの続き (71)出願人 500453577 一之瀬 和夫 東京都新宿区西新宿1−24−2 工学院大 学工学部機械システム工学科内 (72)発明者 折原 良 東京都新宿区西新宿1−24−2 工学院大 学工学部機械システム工学科内 (72)発明者 丹羽 直毅 東京都新宿区西新宿1−24−2 工学院大 学工学部機械システム工学科内 (72)発明者 一之瀬 和夫 東京都新宿区西新宿1−24−2 工学院大 学工学部機械システム工学科内 (72)発明者 高原 秀房 埼玉県上尾市原市1333−2 三井金属鉱業 株式会社総合研究所内 (72)発明者 藤倉 信夫 千葉県千葉市若葉区若松町407−9 Fターム(参考) 4E029 AA07 MA05 RA01 RA07    ─────────────────────────────────────────────────── ─── Continued front page    (71) Applicant 500453577             Kazuo Ichinose             1-24-2 Nishishinjuku, Shinjuku-ku, Tokyo Kogakuin University             Faculty of Engineering, Department of Mechanical Systems Engineering (72) Inventor Ryo Orihara             1-24-2 Nishishinjuku, Shinjuku-ku, Tokyo Kogakuin University             Faculty of Engineering, Department of Mechanical Systems Engineering (72) Inventor Naoki Niwa             1-24-2 Nishishinjuku, Shinjuku-ku, Tokyo Kogakuin University             Faculty of Engineering, Department of Mechanical Systems Engineering (72) Inventor Kazuo Ichinose             1-24-2 Nishishinjuku, Shinjuku-ku, Tokyo Kogakuin University             Faculty of Engineering, Department of Mechanical Systems Engineering (72) Inventor Hidefusa Takahara             1333-2 Hara-shi, Ageo-shi, Saitama Mitsui Mining & Smelting             Research Institute, Inc. (72) Inventor Nobuo Fujikura             407-9 Wakamatsucho, Wakaba Ward, Chiba City, Chiba Prefecture F-term (reference) 4E029 AA07 MA05 RA01 RA07

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 筒状コンテナの流路に被加工材を強制流
通させて塑性加工を行う装置において、前記流路に傾斜
角が90°未満の複数の折曲部を形成し、前記被加工材に
対して該折曲部で複数回剪断力を加えることを特徴とす
る塑性加工装置。
1. An apparatus for performing plastic working by forcibly circulating a work material in a flow path of a cylindrical container, wherein a plurality of bent portions having an inclination angle of less than 90 ° are formed in the flow path, and the work is processed. A plastic working apparatus, wherein a shearing force is applied to the material a plurality of times at the bent portion.
【請求項2】 前記筒状コンテナ流路の内面に複数のバ
リア体を設置し、該筒状コンテナ内に被加工材を供給し
該被加工材を前記バリア体に接触させることにより、筒
状コンテナ内に筒状コンテナ断面内で非対称な被加工材
フローを形成し、多重歪みを前記被加工材内に創出する
ようにした請求項1に記載の塑性加工装置。
2. A plurality of barrier bodies are installed on the inner surface of the tubular container flow path, a workpiece is supplied into the tubular container, and the workpiece is brought into contact with the barrier body to form a tubular shape. The plastic working apparatus according to claim 1, wherein an asymmetric work material flow is formed in a cylindrical container cross section in the container, and multiple strains are created in the work material.
【請求項3】 バリア体を設置した筒状コンテナの一方
端から被加工材を圧入し、該被加工材を押出し、設置さ
れたバリア体で構成された流路を通過させる工程で生ず
る多重応力場で、前記被加工材に多重歪みを創出するよ
うにした請求項2に記載の塑性加工装置。
3. A multi-stress generated in the step of press-fitting a material to be processed from one end of a cylindrical container having a barrier body installed therein, extruding the material to be processed, and passing through the flow path constituted by the installed barrier body. The plastic working apparatus according to claim 2, wherein multiple strains are created in the work material in the field.
【請求項4】 複数のバリア体の少なくとも1個を筒状
コンテナ流路の内面に沿って移動可能とした請求項2又
は3に記載の塑性加工装置。
4. The plastic working apparatus according to claim 2, wherein at least one of the plurality of barrier bodies is movable along the inner surface of the tubular container flow path.
【請求項5】 筒状コンテナの流路内の被加工材の両側
に1対のプランジャを設置し、該プランジャと前記筒状
コンテナの相対移動により筒状コンテナ断面内で非対称
な被加工材フローを形成するようにした請求項2から4
までのいずれかに記載の塑性加工装置。
5. A pair of plungers is installed on both sides of a work material in a flow path of a tubular container, and a relative work flow between the plunger and the tubular container causes an asymmetric work material flow within a cross section of the tubular container. 2. The method according to claim 2, wherein
The plastic working apparatus as described in any one of 1 above.
【請求項6】 折曲部の外側に湾曲部を形成した請求項
1から5までのいずれかに記載の塑性加工装置。
6. The plastic working apparatus according to claim 1, wherein a curved portion is formed outside the bent portion.
【請求項7】 隣り合う折曲部対の傾斜角の合計が90°
である請求項1から6までのいずれかに記載の塑性加工
装置。
7. The total inclination angle of a pair of adjacent bent portions is 90 °.
7. The plastic working apparatus according to any one of claims 1 to 6.
【請求項8】 傾斜角が90°未満である複数の折曲部を
有する筒状コンテナの流路が形成された塑性加工装置に
被加工材を強制流通させて塑性加工を行い、前記複数の
折曲部ごとに被加工材に対して複数回剪断力を加えて該
被加工材に歪みを生じさせることを特徴とする塑性加工
方法。
8. A workpiece is forcedly circulated through a plastic working apparatus in which a flow path of a cylindrical container having a plurality of bent portions having an inclination angle of less than 90 ° is formed to perform plastic working. A plastic working method characterized in that a shearing force is applied to a work material a plurality of times for each bent portion to generate a strain in the work material.
JP2002124327A 2002-04-25 2002-04-25 Plastic forming device, and plastic forming method Pending JP2003311320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002124327A JP2003311320A (en) 2002-04-25 2002-04-25 Plastic forming device, and plastic forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002124327A JP2003311320A (en) 2002-04-25 2002-04-25 Plastic forming device, and plastic forming method

Publications (1)

Publication Number Publication Date
JP2003311320A true JP2003311320A (en) 2003-11-05

Family

ID=29539388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002124327A Pending JP2003311320A (en) 2002-04-25 2002-04-25 Plastic forming device, and plastic forming method

Country Status (1)

Country Link
JP (1) JP2003311320A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289479A (en) * 2005-04-14 2006-10-26 National Institute For Materials Science Intensive working method of metal, and die used for intensive working method
JP2017126752A (en) * 2016-01-14 2017-07-20 中国科学院寧波材料技術与工程研究所Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences Method and apparatus for manufacturing heat deformation magnet
JP2018522400A (en) * 2015-05-20 2018-08-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Mold and method for forming permanent magnet with preform, and thermal deformation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289479A (en) * 2005-04-14 2006-10-26 National Institute For Materials Science Intensive working method of metal, and die used for intensive working method
JP2018522400A (en) * 2015-05-20 2018-08-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Mold and method for forming permanent magnet with preform, and thermal deformation system
JP2017126752A (en) * 2016-01-14 2017-07-20 中国科学院寧波材料技術与工程研究所Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences Method and apparatus for manufacturing heat deformation magnet

Similar Documents

Publication Publication Date Title
US6209379B1 (en) Large deformation apparatus, the deformation method and the deformed metallic materials
Nagasekhar et al. Optimal tool angles for equal channel angular extrusion of strain hardening materials by finite element analysis
US8631673B2 (en) Severe plastic deformation of metals
US20050081594A1 (en) Twist-extrusion process
US20070131013A1 (en) Method and apparatus for equal channel angular extrusion of flat billets
JP5692478B1 (en) Cup-shaped member press molding method
JP4305151B2 (en) Material torsion extrusion process
EP2116317A1 (en) Elbow material and production device and production method thereof
KR100397266B1 (en) Method and apparatus for fine particle formation
KR101580975B1 (en) Continuous extrusion apparatus and method for metal
JP2003001321A (en) Device and method for plastic forming
Kamachi et al. A model investigation of the shearing characteristics in equal-channel angular pressing
Bagherpour et al. An analytical approach for simple shear extrusion process with a linear die profile
JP2003311320A (en) Plastic forming device, and plastic forming method
Zayed et al. Deformation behavior and properties of severe plastic deformation techniques for bulk materials: A review
JP2002102982A (en) Plastic working equipment and plastic working method
Luis-Pérez et al. Finite element modelling of an Al–Mn alloy by equal channel angular extrusion (ECAE)
JP3943115B2 (en) Forming material for forging, forged product, and forming method for forming forging
Rosochowski et al. Equal channel angular pressing with converging billets—Experiment
RU2352417C2 (en) Pressing method of profiles and matrix for implementation of current method
RU2146571C1 (en) Method for deformation working of materials and apparatus for performing the same
JP2777104B2 (en) Rolling dies
RU2780729C1 (en) Apparatus for angular pressing
KR20120135695A (en) Asymmetric processing apparatus, asymmetric processing method and materials processed using the apparatus or the method
US11931787B2 (en) Method and system for forming protrusions, and method for manufacturing metal component having protrusions