JP2006287307A - 光子検出回路およびノイズ除去方法 - Google Patents

光子検出回路およびノイズ除去方法 Download PDF

Info

Publication number
JP2006287307A
JP2006287307A JP2005100812A JP2005100812A JP2006287307A JP 2006287307 A JP2006287307 A JP 2006287307A JP 2005100812 A JP2005100812 A JP 2005100812A JP 2005100812 A JP2005100812 A JP 2005100812A JP 2006287307 A JP2006287307 A JP 2006287307A
Authority
JP
Japan
Prior art keywords
signal
identification
current
photon detection
identification signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005100812A
Other languages
English (en)
Inventor
Seigo Takahashi
成五 高橋
Akio Tajima
章雄 田島
Akitomo Tanaka
聡寛 田中
Wakako Maeda
和佳子 前田
Takeshi Takeuchi
剛 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2005100812A priority Critical patent/JP2006287307A/ja
Publication of JP2006287307A publication Critical patent/JP2006287307A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】
暗電流に起因するノイズを検出して除去する方法およびそれを用いた光子検出回路を提供する。
【解決手段】
識別回路41は、アバランシェ・フォトダイオードAPDに流れる電流を電圧変換した電流信号s50と初期微少電流を検出するためのしきい値VTH2とを比較して第1識別信号s60を出力し、それを時間τだけ遅延した信号s62をDーFF回路60のリセット端子へ出力する。電流信号s50としきい値VTH1(>VTH2)とを比較して第2識別信号s53をD−FF回路60のデータ端子へ出力する。D−FF回路60は、リセット信号s62とデータ信号s53との時間的前後関係に依存して光子検出信号の出力を制御する。
【選択図】 図3

Description

本発明は光子受信器に係り、特に暗電流に起因するノイズ信号を除去するノイズ除去方法およびそれを用いた光子検出回路に関する。
単一光子を検出する素子としては、一般にアバランシェ・フォトダイオード(APD)が用いられている。特に、ガイガーモードとよばれる電流増倍率が極めて高い状態で使用することにより、単一光子から生成される単一電子を十分に大きな電流に増幅し、外部回路での識別を可能している。通常の光通信で用いられるAPDでは電流増倍率Mは数10倍以下であるが、ガイガーモードでは、APDのブレークダウン電圧(Vbd)以上の逆バイアス電圧を印加することで1000倍以上の増倍率を得ている。
一般には、APDの受光面に光子が到達するタイミングに合わせ、APDに対してブレークダウン電圧よりも高い逆バイアス電圧をパルス状に印加することでAPDをガイガーモードにする。すなわち、パルス電圧を印加している間に光子がAPD受光面に到達すれば光電流の増倍が開始され、ブレークダウン状態に移行し、パルスの終了によりブレークダウンが終息する。
しかしながら、APDで電流増倍が開始される契機は光子の入射だけではない。特にAPD半導体中のトラッピングにより拘束されたキャリアが次のゲートパルスにより再放出されることで暗電流が発生することが知られている(非特許文献1、非特許文献2)。特にガイガーモードでは高い逆バイアス電圧を印加するために暗電流の発生確率が高くなる。したがって、外部回路でAPDに流れるパルス電流を単に観測するだけでは光子入射(信号)と雑音とを区別することができない。そこで信号と雑音とを区別する技術がいくつか提案されている。
Kosaka等(非特許文献3)に記載されたバランスド・ゲートモード光子検出器によれば、2つのAPDに短いゲートパルスを印加し、それらの出力を180°ハイブリッド結合器により差し引くことでスパイクを相殺し、その差分信号を2つの判別器で判別してカウントする。この方法によって量子効果を維持しつつダークカウント確率およびアフタパルス確率を低減させることができる。
また、特開2003−243694号公報(特許文献1)に開示された単一光子検出方法は、光子入射時間ウィンドウ内でのAPD電圧印加により得られるパルスカウント値(光電流と暗電流)と、光子入射時間ウィンドウ以外でのAPD電圧印加によるパルスカウント値(暗電流のみ)とに基づいて、出力パルス信号の識別しきい値と電圧印加タイミングとを最適化するものである(段落0027〜0032、図2、図4、図5)。
「量子暗号技術の研究・開発動向に関する調査」情報処理振興事業協会(平成14年)の40ページ A. Lacaita et al. "Single-photon detection beyond 1μm: performance of commercially available InGaAs/InP detectors" (APPLIED OPTICS Vol.35, No.16, 1 June 1996, p2990) H. Kosaka et al. "Single-photon interference experiment over 100km for quantum cryptography system using balanced gated-mode photon detector" ELECTRONICS LETTERS 7th August 2003, Vol.39, No.16, p 1200) 特開2003−243694号公報(段落0027〜0032、図2、図4、図5)
しかしながら、上述した従来技術では、確率的に発生するダークカウントの低減は可能であっても、その抑制は不可能であった。
問題点は、熱雑音やキャリアトラップに起因した、ダークカウントと呼ばれるノイズ信号が発生し、それが光子受信信号と区別が不可能なために、受信信号のエラーレートが悪化する事である。すなわち、APD素子内部において、光子ではなく熱雑音などを起源とする電流が発生し増倍され、光子受信と同様に電気信号として出力される。この出力信号は、光子によるものか、暗電流によるものかの区別を付けることはできなかった。前述したように、光子受信を行うAPDでは十分に短い時間幅のパルス電圧を印加して光子の受信を行うが、短時間であってもダークカウントは確率的に発生し、その低減は可能であっても抑制は不可能であった。
特に、量子暗号鍵配布(QKD)システムにおいては、受信信号中のダークカウントの混在は暗号鍵の生成率を著しく低下させる。したがって、QKDシステムの性能向上には、ダークカウントの抑制が不可欠である。
本発明の目的は、暗電流に起因するノイズを検出して除去する方法およびそれを用いた光子検出回路を提供することにある。
さらに本発明の他の目的は、光子検出素子からの識別信号からノイズを除去することで、誤り率の低い光子受信器を提供することにある。
本発明者等は、光子入射により発生する光電流とノイズ等に起因する暗電流とは急激に立ち上がる直前の波形が異なっていることに着目し、この波形の相違を信号とノイズとの区別に利用した。すなわち、光子受信時には、光電流は急激に増幅される為に、そのときの出力信号は無信号状態から急激な立ち上がりを持った波形となる。それに対して、暗電流ノイズは、微少な熱的なノイズや漏れ電流を起源として増幅され成長するために、信号の立ち上がりの初期に微少な振幅が出力される。これら2つの信号の波形の差を識別することで、光子信号と暗電流によるノイズ信号とを区別することができる。
本発明による光子検出回路は、受光素子に流れる電流の立ち上がり初期特性に基づいて光子入射に起因する光電流とノイズに起因するノイズ電流とを識別する識別手段と、前記受光素子に流れる電流がノイズ電流の場合は光子検出信号の出力を停止する信号処理手段と、を有することを特徴とする。
さらに、前記識別手段は、前記受光素子に流れる電流の立ち上がりの初期レベルが検出されてから所定の立ち上がりレベルに到達するまでの時間が所定時間間隔より長い時はノイズ電流と判定し、それ以外は光電流と判定することを特徴とする。具体例として、前記識別手段は、初期レベルに対応する第1しきい値に基づいて前記受光素子に流れる電流を識別し第1識別信号を出力する第1識別手段と、前記所定の立ち上がりレベルに対応する第2しきい値に基づいて前記受光素子に流れる電流を識別し第2識別信号を出力する第2識別手段と、前記第1識別信号を前記所定時間間隔だけ遅延させる遅延手段と、を有し、前記遅延された第1識別信号と前記第2識別信号との時間関係に基づいて光電流とノイズ電流とを識別する。また、前記信号処理手段は、前記遅延された第1識別信号が前記第2識別信号より時間的に前であれば前記光子検出信号の出力を停止し、後であれば前記光子検出信号を出力する。
前記第1識別手段および前記第2識別手段は、前記フォトダイオードのカソード側にそれぞれ接続され、前記フォトダイオードに流れる電流をそれぞれ識別してもよい。あるいは、望ましくは、前記第1識別手段は前記フォトダイオードのアノード側に接続され前記フォトダイオードに流れる電流を識別し、前記第2識別手段は前記フォトダイオードのカソード側に接続され前記フォトダイオードに流れる電流を識別する。
更に望ましくは、前記フォトダイオードに前記逆バイアス電圧を印加する過程で流れる微分電流の前記第1識別手段への影響を阻止するタイミング制御手段を有する。具体的には、前記電源手段へ前記逆バイアス電圧の昇圧開始を指示するタイミング信号に同期して、前記第2識別手段へ識別動作を一時的に遮断する識別マスク信号を出力するのが望ましい。
また、前記第2識別信号を所定時間だけ遅延させる第2遅延手段を更に設け、前記遅延した第2識別信号を前記逆バイアス電圧の降下開始を指示するタイミング信号として前記電源手段へ出力することも望ましい構成である。
本発明によるノイズ除去方法は、a)前記受光素子に流れる電流の立ち上がり初期特性に基づいて光子入射に起因する光電流とノイズに起因するノイズ電流とを識別し、b)前記受光素子に流れる電流がノイズ電流の場合は光子検出信号の出力を停止する、ことを特徴とする。
本発明によれば、暗電流ノイズ信号に付随する初期の微弱な電流信号を検出し、その微弱な信号の立ち上がりをトリガにして受光素子の出力電流信号をマスクする。すなわち信号処理手段は、暗電流ノイズ信号であれば遮断し、光電流信号であれば通過させる。したがって、暗電流ノイズ信号による受信誤りを排除し、確度の高い光子受信器が構成可能となる。
第1識別手段は暗電流に起因する初期の微少信号を検出可能なレベルVTH2に設定され、第2識別手段は、十分に増幅された信号を識別するレベルVTH1に設定される。光子受信信号の場合と暗電流ノイズの場合とを比較すると、この2つの識別手段からの識別信号のタイミングには差異が現れる。
光子信号の場合には、2つの識別回路からの識別信号の遷移点は信号の急激な立ち上がりから、その時間差は小さい。それに対して、暗電流ノイズ信号の場合には、初期の微少信号レベルを識別するために、2つの識別回路の出力には大きな時間差が現れる。この時間差を利用してノイズの除去を行うことができる。
1.第1実施形態
(回路構成の概略)
図1は本発明の第1実施形態による光子検出回路の概略的構成を示すブロック図である。電源回路1、APD素子2および電流電圧変換回路3に加えて、異なるしきい値VTH1およびVTH2をそれぞれ有する識別回路40および41と、それらの識別信号を処理する信号処理回路6とが設けられている。後述するように、VTH1>VTH2であり、低いしきい値VTH2は暗電流ノイズの初期段階の微少電流を識別できるレベルに設定される。
電源回路1はAPD素子2の降伏電圧VBd以上の電圧を出力する機能と、APD素子2に過剰な電流が流れ続け素子破壊することからAPD素子を保護する電流制限機能とを備える。電源回路1がAPD素子2のカソードに逆バイアス電圧s4を印加している時にAPD素子2に光子信号が入射すると、APD素子内部で光電変換と電流増倍過程が生じ光電流信号s51がAPD素子2のアノードから出力される。
電流電圧変換回路3は、光電流信号s51に対して電流電圧変換を行い、電圧信号s50として出力する。ここで、電流電圧変換回路3は、暗電流ノイズ信号を識別可能にするだけの十分な利得と、ブレークダウン時の大きな電流を識別するだけの十分なダイナミックレンジを備える。電圧信号s50は識別回路40および識別回路41に出力される。
識別回路40は電圧信号s50を高いしきい値VTH1で識別し、識別回路41は電圧信号s50を低いしきい値VTH2で識別する。すなわち、識別回路40では、APDが光電流信号を十分に増幅してからの大きな振幅をもった信号を識別する為に十分に高いしきい値VTH1が設定されている。識別回路41では、APDの暗電流ノイズ信号を識別する為に十分に低いしきい値VTH2が設定されている。識別回路40の識別信号s53および識別回路41の識別信号s60はそれぞれ信号処理回路6に出力される。
信号処理回路6は識別信号s53と識別信号s60とを時間的に比較して光検出信号s7を出力するか否かを判定する。詳しくは後述するが、2つの信号の時間方向の差がT1よりも十分に小さければ光子信号と判断して光検出信号s7を出力する。これに対して、2つの信号の時間方向の差がT1程度に大きければ、暗電流ノイズ信号と判別して光検出信号s7を出力しない。
(信号/ノイズの識別原理)
図2は識別回路の動作原理を説明するための電圧信号s50の波形を示す模式的なグラフである。図中の太線は暗電流ノイズによる電圧波形を示し、破線は光子を受信した時の光電流信号による電圧波形を示す。
太線で示す暗電流ノイズによる電圧信号s50は、漏れ電流に起因する微弱な信号の立ち上がりがあった後で、大きく増幅された急激な立ち上がりを示す。したがって、まず電圧信号s50は低いしきい値VTH2で識別され(そのときの時間をt3とする。)、続いて十分に大きく増幅された急激な立ち上がりが発生すると電圧信号s50は高いしきい値VTH1で識別される(時間t6)。したがって、暗電流ノイズの場合には、識別回路41で識別されてから識別回路40で識別されるまでに時間差T1(=t6−t3)が存在することとなる。
これに対して、光子を受信した時の光電流信号の場合(破線)には、微弱な信号の立ち上がりが無く急激な立ち上がりを示す。したがって、電圧信号s50が低いしきい値VTH2で識別されて(時間t5)から、高いしきい値VTH1で識別される(時間t6)までの時間差T2(=t6−t5)は、極めて短くなる。一般に、インジウム・ガリウムAPDを用いると、光電流時の時間差T2は数100ps〜1npsの範囲であることが知られている。この光電流時の時間差T2は、暗電流ノイズ時の時間差T1よりも十分識別可能な差である。
光電流時の時間差T2が暗電流ノイズ時の時間差T1より十分識別可能である程度に短いことを利用して、信号処理回路6は光電流の検出信号s7を出力することができる。次に、この信号処理回路6の一例を説明する。
(信号処理回路)
図3は、図1における信号処理回路6の具体例を示した光子検出回路のブロック図である。ここでは、信号処理回路6が遅延回路5とセットリセット付きDフリップフロップ回路(D−FF)60とから構成されている。
識別回路41の識別信号s60は遅延回路5により遅延τを与えられ、その遅延識別信号s62がD−FF回路60のリセット端子Rに入力する。識別回路40の識別信号s53は、D−FF回路60のセット端子Sに入力する。
遅延回路5の遅延時間τは、上述した光電流時の時間差T2よりも十分に大きく、かつ、暗電流ノイズ時の時間差T1よりも短く設定される(T2<<τ<T1)。さらに、D−FF回路60でのマスク動作に対して十分なセットアップ時間を維持できることも必要である。
(動作)
図4(A)は暗電流ノイズ信号の電圧波形を示すグラフであり、(B)は暗電流ノイズ信号の場合のD−FF回路60の動作を説明するためのタイミングチャートである。既に述べたように、電圧信号s50が低いしきい値VTH2で識別されることで、識別回路41は識別信号s60を立ち上げる(時間t3)。このハイレベルの識別信号s60が遅延回路5により遅延時間τだけ遅延され、遅延識別信号s62としてD−FF回路60のリセット端子Rに入力する。これによってD−FF回路60はリセットされる。
τ<T1であるから、時間差T1後に電圧信号s50が高いしきい値VTH1で識別され識別回路40が識別信号s53をD−FF回路60のセット端子Sへ出力した時には、すでにD−FF回路60は識別信号s60によってリセット状態にある。したがって、D−FF回路60の出力s7は変化しない。このことは、言い換えれば、識別回路41のしきい値VTH2による初期の微弱電流信号の検出により、暗電流ノイズ信号がマスクされていることを表している。
図5(A)は光電流信号の電圧波形を示すグラフであり、(B)は光電流信号の場合のD−FF回路60の動作を説明するためのタイミングチャートである。既に述べたように、電圧信号s50が低いしきい値VTH2で識別されることで、識別回路41は識別信号s60を立ち上げる(時間t5)。このハイレベルの識別信号s60が遅延回路5により遅延時間τだけ遅延され、遅延識別信号s62としてD−FF回路60のリセット端子Rに入力する。
しかしながら、T2<<τであるから、遅延τの識別信号s62がD−FF回路60のリセット端子Rに入力する前に、すなわち時間差T2後に、電圧信号s50が高いしきい値VTH1で識別され識別回路40が識別信号s53を立ち上げ、D−FF回路60のセット端子Sへ出力している。すなわち、D−FF回路60がリセットされる前にセット端子Sに識別信号s53が入力するので、それによってD−FF回路60の出力s7も立ち下がる。このことは、言い換えれば、光子入射による急激な立ち上がりでは、信号はマスクされることなくD−FF回路60から光子検出信号s7として出力されることを表している。
(変形例)
図6は本発明の第1実施形態による光子検出回路の第1変形例を示すブロック図である。ここでは、電流電圧変換回路3を抵抗器30で構成している。APD素子2のアノードから出力された信号s51は抵抗器30により電流電圧変換され、電圧信号s50として識別回路40および41に与えられる。その他の構成および動作は上述したとおりであるから、同一参照番号を付加して説明は省略する。
図7は本発明の第1実施形態による光子検出回路の第2変形例を示すブロック図である。ここでは、電流電圧変換回路3をトランスインピーダンスアンプ(以下TIA)31を用いて構成している。APD素子2のアノードから出力された信号s51はTIA31により電流電圧変換され、電圧信号s50として識別回路40および41に与えられる。その他の構成および動作は上述したとおりであるから、同一参照番号を付加して説明は省略する。
2.第2実施形態
上記図7に示すようにTIA31を用いた増幅では、一般に利得と帯域の積(GB積)がほぼ一定の値を取ることが知られている。本発明のように微弱な暗電流ノイズ信号を識別するために大きな利得をTIA31に求めると、帯域が低下し回路の高速化が困難になる。その結果、光子検出の周期の高速化が困難になり、また、時間差T1の識別精度が劣化することになる。本発明の第2実施形態は、帯域を低下させることなく微弱な電流の検出が可能となる光子検出回路を提供する。
図8は本発明の第2実施形態による光子検出回路の概略的構成を示すブロック図である。本実施形態は、暗電流ノイズ信号の検出をAPD素子2のカソード側で行うことを特徴とする。すなわち、電源回路1とAPD素子2のカソード端子との間に電流検出抵抗32を介在させ、APD素子2のカソードに流れる電流を電流検出抵抗32と電流検出アンプ33とを用いて暗電流の電圧信号s61に変換し識別回路41へ出力する。
電流検出抵抗32の抵抗値を大きくすることで、帯域を低下させることなく微弱な電流の検出が可能となる。暗電流の電圧信号s61は、既に説明したように識別回路41において暗電流ノイズ信号として識別され、遅延回路5を経由してD−FF回路60のリセット端子Rに到達する。その他の構成および動作は上述したとおりであるから、同一参照番号を付加して説明は省略する。
図9は本発明の第2実施形態による光子検出回路の変形例を示すブロック図である。この例では、APD素子2のカソードにコンデンサ34が追加されている。図8の構成では電流検出抵抗32の抵抗値が大きいことから、光子信号を生成する時の大きな光電流を供給するための電流源が不足する可能性があるが、図9に示す構成では、光信号の大きな電流はコンデンサ34から供給され、十分な光電流信号s51の出力を得ることができる。
(具体例)
図10は、本発明の第2実施形態による光子検出回路のより具体的な構成を示すブロック図である。ここでは図8に示す回路例に基づいて構成されている。図8の回路に付加されたのは、タイミング処理回路7、遅延回路52および遅延回路53であり、これらの回路構成により、光子到達に合わせてAPD素子2へ印加する逆バイアス電圧信号s4の昇圧時間などを制御する。その他の構成および動作は上述したとおりであるから、同一参照番号を付加して説明は省略する。
タイミング処理回路7は、外部から与えられる基準タイミング信号s1を基準として、逆バイアス電圧の昇圧開始信号s20を遅延回路53を通して電源回路1に出力し、さらに識別マスク信号s3を識別回路41へ出力する。
電源回路1は、昇圧開始信号s20にしたがって逆バイアス電圧を降伏電圧VBd以上に上昇させ、APD素子2への光子到達に備える。その際、逆バイアス電圧の上昇中にAPD素子2が持つ寄生容量を介して電圧の時間変化率に比例した微分電流が流れる。この微分電流は、電流検出抵抗32および電流検出アンプ33により増幅され、識別回路41において暗電流ノイズ信号として誤って検出する可能性がある。このような微分電流に起因する識別回路41の誤動作を回避するために、タイミング処理回路7から識別回路41に対して識別マスク信号s3が与えられる(図11参照)。なお、遅延回路53は、この識別マスク信号s3が識別回路41にてマスク動作を働かせるに十分な時間だけ、微分電流の発生を遅らせるために設けられている。
APD素子2の電流s51は、十分な大きさに達した後は、逆バイアス電圧信号s4が降伏電圧VBd以下に降下するまで連続して流れる。そこで、識別回路40からの識別信号s53を遅延回路52で遅延させ、それを昇圧終了信号s21として電源回路1に与える。この遅延回路52の遅延時間T3は、D−FF回路60の動作に必要なだけの十分に長い時間、たとえば、上記T1やτよりも長い時間であることが望ましい。
(動作)
図11は暗電流ノイズ信号の場合の図10に示した回路の動作を説明するタイミングチャートである。既に述べたように、時間t3において、暗電流ノイズ信号s61が低いしきい値VTH2で識別され、識別回路41は識別信号s60を立ち上げる。この時点t3より遅延時間τだけ遅延して、遅延識別信号s62がD−FF回路60のリセット端子Rに入力し、これによってD−FF回路60はリセットされ、識別回路40から出力される識別信号s53(暗電流ノイズ信号)がマスクされる。したがって、D−FF回路60の出力s7は変化しない。
また、時間t2から始まるs51電流に重畳されている微分電流はしきい値VTH2を超える大きさだが、上述したように識別マスク信号s3でマスクされているので識別信号s60には出力されていない。
遅延回路52によって識別信号s53の立ち上がりからT3後に昇圧停止信号s21が生成されるので、時間t8でAPD素子2へ印加される逆バイアス電圧が降下し出力電流s51は停止する。
図12は光子が入射した場合の図10に示した回路の動作を説明するタイミングチャートである。電流検出アンプ33から出力される電圧信号s61が低いしきい値VTH2で識別されることで、識別回路41は識別信号s60を立ち上げる(時間t5)。このハイレベルの識別信号s60が遅延回路5により遅延時間τだけ遅延され、遅延識別信号s62としてD−FF回路60のリセット端子Rに入力する。
しかしながら、光子入射による光電流信号s52は球関に立ち上がるために、T2<<τであり、遅延τの識別信号s62がD−FF回路60のリセット端子Rに入力する前に、光電流信号s50が高いしきい値VTH1で識別され識別回路40が識別信号s53を立ち上げ(時間t6)、D−FF回路60のデータ端子Dへ出力している。すなわち、D−FF回路60がリセットされる前にデータ端子Dに識別信号s53が入力するので、それによってD−FF回路60の光子検出信号s7も立ち下がり、遅延識別信号s62がリセット端子Rに入力することによって立ち下がる。
遅延回路52によって識別信号s53の立ち上がりからT3後に昇圧停止信号s21が生成されるので、時間t8でAPD素子2へ印加される逆バイアス電圧が降下し出力電流s51は停止する。
なお、上述した各実施形態において、識別回路40、41、遅延回路5、D−FF60、タイミング処理回路7、遅延回路52、および、遅延回路53は、プログラム制御プロセッサからなるコンピュータ上でそれぞれの機能を実現するプログラムを実行することにより実装することもできる。
本発明による光子検出回路は、量子暗号通信の光子受信器に適用される他に、光通信全般や光計測の光子受信器にも適用可能である。
本発明の第1実施形態による光子検出回路の概略的構成を示すブロック図である。 識別回路の動作原理を説明するための電圧信号s50の波形を示す模式的なグラフである。 図1における信号処理回路6の具体例を示した光子検出回路のブロック図である。 (A)は暗電流ノイズ信号の電圧波形を示すグラフであり、(B)は暗電流ノイズ信号の場合のD−FF回路60の動作を説明するためのタイミングチャートである。 (A)は光電流信号の電圧波形を示すグラフであり、(B)は光電流信号の場合のD−FF回路60の動作を説明するためのタイミングチャートである。 本発明の第1実施形態による光子検出回路の第1変形例を示すブロック図である。 本発明の第1実施形態による光子検出回路の第2変形例を示すブロック図である。 本発明の第2実施形態による光子検出回路の概略的構成を示すブロック図である。 本発明の第2実施形態による光子検出回路の変形例を示すブロック図である。 本発明の第2実施形態による光子検出回路のより具体的な構成を示すブロック図である。 暗電流ノイズ信号の場合の図10に示した回路の動作を説明するタイミングチャートである。 光子が入射した場合の図10に示した回路の動作を説明するタイミングチャートである。
符号の説明
1 電源回路
2 アバランシェ・フォトダイオード(APD)
3 電流電圧変換回路
40 識別回路(高いしきい値VTH1
41 識別回路(低いしきい値VTH2
5 遅延回路
6 信号処理回路
60 Dフリップフロップ回路

Claims (19)

  1. 受光素子に流れる電流に基づいて光子の入射を検出する回路において、
    前記受光素子に流れる電流の立ち上がり初期特性に基づいて光子入射に起因する光電流とノイズに起因するノイズ電流とを識別する識別手段と、
    前記受光素子に流れる電流がノイズ電流の場合は光子検出信号の出力を停止する信号処理手段と、
    を有することを特徴とする光子検出回路。
  2. 前記識別手段は、前記受光素子に流れる電流の立ち上がりの初期レベルが検出されてから所定の立ち上がりレベルに到達するまでの時間が所定時間間隔より長い時はノイズ電流と判定し、それ以外は光電流と判定することを特徴とする請求項1に記載の光子検出回路。
  3. 前記識別手段は、
    初期レベルに対応する第1しきい値に基づいて前記受光素子に流れる電流を識別し第1識別信号を出力する第1識別手段と、
    前記所定の立ち上がりレベルに対応する第2しきい値に基づいて前記受光素子に流れる電流を識別し第2識別信号を出力する第2識別手段と、
    前記第1識別信号を前記所定時間間隔だけ遅延させる遅延手段と、
    を有し、前記遅延された第1識別信号と前記第2識別信号との時間関係に基づいて光電流とノイズ電流とを識別することを特徴とする請求項2に記載の光子検出回路。
  4. 前記信号処理手段は、前記遅延された第1識別信号が前記第2識別信号より時間的に前であれば前記光子検出信号の出力を停止し、後であれば前記光子検出信号を出力することを特徴とする請求項3に記載の光子検出回路。
  5. フォトダイオードに流れる電流に基づいて光子の入射を検出する回路において、
    初期レベルに対応する第1しきい値と前記フォトダイオードに流れる電流に対応する電流信号とを比較して第1識別信号を出力する第1識別手段と、
    所定の立ち上がりレベルに対応する第2しきい値と前記電流信号とを比較して第2識別信号を出力する第2識別手段と、
    前記第1識別信号を前記所定時間間隔だけ遅延させる遅延手段と、
    前記遅延された第1識別信号と前記第2識別信号との時間的前後関係に依存して、光子検出信号の出力を制御する信号処理手段と、
    を有することを特徴とする光子検出回路。
  6. 前記第1識別手段および前記第2識別手段は、前記フォトダイオードのカソード側にそれぞれ接続され、前記フォトダイオードに流れる電流をそれぞれ識別することを特徴とする請求項5に記載の光子検出回路。
  7. 前記第1識別手段は前記フォトダイオードのアノード側に接続され前記フォトダイオードに流れる電流を識別し、前記第2識別手段は前記フォトダイオードのカソード側に接続され前記フォトダイオードに流れる電流を識別することを特徴とする請求項5に記載の光子検出回路。
  8. 前記フォトダイオードはアバランシェ・フォトダイオード(APD)であることを特徴とする請求項5ないし7のいずれかに記載の光子検出回路。
  9. フォトダイオードに流れる電流に基づいて光子の入射を検出する回路において、
    前記フォトダイオードに逆バイアス電圧を印加する電源手段と、
    前記フォトダイオードのアノード側に接続され、初期レベルに対応する第1しきい値と前記フォトダイオードに流れる電流に対応する電流信号とを比較して第1識別信号を出力する第1識別手段と、
    前記フォトダイオードのカソード側に接続され、所定の立ち上がりレベルに対応する第2しきい値と前記電流信号とを比較して第2識別信号を出力する第2識別手段と、
    前記第1識別信号を前記所定時間間隔だけ遅延させる遅延手段と、
    前記遅延された第1識別信号と前記第2識別信号との時間的前後関係に依存して、光子検出信号の出力を制御する信号処理手段と、
    前記フォトダイオードに前記逆バイアス電圧を印加する過程で流れる微分電流の前記第1識別手段への影響を阻止するタイミング制御手段と、
    を有することを特徴とする光子検出回路。
  10. 前記タイミング制御手段は、前記電源手段へ前記逆バイアス電圧の昇圧開始を指示するタイミング信号に同期して、前記第2識別手段へ識別動作を一時的に遮断する識別マスク信号を出力することを特徴とする請求項9に記載の光子検出回路。
  11. 前記第2識別信号を所定時間だけ遅延させる第2遅延手段を更に設け、前記遅延した第2識別信号を前記逆バイアス電圧の降下開始を指示するタイミング信号として前記電源手段へ出力することを特徴とする請求項9に記載の光子検出回路。
  12. 受光素子に流れる電流に基づいて光子の入射を検出する回路におけるノイズ電流の除去方法において、
    a)前記受光素子に流れる電流の立ち上がり初期特性に基づいて光子入射に起因する光電流とノイズに起因するノイズ電流とを識別し、
    b)前記受光素子に流れる電流がノイズ電流の場合は光子検出信号の出力を停止する、
    ことを特徴とする光子検出回路におけるノイズ除去方法。
  13. 前記ステップa)は、前記受光素子に流れる電流の立ち上がりの初期レベルが検出されてから所定の立ち上がりレベルに到達するまでの時間が所定時間間隔より長い時はノイズ電流と判定し、それ以外は光電流と判定することを特徴とする請求項12に記載のノイズ除去方法。
  14. 前記ステップa)は、
    初期レベルに対応する第1しきい値に基づいて前記受光素子に流れる電流を識別して第1識別信号を生成し、
    前記所定の立ち上がりレベルに対応する第2しきい値に基づいて前記受光素子に流れる電流を識別して第2識別信号を生成し、
    前記第1識別信号を前記所定時間間隔だけ遅延させ、
    前記遅延された第1識別信号と前記第2識別信号との時間関係に基づいて光電流とノイズ電流とを識別する、
    ことを特徴とする請求項13に記載のノイズ除去方法。
  15. 前記ステップb)は、前記遅延された第1識別信号が前記第2識別信号より時間的に前であれば前記光子検出信号の出力を停止し、後であれば前記光子検出信号を出力することを特徴とする請求項12に記載のノイズ除去方法。
  16. コンピュータに、受光素子に流れる電流に基づいて光子の入射を検出する回路におけるノイズ電流の除去を実行させるためのプログラムにおいて、
    初期レベルに対応する第1しきい値と前記受光素子に流れる電流に対応する電流信号とを比較して第1識別信号を出力する第1識別手段と、
    所定の立ち上がりレベルに対応する第2しきい値と前記電流信号とを比較して第2識別信号を出力する第2識別手段と、
    前記第1識別信号を前記所定時間間隔だけ遅延させる遅延手段と、
    前記遅延された第1識別信号と前記第2識別信号との時間的前後関係に依存して、光子検出信号の出力を制御する信号処理手段と、
    をそれぞれコンピュータに実現するためのステップを有することを特徴とするプログラム。
  17. 請求項1ないし11のいずれかに記載の光子検出回路を有する光子受信器。
  18. 請求項1ないし11のいずれかに記載の光子検出回路を有する量子暗号通信の光子受信器。
  19. 請求項1ないし11のいずれかに記載の光子検出回路を有する光計測器。

JP2005100812A 2005-03-31 2005-03-31 光子検出回路およびノイズ除去方法 Withdrawn JP2006287307A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100812A JP2006287307A (ja) 2005-03-31 2005-03-31 光子検出回路およびノイズ除去方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100812A JP2006287307A (ja) 2005-03-31 2005-03-31 光子検出回路およびノイズ除去方法

Publications (1)

Publication Number Publication Date
JP2006287307A true JP2006287307A (ja) 2006-10-19

Family

ID=37408784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100812A Withdrawn JP2006287307A (ja) 2005-03-31 2005-03-31 光子検出回路およびノイズ除去方法

Country Status (1)

Country Link
JP (1) JP2006287307A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2447254A (en) * 2007-03-01 2008-09-10 Toshiba Res Europ Ltd A photon detector
WO2010020278A1 (en) * 2008-08-20 2010-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Avalanche photodiode circuits
GB2466299A (en) * 2008-12-19 2010-06-23 Toshiba Res Europ Ltd Single photon detection using variable delay component to cancel periodic signal variations
JP2012069944A (ja) * 2010-09-13 2012-04-05 Toshiba Corp 光子検出器
WO2016122272A1 (ko) * 2015-01-29 2016-08-04 한국과학기술원 고속 단일광자 검출기의 과도 응답 억제 장치
CN110118599A (zh) * 2018-02-07 2019-08-13 科大国盾量子技术股份有限公司 一种集成化单光子检测装置
CN114441034A (zh) * 2020-11-04 2022-05-06 统雷有限公司 光子检测装置和方法
RU2778629C1 (ru) * 2021-11-22 2022-08-22 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ порогового обнаружения оптических сигналов

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8891979B2 (en) 2007-03-01 2014-11-18 Kabushiki Kaisha Toshiba Photon detector
GB2447254B (en) * 2007-03-01 2009-10-14 Toshiba Res Europ Ltd A photon detector
US9377356B2 (en) 2007-03-01 2016-06-28 Kabushiki Kaisha Toshiba Photon detector
US8811829B2 (en) 2007-03-01 2014-08-19 Kabushiki Kaisha Toshiba Photon detector
GB2447254A (en) * 2007-03-01 2008-09-10 Toshiba Res Europ Ltd A photon detector
WO2010020278A1 (en) * 2008-08-20 2010-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Avalanche photodiode circuits
US8686343B2 (en) 2008-08-20 2014-04-01 Telefonaktiebolaget L M Ericsson (Publ) Avalanche photodiode circuits with protection against damage from sudden increases in incident light level
GB2466299A (en) * 2008-12-19 2010-06-23 Toshiba Res Europ Ltd Single photon detection using variable delay component to cancel periodic signal variations
GB2466299B (en) * 2008-12-19 2012-06-13 Toshiba Res Europ Ltd A photon detector, a method of photon detection and a conditioning circuit
US8890049B2 (en) 2010-09-13 2014-11-18 Kabushiki Kaisha Toshiba Receiver for a quantum communication system
JP2012069944A (ja) * 2010-09-13 2012-04-05 Toshiba Corp 光子検出器
WO2016122272A1 (ko) * 2015-01-29 2016-08-04 한국과학기술원 고속 단일광자 검출기의 과도 응답 억제 장치
CN110118599A (zh) * 2018-02-07 2019-08-13 科大国盾量子技术股份有限公司 一种集成化单光子检测装置
CN114441034A (zh) * 2020-11-04 2022-05-06 统雷有限公司 光子检测装置和方法
RU2778629C1 (ru) * 2021-11-22 2022-08-22 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ порогового обнаружения оптических сигналов
RU2778976C1 (ru) * 2021-11-22 2022-08-29 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ стабилизации режима лавинного фотодиода

Similar Documents

Publication Publication Date Title
US9759602B2 (en) Avalanche photodiode receiver
EP1708364B1 (en) Photo detecting circuit and noise elimination method
US9012860B2 (en) Dual-SPAD-based single-photon receiver
JP2006287307A (ja) 光子検出回路およびノイズ除去方法
JP5644294B2 (ja) 光検出器
US9553216B2 (en) Avalanche photodiode receiver
KR102332993B1 (ko) 고속 신호 세기 검출기 및 이를 이용한 버스트 모드 트랜스 임피던스 증폭기
WO2007102430A1 (ja) 光通信波長帯高速単一光子検出器
KR101685494B1 (ko) 단일 광자 검출 장치 및 단일 광자 검출 방법
JP2003519437A (ja) アバランシェフォトダイオードにおける改良
US20120168612A1 (en) Photon detection system and method of photon detection
CN106940221B (zh) 一种雪崩信号甄别方法和装置、红外单光子探测器
KR101395330B1 (ko) 단일 광자 검출 장치, 광자수 분해 검출 장치 및 광자 검출 방법
JP2007147472A (ja) 光子検出デバイスの特性測定のためのデータ処理方法および装置とそれを利用した光子受信器
KR101672509B1 (ko) 단일광자검출장치 및 그 장치에 채용되는 수광소자
JP2011226922A (ja) 光子検出器
KR101331790B1 (ko) 광자 검출 장치 및 방법
JP4724874B2 (ja) 光子検出装置および光子検出方法
KR101333806B1 (ko) 단기 전압 스파이크 제거 방법 및 그 장치
JP4621756B2 (ja) 光受信器、及び光受信器の光信号断検出方法
JP2007049475A (ja) 光受信器
EP4080352B1 (en) Random number generator, in particular truly random number generator of an improved type
US11187578B1 (en) Single-photon detection method and apparatus
KR101966652B1 (ko) 반전계수를 이용한 단일 광자 검출장치 및 방법
CN109217866B (zh) 光电开关

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603