JP2006287267A - Method for manufacturing light source device - Google Patents

Method for manufacturing light source device Download PDF

Info

Publication number
JP2006287267A
JP2006287267A JP2006202242A JP2006202242A JP2006287267A JP 2006287267 A JP2006287267 A JP 2006287267A JP 2006202242 A JP2006202242 A JP 2006202242A JP 2006202242 A JP2006202242 A JP 2006202242A JP 2006287267 A JP2006287267 A JP 2006287267A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor light
emitting element
wavelength conversion
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006202242A
Other languages
Japanese (ja)
Inventor
Tasuku Fujiwara
翼 藤原
Yuichi Ogawa
祐一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Leiz Corp
Original Assignee
Nippon Leiz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Leiz Corp filed Critical Nippon Leiz Corp
Priority to JP2006202242A priority Critical patent/JP2006287267A/en
Publication of JP2006287267A publication Critical patent/JP2006287267A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light and compact light source device whose luminance is high, and whose life is long for emitting totally new rays of light from an outgoing face side. <P>SOLUTION: The press of the electrode patterns of an anode and cathode is carried out to a lead frame, and the press of a recessed pattern matched with the shape of a semiconductor light emitting element is carried out to one of the electrode patterns, and the insert molding of the pressed thin plate is carried out with resin. Wavelength converting material mixing paste is dropped or packed in the recessed pattern where the semiconductor light emitting element is placed. The semiconductor light emitting element is placed after the wavelength converting material mixing paste is dropped or packed. This is carried in a thermostatic oven, and the mixing paste is hardened, and each electrode of the semiconductor light emitting element is electrically connected through wire bonding to the electrode pattern. The recessed part formed by insert molding is packed with mixed and degassed transparent resin. This is carried in the thermostatic oven, and the transparent resin is hardened. The electrode terminal formed in the lead frame is cut and divided into respective light source devices. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液晶表示装置等の光源として用いられる光源装置の製造方法に関し、半導体発光素子の出射面に対して反対側に波長変換材料を設け、出射面から出射した波長の光と、半導体発光素子の出射面の反対側に設けた波長変換材料によって波長変換された光が再度、半導体発光素子の出射面方向に出射して、波長変換されない光と波長変換された光とが混ざり合い全く新しい光を出射面側から出射する軽量小型で高輝度、長寿命な光源装置の製造方法に関する。   The present invention relates to a method of manufacturing a light source device used as a light source for a liquid crystal display device or the like, and a wavelength conversion material is provided on the opposite side to the emission surface of a semiconductor light emitting element, and light having a wavelength emitted from the emission surface and semiconductor light emission Light that has been wavelength-converted by the wavelength conversion material provided on the opposite side of the light-emitting surface of the device is emitted again in the direction of the light-emitting surface of the semiconductor light-emitting device. The present invention relates to a method of manufacturing a light source device that emits light from an emission surface side and is light and small, has high luminance, and has a long lifetime.

半導体発光素子である発光ダイオードは、小型に構成され、球切れなどの心配もなく、効率良く鮮明な発光色を得ることができる。また、駆動特性にも優れており、振動やオン・オフのスイッチングによる繰り返し動作にも強いという特徴がある。このため、各種インジケータや液晶表示装置などの光源として利用されている。   A light-emitting diode which is a semiconductor light-emitting element is configured in a small size, and can efficiently obtain a clear light emission color without worrying about a broken ball. In addition, it has excellent drive characteristics and is resistant to repeated operations due to vibration and on / off switching. For this reason, it is used as a light source for various indicators and liquid crystal display devices.

ところで、この種の発光ダイオードは、優れた単色性ピーク波長を有しているために、例えば赤色系、緑色系および青色系の各色に発光する発光ダイオードを利用して白色系の光源装置を構成する場合、各色に発光する発光ダイオードを近接配置した状態で発光させて拡散混色させる必要があった。   By the way, since this type of light emitting diode has an excellent monochromatic peak wavelength, for example, a white light source device is configured by using light emitting diodes that emit light of red, green, and blue colors. In this case, it was necessary to emit light in a state in which light emitting diodes emitting light of each color are arranged close to each other and to diffuse and mix colors.

すなわち、白色系の光源装置を得るためには、赤色系、緑色系および青色系の3種類の発光ダイオード、または青緑色系および黄色系の2種類の発光ダイオードが必要であった。このため、発光色の異なる複数種類の発光ダイオードを使用しなければならなかった。   That is, in order to obtain a white light source device, three types of red, green, and blue light-emitting diodes or two types of blue-green and yellow light-emitting diodes are required. For this reason, it was necessary to use a plurality of types of light emitting diodes having different emission colors.

しかも、半導体からなる発光ダイオードチップは、物によって色調や輝度にバラツキがある。このため、複数の発光ダイオードが各々異なる材料で構成される場合には、各発光ダイオードチップの駆動電力などが異なり、個々に電源を確保する必要があった。   In addition, light emitting diode chips made of semiconductors vary in color tone and brightness depending on the object. For this reason, when a plurality of light emitting diodes are made of different materials, the driving power of each light emitting diode chip is different, and it is necessary to individually secure a power source.

その結果、出射光が白色光となるように、各発光ダイオード毎に供給される電流などを調節しなければならなかった。また、使用される発光ダイオードは、個々の温度特性の差や経時変化が異なり色調も変化するという問題があった。さらには、各発光ダイオードチップからの発光を均一に混色させなければ、出射光に色むらが生じてしまい、所望とする白色系の発光を得ることができないおそれがあった。   As a result, the current supplied to each light emitting diode must be adjusted so that the emitted light becomes white light. In addition, the light emitting diodes used have a problem that their color tone changes due to differences in temperature characteristics and changes with time. Furthermore, if the light emitted from each light-emitting diode chip is not uniformly mixed, color unevenness occurs in the emitted light, and a desired white light emission may not be obtained.

そこで、上記問題点を解消した発光ダイオードとして、例えば下記特許文献1(特開平7−99345号公報)や特許文献2(特開平10−190066号公報)に開示されているものが知られている。   Thus, as light emitting diodes that have solved the above problems, for example, those disclosed in the following Patent Document 1 (Japanese Patent Laid-Open No. 7-99345) and Patent Document 2 (Japanese Patent Laid-Open No. 10-190066) are known. .

特許文献1(特開平7−99345号公報)に開示される発光ダイオードは、カップの底部にLEDチップが載置され、カップ内部にLEDチップの発光波長を他の波長に変換する蛍光物質(または発光チップの発光波長を一部吸収するフィルター物質)が含有された樹脂(色変換部材)が充填され、この樹脂を包囲するようにさらに樹脂が設けられたものである。   In the light emitting diode disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 7-99345), an LED chip is placed on the bottom of a cup, and a fluorescent material that converts the light emission wavelength of the LED chip to another wavelength (or another inside the cup) (or A resin (color conversion member) containing a filter material that partially absorbs the emission wavelength of the light emitting chip is filled, and a resin is further provided so as to surround the resin.

特許文献2(特開平10−190066号公報)に開示される発光ダイオードは、基板上にダイボンド部材によって固定されたLEDチップと、LEDチップの上に設けられLEDチップからの発光の少なくとも一部を吸収し波長変換して発光する蛍光物質を含む色変換部材とを有するものである。   A light-emitting diode disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 10-190066) includes an LED chip fixed on a substrate by a die bonding member, and at least a part of light emitted from the LED chip provided on the LED chip. And a color conversion member containing a fluorescent material that absorbs light and converts its wavelength to emit light.

上述したいずれの公報に開示される発光ダイオードは、1種類の半導体発光素子自身の発光色から他の発光色を得るものである。そして、LEDチップからの発光を波長変換した発光ダイオードとして、青色系の発光ダイオードの発光と、その発光を吸収し黄色系を発光する蛍光体からの発光との混色により白色系の発光を得ている。
また、これら従来の波長変換による方法は、全て半導体発光素子の出射面側に波長変換材料を設け、全て同方向による出射方法である。
特開平7−99345号公報 特開平10−190066号公報
The light-emitting diode disclosed in any of the above publications obtains another emission color from the emission color of one kind of semiconductor light-emitting element itself. Then, as a light emitting diode whose wavelength is converted from the light emitted from the LED chip, white light emission is obtained by mixing the light emitted from the blue light emitting diode and the light emitted from the phosphor that absorbs the light emission and emits yellow light. Yes.
In addition, these conventional wavelength conversion methods are all emission methods in which the wavelength conversion material is provided on the emission surface side of the semiconductor light emitting element and all are in the same direction.
JP-A-7-99345 Japanese Patent Laid-Open No. 10-190066

上述した特許文献1(特開平7−99345号公報)や特許文献2(特開平10−190066号公報)に開示される発光ダイオードは、LEDチップの上に色変換部材が設けられる構成であり、白色光を得る場合、LEDチップ上方(出射面側)に放射したLEDチップ自身の青色光と、LEDチップ上(出射面側)に設けた色変換部材により変換された黄色光との分散した光が、人間の目に白色光のように見える。   The light emitting diodes disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 7-99345) and Patent Document 2 (Japanese Patent Laid-Open No. 10-190066) described above have a configuration in which a color conversion member is provided on an LED chip. When obtaining white light, dispersed light of the blue light of the LED chip itself emitted above the LED chip (on the emission surface side) and the yellow light converted by the color conversion member provided on the LED chip (on the emission surface side) However, it looks like white light to human eyes.

ところで、クリアで輝度の高い白色光を得るためには、青色光と黄色光との分散および分布が均一かつ一定で有る必要がある。しかし、特許文献1(特開平7−99345号公報)や特許文献2(特開平10−190066号公報)に開示される構成では、LEDチップ上方の色変換部材で青色光が遮られ、色変換部材で色変換された光と、LEDチップ自身が放射する青色光との合成された光量によって輝度が決定される。このため、色変換部材の分散および分布を均一に行わねばならず、輝度があまり良くならないという問題があった。   By the way, in order to obtain clear and bright white light, it is necessary that the dispersion and distribution of blue light and yellow light are uniform and constant. However, in the configurations disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 7-99345) and Patent Document 2 (Japanese Patent Laid-Open No. 10-190066), blue light is blocked by the color conversion member above the LED chip, and color conversion is performed. Luminance is determined by the combined amount of light that is color-converted by the member and blue light emitted by the LED chip itself. For this reason, there is a problem that the color conversion member must be uniformly distributed and distributed, and the luminance is not so good.

ところで、この種の光源装置としては、例えば液晶表示装置などの光源として用いるため、上述した特許文献1(特開平7−99345号公報)や特許文献2(特開平10−190066号公報)に開示される発光ダイオードにより得られる発光では充分とは言えず、より長期間の使用環境下において高輝度な発光(特に、白色光の発光)が望まれていた。   By the way, this type of light source device is disclosed in the above-mentioned Patent Document 1 (Japanese Patent Laid-Open No. 7-99345) and Patent Document 2 (Japanese Patent Laid-Open No. 10-190066) because it is used as a light source of a liquid crystal display device, for example. The light emission obtained by the light-emitting diode is not sufficient, and high-luminance light emission (particularly, white light emission) has been desired in a longer-term use environment.

さらに、これらの波長変換材料を用いた光源装置の場合には、常に波長変換材料が半導体発光素子等の上部に設けられている。このため、外光(特に、太陽光)による例えば、紫外線や宇宙線等の波長の短い光(波長)によって、波長変換材料を劣化させてしまう課題等がある。   Further, in the case of a light source device using these wavelength conversion materials, the wavelength conversion material is always provided on the top of the semiconductor light emitting element or the like. For this reason, there exists a subject etc. which degrade a wavelength conversion material by light (wavelength) with short wavelengths, such as an ultraviolet-ray and a cosmic ray, by external light (especially sunlight).

本発明は、上記のような課題を解決するためになされたもので、半導体発光素子の出射面に対して反対側に波長変換材料を設け、出射面から出射した波長の光と、半導体発光素子の出射面の反対側に設けた波長変換材料によって波長変換された光が再度、半導体発光素子の出射面方向に出射して、同じ半導体発光素子の出射面で波長変換されない光(半導体発光素子自身の出射光)と波長変換された光とが混ざり合い全く新しい光を出射面側から出射する軽量小型で高輝度、長寿命な光源装置の製造方法を提供することにある。   The present invention has been made in order to solve the above-described problems. A wavelength conversion material is provided on the opposite side to the emission surface of the semiconductor light emitting device, and the light having the wavelength emitted from the emission surface and the semiconductor light emitting device are provided. Light that has been wavelength-converted by the wavelength conversion material provided on the opposite side of the light emitting surface of the light is emitted again in the direction of the light emitting surface of the semiconductor light emitting device, and light that is not wavelength converted at the light emitting surface of the same semiconductor light emitting device (the semiconductor light emitting device itself) And a light source device having a light weight, small size, high luminance, and long life that emits completely new light from the exit surface side.

本発明の請求項1に係る光源装置の製造方法は、薄板リードフレームに陽極および陰極の電極パターンおよびどちらか一方の陽極または陰極に半導体発光素子の形状に合わせた凹状パターンのプレスを行うステップ1と、電極パターンおよび凹状パターンのプレスを行った薄板を樹脂により開口部を設けてインサート成形を行うステップ2と、波長変換材料と透明接着剤との混合比率を重量比率として1:1〜5:1の範囲で混合調合した波長変換材混入ペーストを、陽極または陰極のどちらか一方に設けた凹状パターンに滴下または充填するステップ3と、波長変換材混入ペーストを凹状パターンに滴下または充填した上に透明性を有した半導体発光素子を載置するステップ4と、恒温槽に搬入し混入ペーストを硬化させるステップ5と、半導体発光素子の陽極および陰極の電極と陽極および陰極の電極パターンとを電気的に接続する金ワイヤ等でワイヤーボンディングを行うステップ6と、半導体発光素子や陽極および陰極の電極パターンおよび金ワイヤ等を保護、外気遮断の為に封止する透明樹脂と硬化剤とを混合攪拌および脱泡した透明樹脂を半導体発光素子や陽極および陰極の電極パターンおよび金ワイヤ等を設けたインサート成形にて形成された開口部に充填するステップ7と、恒温槽に搬入し透明樹脂を硬化させるステップ8と、リードフレームに形成された電極端子等をカッティングして、個々の光源装置に分離するステップ9とからなる光源装置を製造することを特徴とする。   In the method of manufacturing the light source device according to the first aspect of the present invention, step 1 is performed to press the electrode pattern of the anode and the cathode on the thin plate lead frame and the concave pattern according to the shape of the semiconductor light emitting element on either the anode or the cathode. Step 2 in which the thin plate pressed with the electrode pattern and the concave pattern is subjected to insert molding by providing an opening with resin, and the mixing ratio of the wavelength conversion material and the transparent adhesive is 1: 1 to 5: Step 3 of dropping or filling the wavelength conversion material mixed paste mixed and prepared in the range of 1 into the concave pattern provided on either the anode or the cathode, and dropping or filling the wavelength conversion material mixed paste into the concave pattern Step 4 for placing a semiconductor light emitting element having transparency, Step 5 for carrying in a thermostat and curing the mixed paste, Step 6 of performing wire bonding with a gold wire or the like for electrically connecting the anode and cathode electrodes of the conductor light emitting element and the electrode pattern of the anode and cathode, and electrode patterns and gold wires of the semiconductor light emitting element, the anode and the cathode, etc. A transparent resin obtained by mixing and agitating and defoaming a transparent resin and a curing agent that are sealed for protection and blocking of the outside air was formed by insert molding provided with semiconductor light emitting elements, anode and cathode electrode patterns, gold wires, and the like. A light source comprising Step 7 for filling the opening, Step 8 for carrying into a thermostat and curing the transparent resin, and Step 9 for cutting the electrode terminals and the like formed on the lead frame into individual light source devices A device is manufactured.

請求項1に係る光源装置の製造方法は、薄板リードフレームに陽極および陰極の電極パターンおよびどちらか一方の陽極または陰極に半導体発光素子の形状に合わせた凹状パターンのプレスを行い、電極パターンおよび凹状パターンのプレスを行った薄板を樹脂により開口部を設けてインサート成形を行い、波長変換材料と透明接着剤との混合比率を重量比率として1:1〜5:1の範囲で混合調合した波長変換材混入ペーストを、陽極または陰極のどちらか一方に設けた凹状パターンに滴下または充填し、波長変換材混入ペーストを凹状パターンに滴下または充填した上に透明性を有した半導体発光素子を載置し、恒温槽に搬入し混入ペーストを硬化させ、半導体発光素子の陽極および陰極の電極と陽極および陰極の電極パターンとを電気的に接続する金ワイヤ等でワイヤーボンディングを行い、半導体発光素子や陽極および陰極の電極パターンおよび金ワイヤ等を保護、外気遮断の為に封止する透明樹脂と硬化剤とを混合攪拌および脱泡した透明樹脂を半導体発光素子や陽極および陰極の電極パターンおよび金ワイヤ等を設けたインサート成形にて形成された開口部に充填し、恒温槽に搬入し透明樹脂を硬化させ、リードフレームに形成された電極端子等をカッティングして、個々の光源装置に分離するので、高速度で波長変換材料と透明接着剤との混入ペーストを転写でき、一度で波長変換材料の転写と接着とが確実にできる。しかも、波長変換材料が直接外光に晒されず、半導体発光素子の出射面から出射した波長の光と、半導体発光素子の出射面の反対側に設けた波長変換材料によって波長変換された光が再度、半導体発光素子の出射面方向に出射することができる。   The method of manufacturing a light source device according to claim 1 includes pressing an electrode pattern of an anode and a cathode on a thin plate lead frame and a concave pattern according to the shape of the semiconductor light emitting element on one of the anodes or cathodes. Wavelength conversion by mixing and blending a thin plate subjected to pattern pressing with resin in an opening with resin and insert molding and mixing the wavelength conversion material and transparent adhesive in a weight ratio of 1: 1 to 5: 1 The material-mixed paste is dropped or filled into a concave pattern provided on either the anode or the cathode, and the transparent semiconductor light-emitting element is placed on the wavelength-patterned material-mixed paste dropped or filled into the concave pattern. Then, it is carried into a thermostatic chamber, the mixed paste is cured, and the anode and cathode electrodes of the semiconductor light emitting device and the electrode pattern of the anode and cathode are electrically connected. Wire bonding was performed with a gold wire connected to the substrate, and the semiconductor light emitting device, the electrode pattern of the anode and the cathode and the gold wire were protected, and the transparent resin and the curing agent were mixed and stirred and degassed for blocking the outside air A transparent resin was filled in an opening formed by insert molding provided with a semiconductor light emitting element, an electrode pattern of an anode and a cathode, a gold wire, etc., carried into a constant temperature bath, and the transparent resin was cured to form a lead frame. Since the electrode terminals are cut and separated into individual light source devices, the mixed paste of the wavelength conversion material and the transparent adhesive can be transferred at a high speed, and the transfer and adhesion of the wavelength conversion material can be ensured at a time. Moreover, the wavelength conversion material is not directly exposed to outside light, and the light having the wavelength emitted from the emission surface of the semiconductor light emitting element and the light converted by the wavelength conversion material provided on the opposite side of the emission surface of the semiconductor light emitting element are It can be emitted again in the direction of the emission surface of the semiconductor light emitting device.

請求項1に係る光源装置の製造方法は、薄板リードフレームに陽極および陰極の電極パターンおよびどちらか一方の陽極または陰極に半導体発光素子の形状に合わせた凹状パターンのプレスを行い、電極パターンおよび凹状パターンのプレスを行った薄板を樹脂により開口部を設けてインサート成形を行い、波長変換材料と透明接着剤との混合比率を重量比率として1:1〜5:1の範囲で混合調合した波長変換材混入ペーストを、陽極または陰極のどちらか一方に設けた凹状パターンに滴下または充填し、波長変換材混入ペーストを凹状パターンに滴下または充填した上に透明性を有した半導体発光素子を載置し、恒温槽に搬入し混入ペーストを硬化させ、半導体発光素子の陽極および陰極の電極と陽極および陰極の電極パターンとを電気的に接続する金ワイヤ等でワイヤーボンディングを行い、半導体発光素子や陽極および陰極の電極パターンおよび金ワイヤ等を保護、外気遮断の為に封止する透明樹脂と硬化剤とを混合攪拌および脱泡した透明樹脂を半導体発光素子や陽極および陰極の電極パターンおよび金ワイヤ等を設けたインサート成形にて形成された開口部に充填し、恒温槽に搬入し透明樹脂を硬化させ、リードフレームに形成された電極端子等をカッティングして、個々の光源装置に分離するので、高速度で波長変換材料と透明接着剤との混入ペーストを転写でき、一度で波長変換材料の転写と接着とが確実にできる。しかも、波長変換材料が直接外光に晒されず、半導体発光素子の出射面から出射した波長の光と、半導体発光素子の出射面の反対側に設けた波長変換材料によって波長変換された光が再度、半導体発光素子の出射面方向に出射することができる。これにより、従来の半導体発光素子の上に蛍光材を混入した透明樹脂が塗布、載置あるいは被覆により設けられた構成よりも安定したクリアで輝度の高い発光を得ることができ、生産性にも優れている。   The method of manufacturing a light source device according to claim 1 includes pressing an electrode pattern of an anode and a cathode on a thin plate lead frame and a concave pattern according to the shape of the semiconductor light emitting element on one of the anodes or cathodes. Wavelength conversion by mixing and blending a thin plate subjected to pattern pressing with resin in an opening with resin and insert molding and mixing the wavelength conversion material and transparent adhesive in a weight ratio of 1: 1 to 5: 1 The material-mixed paste is dropped or filled into a concave pattern provided on either the anode or the cathode, and the transparent semiconductor light-emitting element is placed on the wavelength-patterned material-mixed paste dropped or filled into the concave pattern. Then, it is carried into a thermostatic chamber, the mixed paste is cured, and the anode and cathode electrodes of the semiconductor light emitting device and the electrode pattern of the anode and cathode are electrically connected. Wire bonding was performed with a gold wire connected to the substrate, and the semiconductor light emitting element, the electrode pattern of the anode and the cathode, the gold wire, and the like were protected, and a transparent resin and a curing agent were mixed and stirred and degassed to block outside air A transparent resin was filled in an opening formed by insert molding provided with a semiconductor light emitting element, an electrode pattern of an anode and a cathode, a gold wire, etc., carried into a constant temperature bath, and the transparent resin was cured to form a lead frame. Since the electrode terminals and the like are cut and separated into individual light source devices, the mixed paste of the wavelength conversion material and the transparent adhesive can be transferred at a high speed, and the transfer and adhesion of the wavelength conversion material can be ensured at a time. Moreover, the wavelength conversion material is not directly exposed to outside light, and the light having the wavelength emitted from the emission surface of the semiconductor light emitting element and the light converted by the wavelength conversion material provided on the opposite side of the emission surface of the semiconductor light emitting element are It can be emitted again in the direction of the emission surface of the semiconductor light emitting device. As a result, a transparent resin mixed with a fluorescent material on a conventional semiconductor light emitting device can obtain a clear and bright light emission that is more stable than a configuration provided by coating, placing or covering, and also in productivity. Are better.

以下、本発明の実施の形態を添付図面に基づいて説明する。
なお、本発明は、例えばセラミック基板、液晶ポリマー樹脂基板、ガラス布エポキシ樹脂基板等の絶縁性の基板上に導電性パターンを設けたり、リードフレームのパターンに、波長変換材料を混入したペーストを設け、その上に透明樹脂や透明接着剤により透明性を有する半導体発光素子を載置して接着固定し、波長変換材料が直接外光に晒されず、半導体発光素子の出射面から出射した波長の光と、半導体発光素子の出射面の反対側に設けた波長変換材料によって波長変換された光が再度、半導体発光素子の出射面方向に出射することができる光源装置の製造方法を提供するものである。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
In the present invention, for example, a conductive pattern is provided on an insulating substrate such as a ceramic substrate, a liquid crystal polymer resin substrate, a glass cloth epoxy resin substrate, or a lead frame pattern is provided with a paste mixed with a wavelength conversion material. The transparent semiconductor light emitting element is placed on the transparent resin or transparent adhesive and bonded and fixed thereon, and the wavelength conversion material is not directly exposed to outside light. Provided is a method for manufacturing a light source device, in which light and light that has been wavelength-converted by a wavelength conversion material provided on the opposite side of the emission surface of the semiconductor light-emitting element can be emitted again in the direction of the emission surface of the semiconductor light-emitting element. is there.

図1(a)は本発明に係る光源装置の略斜視全体図、図1(b)は同断面図、図2はリードフレーム上に形成された光源装置を示す平面図である。
図1(a)および図1(b)に示すように、光源装置1(1A)は、インジェクションないしトランスファーモルドタイプのものであり、パターン2、波長変換材混入ペースト3、半導体発光素子4、ボンディングワイヤ5、リード端子6、モールドケース7および充填透明樹脂8から概略構成される。
なお、本例におけるパターン2は電気配線パターンも含むものである。
1A is a schematic perspective view of a light source device according to the present invention, FIG. 1B is a cross-sectional view thereof, and FIG. 2 is a plan view showing the light source device formed on a lead frame.
As shown in FIGS. 1A and 1B, the light source device 1 (1A) is of an injection or transfer mold type, and includes a pattern 2, a wavelength conversion material-mixed paste 3, a semiconductor light emitting device 4, and a bonding The wire 5, the lead terminal 6, the mold case 7, and the filled transparent resin 8 are roughly configured.
In addition, the pattern 2 in this example includes an electric wiring pattern.

光源装置1(1A)を構成するにあたっては、リードフレームよりパターン2やリード端子6が形成される。そして、陰極側(カソード)パターン2aや陽極側(アノード)パターン2bおよび陰極側(カソード)リード端子6aや陽極側(アノード)リード端子6bを設けたリードフレームを、絶縁性を有する樹脂等でインサート成形を施して、モールドケース7を設ける。   In configuring the light source device 1 (1A), the pattern 2 and the lead terminal 6 are formed from the lead frame. The lead frame provided with the cathode side (cathode) pattern 2a, the anode side (anode) pattern 2b, the cathode side (cathode) lead terminal 6a and the anode side (anode) lead terminal 6b is inserted with an insulating resin or the like. Molding is performed to provide a mold case 7.

また、パターン2aやパターン2bに対し、波長変換材混入ペースト3を転写や印刷および充填等をする。
例えば、パターン2aの陰極側(カソード)に波長変換材混入ペースト3を塗り、その上に半導体発光素子4を載置する。
尚、波長変換材混入ペースト3自身の接着性を用いてパターン2aに半導体発光素子4を接着固定できるが、波長変換材混入ペースト3を波長変換目的のみにパターン2aに波長変換材混入ペースト3を接着固定し、さらにその上に透明な樹脂によって半導体発光素子4を接着固定しても良い。
Further, the wavelength conversion material-containing paste 3 is transferred, printed, filled, or the like with respect to the pattern 2a or the pattern 2b.
For example, the wavelength conversion material mixed paste 3 is applied to the cathode side (cathode) of the pattern 2a, and the semiconductor light emitting element 4 is placed thereon.
The semiconductor light emitting device 4 can be bonded and fixed to the pattern 2a using the adhesive property of the wavelength conversion material mixed paste 3 itself. However, the wavelength conversion material mixed paste 3 is applied to the pattern 2a only for the purpose of wavelength conversion. The semiconductor light emitting element 4 may be bonded and fixed with a transparent resin thereon.

そして、図1(b)に示すように、半導体発光素子4の上方の出射面側4a上に在る陰極(カソード)4cおよび陽極(アノード)4dを電気的に接続するためにボンディングワイヤ5で接続する。半導体発光素子4の上方の出射面側4a上に在る陰極(カソード)4cと陰極側(カソード)パターン2aとを陰極側ボンディングワイヤ5aで接続する。また、出射面側4a上にある陽極(アノード)4dと、陽極側(アノード)パターン2bとを陽極側ボンディングワイヤ5bで接続する。そして、各々の陰極側(カソード)リード端子6aや陽極側(アノード)リード端子6bに導く。   Then, as shown in FIG. 1B, bonding wires 5 are used to electrically connect the cathode (cathode) 4c and the anode (anode) 4d on the emission surface side 4a above the semiconductor light emitting element 4. Connecting. The cathode (cathode) 4c and the cathode side (cathode) pattern 2a on the emission surface side 4a above the semiconductor light emitting element 4 are connected by a cathode side bonding wire 5a. Further, the anode (anode) 4d on the emission surface side 4a and the anode side (anode) pattern 2b are connected by the anode side bonding wire 5b. And it guide | induces to each cathode side (cathode) lead terminal 6a and anode side (anode) lead terminal 6b.

さらに、これら全てが浸されるように充填透明樹脂8がモールドケース7内に充填される。これにより、半導体発光素子4は、出射面4aである上方から例えば青色光が放射される。また、半導体発光素子4の底面4bである下方に放射した青色光が波長変換材混入ペースト3の波長変換材料によって例えば黄色光に色変換される。この色変換された黄色光は、波長変換材混入ペースト3の上方(半導体発光素子4方向)および下方(パターン2a方向)に放射される。波長変換材混入ペースト3の下方に放射された黄色光は、下部のパターン2aの面で反射されて上方に放射される。そして、半導体発光素子4自身が放射する青色光と、波長変換材混入ペースト3の波長変換材料によって色変換された黄色光と混ざり合ってモールドケース7の表面8aから白色光が放射される。   Further, the filled transparent resin 8 is filled in the mold case 7 so that all of them are immersed. Thereby, the semiconductor light emitting element 4 emits, for example, blue light from above, which is the emission surface 4a. Further, the blue light emitted downward, which is the bottom surface 4 b of the semiconductor light emitting device 4, is converted into, for example, yellow light by the wavelength conversion material of the wavelength conversion material-containing paste 3. This color-converted yellow light is emitted above (in the direction of the semiconductor light emitting element 4) and below (in the direction of the pattern 2a) of the wavelength conversion material-containing paste 3. The yellow light radiated below the wavelength conversion material mixed paste 3 is reflected by the surface of the lower pattern 2a and radiated upward. Then, the blue light emitted from the semiconductor light emitting element 4 itself and the yellow light color-converted by the wavelength conversion material of the wavelength conversion material-mixed paste 3 are mixed and white light is emitted from the surface 8 a of the mold case 7.

パターン2は、図2(a)に示すように、導通性および弾性力のある燐青銅等の銅合金材等からなるリードフレーム9に半導体発光素子4の載置パターンや電気配線パターンやリード端子9a(6)および支持パターン9b等のパターン形状を形成する。   As shown in FIG. 2 (a), the pattern 2 is formed by placing a semiconductor light emitting element 4 on the lead frame 9 made of a copper alloy material such as phosphor bronze having electrical conductivity and elasticity, an electric wiring pattern, and a lead terminal. Pattern shapes such as 9a (6) and support pattern 9b are formed.

また、光源装置1は、リードフレーム9をインサート成形によって変成ポリアミド、ポリブチレンテレフタレートや芳香族系ポリエステル等からなる液晶ポリマなどの絶縁性の有る材料に、チタン酸バリウム等の白色粉体を混入させて樹脂で挟み込んだように形成される。   Further, the light source device 1 mixes a white powder such as barium titanate into an insulating material such as a liquid crystal polymer made of modified polyamide, polybutylene terephthalate, aromatic polyester or the like by insert molding of the lead frame 9. It is formed as if sandwiched between resin.

尚、図2(a),(b)は5つの半導体発光素子4を1つのリードフレーム9上に設けたもので、2つのリード端子9aによって5つの半導体発光素子4を発光させるエレメントタイプのものである。図2(a)において、図示しない半導体発光素子4を載置する開口部12が設けられる面が光源装置1の表面(出射面側)1aとなる。また、この光源装置1の表面1aの反対側の面が裏面1bとなる。なお、図2(a)に示すように、リードフレーム9の外枠(両側枠部分)には、所定間隔で複数の穴9cが設けられる。この穴9cは、コイル状に巻いてある未加工リードフレーム9をパターン2や支持パターン9bやリード端子9a等をプレスする時やインサート成形時および波長変換材混入ペースト3の転写、半導体発光素子4の載置、ボンディングワイヤ5のボンディング等の工程時にリードフレーム9の送りや位置決め等に使用され。
また、図1(a),(b)のような1つの半導体発光素子4を用いる場合には、光源装置の製造方法の過程により1つのリードフレーム9から多数の光源装置1を作成することができる。
2A and 2B show an element type in which five semiconductor light emitting elements 4 are provided on one lead frame 9, and the five semiconductor light emitting elements 4 are caused to emit light by two lead terminals 9a. It is. In FIG. 2A, the surface on which the opening 12 on which the semiconductor light emitting element 4 (not shown) is placed is the surface (light emitting surface side) 1a of the light source device 1. Further, the surface opposite to the front surface 1a of the light source device 1 is a back surface 1b. As shown in FIG. 2A, the outer frame (both side frame portions) of the lead frame 9 is provided with a plurality of holes 9c at predetermined intervals. This hole 9c is formed when the unprocessed lead frame 9 wound in a coil shape is pressed on the pattern 2, the support pattern 9b, the lead terminal 9a, or the like, at the time of insert molding, and the transfer of the wavelength conversion material mixed paste 3, the semiconductor light emitting element 4 Is used for feeding and positioning of the lead frame 9 during processes such as mounting and bonding of the bonding wire 5.
In addition, when one semiconductor light emitting element 4 as shown in FIGS. 1A and 1B is used, a large number of light source devices 1 can be formed from one lead frame 9 by the process of manufacturing the light source device. it can.

また、リードフレーム9上にパターン2等を設け、ここに波長変換材混入ペースト3や半導体発光素子4を載置したが、パターン2は絶縁性基板上に設けても良い。   Further, the pattern 2 and the like are provided on the lead frame 9 and the wavelength conversion material mixed paste 3 and the semiconductor light emitting element 4 are placed thereon, but the pattern 2 may be provided on an insulating substrate.

この場合、パターン2を形成する絶縁性基板は、電気絶縁性に優れたセラミック基板、液晶ポリマー樹脂基板、ガラス布エポキシ樹脂基板等の基板からなり、表面には電気的に導電性を有するパターン2等が形成される。   In this case, the insulating substrate for forming the pattern 2 is made of a substrate such as a ceramic substrate, a liquid crystal polymer resin substrate, or a glass cloth epoxy resin substrate having excellent electrical insulation, and the surface has an electrically conductive pattern 2. Etc. are formed.

さらに説明すると、セラミック基板等は、AlOやSiOを主成分とし、さらにZrO、TiO、TiC、SiCおよびSiN等との化合物からなる。これらの材料は、耐熱性や硬度、強度に優れ、白色系の表面を持ち、半導体発光素子4からの発光された光を効率良く反射する。   More specifically, the ceramic substrate or the like is mainly composed of AlO or SiO and further composed of a compound such as ZrO, TiO, TiC, SiC, and SiN. These materials are excellent in heat resistance, hardness, and strength, have a white surface, and efficiently reflect the light emitted from the semiconductor light emitting element 4.

また、液晶ポリマー樹脂やガラス布エポキシ樹脂からなる場合の基板は、液晶ポリマーやガラス布エポキシ樹脂などの絶縁性の有る材料に、チタン酸バリウム等の白色粉体を混入または塗布させて成形し、電気的に導電性を有するパターン2を施して半導体発光素子4からの発光された光を効率良く反射する。   In addition, a substrate in the case of a liquid crystal polymer resin or a glass cloth epoxy resin is formed by mixing or applying a white powder such as barium titanate to an insulating material such as a liquid crystal polymer or a glass cloth epoxy resin, The electrically conductive pattern 2 is applied to efficiently reflect the light emitted from the semiconductor light emitting element 4.

なお、他に基板として珪素樹脂、紙エポキシ樹脂、合成繊維布エポキシ樹脂および紙フェノール樹脂等の積層板や変成ポリイミド、ポリブチレンテレフタレート、ポリカーボネートや芳香族ポリエステル等からなる板に電気的に導電性を有するパターン2の印刷を施して半導体発光素子4からの発光された光を効率良く反射する構成としてもよい。   In addition, it is electrically conductive as a laminated board such as silicon resin, paper epoxy resin, synthetic fiber cloth epoxy resin and paper phenol resin, or a board made of modified polyimide, polybutylene terephthalate, polycarbonate, aromatic polyester, etc. as a substrate. It is good also as a structure which reflects the light emitted from the semiconductor light emitting element 4 efficiently by printing the pattern 2 which has.

これらパターン2は、セラミック基板、液晶ポリマー樹脂基板、ガラス布エポキシ樹脂基板のいずれかの基板上に真空蒸着スパッタリング、イオンプレーティング、CVD(化学蒸着)、エッチング(ウエット、ドライ)等により電気的接続をするパターン形状に形成される。そして、金属メッキを施した後、さらに金や銀等の貴金属メッキを施し、図示しないが電気的に導電性を有するとともに機械的にも強度を有し、別に設けた端子電極等に電気的に接続される。   These patterns 2 are electrically connected to one of a ceramic substrate, a liquid crystal polymer resin substrate, and a glass cloth epoxy resin substrate by vacuum deposition sputtering, ion plating, CVD (chemical vapor deposition), etching (wet, dry), etc. It is formed in a pattern shape that Then, after applying the metal plating, further precious metal plating such as gold or silver is applied. Although not shown, it has electrical conductivity and mechanical strength, and is electrically connected to a separately provided terminal electrode or the like. Connected.

波長変換材混入ペースト3は、無色透明なエポキシ樹脂やシリコーン樹脂等に無機系の蛍光顔料や有機系の蛍光染料等からなる波長変換材料を混入させたものである。
例えばエポキシ樹脂に波長変換材料(YAG)を混入する場合、エポキシ樹脂と波長変換材料との重量比率は、例えば1:1〜5:1程度である。
The wavelength conversion material mixed paste 3 is obtained by mixing a wavelength conversion material made of an inorganic fluorescent pigment, an organic fluorescent dye, or the like into a colorless and transparent epoxy resin or silicone resin.
For example, when the wavelength conversion material (YAG) is mixed in the epoxy resin, the weight ratio between the epoxy resin and the wavelength conversion material is, for example, about 1: 1 to 5: 1.

また、後述する光源装置1の製造方法の過程で用いる場合には、上記エポキシ樹脂と波長変換材料との重量比率が1:1に近づく。また、滴下できる程度の粘度を有して、エポキシ樹脂やシリコーン樹脂等に波長変換材料が分散するようにする。   Moreover, when using it in the process of the manufacturing method of the light source device 1 mentioned later, the weight ratio of the said epoxy resin and wavelength conversion material approaches 1: 1. In addition, the wavelength conversion material is dispersed in an epoxy resin, a silicone resin, or the like having a viscosity that can be dropped.

波長変換材混入ペースト3は、青色発光の半導体発光素子4からの光を(Y,Gd)3 (Al,Ga)5 12等のYAG(イットリウム・アルミニウム・ガーネット)系等からなる橙色蛍光顔料や橙色蛍光染料の波長変換材料を混入した樹脂に投射すると黄色の光が得られる。そして、波長変換材混入ペースト3の波長変換材料により色変換された黄色光と、半導体発光素子4自身が放射する青色光とが混ざり合うことにより、半導体発光素子4上方から放射される光が白色光となる。 The wavelength conversion material mixed paste 3 is an orange fluorescent pigment made of YAG (yttrium, aluminum, garnet) such as (Y, Gd) 3 (Al, Ga) 5 O 12 or the like from the light emitted from the blue light emitting semiconductor light emitting element 4. When projecting onto a resin mixed with a wavelength conversion material of orange fluorescent dye, yellow light is obtained. And the yellow light color-converted by the wavelength conversion material of the wavelength conversion material-mixed paste 3 and the blue light emitted by the semiconductor light emitting element 4 itself are mixed, so that the light emitted from above the semiconductor light emitting element 4 is white. It becomes light.

また、波長変換材混入ペースト3は、例えば緑色発光の半導体発光素子4からの光を赤色蛍光顔料や赤色蛍光染料の波長変換材料を混入した樹脂の投射すると黄色系の光が得られ、青色発光の半導体発光素子4からの光を緑色蛍光顔料や緑色蛍光染料の波長変換材料を混入した樹脂に投射すると青緑色系の光が得られる。   In addition, the wavelength conversion material-containing paste 3 can produce yellow light and emit blue light when, for example, light from a green light emitting semiconductor light emitting element 4 is projected by a resin mixed with a wavelength conversion material of a red fluorescent pigment or a red fluorescent dye. When light from the semiconductor light emitting element 4 is projected onto a resin mixed with a wavelength conversion material of a green fluorescent pigment or a green fluorescent dye, blue-green light is obtained.

ここで、波長変換材混入ペースト3や半導体発光素子4等の載置方法を説明する。
図3、図4および図5の例では、波長変換材混入ペースト3をスタンパでパターン2bや絶縁基板2d等の上に転写や印刷を行った後に透明樹脂10で半導体発光素子4を接着固定し、各陰極側のパターン2aと陰極4cとをボンディングワイヤ5aで電気的に接続するとともに、陽極側のパターン2bと陽極4dとをボンディングワイヤ5bで電気的に接続する。
Here, a method of placing the wavelength conversion material mixed paste 3, the semiconductor light emitting element 4, and the like will be described.
In the example of FIGS. 3, 4, and 5, the wavelength conversion material mixed paste 3 is transferred or printed on the pattern 2 b, the insulating substrate 2 d, or the like with a stamper, and then the semiconductor light emitting element 4 is bonded and fixed with the transparent resin 10. The cathode-side pattern 2a and the cathode 4c are electrically connected by a bonding wire 5a, and the anode-side pattern 2b and the anode 4d are electrically connected by a bonding wire 5b.

また、図6、図7および図8(a),(b)の例では、後述する光源装置1の製造方法の過程のように、波長変換材混入ペースト3をスタンパでパターン2bや絶縁基板2d等の上に転写や滴下し、波長変換材混入ペースト3自身で半導体発光素子4を接着固定し、各陰極側のパターン2aと陰極4cとをボンディングワイヤ5aで電気的に接続するとともに、陽極側のパターン2bと陽極4dとをボンディングワイヤ5bで電気的に接続する。
このように、後述する光源装置1の製造方法の過程は、波長変換材混入ペースト3で半導体発光素子4をパターン2に固着する接着剤としての機能も兼ねている。
Further, in the examples of FIGS. 6, 7 and 8A, 8B, as in the process of the method of manufacturing the light source device 1 described later, the wavelength conversion material mixed paste 3 is used as a pattern 2b or an insulating substrate 2d with a stamper. The semiconductor light emitting element 4 is bonded and fixed with the wavelength conversion material mixed paste 3 itself, and the cathode side pattern 2a and the cathode 4c are electrically connected by the bonding wire 5a, and the anode side. The pattern 2b and the anode 4d are electrically connected by a bonding wire 5b.
As described above, the process of the method for manufacturing the light source device 1 described later also functions as an adhesive for fixing the semiconductor light emitting element 4 to the pattern 2 with the wavelength conversion material mixed paste 3.

なお、図8の例では、半導体発光素子4を絶縁基板2d等の凹形状部に埋め込むように後述する光源装置1の製造方法の過程をより進めたように波長変換材混入ペースト3を充填するように滴下する。
また、図9の例では、リードフレーム9上に凹状のパターン2cを設けて、この凹状部2cに波長変換材混入ペースト3を充填し、その上に半導体発光素子4を載置する。
In the example of FIG. 8, the wavelength conversion material mixed paste 3 is filled so that the process of the method of manufacturing the light source device 1 to be described later is further advanced so as to embed the semiconductor light emitting element 4 in the concave portion such as the insulating substrate 2d. So that it drops.
In the example of FIG. 9, a concave pattern 2c is provided on the lead frame 9, the wavelength conversion material mixed paste 3 is filled in the concave portion 2c, and the semiconductor light emitting element 4 is mounted thereon.

このように、波長変換材混入ペースト3は、後述する光源装置1の製造方法によって分散量や濃度等が異なり、これら製造方法の目的に合わせてパターン2上に波長変換材混入ペースト3を転写、塗布したり、印刷により印刷パターンとしてパターン2上に形成したり、半導体発光素子4を載置する所に滴下や充填等を行う。   As described above, the wavelength conversion material-mixed paste 3 is different in dispersion amount, concentration, and the like depending on the manufacturing method of the light source device 1 described later, and the wavelength conversion material-mixed paste 3 is transferred onto the pattern 2 in accordance with the purpose of these manufacturing methods. It is applied, formed as a printed pattern on the pattern 2 by printing, or dropped or filled in a place where the semiconductor light emitting element 4 is placed.

また、波長変換材混入ペースト3と半導体発光素子4との間に用いる透明接着剤10は、無色透明なエポキシ樹脂やシリコーン樹脂等からなる。   The transparent adhesive 10 used between the wavelength conversion material-mixed paste 3 and the semiconductor light emitting element 4 is made of a colorless and transparent epoxy resin, silicone resin, or the like.

さらに、透明接着剤10は、粘性の低い液状のシアノアクリレート系の透明接着剤であっても良い。この場合、エポキシ樹脂系の接着剤と異なり、発熱を伴わずに半導体発光素子4に対し悪影響を及ぼさずに半導体発光素子4を瞬間的に接着固定できる。しかも、硬化に熱を必要とせず、また接着スピードが速いので、生産性、経済性にも富んでいる。   Furthermore, the transparent adhesive 10 may be a liquid cyanoacrylate-based transparent adhesive having a low viscosity. In this case, unlike the epoxy resin adhesive, the semiconductor light emitting element 4 can be bonded and fixed instantaneously without causing adverse effects on the semiconductor light emitting element 4 without generating heat. In addition, no heat is required for curing, and since the bonding speed is fast, it is rich in productivity and economy.

また、粘性の高いシアノアクリレート系の透明接着剤10に波長変換材料(波長変換材料と導電性材料)を混入させた透明樹脂を用いれば、印刷工程と接着工程を一度で行うことが可能である。   In addition, if a transparent resin in which a wavelength conversion material (wavelength conversion material and conductive material) is mixed into a highly viscous cyanoacrylate-based transparent adhesive 10 is used, the printing process and the adhesion process can be performed at once. .

ここで、図10(a)〜(c)は光源装置1の出射面1a側に設けた開口部12の拡大図である。図10(a)〜(c)に示すように、開口部12の略中央に半導体発光素子4を備えるように、リードフレーム9のパターン2や絶縁性基板に電気的に導電性を有するパターン2の例えば陰極側のパターン2aに半導体発光素子4を載置する部分に波長変換材混入ペースト3を半導体発光素子4の形状に合わせた形状4fに転写、印刷、塗布、滴下する。また、リードフレーム9の凹状のパターン2cを半導体発光素子4の形状に合わせた形状4fにして波長変換材混入ペースト3を充填する。これにより、効率の良い出射光を得る。   Here, FIGS. 10A to 10C are enlarged views of the opening 12 provided on the emission surface 1 a side of the light source device 1. As shown in FIGS. 10A to 10C, the pattern 2 of the lead frame 9 and the electrically conductive pattern 2 on the insulating substrate so that the semiconductor light emitting element 4 is provided at the approximate center of the opening 12. For example, the wavelength conversion material-containing paste 3 is transferred, printed, applied, and dropped onto a shape 4 f that matches the shape of the semiconductor light emitting device 4 on the portion where the semiconductor light emitting device 4 is placed on the pattern 2 a on the cathode side. Further, the concave pattern 2 c of the lead frame 9 is formed into a shape 4 f that matches the shape of the semiconductor light emitting element 4, and the wavelength conversion material mixed paste 3 is filled. Thereby, efficient outgoing light is obtained.

また、ここでは図示しないが、半導体発光素子4自身への静電気の帯電を防止するために波長変換材料に導電性材料を混入させても良い。
この場合の導電性材料は、銀粒子のようなフィラを蛍光材に悪影響を及ぼさない程度に混入させる。これにより、半導体発光素子4自身のP電極とN電極とが低電荷でショートしない程度の高抵抗値を持つ。そして、電荷の高いものに対しては、導電性を持つように微量の導電性材料を添加する。これにより、半導体発光素子4全体に印加電圧よりも高電位な静電気等が帯電しても、この静電気等をグランドに流することができる。このように、導電性材料は、特に静電気等に弱いInGaAlPやInGaAlNやInGaNおよびGaN系の半導体発光素子4自身の静電気等から防いでいる。
Although not shown here, a conductive material may be mixed in the wavelength conversion material in order to prevent electrostatic charge on the semiconductor light emitting element 4 itself.
In this case, the conductive material is mixed with a filler such as silver particles to the extent that the fluorescent material is not adversely affected. Thus, the P electrode and the N electrode of the semiconductor light emitting element 4 itself have a low resistance and a high resistance value that does not cause a short circuit. And for a thing with a high electric charge, a trace amount electroconductive material is added so that it may have electroconductivity. As a result, even if the semiconductor light emitting element 4 is entirely charged with static electricity having a potential higher than the applied voltage, the static electricity can be passed to the ground. Thus, the conductive material prevents InGaAlP, InGaAlN, InGaN and GaN-based semiconductor light emitting elements 4 themselves, which are particularly vulnerable to static electricity, and the like.

具体的に、導電性材料は、波長変換材料混入樹脂部の体積抵抗を150K〜300K程度にし、半導体発光素子4の順方向抵抗が165Ω、また逆耐圧抵抗が2.5MΩである。これにより、半導体発光素子4に対してリークしない程度の抵抗であるとともに逆耐圧抵抗よりも低い抵抗値のため、グランドに電流を流して半導体発光素子4自身への静電気の帯電防止を行うことができる。   Specifically, in the conductive material, the volume resistance of the wavelength conversion material-mixed resin portion is about 150K to 300K, the forward resistance of the semiconductor light emitting element 4 is 165Ω, and the reverse withstand voltage resistance is 2.5MΩ. As a result, the resistance of the semiconductor light emitting element 4 does not leak and the resistance value is lower than that of the reverse withstand voltage resistance. Therefore, it is possible to prevent static electricity from being applied to the semiconductor light emitting element 4 by flowing a current to the ground. it can.

半導体発光素子4は、n型層上に活性層を中心にダブルヘテロ構造からなるInGaAlP系、InGaAlN系、InGaN系、GaN系のいずれかの化合物の半導体チップからなる発光素子であり、有機金属気相成長法等で製作される。また、半導体発光素子4自身の基板は、Al2 3 やInPサファイヤ等の透明基板からなり、この基板上に活性層を配し、活性層上に透明電極が形成されている。半導体発光素子4に取り付ける電極は、In2 3 、SnO2 、ITO等からなる導電性透明電極等をスパッタリング、真空蒸着、化学蒸着等により生成させて製作する。 The semiconductor light-emitting element 4 is a light-emitting element made of a semiconductor chip of an InGaAlP-based, InGaAlN-based, InGaN-based, or GaN-based compound having a double heterostructure centering on an active layer on an n-type layer. Produced by phase growth method. The substrate of the semiconductor light emitting element 4 itself is made of a transparent substrate such as Al 2 O 3 or InP sapphire. An active layer is disposed on the substrate, and a transparent electrode is formed on the active layer. The electrode attached to the semiconductor light emitting device 4 is manufactured by forming a conductive transparent electrode made of In 2 O 3 , SnO 2 , ITO, or the like by sputtering, vacuum deposition, chemical vapor deposition, or the like.

そして、半導体発光素子4は、(図9参照)上面4aにアノード電極4dおよびカソード電極4cを有しており、電極を持たない他方の面側4bが透明樹脂上に載置されて固着されている。半導体発光素子4のアノード電極4dおよびカソード電極4cは、ボンディングワイヤ5でパターン2a、2bにワイヤーボンディングされている。   The semiconductor light emitting element 4 has an anode electrode 4d and a cathode electrode 4c on the upper surface 4a (see FIG. 9), and the other surface side 4b having no electrode is placed on and fixed to a transparent resin. Yes. The anode electrode 4 d and the cathode electrode 4 c of the semiconductor light emitting device 4 are wire bonded to the patterns 2 a and 2 b with bonding wires 5.

ボンディングワイヤ5は、金線等の導通線からなり、半導体発光素子4のアノード電極4dとパターン2bとの間、カソード電極4cとパターン2aとの間をそれぞれボンダによって電気的に接続している。   The bonding wire 5 is made of a conductive wire such as a gold wire, and electrically connects the anode electrode 4d and the pattern 2b of the semiconductor light emitting element 4 and the cathode electrode 4c and the pattern 2a by a bonder.

リード端子6(6a,6b)は、導電性および弾性力のある燐青銅等の銅合金材等からなるリードフレーム9をモールドケース7から直接取り出して形成されている。リード端子6aは、パターン2aと電気的に接続されて半導体発光素子4のカソード電極側と等しく、本発明の光源装置1(1A)としての陰極(−)として使用されるように構成される。   The lead terminals 6 (6a, 6b) are formed by directly taking out a lead frame 9 made of a copper alloy material such as phosphor bronze having conductivity and elasticity from the mold case 7. The lead terminal 6a is electrically connected to the pattern 2a, is equal to the cathode electrode side of the semiconductor light emitting element 4, and is configured to be used as a cathode (-) as the light source device 1 (1A) of the present invention.

また、リード端子6bは、パターン2bと電気的に接続されて半導体発光素子4のアノード電極側と等しく、本発明の光源装置1(1A)としての陽極(+)として使用されるように構成される。   The lead terminal 6b is electrically connected to the pattern 2b and is equal to the anode electrode side of the semiconductor light emitting element 4, and is configured to be used as an anode (+) as the light source device 1 (1A) of the present invention. The

モールドケース7は、変成ポリアミド、ポリブチレンテレフタレートや芳香族系ポリエステル等からなる液晶ポリマなどの絶縁性の有る材料に、チタン酸バリウム等の白色粉体を混入させて凹状にモールド形成されており、凹状部7a内の底面にパターン2が露出している。   The mold case 7 is formed in a concave shape by mixing white powder such as barium titanate into an insulating material such as liquid crystal polymer made of modified polyamide, polybutylene terephthalate or aromatic polyester, The pattern 2 is exposed on the bottom surface in the concave portion 7a.

また、モールドケース7は、光の反射性と遮光性の良いチタン酸バリウム等の白色粉体によって半導体発光素子4の側面側から出光する光を効率良く反射し、図示しないテーパ状の凹面により上方に出射するとともに、本発明の光源装置1(1A)の発光した光を外部に漏れない様に遮光する。   Further, the mold case 7 efficiently reflects light emitted from the side surface of the semiconductor light emitting element 4 by white powder such as barium titanate having good light reflectivity and light shielding property, and is upwardly formed by a tapered concave surface (not shown). The light emitted from the light source device 1 (1A) of the present invention is shielded so as not to leak outside.

さらに、充填透明樹脂8は、例えば無色透明なエポキシ樹脂等からなり、パターン2、半導体発光素子4、ボンディングワイヤ5等の保護のためにモールドケース7内等に充填される。   Further, the filled transparent resin 8 is made of, for example, a colorless and transparent epoxy resin or the like, and is filled in the mold case 7 or the like for protection of the pattern 2, the semiconductor light emitting element 4, the bonding wire 5, and the like.

また、図12に示すように、リード端子6(6a,6b)を用いない、フラットな電極としての端子電極16(16a,16b)は、基板11の端部に電気伝導性の良い金属等で厚く金属メッキを行ったり、導通性および弾力性のある燐青銅材等を機械的に取り付けることにより形成される。   As shown in FIG. 12, the terminal electrode 16 (16a, 16b) as a flat electrode without using the lead terminal 6 (6a, 6b) is made of a metal having good electrical conductivity at the end of the substrate 11. It is formed by performing thick metal plating or mechanically attaching a conductive and elastic phosphor bronze material or the like.

端子電極16aは、パターン2aと電気的に接続されて半導体発光素子4のカソード電極側と等しく、本発明の光源装置1としての陰極(−)として使用されるように構成される。   The terminal electrode 16a is electrically connected to the pattern 2a and is equal to the cathode electrode side of the semiconductor light emitting element 4, and is configured to be used as a cathode (−) as the light source device 1 of the present invention.

端子電極16bは、パターン2bと電気的に接続されて半導体発光素子4のアノード電極側と等しく、本発明の光源装置1としての陽極(+)として使用されるように構成される。   The terminal electrode 16b is electrically connected to the pattern 2b, is equal to the anode electrode side of the semiconductor light emitting element 4, and is configured to be used as an anode (+) as the light source device 1 of the present invention.

出光モールド部17は、無色透明なエポキシ樹脂からなり、矩形状に成型され、半導体発光素子4の発光層からの光(上部の電極側や側面の4方)を効率良く出射する。
また、出光モールド部17は、パターン2、半導体発光素子4、ボンディングワイヤ5等を保護している。
The light emission mold part 17 is made of a colorless and transparent epoxy resin, is molded into a rectangular shape, and efficiently emits light from the light emitting layer of the semiconductor light emitting device 4 (upper electrode side and four sides).
The light emitting mold part 17 protects the pattern 2, the semiconductor light emitting element 4, the bonding wire 5, and the like.

なお、図示しないが、出光モールド部17は、光線が一方向性になるドーム型等、目的や仕様に合った自由な形状に形成することができる。   In addition, although not shown in figure, the light emission mold part 17 can be formed in the free shape according to the objective and specification, such as a dome shape in which a light ray becomes one-way.

上記構成による光源装置1は、青色発光等の半導体発光素子4を用い、透明樹脂3として橙色蛍光顔料や橙色蛍光染料等の波長変換材料(または波長変換材料と導電性材料)を透明樹脂に混入した波長変換材混入ペースト3を用いる。これにより、クリアで輝度の高い白色光(混合色光)を得ることができる。
すなわち、半導体発光素子4の上方から青色光が放射され、半導体発光素子4の下方に放射した青色光が波長変換材混入ペースト3の波長変換材料によって黄色光に色変換される。
この色変換された黄色光は、波長変換材混入ペースト3の上方および下方に放射される。
波長変換材混入ペースト3の下方に放射された黄色光は、下部のリード2aの面で反射されて上方に放射される。
そして、半導体発光素子4自身が放射する青色光と、波長変換材混入ペースト3の波長変換材料によって色変換された黄色光とが混ざり合って半導体発光素子4の上方から白色光が放射される。
The light source device 1 having the above configuration uses a semiconductor light emitting element 4 such as blue light emission, and a transparent resin 3 is mixed with a wavelength conversion material (or a wavelength conversion material and a conductive material) such as an orange fluorescent pigment or an orange fluorescent dye in the transparent resin. The wavelength conversion material mixed paste 3 is used. Thereby, clear and high brightness white light (mixed color light) can be obtained.
That is, blue light is emitted from above the semiconductor light emitting element 4, and the blue light emitted below the semiconductor light emitting element 4 is color-converted to yellow light by the wavelength conversion material of the wavelength conversion material-containing paste 3.
The color-converted yellow light is emitted above and below the wavelength conversion material-containing paste 3.
The yellow light radiated below the wavelength conversion material mixed paste 3 is reflected by the surface of the lower lead 2a and radiated upward.
Then, the blue light emitted by the semiconductor light emitting element 4 itself and the yellow light color-converted by the wavelength conversion material of the wavelength conversion material-mixed paste 3 are mixed to emit white light from above the semiconductor light emitting element 4.

次に、上記構成による光源装置の製造方法について説明する。図13は本発明の光源装置の製造方法の過程を示すフロー図の一例である。
この光源装置の製造方法では、図13に示すステップの順に処理がなされ、光源装置が製造される。ステップ1(ST1)では、未加工の薄板リードフレームに電気的パターンやリード端子パターンや支持パターン等のパターンプレスを行う。
ステップ2(ST2)では、パターンプレスを行った薄板のリードフレームを樹脂でインサート成形を行う。
ステップ3(ST3)では、サブステップ1で調合した波長変換材混入ペーストを、半導体発光素子を載置する位置にインジェクタ等により、滴下する。
ステップ4(ST4)では、ステップ3で波長変換材混入ペーストを滴下した上部位置に半導体発光素子を載置する。
ステップ5(ST5)では、恒温槽に搬入し波長変換材混入ペーストを硬化させる。
ステップ6(ST6)では、半導体発光素子の電極と薄板リードフレームに設けたパターンとの間を電気的に接続する金ワイヤ等でワイヤーボンディングを行う。
ステップ7(ST7)では、サブステップ2で混合、脱泡した透明樹脂を、半導体発光素子の載置や金ワイヤ等でのボンディング処理後にインサート成形により形成された凹部の全体にインジェクタ等で充填する。
ステップ8(ST8)では、透明樹脂で凹部の全体に充填したものを恒温槽に搬入し透明樹脂を硬化させる。
ステップ9(ST9)では、リードフレームに形成された複数の光源装置をタイバーカッタ等でカッティングして、個々の光源装置に分離する。
なお、サブステップ1(別工程1)では、波長変換材料比率が高くない割合で波長変換材料と透明接着剤とをミキサやアトライタ等で混合し、例えばスタンパーピン等との接着性(濡れ性)をも考慮して粘度等も調整する。
また、サブステップ2(別工程2)では、透明樹脂を硬化するために透明樹脂の主剤と硬化剤とをミキサやアトライタ等で混合し、真空装置等で脱泡する。
Next, the manufacturing method of the light source device by the said structure is demonstrated. FIG. 13 is an example of a flowchart showing the process of the method for manufacturing the light source device of the present invention.
In this method of manufacturing a light source device, processing is performed in the order of steps shown in FIG. 13 to manufacture the light source device. In step 1 (ST1), pattern pressing such as an electrical pattern, a lead terminal pattern, and a support pattern is performed on an unprocessed thin lead frame.
In step 2 (ST2), a thin lead frame subjected to pattern pressing is insert-molded with resin.
In step 3 (ST3), the wavelength conversion material mixed paste prepared in sub-step 1 is dropped by an injector or the like at a position where the semiconductor light emitting element is placed.
In step 4 (ST4), the semiconductor light emitting element is placed at the upper position where the wavelength conversion material-containing paste is dropped in step 3.
In step 5 (ST5), it is carried into a thermostat and the wavelength conversion material mixed paste is cured.
In step 6 (ST6), wire bonding is performed with a gold wire or the like that electrically connects the electrode of the semiconductor light emitting element and the pattern provided on the thin plate lead frame.
In step 7 (ST7), the transparent resin mixed and defoamed in sub-step 2 is filled with an injector or the like into the entire recess formed by insert molding after mounting the semiconductor light emitting element or bonding with a gold wire or the like. .
In step 8 (ST8), the transparent resin filled in the entire concave portion is carried into a thermostat and the transparent resin is cured.
In step 9 (ST9), a plurality of light source devices formed on the lead frame are cut with a tie bar cutter or the like, and separated into individual light source devices.
In sub-step 1 (separate process 1), the wavelength conversion material and the transparent adhesive are mixed with a mixer, an attritor, or the like at a ratio where the wavelength conversion material ratio is not high, and, for example, adhesion (wetability) to a stamper pin or the like. The viscosity and the like are also adjusted in consideration of
In sub-step 2 (separate process 2), in order to cure the transparent resin, the main component of the transparent resin and the curing agent are mixed with a mixer, an attritor or the like, and defoamed with a vacuum device or the like.

なお、上述した光源装置の製造方法は、リードフレームを用いる場合の例であるが、絶縁性基板を用いた場合にも適用することができる。この場合、上述した製造方法に於いて、パターンプレス後のインサート成形されたリードフレームに代え、導電性パターンが設けられた絶縁性基板が用いられ、ステップ3以降の工程が概略採用される。なお、絶縁性基板上の波長変換材混入ペースト及び半導体発光素子が設けられる位置には凹部が形成され、この凹部の全体に透明樹脂が充填される。但し、図12に示すような光源装置を製造する場合には、凹部が無いので、ワイヤーボンデイングを行った後、サブステップ2で混合、脱泡した透明樹脂を半導体発光素子及びワイヤーボンデイング部分を覆うようにしてモールド成形する(この部分が図12の出光モールド部に相当する)。   In addition, although the manufacturing method of the light source device mentioned above is an example when using a lead frame, it is applicable also when using an insulating substrate. In this case, in the manufacturing method described above, an insulating substrate provided with a conductive pattern is used instead of the insert-molded lead frame after pattern pressing, and the steps after step 3 are generally employed. A recess is formed at a position where the wavelength conversion material mixed paste and the semiconductor light emitting element are provided on the insulating substrate, and the entire recess is filled with a transparent resin. However, in the case of manufacturing a light source device as shown in FIG. 12, since there is no recess, after wire bonding, the transparent resin mixed and defoamed in sub-step 2 covers the semiconductor light emitting element and the wire bonding part. In this way, molding is performed (this portion corresponds to the light emission mold portion in FIG. 12).

この製造方法によれば、絶縁性を有する材料からなる基板上に導電性パターンを設け、さらに半導体発光素子の出射面の反対側に波長変換材料を設け、その波長変換材料上に半導体発光素子を載置できる。このため、波長変換材料が直接外光に晒されず、半導体発光素子の出射面から出射した波長の光と、半導体発光素子の出射面の反対側に設けた波長変換材料によって波長変換された光が再度、半導体発光素子の出射面方向に出射することができる。そして、印刷等の導電性パターンに半導体発光素子を設けるため、均一化、量産化等の品質、生産性の向上に優れた光源装置を作製することができる。   According to this manufacturing method, a conductive pattern is provided on a substrate made of an insulating material, a wavelength conversion material is provided on the opposite side of the emission surface of the semiconductor light emitting device, and the semiconductor light emitting device is provided on the wavelength conversion material. Can be placed. For this reason, the wavelength conversion material is not directly exposed to external light, but the wavelength converted by the wavelength conversion material provided on the opposite side of the emission surface of the semiconductor light emitting element and the light of the wavelength emitted from the emission surface of the semiconductor light emitting element Can be emitted again in the direction of the emission surface of the semiconductor light emitting device. Since the semiconductor light emitting element is provided in the conductive pattern such as printing, a light source device excellent in quality and productivity such as uniformization and mass production can be manufactured.

従来の半導体発光素子の上に波長変換材料を混入した波長変換材混入ペーストを設けた構成と本実施例の半導体発光素子の下に波長変換材料を混入した波長変換材混入ペーストで接着固定または波長変換材料を混入した波長変換材混入ペースト上に半導体発光素子を載置(後、透明樹脂により接着)した構成について、弊社のエレメントタイプ(L1800)に実装した物について下記に示す条件で光度測定の比較を行った。その測定結果を図14に示す。   A structure in which a wavelength conversion material mixed paste in which a wavelength conversion material is mixed on a conventional semiconductor light emitting device and a wavelength conversion material mixed paste in which a wavelength conversion material is mixed under the semiconductor light emitting device of this embodiment are bonded and fixed. For a configuration in which a semiconductor light emitting element is mounted on a wavelength conversion material-mixed paste mixed with a conversion material (which is then bonded with a transparent resin), the product mounted on our element type (L1800) is subjected to photometric measurement under the conditions shown below. A comparison was made. The measurement results are shown in FIG.

仕様チップ:E1C10−1B001(BLチップ−豊田合成)、使用蛍光材:(YAG81004)、使用樹脂:エポキシ樹脂(従来および本実施例同材料)、使用:従来タイプの(蛍光材を半導体発光沿いの上部に設ける)、本実施例タイプ(蛍光体を半導体発光素子の下部に設ける)
測定条件:1チップ当たりの電流10mA時の光度を測定
測定数量:各13個
測定機材:LEDテスター
Specification chip: E1C10-1B001 (BL chip-Toyoda Gosei), fluorescent material used: (YAG81004), resin used: epoxy resin (conventional and the same material of this example), use: conventional type (fluorescent material along with semiconductor light emission) (Provided in the upper part), this embodiment type (providing the phosphor in the lower part of the semiconductor light emitting device)
Measurement conditions: Measure the light intensity at 10mA current per chip Measurement quantity: 13 each Measurement equipment: LED tester

図14を見て明らかなように、従来の構成に比べ本実施例の構成のほうが平均光度約32.5%向上することが判る。   As is apparent from FIG. 14, it can be seen that the configuration of the present embodiment is improved by about 32.5% in average luminous intensity as compared with the conventional configuration.

本発明に係る製造方法により製造される光源装置の略斜視全体図である。1 is an overall schematic perspective view of a light source device manufactured by a manufacturing method according to the present invention. 本発明に係る製造方法により製造される光源装置のリードフレーム図である。It is a lead frame figure of the light source device manufactured by the manufacturing method concerning the present invention. 本発明に係る製造方法により製造される光源装置の断面図である。It is sectional drawing of the light source device manufactured by the manufacturing method which concerns on this invention. 本発明に係る製造方法により製造される光源装置の断面図である。It is sectional drawing of the light source device manufactured by the manufacturing method which concerns on this invention. 本発明に係る製造方法により製造される光源装置の断面図である。It is sectional drawing of the light source device manufactured by the manufacturing method which concerns on this invention. 本発明に係る製造方法により製造される光源装置の断面図である。It is sectional drawing of the light source device manufactured by the manufacturing method which concerns on this invention. 本発明に係る製造方法により製造される光源装置の断面図である。It is sectional drawing of the light source device manufactured by the manufacturing method which concerns on this invention. 本発明に係る製造方法により製造される光源装置の断面図である。It is sectional drawing of the light source device manufactured by the manufacturing method which concerns on this invention. 本発明に係る製造方法により製造される光源装置の断面図である。It is sectional drawing of the light source device manufactured by the manufacturing method which concerns on this invention. 本発明に係る製造方法により製造される光源装置の出射面拡大図である。It is an emission surface enlarged view of the light source device manufactured by the manufacturing method concerning the present invention. 本発明に係る製造方法により製造される光源装置の断面図である。It is sectional drawing of the light source device manufactured by the manufacturing method which concerns on this invention. 本発明に係る製造方法により製造される光源装置の略斜視全体図である。1 is an overall schematic perspective view of a light source device manufactured by a manufacturing method according to the present invention. 本発明に係る光源装置の製造方法の過程フロー図の一例である。It is an example of the process flowchart of the manufacturing method of the light source device which concerns on this invention. 従来の半導体発光素子の上に波長変換材料を混入した波長変換材混入ペーストを設けた構成と本発明の半導体発光素子の下に波長変換材料を混入した波長変換材混入ペーストで接着固定または波長変換材料を混入した波長変換材混入ペースト上に半導体発光素子を載置した構成とにおける光度測定の比較結果を示す図である。Adhesive fixing or wavelength conversion with a structure in which a wavelength conversion material mixed paste in which a wavelength conversion material is mixed on a conventional semiconductor light emitting device and a wavelength conversion material mixed paste in which a wavelength conversion material is mixed under the semiconductor light emitting device of the present invention It is a figure which shows the comparison result of the photometric measurement in the structure which mounted the semiconductor light-emitting element on the wavelength conversion material mixing paste which mixed the material.

符号の説明Explanation of symbols

1(1A,1B) 光源装置
1a 表面
1b 裏面
2,2a,2b,2c パターン
2d 絶縁基板
3 波長変換材混入ペースト
4 半導体発光素子
4a 出射面
4b 底面
4c 陰極
4d 陽極
5,5a,5b ボンディングワイヤ
6,6a,6b,9a リード端子
7 モールドケース
7a 凹状部
8 充填透明樹脂
8a 表面
9 リードフレーム
9b 支持パターン
9c 穴
10 透明樹脂
12 開口部
17 出光モールド部
1 (1A, 1B) Light source device 1a Front surface 1b Back surface 2, 2a, 2b, 2c Pattern 2d Insulating substrate 3 Wavelength conversion material mixed paste 4 Semiconductor light emitting element 4a Emission surface 4b Bottom surface 4c Cathode 4d Anode 5, 5a, 5b Bonding wire 6 , 6a, 6b, 9a Lead terminal 7 Mold case 7a Concave part 8 Filled transparent resin 8a Surface 9 Lead frame 9b Support pattern 9c Hole 10 Transparent resin 12 Opening part 17 Idemitsu mold part

Claims (1)

InGaAlやInGaAlNやInGaNおよびGaN系の半導体発光素子および波長変換材料を用いた光源装置を製造する光源装置の製造方法において、
以下のステップで製造することを特徴とする光源装置の製造方法。
ステップ1:薄板リードフレームに陽極および陰極の電極パターンおよびどちらか一方の前記陽極または前記陰極に前記半導体発光素子の形状に合わせた凹状パターンのプレスを行う。
ステップ2:前記電極パターンおよび前記凹状パターンのプレスを行った前記薄板を樹脂により開口部を設けてインサート成形を行う。
ステップ3:波長変換材料と透明接着剤との混合比率を重量比率として1:1〜5:1の範囲で混合調合した波長変換材混入ペーストを、前記陽極または前記陰極のどちらか一方に設けた前記凹状パターンに滴下または充填する。
ステップ4:前記波長変換材混入ペーストを前記凹状パターンに滴下または充填した上に透明性を有した前記半導体発光素子を載置する。
ステップ5:恒温槽に搬入し前記混入ペーストを硬化させる。
ステップ6:前記半導体発光素子の陽極および陰極の電極と前記陽極および陰極の電極パターンとを電気的に接続する金ワイヤ等でワイヤーボンディングを行う。
ステップ7:前記半導体発光素子や前記陽極および陰極の電極パターンおよび前記金ワイヤ等を保護、外気遮断の為に封止する透明樹脂と硬化剤とを混合攪拌および脱泡した透明樹脂を前記半導体発光素子や前記陽極および陰極の電極パターンおよび前記金ワイヤ等を設けた前記インサート成形にて形成された前記開口部に充填する。
ステップ8:恒温槽に搬入し前記透明樹脂を硬化させる。
ステップ9:前記リードフレームに形成された電極端子等をカッティングして、個々の前記光源装置に分離する。
In a method of manufacturing a light source device that manufactures a light source device using InGaAl, InGaAlN, InGaN, and a GaN-based semiconductor light emitting element and a wavelength conversion material,
A manufacturing method of a light source device, which is manufactured by the following steps.
Step 1: Press a negative electrode pattern on the thin plate lead frame and a concave pattern in accordance with the shape of the semiconductor light emitting device on either the anode or the cathode.
Step 2: Insert molding is performed on the thin plate subjected to pressing of the electrode pattern and the concave pattern by providing an opening with resin.
Step 3: A wavelength conversion material mixed paste prepared by mixing and mixing the wavelength conversion material and the transparent adhesive in a weight ratio of 1: 1 to 5: 1 was provided on either the anode or the cathode. The concave pattern is dropped or filled.
Step 4: Place the semiconductor light emitting element having transparency on the wavelength patterning material mixed paste dropped or filled in the concave pattern.
Step 5: Bring into a thermostat and cure the mixed paste.
Step 6: Wire bonding is performed using a gold wire or the like that electrically connects the anode and cathode electrodes of the semiconductor light emitting device and the anode and cathode electrode patterns.
Step 7: Protecting the semiconductor light emitting element, the electrode pattern of the anode and the cathode, the gold wire, and the like, mixing the transparent resin for sealing for blocking outside air and a curing agent, and stirring and degassing the transparent resin, the semiconductor light emission The opening formed by the insert molding provided with the element, the electrode pattern of the anode and the cathode, the gold wire and the like is filled.
Step 8: Bring into a thermostat and cure the transparent resin.
Step 9: The electrode terminals and the like formed on the lead frame are cut and separated into the individual light source devices.
JP2006202242A 2006-07-25 2006-07-25 Method for manufacturing light source device Pending JP2006287267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006202242A JP2006287267A (en) 2006-07-25 2006-07-25 Method for manufacturing light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006202242A JP2006287267A (en) 2006-07-25 2006-07-25 Method for manufacturing light source device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002226410A Division JP2004071710A (en) 2002-08-02 2002-08-02 Method for manufacturing light source device and light source device manufactured thereby

Publications (1)

Publication Number Publication Date
JP2006287267A true JP2006287267A (en) 2006-10-19

Family

ID=37408749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006202242A Pending JP2006287267A (en) 2006-07-25 2006-07-25 Method for manufacturing light source device

Country Status (1)

Country Link
JP (1) JP2006287267A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986397B1 (en) 2010-02-08 2010-10-08 엘지이노텍 주식회사 Light emitting apparatus
JP2012160447A (en) * 2011-01-31 2012-08-23 Yung Pun Cheng Method for packaging led emitting light omnidirectionally and led package
JP2017163053A (en) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 LED module
WO2019054750A1 (en) * 2017-09-15 2019-03-21 엘지이노텍 주식회사 Light-emitting device package and light source device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159859U (en) * 1987-04-07 1988-10-19
JPH05206524A (en) * 1992-08-25 1993-08-13 Stanley Electric Co Ltd Molding resin for photo-semiconductor
JPH0845972A (en) * 1994-05-24 1996-02-16 Sharp Corp Production of semiconductor device
JPH11345912A (en) * 1998-05-29 1999-12-14 Rohm Co Ltd Surface mounted semiconductor device
JP2001007405A (en) * 1999-06-23 2001-01-12 Citizen Electronics Co Ltd Light emitting diode
JP2001036150A (en) * 1999-07-19 2001-02-09 Citizen Electronics Co Ltd Light emitting diode
JP2001223388A (en) * 2000-02-09 2001-08-17 Nippon Leiz Co Ltd Light source device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159859U (en) * 1987-04-07 1988-10-19
JPH05206524A (en) * 1992-08-25 1993-08-13 Stanley Electric Co Ltd Molding resin for photo-semiconductor
JPH0845972A (en) * 1994-05-24 1996-02-16 Sharp Corp Production of semiconductor device
JPH11345912A (en) * 1998-05-29 1999-12-14 Rohm Co Ltd Surface mounted semiconductor device
JP2001007405A (en) * 1999-06-23 2001-01-12 Citizen Electronics Co Ltd Light emitting diode
JP2001036150A (en) * 1999-07-19 2001-02-09 Citizen Electronics Co Ltd Light emitting diode
JP2001223388A (en) * 2000-02-09 2001-08-17 Nippon Leiz Co Ltd Light source device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986397B1 (en) 2010-02-08 2010-10-08 엘지이노텍 주식회사 Light emitting apparatus
US8916899B2 (en) 2010-02-08 2014-12-23 Lg Innotek Co., Ltd. Light emitting apparatus and lighting system
JP2012160447A (en) * 2011-01-31 2012-08-23 Yung Pun Cheng Method for packaging led emitting light omnidirectionally and led package
JP2017163053A (en) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 LED module
WO2019054750A1 (en) * 2017-09-15 2019-03-21 엘지이노텍 주식회사 Light-emitting device package and light source device
US10937934B2 (en) 2017-09-15 2021-03-02 Lg Innotek Co., Ltd. Light emitting device package and lighting source device

Similar Documents

Publication Publication Date Title
KR100748815B1 (en) Light source
US9786827B2 (en) Light emitting diode package
US10431567B2 (en) White ceramic LED package
CN105304805B (en) Light emitting device package
US8378375B2 (en) Light emitting apparatus having a partition
US9793453B2 (en) Light emitting device
US8686464B2 (en) LED module
EP1890341B1 (en) Porcelain enameled substrate for light-emitting device mounting, light-emitting device module, illuminating device, display and traffic signal device
JP2006310887A (en) Method of manufacturing light source device
JP2004128424A (en) White light emitting device
JP2012515440A (en) Multiple light emitting device package
JP2005019838A (en) Light source device and method for manufacturing the same
KR20110000730A (en) Surface-mounted led module and method for producing a surface-mounted led module
JP2007258620A (en) Light emitting device
JP2006173326A (en) Optical source apparatus
JP2002064112A (en) Manufacturing method of photoelectron component
JP4138261B2 (en) Light source device
JP2006287267A (en) Method for manufacturing light source device
JP2004071710A (en) Method for manufacturing light source device and light source device manufactured thereby
JP2001223388A (en) Light source device
JP3806301B2 (en) Light source device
JP2006054210A (en) Light emitting device
KR20060128373A (en) Light emitting diode and method of manufacturing the same
JP2007103981A (en) Light source device
US20140159061A1 (en) Protection element and light emitting device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323