JP2006285050A - Optical deflecting element, and image display device - Google Patents

Optical deflecting element, and image display device Download PDF

Info

Publication number
JP2006285050A
JP2006285050A JP2005106877A JP2005106877A JP2006285050A JP 2006285050 A JP2006285050 A JP 2006285050A JP 2005106877 A JP2005106877 A JP 2005106877A JP 2005106877 A JP2005106877 A JP 2005106877A JP 2006285050 A JP2006285050 A JP 2006285050A
Authority
JP
Japan
Prior art keywords
transparent electrode
electrode line
liquid crystal
transparent
deflection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005106877A
Other languages
Japanese (ja)
Other versions
JP4917757B2 (en
Inventor
Yumi Matsuki
ゆみ 松木
Hiroyuki Sugimoto
浩之 杉本
Toshiaki Tokita
才明 鴇田
Yukiko Hirano
由希子 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005106877A priority Critical patent/JP4917757B2/en
Publication of JP2006285050A publication Critical patent/JP2006285050A/en
Application granted granted Critical
Publication of JP4917757B2 publication Critical patent/JP4917757B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical deflecting element which switches an optical path by changing a liquid crystal director direction to a desired direction, and an image display device. <P>SOLUTION: The optical deflecting element and an optical deflecting method are provided for switching the optical path by aligning liquid crystal molecules nearly vertically between a pair of substrates (2A, 2B), producing an electric field almost in parallel to a liquid crystal layer 8, and changing the liquid crystal director direction to a desired direction. Ends of a transparent electrode line group 3A and a portion of an electrode connection part 3B are covered with a coating member 22 to prevent a transparent electrode line from being broken owing to discharge in a narrow space formed between optical deflecting elements or with a holder holding an optical deflecting element. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光偏向素子、及び画像表示装置に関し、特に、液晶ダイレクタ方向を所望の方向に変化させて光路を切り換る光偏向素子、及び画像表示装置に関する。   The present invention relates to an optical deflection element and an image display device, and more particularly, to an optical deflection element and an image display device that change an optical path by changing a liquid crystal director direction to a desired direction.

従来、光偏向素子を用いて入射光を偏向して出射する光偏向装置としては、KH2PO4_KDP_、NH4H2PO4_ADP_、LiNbO3、LiTaO3、GaAs、CdTeなど第1次電気光学効果、ポッケルス効果の大きな材料や、KTN、SrTiO3、CS2、ニトロベンゼン等の第2次電気光学効果の大きな材料を用いた電気光学デバイスや、ガラス、シリカ、TeO2などの材料を用いた音響光学デバイスが知られている(例えば、青木昌治編;「オプトエレクトロニックデバイス」、昭晃堂)。また、液晶材料を含む光偏向素子を用いた光偏向装置も各種提案されている。   Conventionally, as an optical deflecting device that deflects and emits incident light using an optical deflecting element, KH2PO4_KDP_, NH4H2PO4_ADP_, LiNbO3, LiTaO3, GaAs, CdTe and other primary electro-optic effects, Pockels effect materials, KTN, There are known electro-optic devices using materials having a large secondary electro-optic effect such as SrTiO 3, CS 2, nitrobenzene, and acousto-optic devices using materials such as glass, silica, TeO 2 (for example, edited by Shoji Aoki; “Optoelectronic Devices”, Shosodo). Various optical deflecting devices using an optical deflecting element including a liquid crystal material have been proposed.

例えば、特許文献1や特許文献2に開示されている光損失を低減するようにした光偏向装置及び光ビームシフタ、特許文献3、特許文献4、特許文献5に開示されている光偏向素子による光偏向動作の低電力化や小型化を図った光偏向装置等がある。   For example, a light deflecting device and a light beam shifter that are designed to reduce the optical loss disclosed in Patent Literature 1 and Patent Literature 2, and light produced by the optical deflection element disclosed in Patent Literature 3, Patent Literature 4, and Patent Literature 5. There are optical deflecting devices and the like that reduce the power and size of the deflection operation.

また、例えば、特許文献6、特許文献7、及び特許文献8に開示されている光偏向素子により偏向角を拡大した光偏向装置、特許文献9、特許文献10、特許文献11に開示されている光偏向素子により偏向角の調整を可能とした光偏向装置がある。   Further, for example, an optical deflection device in which a deflection angle is expanded by an optical deflection element disclosed in Patent Document 6, Patent Document 7, and Patent Document 8, disclosed in Patent Document 9, Patent Document 10, and Patent Document 11. There is an optical deflecting device in which a deflection angle can be adjusted by an optical deflecting element.

このような光偏向装置では、特許文献12、特許文献13に開示されているように、構成を複雑化する機械可動部を用いることなく光偏向素子による光路の偏向角の調整を可能としている。   In such an optical deflection apparatus, as disclosed in Patent Documents 12 and 13, the deflection angle of the optical path by the optical deflection element can be adjusted without using a mechanical movable unit that complicates the configuration.

特許文献14では、画像表示素子における表示画像を複数のフィールドに分割表示し、フィールド毎に画像を表示させるとともに対応するフィールド毎に光路をシフトさせるようにした画像表示装置が開示されている。   Patent Document 14 discloses an image display device in which a display image on an image display element is divided and displayed in a plurality of fields, an image is displayed for each field, and an optical path is shifted for each corresponding field.

特許文献15では、透光性の圧電素子を透明の電極で挟み、電圧を印加することで厚みを変化させて光路をシフトさせることにより全体の小型化、高精度・高分解能化を実現する技術が提案されている。
特開平6−18940号公報 特開平5−313116号公報 特開2000−193925号公報 特開平9−133931号公報 特開平5−204001号公報 特開平6−194695号公報 特開平6−258646号公報 特開平6−222368号公報 特開平9−133904号公報 特表2000−507005号公報 特開平11−109304号公報 特開平7−64123号公報 特開平8−262391号公報 特開平6−324320号公報 特開平10−133135号公報
In Patent Document 15, a technology that realizes miniaturization, high accuracy, and high resolution by sandwiching a translucent piezoelectric element between transparent electrodes and changing the thickness by applying a voltage to shift the optical path. Has been proposed.
Japanese Patent Laid-Open No. 6-18940 JP-A-5-313116 JP 2000-193925 A JP-A-9-133931 JP-A-5-204001 JP-A-6-194695 JP-A-6-258646 JP-A-6-222368 JP-A-9-133904 Special Table 2000-507005 JP-A-11-109304 JP 7-64123 A JP-A-8-262391 JP-A-6-324320 JP-A-10-133135

しかし、上記の発明は以下の問題を有している。   However, the above invention has the following problems.

光偏向素子として、第1次電気光学効果、ポッケルス効果の大きな材料や、第2次電気光学効果の大きな材料を用いた電気光学デバイスや、音響光学デバイス等を用いた場合、十分に大きな光偏向量を得るためには、一般的に、光路長を長くとる必要がある。このため、小型化が困難であり、また、材料が高価であるため用途が制限されているのが現状である。   When the optical deflecting element is a material having a large primary electro-optic effect or Pockels effect, an electro-optic device using a material having a large secondary electro-optic effect, an acousto-optic device, or the like, a sufficiently large light deflection In order to obtain the quantity, it is generally necessary to increase the optical path length. For this reason, it is difficult to reduce the size, and the use is limited because the material is expensive.

また、上述の光偏向装置は、画像表示素子に表示される画像を投写光学系によりスクリーン等に表示する画像表示装置における投写光学系や、入射光に対する出射光の光路シフトを利用した光スイッチ等に用いられる。それらの光偏向装置を用いた画像表示装置では、画像表示素子に表示される画像を光偏向素子によって時間に応じて高速でシフトさせて、人間の視覚に残像現象を生じさせることで、見掛け上解像度を向上させた画像をスクリーンに表示させるようにしているものがある。このような画像表示装置に用いられる光偏向装置による光偏向動作のタイミング、シフトタイミングは、人間の視覚に残像現象を生じさせる程度に高速、かつ各画像にブレが生じないものでなければならない。   In addition, the above-described optical deflection apparatus includes a projection optical system in an image display apparatus that displays an image displayed on the image display element on a screen or the like by a projection optical system, an optical switch that uses an optical path shift of outgoing light with respect to incident light, and the like. Used for. In an image display device using such an optical deflector, an image displayed on the image display element is shifted at a high speed according to time by the optical deflector to cause an afterimage phenomenon in human vision. There are some which display an image with improved resolution on the screen. The timing and shift timing of the light deflection operation by the light deflection device used in such an image display device must be high enough to cause an afterimage phenomenon in human vision and no blurring occurs in each image.

しかしながら、例えば、特許文献1記載の技術では、液晶材料にネマチック液晶を用いているため、応答速度をサブミリ秒にまで速めることは困難である。また、特許文献9記載の技術では、液晶材料にスメクチックA相の強誘電液晶を用いているが、スメクチックA相の液晶材料は自発分極を持たないため、応答速度の十分な高速化を図ることが困難である。このように、構成の簡易化や小型化を図った光偏向装置では、使用する液晶材料の特性により光路シフト動作の高速化が困難であるという問題を有している。   However, for example, in the technique described in Patent Document 1, since nematic liquid crystal is used as the liquid crystal material, it is difficult to increase the response speed to sub-milliseconds. In the technique described in Patent Document 9, a smectic A-phase ferroelectric liquid crystal is used as the liquid crystal material. However, since the smectic A-phase liquid crystal material does not have spontaneous polarization, the response speed should be sufficiently increased. Is difficult. As described above, the optical deflecting device having a simplified configuration and a small size has a problem that it is difficult to increase the speed of the optical path shifting operation due to the characteristics of the liquid crystal material used.

また、特許文献2記載の技術は、光路上に配置される各部材を移動させることにより光路シフト動作を行う場合、光路上に配置される各部材を高速かつ正確に平行移動させなくてはならないため可動部の精度や耐久性が要求され、光損失を低減することはできるが、振動や騒音の発生、装置の大型化が問題となる。   In the technique described in Patent Document 2, when the optical path shift operation is performed by moving each member arranged on the optical path, each member arranged on the optical path must be translated at high speed and accurately. Therefore, accuracy and durability of the movable part are required, and light loss can be reduced, but generation of vibration and noise and an increase in size of the apparatus are problems.

また、特許文献14記載の光路をシフトさせる手段では、光偏向素子を駆動するための構成が複雑となりコストが高くなってしまう。さらに、特許文献15記載の技術は、比較的大きな透明圧電素子を必要とし、装置のコストがアップする。   Further, the means for shifting the optical path described in Patent Document 14 complicates the configuration for driving the optical deflection element and increases the cost. Furthermore, the technique described in Patent Document 15 requires a relatively large transparent piezoelectric element, which increases the cost of the apparatus.

また、光偏向素子の液晶層内に100V/mm程度の水平電界を印加する場合、素子の有効幅に比例した大きな電位差を印加する必要がある。例えば、有効幅40mmの素子には4000Vの電圧を印加する必要がある。そのため、光偏向素子の駆動時に基板面に設けた透明電極ライン群の端部や電極接続部の一部が、図10のような組み合わせた2個の光偏向素子間、あるいは光偏向素子を保持するホルダーとの狭空間で放電を起こし透明電極ラインの細部が断線する。   Further, when a horizontal electric field of about 100 V / mm is applied in the liquid crystal layer of the light deflection element, it is necessary to apply a large potential difference proportional to the effective width of the element. For example, it is necessary to apply a voltage of 4000 V to an element having an effective width of 40 mm. Therefore, the end of the transparent electrode line group provided on the substrate surface and a part of the electrode connection portion at the time of driving the optical deflection element hold the two optical deflection elements combined as shown in FIG. 10 or hold the optical deflection element. The discharge is caused in a narrow space with the holder to be cut, and the details of the transparent electrode line are disconnected.

そこで、本発明は、一対の基板間に液晶分子を略垂直に配向させ、液晶層に対して略平行な方向に電界を発生させ、液晶ダイレクタ方向を所望の方向に変化させて光路を切り換る光偏向素子及び光偏向方法において、透明電極ライン群の端部や電極接続部の一部を被覆部材により被覆することにより、光偏向素子間又は光偏向素子を保持するホルダーとの狭空間での放電による透明電極ラインの破損を防止する光偏向素子及び画像表示装置を提案することを目的としている。   Therefore, the present invention aligns liquid crystal molecules between a pair of substrates substantially vertically, generates an electric field in a direction substantially parallel to the liquid crystal layer, and changes the liquid crystal director direction to a desired direction to switch the optical path. In the optical deflection element and the optical deflection method, the end of the transparent electrode line group and a part of the electrode connecting portion are covered with a covering member, so that the optical deflection element and the optical deflection method can be used in a narrow space between the optical deflection elements or a holder for holding the optical deflection element. It is an object of the present invention to propose an optical deflection element and an image display device that prevent the transparent electrode line from being damaged by the discharge.

請求項1記載の発明は、透明な一対の基板と、前記基板上に配置された複数の透明電極ライン群と、前記基板間で基板面に対して略垂直なキラルスメクチックC相を形成する液晶層と、前記複数の透明電極ライン群の間に配置された誘電体層とを有し、前記透明電極ライン間に電位勾配を発生させることにより、光路を偏向する光偏向素子において、前記透明電極ライン群の前記誘電体層が配置されていない領域が被覆部材により被覆されていることを特徴とする。   The invention described in claim 1 is a liquid crystal forming a pair of transparent substrates, a plurality of transparent electrode line groups arranged on the substrate, and a chiral smectic C phase substantially perpendicular to the substrate surface between the substrates. In the optical deflection element that has a layer and a dielectric layer disposed between the plurality of transparent electrode line groups and deflects an optical path by generating a potential gradient between the transparent electrode lines, the transparent electrode A region of the line group where the dielectric layer is not disposed is covered with a covering member.

請求項2記載の発明は、透明な一対の基板と、前記基板上に配置された複数の透明電極ライン群と、前記基板間で基板面に対して略垂直なキラルスメクチックC相を形成する液晶層と、前記複数の透明電極ライン群の間に配置された誘電体層と、前記透明電極ライン群と電源とを接続する電極接続部とを有し、前記透明電極ライン間に電位勾配を発生させることにより、光路を偏向する光偏向素子において、前記透明電極ライン群の前記誘電体層が配置されていない領域及び前記電極接続部が被覆部材により被覆されていることを特徴とする。   The invention described in claim 2 is a liquid crystal forming a pair of transparent substrates, a plurality of transparent electrode line groups arranged on the substrate, and a chiral smectic C phase substantially perpendicular to the substrate surface between the substrates. And a dielectric layer disposed between the plurality of transparent electrode line groups, and an electrode connecting portion that connects the transparent electrode line group and a power source, and generates a potential gradient between the transparent electrode lines. Thus, in the optical deflection element that deflects the optical path, the transparent electrode line group in which the dielectric layer is not disposed and the electrode connecting portion are covered with a covering member.

請求項3記載の発明は、請求項2記載の光偏向素子において、前記透明電極ライン群を電気的に接続する抵抗体を有することを特徴とする。   According to a third aspect of the present invention, in the optical deflection element according to the second aspect of the present invention, the optical deflection element further includes a resistor that electrically connects the transparent electrode line group.

請求項4記載の発明は、透明な一対の基板と、前記基板上に配置された複数の透明電極ライン群と、前記基板間で基板面に対して略垂直なキラルスメクチックC相を形成する液晶層と、前記複数の透明電極ライン群の間に配置された誘電体層と、前記透明電極ライン群を電気的に接続する抵抗体とを有し、前記透明電極ライン間に電位勾配を発生させることにより、光路を偏向する光偏向素子において、前記誘電体層が前記透明電極ライン群及び前記抵抗体を被覆することを特徴とする。   According to a fourth aspect of the present invention, there is provided a pair of transparent substrates, a plurality of transparent electrode line groups arranged on the substrate, and a liquid crystal forming a chiral smectic C phase substantially perpendicular to the substrate surface between the substrates. A layer, a dielectric layer disposed between the plurality of transparent electrode line groups, and a resistor electrically connecting the transparent electrode line groups, and generating a potential gradient between the transparent electrode lines Thus, in the optical deflection element that deflects the optical path, the dielectric layer covers the transparent electrode line group and the resistor.

請求項5記載の発明は、透明な一対の基板と、前記基板上に配置された複数の透明電極ライン群と、前記基板間で基板面に対して略垂直なキラルスメクチックC相を形成する液晶層と、前記複数の透明電極ライン群の間に配置された誘電体層と、前記透明電極ライン群を電気的に接続する抵抗体とを有し、前記透明電極ライン間に電位勾配を発生させることにより、光路を偏向する光偏向素子において、前記透明電極ライン群と電源とを接続する電極接続部へ給電する給電手段を有し、前記給電手段は、前記電極接続部と接する部分のみが導電部材であることを特徴とする。   The invention according to claim 5 is a liquid crystal forming a pair of transparent substrates, a plurality of transparent electrode line groups arranged on the substrate, and a chiral smectic C phase substantially perpendicular to the substrate surface between the substrates. A layer, a dielectric layer disposed between the plurality of transparent electrode line groups, and a resistor electrically connecting the transparent electrode line groups, and generating a potential gradient between the transparent electrode lines Thus, the optical deflection element for deflecting the optical path has a power feeding means for feeding power to the electrode connecting portion for connecting the transparent electrode line group and the power source, and only the portion in contact with the electrode connecting portion is electrically conductive. It is a member.

請求項6記載の発明は、透明な一対の基板と、前記基板上に配置された複数の透明電極ライン群と、前記基板間で基板面に対して略垂直なキラルスメクチックC相を形成する液晶層と、前記複数の透明電極ライン群の間に配置された誘電体層とを有し、前記透明電極ライン間に電位勾配を発生させることにより、光路を偏向する光偏向素子において、前記透明電極ライン群の前記誘電体層が配置されていない領域が前記基板面に前記誘電体層を接着する接着剤により被覆されていることを特徴とする。   The invention according to claim 6 is a liquid crystal forming a pair of transparent substrates, a plurality of transparent electrode line groups arranged on the substrate, and a chiral smectic C phase substantially perpendicular to the substrate surface between the substrates. In the optical deflection element that has a layer and a dielectric layer disposed between the plurality of transparent electrode line groups and deflects an optical path by generating a potential gradient between the transparent electrode lines, the transparent electrode A region of the line group where the dielectric layer is not disposed is covered with an adhesive that adheres the dielectric layer to the substrate surface.

請求項7記載の発明は、透明な一対の基板と、前記基板上に配置された複数の透明電極ライン群と、前記基板間で基板面に対して略垂直なキラルスメクチックC相を形成する液晶層と、前記複数の透明電極ライン群の間に配置された誘電体層と、前記透明電極ライン群を電気的に接続する抵抗体とを有し、前記透明電極ライン間に電位勾配を発生させることにより、光路を偏向する光偏向素子において、前記誘電体層が前記透明電極ライン群及び前記抵抗体が前記接着剤により被覆されていることを特徴とする。   The invention according to claim 7 is a liquid crystal forming a pair of transparent substrates, a plurality of transparent electrode line groups arranged on the substrate, and a chiral smectic C phase substantially perpendicular to the substrate surface between the substrates. A layer, a dielectric layer disposed between the plurality of transparent electrode line groups, and a resistor electrically connecting the transparent electrode line groups, and generating a potential gradient between the transparent electrode lines Thus, in the optical deflection element that deflects the optical path, the dielectric layer is covered with the transparent electrode line group and the resistor with the adhesive.

請求項8記載の発明は、複数個の画素により画像情報に従って画像を表示する画像表示素子と、前記画像表示素子を証明する光源と、前記画像表示素子に表示する画像パターンを観察する光学部材と、前記光偏向素子によりサブフィールド毎の光路の偏向に応じて画像を表示することにより、前記画像表示素子の見掛け上の画素数を倍増して表示する画像表示装置において、請求項1から7のいずれか1項記載の光偏向素子により時分割した複数のサブフィールドごとに前記画像表示素子と前記光学部材の間の光路を偏向することを特徴とする。   The invention according to claim 8 is an image display element that displays an image according to image information by a plurality of pixels, a light source that proves the image display element, and an optical member that observes an image pattern displayed on the image display element. In the image display device that displays the image by doubling the apparent number of pixels of the image display element by displaying an image according to the deflection of the optical path for each subfield by the light deflection element. The optical path between the image display element and the optical member is deflected for each of a plurality of subfields time-divided by the optical deflection element described in any one of the items.

本発明は、一対の基板間に液晶分子を略垂直に配向させ、液晶層に対して略平行な方向に電界を発生させ、液晶ダイレクタ方向を所望の方向に変化させて光路を切り換る光偏向素子及び光偏向方法において、透明電極ライン群の端部や電極接続部の一部を被覆部材により被覆することにより、光偏向素子間又は光偏向素子を保持するホルダーとの狭空間での放電による透明電極ラインの破損を防止する。   The present invention is a light beam that switches liquid paths by aligning liquid crystal molecules substantially vertically between a pair of substrates, generating an electric field in a direction substantially parallel to the liquid crystal layer, and changing the liquid crystal director direction to a desired direction. In the deflecting element and the light deflecting method, discharge in a narrow space between the light deflecting elements or with the holder holding the light deflecting element by covering the end of the transparent electrode line group and a part of the electrode connecting part with a covering member. Prevents damage to the transparent electrode line.

以下、本発明の一実施形態に係る光偏向素子の構成について説明する。   Hereinafter, the configuration of an optical deflection element according to an embodiment of the present invention will be described.

図1(a)は、光偏向素子の外部に抵抗体24を配置した光偏向素子の断面図、図1(b)は平面図である。この光偏向素子においては、一対の透明な基板(2A、2B)がスペーサ6を介し、対向して配置されている。そして、基板の内面に複数の透明電極ライン群3Aが形成されている。透明電極ライン群3Aの内面には誘電体層4が配置されていて、誘電体層4の内面に配向膜(図示せず)が形成されている。スペーサ6によって厚さを設定された二枚の基板間隔内にはキラルスメクチックC相を形成可能な液晶層8が充填されている。ここで、配向膜は液晶分子を配向膜に対して垂直方向に配向させる垂直配向膜であり、キラルスメクチックC相を形成する液晶分子の層構造の層法線方向が基板面に対してほぼ垂直となるように構成されている。   FIG. 1A is a sectional view of an optical deflection element in which a resistor 24 is arranged outside the optical deflection element, and FIG. 1B is a plan view. In this optical deflection element, a pair of transparent substrates (2A, 2B) are arranged to face each other with a spacer 6 interposed therebetween. A plurality of transparent electrode line groups 3A are formed on the inner surface of the substrate. A dielectric layer 4 is disposed on the inner surface of the transparent electrode line group 3 </ b> A, and an alignment film (not shown) is formed on the inner surface of the dielectric layer 4. A liquid crystal layer 8 capable of forming a chiral smectic C phase is filled in the distance between the two substrates whose thickness is set by the spacer 6. Here, the alignment film is a vertical alignment film that aligns liquid crystal molecules in a direction perpendicular to the alignment film, and the layer normal direction of the layer structure of the liquid crystal molecules forming the chiral smectic C phase is substantially perpendicular to the substrate surface. It is comprised so that.

複数の透明電極ライン群3Aは、FPC25により素子外部に設けられたアレイ状の抵抗体24に接続されている。電源9により光偏向素子に電界を印加すると、素子外部のアレイ状の抵抗体24に隣接する透明電極ライン間には段階的に電界が印加され、液晶層内部8には水平電界に近い電界10が発生する。印加する電圧の極性を切換えることで、各透明電極ライン間には逆向きの電位勾配を与えることができ、液晶層内部の水平に近い電界方向の切換えも可能となる。透明電極ライン群3Aと液晶層8の間に形成された誘電体層4は、透明電極ライン近傍で発生する垂直電界成分を緩和するために配置されており、液晶層内部に均一な電界分布を発生させることができる。このように液晶層8内部の水平電界方向の切換えにより、液晶ダイレクタの方向を変化させて液晶層を通過した光の光路を切換えることができる。   The plurality of transparent electrode line groups 3 </ b> A are connected to an arrayed resistor 24 provided outside the element by the FPC 25. When an electric field is applied to the optical deflection element by the power source 9, an electric field is applied in a stepwise manner between the transparent electrode lines adjacent to the arrayed resistor 24 outside the element, and an electric field 10 close to a horizontal electric field is formed in the liquid crystal layer 8. Will occur. By switching the polarity of the applied voltage, a potential gradient in the opposite direction can be given between the transparent electrode lines, and the electric field direction close to the horizontal inside the liquid crystal layer can be switched. The dielectric layer 4 formed between the transparent electrode line group 3A and the liquid crystal layer 8 is arranged to alleviate a vertical electric field component generated in the vicinity of the transparent electrode line, and has a uniform electric field distribution inside the liquid crystal layer. Can be generated. Thus, by switching the horizontal electric field direction inside the liquid crystal layer 8, the direction of the liquid crystal director can be changed to switch the optical path of the light that has passed through the liquid crystal layer.

図1(a)において、基板に垂直な方向に入射した光は、電界方向の切換えによって、第一出射光bと第二出射光b´の光路をとる。電極ラインの本数、ライン幅、ライン間隔、各電極ライン間の電位差などは、所望の光路サイズ、光路偏向量、液晶材料などに基づき適宜設定される。また、図1(a)では透明電極ラインは上下基板間で、対向する位置に配置されているが、その限りではない。   In FIG. 1A, light incident in a direction perpendicular to the substrate takes an optical path between the first outgoing light b and the second outgoing light b ′ by switching the electric field direction. The number of electrode lines, the line width, the line interval, the potential difference between the electrode lines, and the like are appropriately set based on a desired optical path size, optical path deflection amount, liquid crystal material, and the like. Further, in FIG. 1A, the transparent electrode lines are arranged at opposing positions between the upper and lower substrates, but this is not restrictive.

ここで、液晶層8に関して詳細に説明する。「スメクチック液晶」は、液晶分子の長軸方向を層状に配列してなる液晶層である。このような液晶に関し、上記層の法線方向(層法線方向)と液晶分子の長軸方向とが一致している液晶を「スメクチックA相」、法線方向と一致していない液晶を「スメクチックC相」と呼んでいる。スメクチックC相よりなる強誘電液晶は、一般的に外部電界が働かない状態において各層毎に液晶ダイレクタ方向が螺旋的に回転しているいわゆる螺旋構造をとり、「キラルスメクチックC相」と呼ばれる。また、キラルスメクチックC相反強誘電液晶は各層毎に液晶ダイレクタが対向する方向を向く。これらのキラルスメクチックC相よりなる液晶は、不斉炭素を分子構造に有し、これによって自発分極しているため、この自発分極Psと外部電界Eにより定まる方向に液晶分子が再配列することで光学特性が制御される。なお、本実施形態では、液晶層8として強誘電液晶を例にとり光偏向素子の説明を行うが、反強誘電液晶の場合にも同様に使用することができる。キラルスメクチックC相よりなる強誘電液晶の構造は、主鎖、スペーサ、骨格、結合部、キラル部などからなる。主鎖構造としてはポリアクリレート、ポリメタクリレート、ポリシロキサン、ポリオキシエチレンなどが利用可能である。スペーサは分子回転を担う骨格、結合部、キラル部を主鎖と結合させるためのものであり、適当な長さのメチレン鎖等が選ばれる。また、カイラル部とビフェニル構造など剛直な骨格とを結合する結合部には−COO−結合等が選ばれる。キラルスメクチックC相よりなる強誘電液晶8は配向膜により基板(2A、2B)面に垂直に分子螺旋回転の回転軸が向いており、いわゆるホメオトロピック配向をなす。配向膜としては、シランカップリング剤や市販の液晶用垂直配向材などを用いることができる。   Here, the liquid crystal layer 8 will be described in detail. A “smectic liquid crystal” is a liquid crystal layer in which major axis directions of liquid crystal molecules are arranged in layers. With regard to such a liquid crystal, a liquid crystal in which the normal direction of the layer (layer normal direction) and the major axis direction of the liquid crystal molecules coincide with each other is referred to as “smectic A phase”, and a liquid crystal that does not coincide with the normal direction is referred to as “ It is called “smectic C phase”. A ferroelectric liquid crystal composed of a smectic C phase generally has a so-called spiral structure in which the liquid crystal director direction is spirally rotated for each layer in the state where an external electric field does not work, and is called a “chiral smectic C phase”. In addition, the chiral smectic C reciprocal ferroelectric liquid crystal faces the direction in which the liquid crystal directors face each other. Since the liquid crystal composed of these chiral smectic C phases has an asymmetric carbon in the molecular structure and is spontaneously polarized by this, the liquid crystal molecules are rearranged in a direction determined by the spontaneous polarization Ps and the external electric field E. Optical properties are controlled. In this embodiment, a ferroelectric liquid crystal is used as an example of the liquid crystal layer 8 to explain the light deflection element. However, the liquid crystal layer 8 can be similarly used for an antiferroelectric liquid crystal. The structure of a ferroelectric liquid crystal composed of a chiral smectic C phase includes a main chain, a spacer, a skeleton, a bonding part, a chiral part, and the like. As the main chain structure, polyacrylate, polymethacrylate, polysiloxane, polyoxyethylene and the like can be used. The spacer is for linking a skeleton, a bonding part, and a chiral part responsible for molecular rotation to the main chain, and a methylene chain having an appropriate length is selected. In addition, a —COO— bond or the like is selected as a bond portion that bonds the chiral portion and a rigid skeleton such as a biphenyl structure. The ferroelectric liquid crystal 8 composed of the chiral smectic C phase has a so-called homeotropic alignment because the alignment film is oriented so that the rotation axis of the molecular helical rotation is perpendicular to the substrate (2A, 2B) surface. As the alignment film, a silane coupling agent or a commercially available vertical alignment material for liquid crystal can be used.

このような構成の光偏向素子では、誘電体層の形成されていない透明電極ライン群に被覆部材が形成されている。透明電極ライン群3Aに被覆部材を形成していない構成の光偏向素子を動作すると、光偏向素子を保持するホルダーとの狭空間や図7のように複数の光偏向素子を組み合わせたときの基板間の狭空間で放電が発生し、透明電極ラインで断線が発生してしまう。しかし、光偏向素子の空気中にさらされている透明電極ライン群3Aに被覆部材22を形成することで、放電が防止できる。被覆部材としては、透明電極ライン群3A以上の抵抗率の材料であればよいが、絶縁材料からなる被覆部材22が好ましい。容易に用いられる被覆部材としては、カプトンテープ等の絶縁粘着テープや自己接着性のシリコンゴムがあげられる。   In the optical deflection element having such a configuration, the covering member is formed on the transparent electrode line group in which the dielectric layer is not formed. When a light deflection element having a configuration in which the covering member is not formed on the transparent electrode line group 3A is operated, a narrow space with a holder for holding the light deflection element or a substrate when a plurality of light deflection elements are combined as shown in FIG. Discharge occurs in the narrow space between them, and disconnection occurs in the transparent electrode line. However, discharge can be prevented by forming the covering member 22 on the transparent electrode line group 3A exposed to the air of the light deflection element. The covering member may be a material having a resistivity equal to or higher than that of the transparent electrode line group 3A, but the covering member 22 made of an insulating material is preferable. Examples of the covering member that can be easily used include an insulating adhesive tape such as Kapton tape and a self-adhesive silicone rubber.

図2には、透明電極ライン群を電気的に直列に接続する抵抗体を形成した光偏向素子の構成を示す。(b)は平面図、(a)は(b)図の下方向から見た側面図、(c)は(b)の左方向から見た断面図(d)は基板の電極接続部付近の平面拡大図である。この光偏向素子においては、一対の透明な基板(2A、2B)がスペーサ6を介して対向して配置されている。そして、基板の内面に複数の透明電極ライン群3Aと電極接続部3Bとが形成されている。透明電極ライン群3Aの内面には誘電体層4が配置されていて、誘電体層4の内面に配向膜(図示せず)が形成されている。スペーサ6によって厚さを設定された二枚の基板間隔内にはキラルスメクチックC相を形成可能な液晶層8が充填されている。ここで、配向膜は液晶分子を配向膜に対して垂直方向に配向させる垂直配向膜であり、キラルスメクチックC相を形成する液晶分子の層構造の層法線方向が基板面に対してほぼ垂直となるように構成されている。複数の透明電極ライン群3Aには電気的に直列に接続する抵抗体7が形成されている。さらに透明電極ライン群3Aの少なくとも両端部から電極接続部3Bとなる透明電極が引き出されている。図2(d)において、破線12を境界に抵抗体7側が透明電極ライン群3Aであり、両端部の透明電極ライン群3Aから引き出された部分が電極接続部3Bである。電極接続部3Bは少なくとも両端部の2個所が必要であるが、さらに複数の電極接続部を設けても良い。   FIG. 2 shows a configuration of an optical deflection element in which a resistor that electrically connects transparent electrode line groups in series is formed. (B) is a plan view, (a) is a side view as viewed from the lower side of (b), (c) is a cross-sectional view as viewed from the left side of (b), and (d) is the vicinity of the electrode connection portion of the substrate It is a plane enlarged view. In this optical deflection element, a pair of transparent substrates (2A, 2B) are arranged to face each other with a spacer 6 interposed therebetween. A plurality of transparent electrode line groups 3A and electrode connection portions 3B are formed on the inner surface of the substrate. A dielectric layer 4 is disposed on the inner surface of the transparent electrode line group 3 </ b> A, and an alignment film (not shown) is formed on the inner surface of the dielectric layer 4. A liquid crystal layer 8 capable of forming a chiral smectic C phase is filled in the distance between the two substrates whose thickness is set by the spacer 6. Here, the alignment film is a vertical alignment film that aligns liquid crystal molecules in a direction perpendicular to the alignment film, and the layer normal direction of the layer structure of the liquid crystal molecules forming the chiral smectic C phase is substantially perpendicular to the substrate surface. It is comprised so that. Resistors 7 that are electrically connected in series are formed in the plurality of transparent electrode line groups 3A. Furthermore, the transparent electrode which becomes the electrode connection part 3B is drawn out from at least both ends of the transparent electrode line group 3A. In FIG. 2D, the resistor 7 side is the transparent electrode line group 3A with the broken line 12 as a boundary, and the portions drawn from the transparent electrode line group 3A at both ends are the electrode connection portions 3B. The electrode connecting portion 3B needs at least two portions at both end portions, but a plurality of electrode connecting portions may be further provided.

このような光偏向素子において、電源9で一方の基板の両端部に設けられた透明電極ライン間に電圧を印加すると、隣接する透明電極ラインには抵抗体7により電圧値の減衰が起こり、電圧を印加した端部のラインから反対側の端部のラインまでの各透明電極ライン間に電位勾配が発生する。この電位勾配により、液晶層内部8には水平電界に近い電界10が発生し、印加する電圧の極性を変えることで図1に示す光偏向素子と同様に光の光路を切り換ることができる。   In such an optical deflection element, when a voltage is applied between the transparent electrode lines provided at both ends of one substrate by the power source 9, the voltage value is attenuated by the resistor 7 in the adjacent transparent electrode lines, and the voltage A potential gradient is generated between each transparent electrode line from the end line to which the voltage is applied to the opposite end line. Due to this potential gradient, an electric field 10 close to a horizontal electric field is generated in the liquid crystal layer 8, and the optical path of light can be switched in the same manner as the optical deflection element shown in FIG. 1 by changing the polarity of the applied voltage. .

透明電極ライン間に電位勾配を発生させる抵抗体7は、所望の抵抗値を発現し、透明電極ライン上に形成可能なものであれば良い。抵抗体が安定的に機能し、抵抗破壊等がなく、光偏向素子の液晶層への熱による悪影響がないようにする為には、表面抵抗が1×107Ω/m2以上の材料が好ましい。具体的には、酸化クロム、酸化スズ、酸化アンチモン、酸化亜鉛、ATO(アンチモン含有酸化スズ)、又はこれらの微粒子を樹脂中に分散させた材料などが使用できる。透明電極ライン上への形成方法としては、蒸着やスパッタによる方法、あるいは塗布型の抵抗体材料では、スピンコート方法、フレキソ印刷、スクリーン印刷などの印刷方法、又はノズル、インクジェット方式などの噴射方法も用いることができる。形成方法によっては抵抗体を形成する部分以外をマスキングする必要もある。抵抗体7は、基板上に配置された複数の全ての透明電極ライン群3Aを電気的に直列に接続する必要があり、一方の端部の透明電極ラインからもう一方の端部の透明電極ライン間に連続して形成することが重要である。各透明電極ライン群上における抵抗体の形成幅は、抵抗体材料によっても多少異なるが、光偏向素子への外部からの衝撃や電源への接続工程で剥離や断線が発生しない程度の幅が好ましい。しかし、形成幅が広い場合、光偏向素子の機能低下は起こらないが、光偏向素子の外形サイズが大きくなるという欠点がある。よって、各透明電極ライン上での抵抗体の幅は1mmから5mm程度が良い。 The resistor 7 that generates a potential gradient between the transparent electrode lines may be any resistor that expresses a desired resistance value and can be formed on the transparent electrode line. In order to ensure that the resistor functions stably, there is no resistance breakdown, and there is no adverse effect of heat on the liquid crystal layer of the light deflection element, a material with a surface resistance of 1 × 10 7 Ω / m 2 or more is required. preferable. Specifically, chromium oxide, tin oxide, antimony oxide, zinc oxide, ATO (antimony-containing tin oxide), or a material in which these fine particles are dispersed in a resin can be used. As a forming method on the transparent electrode line, a deposition method or a sputtering method, or a coating type resistor material, a spin coating method, a flexographic printing method, a screen printing method, or a jetting method such as a nozzle or an ink jet method may be used. Can be used. Depending on the formation method, it is also necessary to mask other than the portion where the resistor is formed. The resistor 7 needs to electrically connect all of the plurality of transparent electrode line groups 3A arranged on the substrate in series, from one end of the transparent electrode line to the other end of the transparent electrode line. It is important to form them continuously in between. The formation width of the resistor on each transparent electrode line group is slightly different depending on the resistor material, but is preferably a width that does not cause peeling or disconnection in the external impact to the light deflection element or the connection process to the power source. . However, when the formation width is wide, the function of the optical deflection element does not deteriorate, but there is a drawback that the outer size of the optical deflection element becomes large. Therefore, the width of the resistor on each transparent electrode line is preferably about 1 mm to 5 mm.

このような構成の光偏向素子で、誘電体層の形成されていない透明電極ライン群3Aと電源9に結線した電極接続部3Bは、抵抗体7以上の高い抵抗率の材料あるいは、このましくは、絶縁材料からなる被覆部材22が形成されている。透明電極ライン群3Aと電極接続部3Bに被覆部材を形成していない構成の光偏向素子を動作すると、図1の光偏向素子と同様に光偏向素子を保持するホルダーとの狭空間、図10のように複数の光偏向素子を組み合わせたときの基板間の狭空間で放電が発生し、透明電極ラインで断線が発生してしまう。しかし、光偏向素子の空気中にさらされている透明電極ライン群3Aと電極接続部3Bに被覆部材22を形成することで、放電が防止できる。被覆部材22としては、抵抗体7以下の抵抗率の被覆部材では電界を印加した時に低抵抗の被覆部材に通電し、透明電極ラインに均一な電位勾配を与えることが困難となる。そのため、少なくとも抵抗体7以上の抵抗率の部材である必要がある。なお、これらの部分は光路領域外であるため透明である必要はない。   In the optical deflection element having such a configuration, the electrode connection portion 3B connected to the transparent electrode line group 3A in which no dielectric layer is formed and the power source 9 is made of a material having a high resistivity higher than that of the resistor 7, or preferably A covering member 22 made of an insulating material is formed. When a light deflection element having a configuration in which a covering member is not formed on the transparent electrode line group 3A and the electrode connection portion 3B is operated, a narrow space between the holder for holding the light deflection element and the light deflection element shown in FIG. As described above, discharge occurs in a narrow space between the substrates when a plurality of light deflection elements are combined, and disconnection occurs in the transparent electrode line. However, discharge can be prevented by forming the covering member 22 on the transparent electrode line group 3A and the electrode connecting portion 3B exposed to the air of the light deflection element. As the covering member 22, it is difficult to apply a uniform potential gradient to the transparent electrode line by energizing the low-resistance covering member when an electric field is applied to a covering member having a resistivity of 7 or less. Therefore, it is necessary to be a member having a resistivity of at least the resistor 7. Note that these portions need not be transparent because they are outside the optical path region.

図3は透明電極ライン群の被覆部材22に抵抗体7を用いた光偏向素子の基板の電極接続部3B付近を拡大した図である。従来の光偏向素子において狭空間での放電の発生により透明電極ラインで断線が発生し、動作をしなくなった素子の断線個所を顕微鏡で観察すると、電極接続部3B近傍の透明電極ラインで劣化が多く見られた。しかし、電極接続部3B近傍でも抵抗体7が形成されている下部の透明電極ラインには劣化や断線は観察できなかった。   FIG. 3 is an enlarged view of the vicinity of the electrode connecting portion 3B of the substrate of the optical deflection element using the resistor 7 as the covering member 22 of the transparent electrode line group. In a conventional optical deflecting element, disconnection occurs in the transparent electrode line due to the occurrence of discharge in a narrow space, and when the disconnection portion of the element that has stopped operating is observed with a microscope, the transparent electrode line near the electrode connecting portion 3B is deteriorated. Many were seen. However, no deterioration or disconnection was observed in the lower transparent electrode line on which the resistor 7 was formed even in the vicinity of the electrode connection portion 3B.

そこで、図3のように誘電体層が形成してない透明電極ライン群3A上に抵抗体7を形成し、空気中にさらされる透明電極ライン群3Aを作らないようにすることで、被覆部材22を用いて透明電極ライン群3Aを被覆した場合と同様に、動作時の放電による透明電極ライン群の断線劣化が防止できる。   Therefore, the covering member is formed by forming the resistor 7 on the transparent electrode line group 3A on which the dielectric layer is not formed as shown in FIG. 3 so that the transparent electrode line group 3A exposed to the air is not formed. Similarly to the case where the transparent electrode line group 3A is covered with the wire 22, the disconnection deterioration of the transparent electrode line group due to discharge during operation can be prevented.

本発明の他の実施形態に係る光偏向素子について説明する。   An optical deflection element according to another embodiment of the present invention will be described.

図4は、図2(b)の左方向から見た光偏向素子の側面図である。この光偏向素子においては、一対の透明な基板(2A、2B)がスペーサ6を介し対向して配置されている。そして、基板の内面に複数の透明電極ライン群3Aと、透明電極ライン群3Aの少なくとも両端の2本から引き出された電極接続部3Bとが形成されている。透明電極ライン群3Aには、電気的に直列に接続する抵抗体7が形成されている。透明電極ライン群3Aの内面には、電極接続部3Bを除いて透明電極ライン群3Aと抵抗体7とを覆う位置に誘電体層4が形成されている。さらに、誘電体層4の内面に配向膜(図示せず)が形成されている。スペーサ6によって厚さが設定された二枚の基板間隔内にはキラルスメクチックC相を形成可能な液晶層8が充填されている。ここで、配向膜は液晶分子を配向膜に対して垂直方向に配向させる垂直配向膜であり、キラルスメクチックC相を形成する液晶分子の層構造の層法線方向が基板面に対してほぼ垂直となるように構成されている。光偏向素子の動作は、誘電体層4の形成されていない電極接続部3Bへの電界印加によって可能となる。透明電極ライン群3Aと抵抗体7とを覆う位置に誘電体層4を形成することで、透明電極ライン群3Aの被覆部材22とすることかできる。また、このような構成の光偏向素子では、誘電体層4は抵抗体7の被覆部材ともなり温湿度などの外部環境変化に対しての抵抗体の耐性も向上し、さらには接触による抵抗体7の剥離を防止できる。誘電体層4の形成は接着材5により行うが、抵抗体7の厚みは、例えばCrSiOのスパッタで形成したものは800Åから1000Å程度の薄膜であり、誘電体層4を形成する接着材層の厚みよりも十分に薄いために抵抗体膜の厚みの影響で誘電体表面に歪みが発生する等の問題は発生しない。また、ATO(アンチモン含有酸化スズ)等の塗布型の抵抗体を10μm程度まで厚く形成した上に誘電体層4を形成し、歪みが懸念される場合でも、スペーサ6を抵抗体7よりも液晶層8側に設けることで基板の歪による液晶層8の厚みのバラツキが発生することを回避できる。   FIG. 4 is a side view of the light deflection element viewed from the left in FIG. In this optical deflection element, a pair of transparent substrates (2A, 2B) are arranged to face each other with a spacer 6 therebetween. A plurality of transparent electrode line groups 3A and electrode connection portions 3B drawn from at least two ends of the transparent electrode line group 3A are formed on the inner surface of the substrate. The transparent electrode line group 3A is formed with a resistor 7 that is electrically connected in series. On the inner surface of the transparent electrode line group 3A, a dielectric layer 4 is formed at a position covering the transparent electrode line group 3A and the resistor 7 except for the electrode connection portion 3B. Further, an alignment film (not shown) is formed on the inner surface of the dielectric layer 4. A liquid crystal layer 8 capable of forming a chiral smectic C phase is filled in the distance between the two substrates whose thickness is set by the spacer 6. Here, the alignment film is a vertical alignment film that aligns liquid crystal molecules in a direction perpendicular to the alignment film, and the layer normal direction of the layer structure of the liquid crystal molecules forming the chiral smectic C phase is substantially perpendicular to the substrate surface. It is comprised so that. The operation of the optical deflection element can be performed by applying an electric field to the electrode connection portion 3B where the dielectric layer 4 is not formed. By forming the dielectric layer 4 at a position covering the transparent electrode line group 3A and the resistor 7, the covering member 22 of the transparent electrode line group 3A can be obtained. In the optical deflection element having such a configuration, the dielectric layer 4 also serves as a covering member for the resistor 7 and improves the resistance of the resistor against changes in the external environment such as temperature and humidity. 7 can be prevented from peeling. The dielectric layer 4 is formed by the adhesive 5, but the resistor 7 is formed from a thin film of about 800 to 1000 mm by sputtering of CrSiO, for example, and the thickness of the adhesive layer forming the dielectric layer 4 is Since the thickness is sufficiently smaller than the thickness, there is no problem such as distortion on the dielectric surface due to the thickness of the resistor film. Further, even when a dielectric layer 4 is formed on a coating type resistor such as ATO (antimony-containing tin oxide) to a thickness of about 10 μm and there is a concern about distortion, the spacer 6 is more liquid crystal than the resistor 7. By providing it on the layer 8 side, it is possible to avoid the variation in the thickness of the liquid crystal layer 8 due to the distortion of the substrate.

誘電体層4の形成されていない電極接続部3Bと電源9との接続は、半田や導電テープ、ドータイト等で可能であるが、半田の熱による透明電極ラインの劣化を防止し、確実に接続するためには超音波半田を用いるのが好ましい。また、光路以外の透明電極ライン群3A及び電極接続部3Bには、透明電極ではなく、金属材料を用いることもできる。しかし、このような方法で電源9と接続した電極接続部3Bは、空気中にさらされている部分が発生する場合が多く、また半田等の導通材も空気中にさらされている。そのため、光偏向素子を動作させた時に電極接続部3Bあるいは半田等の導通部材と光偏向素子を保持するホルダーとの狭空間、図10のように複数の光偏向素子を組み合わせたときの基板間の狭空間で放電が発生する可能性がある。よって、危険防止と連続動作による光偏向素子の劣化防止のため、電極接続部3B及び導通部材は抵抗体7以上の抵抗率の被覆部材22で覆う必要がある。   The connection between the electrode connection portion 3B on which the dielectric layer 4 is not formed and the power source 9 can be connected by solder, conductive tape, dootite, etc., but the transparent electrode line is prevented from deteriorating due to the heat of the solder and is connected securely. For this purpose, it is preferable to use ultrasonic solder. In addition, the transparent electrode line group 3A and the electrode connecting portion 3B other than the optical path can be made of a metal material instead of the transparent electrode. However, the electrode connection part 3B connected to the power source 9 by such a method often has a part exposed to the air, and a conductive material such as solder is also exposed to the air. Therefore, when the light deflection element is operated, a narrow space between the electrode connecting portion 3B or a conductive member such as solder and a holder for holding the light deflection element, between the substrates when a plurality of light deflection elements are combined as shown in FIG. There is a possibility that electric discharge occurs in a narrow space. Therefore, in order to prevent danger and prevent deterioration of the optical deflection element due to continuous operation, the electrode connecting portion 3B and the conducting member must be covered with a covering member 22 having a resistivity equal to or higher than that of the resistor 7.

また、電極接続部3Bをより確実に被覆し、断線や変形の心配がなく接続する方法としては、図5に示す着脱可能な給電手段11を組み付ける方法がある。該着脱可能な給電手段11は、例えば電気接続に用いるコネクタに類似した形状が考えられる。光偏向素子に組み付けたときに、給電手段11と電極接続部3Bとが接する部分に導通部材を配置し、それ以外の部分を絶縁部材で形成して光偏向素子の透明電極を覆う形状が好ましい。精度を必要とせず確実に接続するため、給電手段11の導通部材をバネ状の形状や複数の端子形状などに加工しておくことにより、電極接続部3Bとの接触不良を回避できる。また、放電防止の観点から、給電手段11は電極接続部3Bの透明電極面と空間をあけずに装着できる構成でなければならない。また、給電手段11は、これ以外の形状でも光偏向素子の電源9への接続部材と電極接続部3Aの被覆部材を兼ねる構造であればよい。   Further, as a method of covering the electrode connecting portion 3B more securely and connecting without fear of disconnection or deformation, there is a method of assembling the detachable power supply means 11 shown in FIG. The detachable power supply means 11 may have a shape similar to a connector used for electrical connection, for example. When assembled to the optical deflection element, a shape in which a conducting member is disposed at a portion where the power feeding means 11 and the electrode connecting portion 3B are in contact, and the other portion is formed of an insulating member to cover the transparent electrode of the optical deflection element is preferable. . In order to securely connect without requiring accuracy, contact failure with the electrode connecting portion 3B can be avoided by processing the conducting member of the power feeding means 11 into a spring shape or a plurality of terminal shapes. Further, from the viewpoint of preventing discharge, the power feeding means 11 must be configured to be mounted without leaving a space with the transparent electrode surface of the electrode connecting portion 3B. Further, the power supply means 11 may have any other shape as long as it serves as a connection member for the power source 9 of the optical deflection element and a covering member for the electrode connection portion 3A.

次に、本発明の他の実施形態に係る光偏向素子について説明する。   Next, an optical deflection element according to another embodiment of the present invention will be described.

図6(a)は光偏向素子の外部に抵抗体24を配置した光偏向素子の断面図、図6(b)は平面図である。この光偏向素子においては、一対の透明な基板(2A、2B)がスペーサ6を介し対向して配置されている。そして、基板の内面に複数の透明電極ライン群3Aが形成されている。透明電極ライン群3Aの形成面の上には透明接着剤によって誘電体層4が貼り合わされていて、誘電体層4の内面に配向膜(図示せず)が形成されている。スペーサ6によって厚さを設定された二枚の基板間隔内にはキラルスメクチックC相を形成可能な液晶層8が充填されている。ここで、配向膜は液晶分子を配向膜に対して垂直方向に配向させる垂直配向膜であり、キラルスメクチックC相を形成する液晶分子の層構造の層法線方向が基板面に対してほぼ垂直となるように構成されている。複数の透明電極ライン群3Aは、フレキシブルプリント基板(FPC)25により素子外部に設けたアレイ状の抵抗体24に接続されている。電源9により光偏向素子に電界を印加すると、素子外部のアレイ状の抵抗体24により隣接する透明電極ライン間には段階的な電界が印加され、液晶層内部8には水平電界に近い電界10が発生する。印加する電圧の極性を切換えることで、各透明電極ライン間には逆向きの電位勾配を与えることができ、液晶層内部の水平に近い電界方向の切換えも可能となる。透明電極ライン群3Aと液晶層8との間に形成された誘電体層4は、透明電極ライン近傍で発生する垂直電界成分を緩和するために配置されており、液晶層内部に均一な電界分布を発生させることができる。このように液晶層8内部の水平電界方向の切換えで、液晶ダイレクタの方向を変化させて液晶層を通過した光の光路を切換えることができる。   FIG. 6A is a cross-sectional view of an optical deflection element in which a resistor 24 is disposed outside the optical deflection element, and FIG. 6B is a plan view. In this optical deflection element, a pair of transparent substrates (2A, 2B) are arranged to face each other with a spacer 6 therebetween. A plurality of transparent electrode line groups 3A are formed on the inner surface of the substrate. A dielectric layer 4 is bonded to the formation surface of the transparent electrode line group 3 </ b> A with a transparent adhesive, and an alignment film (not shown) is formed on the inner surface of the dielectric layer 4. A liquid crystal layer 8 capable of forming a chiral smectic C phase is filled in the distance between the two substrates whose thickness is set by the spacer 6. Here, the alignment film is a vertical alignment film that aligns liquid crystal molecules in a direction perpendicular to the alignment film, and the layer normal direction of the layer structure of the liquid crystal molecules forming the chiral smectic C phase is substantially perpendicular to the substrate surface. It is comprised so that. The plurality of transparent electrode line groups 3 </ b> A are connected to an arrayed resistor 24 provided outside the element by a flexible printed circuit board (FPC) 25. When an electric field is applied to the optical deflection element by the power source 9, a stepwise electric field is applied between adjacent transparent electrode lines by the arrayed resistor 24 outside the element, and an electric field 10 close to a horizontal electric field is applied to the inside 8 of the liquid crystal layer. Occurs. By switching the polarity of the applied voltage, a potential gradient in the opposite direction can be given between the transparent electrode lines, and the electric field direction close to the horizontal inside the liquid crystal layer can be switched. The dielectric layer 4 formed between the transparent electrode line group 3A and the liquid crystal layer 8 is arranged to alleviate a vertical electric field component generated in the vicinity of the transparent electrode line, and has a uniform electric field distribution inside the liquid crystal layer. Can be generated. Thus, by switching the horizontal electric field direction in the liquid crystal layer 8, the direction of the liquid crystal director can be changed to switch the optical path of the light that has passed through the liquid crystal layer.

このような構成の光偏向素子では、誘電体層4の形成されていない透明電極ライン群3Aには被覆部材30を形成する必要がある。透明電極ライン群3Aに被覆部材22を形成していない構成の光偏向素子を動作すると、光偏向素子を保持するホルダーとの狭空間、図10のように複数の光偏向素子を組み合わせたときの基板間の狭空間で放電が発生し、透明電極ラインで断線が発生してしまう。しかし、光偏向素子の空気中にさらされている透明電極ライン群3Aに被覆部材30を形成することで、放電が防止できる。ここでは、被覆部材30として基板面に誘電体層を接着するための接着剤層を用いる。本構成では誘電体層4を張り合わせる前のライン電極付き基板にFPCを取り付け、FPCの接続部を覆うように透明接着剤を塗布する。その後、予め配向膜を形成した誘電体層4を貼り合せ、透明接着剤を硬化させる。この時、誘電体層表面の平面性の悪化を防止するために、誘電体層4はFPCの接続部を避けた位置に貼り付ける、すなわち、接着剤層は誘電体層4からはみ出してFPCの接続部を被覆した構成となる。透明接着剤としては、熱硬化型や紫外線硬化型などを用いることができる。透明接着剤の塗布方法としては、印刷技術やインクジェット技術などを用いて、比較的均一な接着層を所望の範囲に形成する。または、基板中央に多めに接着剤を滴下し、誘電体層4を貼り合せて加圧することで、接着剤をFPC接続部まではみ出させることも出来る。硬化した透明接着剤は透明電極ライン群を被覆して放電を防止すると同時にFPCの固定強度の増加にも寄与する。   In the optical deflection element having such a configuration, it is necessary to form the covering member 30 on the transparent electrode line group 3A where the dielectric layer 4 is not formed. When a light deflection element having a configuration in which the covering member 22 is not formed on the transparent electrode line group 3A is operated, a narrow space with a holder for holding the light deflection element, when a plurality of light deflection elements are combined as shown in FIG. Discharge occurs in a narrow space between the substrates, and disconnection occurs in the transparent electrode line. However, discharge can be prevented by forming the covering member 30 on the transparent electrode line group 3A exposed to the air of the light deflection element. Here, an adhesive layer for adhering the dielectric layer to the substrate surface is used as the covering member 30. In this configuration, the FPC is attached to the substrate with line electrodes before the dielectric layer 4 is bonded, and a transparent adhesive is applied so as to cover the connection portion of the FPC. Thereafter, the dielectric layer 4 on which an alignment film is previously formed is bonded, and the transparent adhesive is cured. At this time, in order to prevent the planarity of the surface of the dielectric layer from being deteriorated, the dielectric layer 4 is attached at a position avoiding the connecting portion of the FPC. In other words, the adhesive layer protrudes from the dielectric layer 4 to the FPC. The connection portion is covered. As the transparent adhesive, a thermosetting type, an ultraviolet curable type, or the like can be used. As a method for applying the transparent adhesive, a relatively uniform adhesive layer is formed in a desired range by using a printing technique, an inkjet technique, or the like. Alternatively, a large amount of adhesive may be dropped on the center of the substrate, and the dielectric layer 4 may be attached and pressed to allow the adhesive to protrude to the FPC connection portion. The cured transparent adhesive covers the transparent electrode line group to prevent discharge, and at the same time contributes to an increase in the fixing strength of the FPC.

図7に透明電極ライン群3Aを電気的に直列に接続する抵抗体7を形成した光偏向素子の構成を示す。(b)は平面図、(a)は(b)図の下方向から見た側面図、(c)は(b)の左方向から見た断面図(d)は一方の基板の電極接続部付近の平面拡大図である。この光偏向素子においては、一対の透明な基板(2A、2B)がスペーサ6を介し対向して配置されている。そして、基板の内面に複数の透明電極ライン群3Aと電極接続部3Bとが形成されている。透明電極ライン群3Aの内面には透明接着剤5によって誘電体層4が貼り付けられていて、誘電体層4の内面に配向膜(図示せず)が形成されている。スペーサ6によって厚さを設定された二枚の基板間隔内にはキラルスメクチックC相を形成可能な液晶層8が充填されている。   FIG. 7 shows a configuration of an optical deflecting element in which a resistor 7 for electrically connecting the transparent electrode line group 3A in series is formed. (B) is a plan view, (a) is a side view as viewed from the lower side of (b), (c) is a cross-sectional view as viewed from the left side of (b), and (d) is an electrode connection portion of one substrate. It is a plane enlarged view of the vicinity. In this optical deflection element, a pair of transparent substrates (2A, 2B) are arranged to face each other with a spacer 6 therebetween. A plurality of transparent electrode line groups 3A and electrode connection portions 3B are formed on the inner surface of the substrate. A dielectric layer 4 is attached to the inner surface of the transparent electrode line group 3 </ b> A by a transparent adhesive 5, and an alignment film (not shown) is formed on the inner surface of the dielectric layer 4. A liquid crystal layer 8 capable of forming a chiral smectic C phase is filled in the distance between the two substrates whose thickness is set by the spacer 6.

ここで、配向膜は液晶分子を配向膜に対して垂直方向に配向させる垂直配向膜であり、キラルスメクチックC相を形成する液晶分子の層構造の層法線方向が基板面に対してほぼ垂直となるように構成されている。複数の透明電極ライン群3Aには電気的に直列に接続する抵抗体7が形成されている。さらに、透明電極ライン群3Aの少なくとも両端部から電極接続部3Bとなる透明電極が引き出されている。図7(d)において、破線12を境界に抵抗体7側が透明電極ライン群3Aであり、両端部の透明電極ラインから引き出された部分が電極接続部3Bである。電極接続部3Bは少なくとも両端部の2個所が必要であるが、複数の接続部を設けても良い。このような構成の光偏向素子に、電源9で一方の基板の両端部の透明電極ライン間に電圧を印加すると、隣接する透明電極ラインには抵抗体7により電圧値の減衰が起こり、電圧を印加した端部のラインから反対側の端部のラインまでの各透明電極ライン間に電位勾配が発生する。この電位勾配により、液晶層内部8には水平電界に近い電界10が発生し、印加する電圧の極性を変えることで図1の光偏向素子と同様に光の光路を切り換ることができる。   Here, the alignment film is a vertical alignment film that aligns liquid crystal molecules in a direction perpendicular to the alignment film, and the layer normal direction of the layer structure of the liquid crystal molecules forming the chiral smectic C phase is substantially perpendicular to the substrate surface. It is comprised so that. Resistors 7 that are electrically connected in series are formed in the plurality of transparent electrode line groups 3A. Furthermore, the transparent electrode which becomes the electrode connection part 3B is drawn out from at least both ends of the transparent electrode line group 3A. In FIG. 7D, the resistor 7 side is the transparent electrode line group 3A with the broken line 12 as a boundary, and portions drawn from the transparent electrode lines at both ends are the electrode connection portions 3B. The electrode connection portion 3B needs at least two portions at both ends, but a plurality of connection portions may be provided. When a voltage is applied between the transparent electrode lines at both ends of one substrate by the power source 9 to the optical deflection element having such a configuration, the voltage value is attenuated by the resistor 7 in the adjacent transparent electrode lines, and the voltage is reduced. A potential gradient is generated between the transparent electrode lines from the applied end line to the opposite end line. Due to this potential gradient, an electric field 10 close to a horizontal electric field is generated in the liquid crystal layer 8, and the optical path of light can be switched in the same manner as the optical deflection element of FIG. 1 by changing the polarity of the applied voltage.

上述の光偏向素子で、誘電体層4の形成されていない透明電極ライン群3Aと電源9に結線した電極接続部3Bとは、抵抗体7以上の高い抵抗率の材料、又は絶縁材料からなる被覆部材30により被覆されることが好ましい。ここでは、被覆部材30として基板面に誘電体層4を接着するための接着剤層を用いた。   In the optical deflection element described above, the transparent electrode line group 3A in which the dielectric layer 4 is not formed and the electrode connecting portion 3B connected to the power source 9 are made of a material having a higher resistivity than the resistor 7 or an insulating material. The covering member 30 is preferably covered. Here, an adhesive layer for adhering the dielectric layer 4 to the substrate surface is used as the covering member 30.

なお、本実施形態においては抵抗体7が形成された基板面の破線12よりも外側の領域まで透明接着剤を塗布し、誘電体層4を貼り合せた後に透明接着剤を硬化させる。すなわち、接着剤層は誘電体層からはみ出して透明電極ライン群と抵抗体7を被覆した構成となる。透明接着剤としては、熱硬化型や紫外線硬化型などを用いる。透明接着剤の塗布方法としては、印刷技術やインクジェット技術などを用いて、比較的均一な接着層を所望の範囲に形成する。または、基板中央に多めに接着剤を滴下し、誘電体層4を貼り合せて加圧することで、接着剤を破線12よりも外側まではみ出させることもできる。硬化した透明接着剤は、透明電極ライン群3Aを被覆して放電を防止すると同時に抵抗体の吸湿による抵抗変化も防止できる。   In the present embodiment, the transparent adhesive is applied to a region outside the broken line 12 on the substrate surface on which the resistor 7 is formed, and after the dielectric layer 4 is bonded, the transparent adhesive is cured. That is, the adhesive layer protrudes from the dielectric layer and covers the transparent electrode line group and the resistor 7. As the transparent adhesive, a thermosetting type or an ultraviolet curable type is used. As a method for applying the transparent adhesive, a relatively uniform adhesive layer is formed in a desired range by using a printing technique, an inkjet technique, or the like. Alternatively, a large amount of adhesive may be dropped on the center of the substrate, and the dielectric layer 4 may be bonded and pressed to cause the adhesive to protrude beyond the broken line 12. The cured transparent adhesive can cover the transparent electrode line group 3A to prevent discharge and at the same time prevent resistance change due to moisture absorption by the resistor.

誘電体層4を貼り合せる透明接着剤を被覆部材30として用いるため、新たに別な被覆部材30を形成する場合に比べて素子の作製工程が簡略化できる。また、誘電体層4で透明電極ライン全体と抵抗体7とを被覆する場合に比べて誘電体層4の面積を小さくできる。誘電体層4としては、数百ミクロン程度の薄板ガラスが用いられるが、光偏向素子の波面収差などの光学特性を向上させるためには、薄板ガラスの平面性や厚みの均一性を向上させる必要があり、研磨工程などの追加によりコストが高額化する。そのため、誘電体層4の形成面積を小さくすることが好ましい。よって、本構成によれば、誘電体層4の面積を小さく維持できるため素子の製造コストの低減を図ることができる。(請求項8に対応)
次に、上述の実施形態に係る光偏向素子を画像表示装置へ適用した例について説明する。
Since the transparent adhesive for bonding the dielectric layer 4 is used as the covering member 30, the device manufacturing process can be simplified as compared with the case of newly forming another covering member 30. Further, the area of the dielectric layer 4 can be reduced as compared with the case where the entire transparent electrode line and the resistor 7 are covered with the dielectric layer 4. As the dielectric layer 4, a thin glass sheet of about several hundred microns is used, but in order to improve optical characteristics such as wavefront aberration of the light deflection element, it is necessary to improve the flatness and thickness uniformity of the thin glass sheet. The cost increases due to the addition of a polishing process. Therefore, it is preferable to reduce the formation area of the dielectric layer 4. Therefore, according to this configuration, since the area of the dielectric layer 4 can be kept small, the manufacturing cost of the element can be reduced. (Corresponding to claim 8)
Next, an example in which the light deflection element according to the above-described embodiment is applied to an image display device will be described.

本実施形態に係る画像表示装置は、図8に示すように、LEDランプを2次元アレイ状に配列した光源12、光源12からスクリーン13に向けて発せられた光の進行方向に配置される拡散板14、コンデンサレンズ15、画像表示素子としての透過型液晶パネル16、画像パターンを観察するための光学部材としての投射レンズ17が順に配設されている。また、本実施形態に係る画像表示装置は、光源12に対する光源ドライブ部18、及び透過型液晶パネル16に対するドライブ部19を有している。   As shown in FIG. 8, the image display device according to the present embodiment includes a light source 12 in which LED lamps are arranged in a two-dimensional array, and a diffusion arranged in the traveling direction of light emitted from the light source 12 toward the screen 13. A plate 14, a condenser lens 15, a transmissive liquid crystal panel 16 as an image display element, and a projection lens 17 as an optical member for observing the image pattern are arranged in this order. The image display apparatus according to the present embodiment includes a light source drive unit 18 for the light source 12 and a drive unit 19 for the transmissive liquid crystal panel 16.

さらに、透過型液晶パネル16と投射レンズ17との間の光路上にはピクセルシフト素子として機能する光偏向素子20が介在し、ドライブ部21が接続されている。このような光偏向素子20として、上述の光偏向素子が用いられている。   Further, on the optical path between the transmissive liquid crystal panel 16 and the projection lens 17, an optical deflection element 20 that functions as a pixel shift element is interposed, and a drive unit 21 is connected. As such an optical deflection element 20, the above-described optical deflection element is used.

光源ドライブ部18で制御されて光源12から放出された照明光は、拡散板14により均一化された照明光となり、コンデンサレンズ15により液晶ドライブ部18で照明光源と同期して制御されて透過型液晶パネル16をクリティカル照明する。この透過型液晶パネル16で空間光変調された照明光は、画像光として光偏向素子20に入射し、この光偏向素子20によって画像光が画素の配列方向に任意の距離だけシフトされる。この光は投射レンズ17で拡大されスクリーン13上に投射される。   The illumination light that is controlled by the light source drive unit 18 and emitted from the light source 12 becomes uniform illumination light by the diffusion plate 14, and is controlled by the condenser lens 15 in synchronization with the illumination light source by the liquid crystal drive unit 18 to be a transmission type. The liquid crystal panel 16 is critically illuminated. The illumination light spatially modulated by the transmissive liquid crystal panel 16 enters the light deflection element 20 as image light, and the image light is shifted by an arbitrary distance in the pixel arrangement direction by the light deflection element 20. This light is magnified by the projection lens 17 and projected onto the screen 13.

ここに、光偏向素子20により画像フィールドを時分割された複数のサブフィールド毎の光路の偏向に応じて表示位置がずれた状態の画像パターンを表示させることで、透過型液晶パネル16の見掛け上の画素数を増倍して表示する。このように光偏向手段20によるシフト量は透過型液晶パネル16の画素の配列方向に対して2倍の画像増倍を行うことから、画素ピッチの1/2に設定される。シフト量に応じて透過型液晶パネル16を駆動する画像信号をシフト量分だけ補正することで、見掛け上、高精細な画像を表示することができる。この際、光偏向素子20として、上述した各実施形態に係る光偏向素子を用いることにより、光の利用効率を向上させ、光源の負荷を増加することなく観察者により明るく高品質の画像を提供できる。光偏向位置制御を光偏向素子20における透明電極ライン群3および抵抗体7への電界印加方向及び電界強度により行うことで、適切なピクセルシフト量が保持され良好な画像を得ることができる。   Here, by displaying an image pattern in which the display position is shifted in accordance with the deflection of the optical path for each of the plurality of subfields in which the image field is time-divided by the light deflection element 20, the appearance of the transmissive liquid crystal panel 16 is apparent. The number of pixels is multiplied and displayed. Thus, the shift amount by the light deflecting means 20 is set to ½ of the pixel pitch because the image multiplication is performed twice as much as the pixel arrangement direction of the transmissive liquid crystal panel 16. By correcting the image signal for driving the transmissive liquid crystal panel 16 according to the shift amount by the shift amount, an apparently high-definition image can be displayed. At this time, by using the light deflection element according to each of the above-described embodiments as the light deflection element 20, the light utilization efficiency is improved, and a brighter and higher quality image is provided to the observer without increasing the load on the light source. it can. By performing the optical deflection position control based on the electric field application direction and electric field intensity to the transparent electrode line group 3 and the resistor 7 in the optical deflection element 20, an appropriate pixel shift amount is maintained and a good image can be obtained.

次に、本実施形態に係る光偏向素子の具体的な実施例について説明する。   Next, specific examples of the optical deflection element according to the present embodiment will be described.

(比較例)
図9に示すように、大きさ60mm×50mm、厚さ1mmのガラス板の長手方向に平行に10μm幅のITOライン電極3Aを100μmピッチで400本形成した基板(2A、2B)を準備した。両端部のITOライン電極3Aは、片側の端部を広くして電極接続部3Bとした。抵抗体形成部と電極接続部3Bの幅10mmを除いた50mm×50mmの領域に厚さ150μmのカバーガラスを光学用UV接着剤で全面に貼り付けした。次に、カバーガラスの表面を垂直配向剤JALS2021−R2で処理した後に、ITOライン電極3Aが平行で有効領域部が重なるように50μm粒子径のスペーサを混入させた接着剤で両基板を接着した。次に基板を90度に加熱した状態で、二枚の基板間に強誘電性液晶(チッソ製CS1029)を毛管法で注入した後に、カバーガラスが貼られていないITOライン電極群3A上に抵抗体としてアンチモン含有酸化スズ(大阪セメント社製R308)を約3mm幅で印刷した。ITOライン電極群3Aの2mm幅には抵抗体は形成されていない。次に、両基板の電極接続部3Bに超音波半田でケーブルを結線し電源に接続した。±2kv60Hzの交流電圧を印加したところ有効領域全面で光路シフトが確認できたが、図10のように二枚を組み合わせた光偏向素子の間で放電が発生し、すぐに光路シフトが確認できず、電極接続部3B近傍のITOラインが破壊されていた。
(Comparative example)
As shown in FIG. 9, a substrate (2A, 2B) on which 400 ITO line electrodes 3A having a width of 10 μm were formed at a pitch of 100 μm parallel to the longitudinal direction of a glass plate having a size of 60 mm × 50 mm and a thickness of 1 mm was prepared. The ITO line electrode 3A at both ends was widened at one end to form an electrode connection portion 3B. A cover glass having a thickness of 150 μm was attached to the entire surface with an optical UV adhesive in a 50 mm × 50 mm region excluding the width of 10 mm between the resistor forming portion and the electrode connecting portion 3B. Next, after the surface of the cover glass was treated with the vertical alignment agent JALS2021-R2, both substrates were bonded with an adhesive mixed with a spacer having a particle diameter of 50 μm so that the ITO line electrode 3A was parallel and the effective area portion overlapped. . Next, a ferroelectric liquid crystal (CS1029 manufactured by Chisso) is injected between the two substrates with the substrate heated to 90 degrees by the capillary method, and then a resistance is applied on the ITO line electrode group 3A to which the cover glass is not attached. Antimony-containing tin oxide (R308 manufactured by Osaka Cement Co., Ltd.) was printed as a body with a width of about 3 mm. No resistor is formed in the 2 mm width of the ITO line electrode group 3A. Next, a cable was connected to the electrode connecting portion 3B of both substrates with ultrasonic soldering and connected to a power source. When an AC voltage of ± 2 kv 60 Hz was applied, an optical path shift was confirmed over the entire effective area, but a discharge occurred between the two optical deflectors combined as shown in FIG. 10, and the optical path shift could not be confirmed immediately. The ITO line in the vicinity of the electrode connection portion 3B was broken.

そこで、本実施例では、電源に接続する前に抵抗体が形成されていない2mm幅のITOライン電極群3Aと超音波半田で結線した電極接続部3BとをシリコンゴムTSE3663(東芝シリコーン製)で全て覆った。そして、図10のように二枚を組み合わせた光偏向素子に、±2kv60Hzの交流電圧を印加したところ放電が発生することなく、有効領域全面で継続した光路シフトが確認できた。   Therefore, in this embodiment, the silicon rubber TSE3663 (made by Toshiba Silicone) is used to connect the ITO line electrode group 3A having a width of 2 mm, which is not formed with a resistor before being connected to the power source, and the electrode connection portion 3B connected by ultrasonic soldering. I covered everything. As shown in FIG. 10, when an AC voltage of ± 2 kv 60 Hz was applied to the optical deflecting element in which two elements were combined, a continuous optical path shift could be confirmed over the entire effective area without discharge.

また、比較例と同様の基板において、カバーガラスを貼らない5mm幅のITOライン電極部3AにCrSiOを約1000Åの膜厚にスパッタで形成した。アンチモン含有酸化スズを印刷しない以外は比較例と同様に光偏向素子を作製した。次に、両基板の電極接続部3Bに超音波半田でケーブルを結線し、電極接続部3Bと半田部だけをカプトンテープ(スリーエム製)で覆った。そして、±2kv60Hzの交流電圧を印加したところ有効領域全面で継続した光路シフトが確認できた。   Further, on the same substrate as that of the comparative example, CrSiO was formed by sputtering to a thickness of about 1000 mm on the ITO line electrode portion 3A having a width of 5 mm without attaching a cover glass. A light deflecting element was produced in the same manner as in the comparative example except that the antimony-containing tin oxide was not printed. Next, a cable was connected to the electrode connection portion 3B of both substrates with ultrasonic soldering, and only the electrode connection portion 3B and the solder portion were covered with Kapton tape (manufactured by 3M). When an AC voltage of ± 2 kv 60 Hz was applied, a continuous optical path shift could be confirmed over the entire effective area.

また、比較例と同様の基板において、抵抗体形成部にCrSiOを約1000Åの膜厚にスパッタで形成した。次に、電極接続部3Bの5mm幅を残した全面に厚さ150μmのカバーガラスを光学用UV接着剤で貼り付け、カバーガラスの表面を垂直配向剤JALS2021−R2で処理した。次に、ITOライン電極3Aが平行で有効領域の50mm幅が重なるように50μm粒子径のスペーサを混入させた接着剤で両基板を接着した。さらに、基板を90度に加熱した状態で、二枚の基板間に強誘電性液晶(チッソ製CS1029)を毛管法で注入した。電極接続部3Bにケーブルを超音波半田で接続し、電極接続部3Bと半田部だけをカプトンテープ(スリーエム製)で覆った。そして、図10のように二枚を組み合わせた光偏向素子に、±2kv60Hzの交流電圧を印加したところ有効領域全面で継続した光路シフトが確認できた。   Further, on the same substrate as that of the comparative example, CrSiO was formed on the resistor forming portion to a thickness of about 1000 mm by sputtering. Next, a cover glass having a thickness of 150 μm was attached to the entire surface of the electrode connection portion 3B leaving a width of 5 mm with an optical UV adhesive, and the surface of the cover glass was treated with the vertical alignment agent JALS2021-R2. Next, both substrates were bonded with an adhesive mixed with a spacer having a particle diameter of 50 μm so that the ITO line electrodes 3A were parallel and the 50 mm width of the effective area overlapped. Further, a ferroelectric liquid crystal (CS1029 manufactured by Chisso) was injected between the two substrates by a capillary method while the substrate was heated to 90 degrees. The cable was connected to the electrode connecting portion 3B with ultrasonic soldering, and only the electrode connecting portion 3B and the solder portion were covered with Kapton tape (manufactured by 3M). As shown in FIG. 10, when an AC voltage of ± 2 kv 60 Hz was applied to the optical deflecting element in which two elements were combined, a continuous optical path shift could be confirmed over the entire effective area.

また、バネ付きの金属クリップをシリコンゴムで加工して、光偏向素子の電極接続部3Bに接続すると電源へ接続でき、かつ電極接続部3Bが覆う形状のものを作った。電極接続の半田の前工程までは、上述の実施例と同様の光偏向素子を作製し、加工したクリップで電極接続部3Bに結線した。そして、図10のように二枚を組み合わせた光偏向素子に、±2kv60Hzの交流電圧を印加したところ有効領域全面で継続した光路シフトが確認できた。   Further, a metal clip with a spring was processed with silicon rubber, and when it was connected to the electrode connecting portion 3B of the light deflection element, it was connected to the power source, and the electrode connecting portion 3B covered the electrode. Until the electrode connection solder pre-process, an optical deflection element similar to that of the above-described embodiment was manufactured and connected to the electrode connection portion 3B with a processed clip. As shown in FIG. 10, when an AC voltage of ± 2 kv 60 Hz was applied to the optical deflecting element in which two elements were combined, a continuous optical path shift could be confirmed over the entire effective area.

これらの実施例に係る光偏光素子を有する画像表示装置では、高精細な投射画像が得られた。また、装置内の狭空間でも放電が発生することはなかった。   In the image display apparatus having the light polarizing element according to these examples, a high-definition projected image was obtained. In addition, no discharge occurred in a narrow space in the apparatus.

次に、上述の他の実施形態に係る光偏光素子の具体的な実施例について説明する。図9に示すように、大きさ60mm×50mm、厚さ1mmのガラス板の長手方向に平行に10μm幅のITOライン電極3Aを100μmピッチで400本形成した基板(2A、2B)を準備した。両端部のITOライン電極部3Aは、片側の端部を広くして電極接続部3Bとした。   Next, specific examples of the light polarizing element according to the other embodiment described above will be described. As shown in FIG. 9, a substrate (2A, 2B) on which 400 ITO line electrodes 3A having a width of 10 μm were formed at a pitch of 100 μm parallel to the longitudinal direction of a glass plate having a size of 60 mm × 50 mm and a thickness of 1 mm was prepared. The ITO line electrode portion 3A at both ends is widened at one end to form an electrode connection portion 3B.

抵抗体形成部にCrSiOを約1000Åの膜厚にスパッタで形成した。次に、電極接続部3Bの一部を残して基板面上にスクリーン印刷で光学用UV接着剤を均一に数ミクロンの厚みで塗布し、その上に厚さ150μmのカバーガラスを貼り合せた。カバーガラスの大きさは有効面積よりも僅かに大きい45mm×45mmとした。その後、UV照射により接着剤を硬化させ、カバーガラスの貼り合せ、ITOライン電極3A及び抵抗体7の被覆を行った。この基板(2A、2B)の表面を垂直配向剤JALS2021−R2で処理した。次に、ITOライン電極3Aが平行で有効領域の50mm幅が重なるように50μm粒子径のスペーサを混入させた接着剤で両基板(2A、2B)を接着した。次に基板(2A、2B)を90度に加熱した状態で、二枚の基板間に強誘電性液晶(チッソ製CS1029)を毛管法で注入した。電極接続部3Bに超音波半田によりケーブルを接続し、次に電極接続部3Bと半田部だけをカプトンテープ(スリーエム製)で覆った。図10のように二枚を組み合わせた光偏向素子に、±2kv60Hzの交流電圧を印加したところ、有効領域全面で継続した光路シフトが確認できた。   CrSiO was formed to a thickness of about 1000 mm on the resistor forming portion by sputtering. Next, an optical UV adhesive was uniformly applied with a thickness of several microns on the substrate surface by screen printing, leaving a part of the electrode connection portion 3B, and a cover glass having a thickness of 150 μm was bonded thereon. The size of the cover glass was 45 mm × 45 mm slightly larger than the effective area. Thereafter, the adhesive was cured by UV irradiation, the cover glass was bonded, and the ITO line electrode 3A and the resistor 7 were coated. The surface of this substrate (2A, 2B) was treated with the vertical alignment agent JALS2021-R2. Next, both substrates (2A, 2B) were bonded with an adhesive mixed with a spacer having a particle diameter of 50 μm so that the ITO line electrode 3A was parallel and the 50 mm width of the effective area overlapped. Next, in a state where the substrates (2A, 2B) were heated to 90 degrees, a ferroelectric liquid crystal (CS1029 manufactured by Chisso) was injected between the two substrates by a capillary method. A cable was connected to the electrode connecting portion 3B by ultrasonic soldering, and then only the electrode connecting portion 3B and the solder portion were covered with Kapton tape (manufactured by 3M). As shown in FIG. 10, when an AC voltage of ± 2 kv 60 Hz was applied to the optical deflecting element in which two elements were combined, a continuous optical path shift could be confirmed over the entire effective area.

(a)は本実施形態に係る光偏向素子の断面図、(b)は平面図である。(A) is sectional drawing of the optical deflection | deviation element concerning this embodiment, (b) is a top view. (a)は本実施形態に係る光偏向素子の断面図、(b)は平面図、(c)は側面図、(d)は電極接続部の拡大図である。(A) is sectional drawing of the optical deflection | deviation element concerning this embodiment, (b) is a top view, (c) is a side view, (d) is an enlarged view of an electrode connection part. 本実施形態に係る光偏向素子の電極接続部の拡大図である。It is an enlarged view of the electrode connection part of the optical deflection element concerning this embodiment. 本実施形態に係る光偏向素子の側面図である。It is a side view of the light deflection element concerning this embodiment. 本実施形態に係る光偏向素子の側面図である。It is a side view of the light deflection element concerning this embodiment. (a)は本実施形態に係る光偏向素子の断面図、(b)は平面図である。(A) is sectional drawing of the optical deflection | deviation element concerning this embodiment, (b) is a top view. (a)は本実施形態に係る光偏向素子の断面図、(b)は平面図、(c)は側面図、(d)は電極接続部の拡大図である。(A) is sectional drawing of the optical deflection | deviation element concerning this embodiment, (b) is a top view, (c) is a side view, (d) is an enlarged view of an electrode connection part. 本実施形態に係る光偏向素子を有する画像表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the image display apparatus which has a light deflection element concerning this embodiment. 本実施例に係る光偏向素子の平面図である。It is a top view of the light deflection element concerning this example. 従来の光偏向素子の概略図である。It is the schematic of the conventional optical deflection | deviation element.

符号の説明Explanation of symbols

2A、2B 基板
3A 透明電極ライン群
3B 電極接続部
4 誘電体層
5 接着剤層
6 スペーサ
7 抵抗体
8 液晶層
9 電源
10 電界
11 給電手段
13 スクリーン
14 拡散板
15 コンデンサレンズ
16 透過型液晶パネル
17 投射レンズ
18 光源ドライブ部
19 透過型液晶パネルドライブ部
20 光偏向素子
21 ドライブ部
22 被覆部材
23 接続線
24 外部抵抗
25 FPC
2A, 2B Substrate 3A Transparent electrode line group 3B Electrode connection portion 4 Dielectric layer 5 Adhesive layer 6 Spacer 7 Resistor 8 Liquid crystal layer 9 Power source 10 Electric field 11 Power supply means 13 Screen 14 Diffuser plate 15 Condenser lens 16 Transmission type liquid crystal panel 17 Projection lens 18 Light source drive unit 19 Transmission type liquid crystal panel drive unit 20 Optical deflection element 21 Drive unit 22 Cover member 23 Connection line 24 External resistance 25 FPC

Claims (8)

透明な一対の基板と、前記基板上に配置された複数の透明電極ライン群と、前記基板間で基板面に対して略垂直なキラルスメクチックC相を形成する液晶層と、前記複数の透明電極ライン群の間に配置された誘電体層とを有し、前記透明電極ライン間に電位勾配を発生させることにより、光路を偏向する光偏向素子において、
前記透明電極ライン群の前記誘電体層が配置されていない領域が被覆部材により被覆されていることを特徴とする光偏向素子。
A pair of transparent substrates, a plurality of transparent electrode line groups disposed on the substrate, a liquid crystal layer forming a chiral smectic C phase substantially perpendicular to the substrate surface between the substrates, and the plurality of transparent electrodes An optical deflection element that deflects an optical path by generating a potential gradient between the transparent electrode lines.
A region of the transparent electrode line group where the dielectric layer is not disposed is covered with a covering member.
透明な一対の基板と、前記基板上に配置された複数の透明電極ライン群と、前記基板間で基板面に対して略垂直なキラルスメクチックC相を形成する液晶層と、前記複数の透明電極ライン群の間に配置された誘電体層と、前記透明電極ライン群と電源とを接続する電極接続部とを有し、前記透明電極ライン間に電位勾配を発生させることにより、光路を偏向する光偏向素子において、
前記透明電極ライン群の前記誘電体層が配置されていない領域及び前記電極接続部が被覆部材により被覆されていることを特徴とする光偏向素子。
A pair of transparent substrates, a plurality of transparent electrode line groups disposed on the substrate, a liquid crystal layer forming a chiral smectic C phase substantially perpendicular to the substrate surface between the substrates, and the plurality of transparent electrodes A dielectric layer disposed between the line groups, and an electrode connecting portion for connecting the transparent electrode line group and a power source, and deflecting an optical path by generating a potential gradient between the transparent electrode lines. In the optical deflection element,
An optical deflection element, wherein a region of the transparent electrode line group where the dielectric layer is not disposed and the electrode connecting portion are covered with a covering member.
前記透明電極ライン群を電気的に接続する抵抗体を有することを特徴とする請求項2記載の光偏向素子。   3. The optical deflection element according to claim 2, further comprising a resistor that electrically connects the transparent electrode line group. 透明な一対の基板と、前記基板上に配置された複数の透明電極ライン群と、前記基板間で基板面に対して略垂直なキラルスメクチックC相を形成する液晶層と、前記複数の透明電極ライン群の間に配置された誘電体層と、前記透明電極ライン群を電気的に接続する抵抗体とを有し、前記透明電極ライン間に電位勾配を発生させることにより、光路を偏向する光偏向素子において、
前記誘電体層が前記透明電極ライン群及び前記抵抗体を被覆することを特徴とする光偏向素子。
A pair of transparent substrates, a plurality of transparent electrode line groups disposed on the substrate, a liquid crystal layer forming a chiral smectic C phase substantially perpendicular to the substrate surface between the substrates, and the plurality of transparent electrodes Light having a dielectric layer disposed between line groups and a resistor electrically connecting the transparent electrode line groups, and deflecting an optical path by generating a potential gradient between the transparent electrode lines In the deflection element,
The light deflection element, wherein the dielectric layer covers the transparent electrode line group and the resistor.
透明な一対の基板と、前記基板上に配置された複数の透明電極ライン群と、前記基板間で基板面に対して略垂直なキラルスメクチックC相を形成する液晶層と、前記複数の透明電極ライン群の間に配置された誘電体層と、前記透明電極ライン群を電気的に接続する抵抗体とを有し、前記透明電極ライン間に電位勾配を発生させることにより、光路を偏向する光偏向素子において、
前記透明電極ライン群と電源とを接続する電極接続部へ給電する給電手段を有し、
前記給電手段は、前記電極接続部と接する部分のみが導電部材であることを特徴とする光偏向素子。
A pair of transparent substrates, a plurality of transparent electrode line groups disposed on the substrate, a liquid crystal layer forming a chiral smectic C phase substantially perpendicular to the substrate surface between the substrates, and the plurality of transparent electrodes Light having a dielectric layer disposed between line groups and a resistor electrically connecting the transparent electrode line groups, and deflecting an optical path by generating a potential gradient between the transparent electrode lines In the deflection element,
A power supply means for supplying power to an electrode connecting portion that connects the transparent electrode line group and a power source;
The light deflection element according to claim 1, wherein the power feeding means is a conductive member only in a portion in contact with the electrode connecting portion.
透明な一対の基板と、前記基板上に配置された複数の透明電極ライン群と、前記基板間で基板面に対して略垂直なキラルスメクチックC相を形成する液晶層と、前記複数の透明電極ライン群の間に配置された誘電体層とを有し、前記透明電極ライン間に電位勾配を発生させることにより、光路を偏向する光偏向素子において、
前記透明電極ライン群の前記誘電体層が配置されていない領域が前記基板面に前記誘電体層を接着する接着剤により被覆されていることを特徴とする光偏向素子。
A pair of transparent substrates, a plurality of transparent electrode line groups disposed on the substrate, a liquid crystal layer forming a chiral smectic C phase substantially perpendicular to the substrate surface between the substrates, and the plurality of transparent electrodes An optical deflection element that deflects an optical path by generating a potential gradient between the transparent electrode lines.
A region of the transparent electrode line group where the dielectric layer is not disposed is covered with an adhesive that adheres the dielectric layer to the substrate surface.
透明な一対の基板と、前記基板上に配置された複数の透明電極ライン群と、前記基板間で基板面に対して略垂直なキラルスメクチックC相を形成する液晶層と、前記複数の透明電極ライン群の間に配置された誘電体層と、前記透明電極ライン群を電気的に接続する抵抗体とを有し、前記透明電極ライン間に電位勾配を発生させることにより、光路を偏向する光偏向素子において、
前記誘電体層が前記透明電極ライン群及び前記抵抗体が前記接着剤により被覆されていることを特徴とする光偏向素子。
A pair of transparent substrates, a plurality of transparent electrode line groups disposed on the substrate, a liquid crystal layer forming a chiral smectic C phase substantially perpendicular to the substrate surface between the substrates, and the plurality of transparent electrodes Light having a dielectric layer disposed between line groups and a resistor electrically connecting the transparent electrode line groups, and deflecting an optical path by generating a potential gradient between the transparent electrode lines In the deflection element,
The light deflection element, wherein the dielectric layer is covered with the transparent electrode line group and the resistor with the adhesive.
複数個の画素により画像情報に従って画像を表示する画像表示素子と、前記画像表示素子を証明する光源と、前記画像表示素子に表示する画像パターンを観察する光学部材と、前記光偏向素子によりサブフィールド毎の光路の偏向に応じて画像を表示することにより、前記画像表示素子の見掛け上の画素数を倍増して表示する画像表示装置において、
請求項1から7のいずれか1項記載の光偏向素子により時分割した複数のサブフィールドごとに前記画像表示素子と前記光学部材の間の光路を偏向することを特徴とする画像表示装置。
An image display element that displays an image according to image information by a plurality of pixels, a light source that proves the image display element, an optical member that observes an image pattern displayed on the image display element, and a subfield by the light deflection element In an image display device that displays an image according to the deflection of each optical path, thereby doubling the apparent number of pixels of the image display element,
8. An image display device, wherein an optical path between the image display element and the optical member is deflected for each of a plurality of subfields time-divided by the light deflecting element according to claim 1.
JP2005106877A 2005-04-01 2005-04-01 Optical deflection element and image display device Expired - Fee Related JP4917757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106877A JP4917757B2 (en) 2005-04-01 2005-04-01 Optical deflection element and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106877A JP4917757B2 (en) 2005-04-01 2005-04-01 Optical deflection element and image display device

Publications (2)

Publication Number Publication Date
JP2006285050A true JP2006285050A (en) 2006-10-19
JP4917757B2 JP4917757B2 (en) 2012-04-18

Family

ID=37407028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106877A Expired - Fee Related JP4917757B2 (en) 2005-04-01 2005-04-01 Optical deflection element and image display device

Country Status (1)

Country Link
JP (1) JP4917757B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167821A (en) * 2012-02-16 2013-08-29 Nikon Corp Light source device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234222A (en) * 1995-02-28 1996-09-13 Nec Kagoshima Ltd Method for connecting liquid crystal display device
JP2000214429A (en) * 1999-01-22 2000-08-04 Communication Research Laboratory Mpt Liquid crystal optical modulator and its drive method
JP2000275671A (en) * 1999-03-24 2000-10-06 Seiko Epson Corp Liquid crystal device, production of liquid crystal device and electronic apparatus
JP2001264794A (en) * 2000-03-21 2001-09-26 Advanced Display Inc Method for manufacturing liquid crystal display device
JP2003091013A (en) * 2001-09-18 2003-03-28 Ricoh Co Ltd Liquid crystal device, optical deflection element, picture display device using the optical deflection element, method for manufacturing optical deflection element and method for driving the optical deflection element
JP2004101704A (en) * 2002-09-06 2004-04-02 Ricoh Co Ltd Optical path shifting element
JP2004286961A (en) * 2003-03-20 2004-10-14 Ricoh Co Ltd Optical element, optical deflection element, and image display apparatus
JP2004286938A (en) * 2003-03-20 2004-10-14 Ricoh Co Ltd Optical deflector and picture display device
JP2005055739A (en) * 2003-08-06 2005-03-03 Ricoh Co Ltd Optical deflection element and image display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234222A (en) * 1995-02-28 1996-09-13 Nec Kagoshima Ltd Method for connecting liquid crystal display device
JP2000214429A (en) * 1999-01-22 2000-08-04 Communication Research Laboratory Mpt Liquid crystal optical modulator and its drive method
JP2000275671A (en) * 1999-03-24 2000-10-06 Seiko Epson Corp Liquid crystal device, production of liquid crystal device and electronic apparatus
JP2001264794A (en) * 2000-03-21 2001-09-26 Advanced Display Inc Method for manufacturing liquid crystal display device
JP2003091013A (en) * 2001-09-18 2003-03-28 Ricoh Co Ltd Liquid crystal device, optical deflection element, picture display device using the optical deflection element, method for manufacturing optical deflection element and method for driving the optical deflection element
JP2004101704A (en) * 2002-09-06 2004-04-02 Ricoh Co Ltd Optical path shifting element
JP2004286961A (en) * 2003-03-20 2004-10-14 Ricoh Co Ltd Optical element, optical deflection element, and image display apparatus
JP2004286938A (en) * 2003-03-20 2004-10-14 Ricoh Co Ltd Optical deflector and picture display device
JP2005055739A (en) * 2003-08-06 2005-03-03 Ricoh Co Ltd Optical deflection element and image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167821A (en) * 2012-02-16 2013-08-29 Nikon Corp Light source device

Also Published As

Publication number Publication date
JP4917757B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
US10788727B2 (en) Liquid crystal light deflector
JP4833053B2 (en) Optical deflection element and image display device
US8319109B2 (en) Electro-optical device and electronic apparatus
US20090109369A1 (en) Liquid crystal display device
JP4916578B2 (en) Display device, manufacturing method thereof, and active matrix substrate
CN111948839B (en) Display device and driving method thereof
US7489383B2 (en) Optical axis deflecting method, optical axis deflecting element, optical path deflecting unit, method of driving optical axis deflecting element, and image display apparatus
JP2005338804A (en) Optical axis deflection element, optical path deflection element, optical axis deflection method, optical path deflection method, optical axis deflection device, optical path deflection device, picture display device
US20110084956A1 (en) Liquid crystal display device
US7564508B2 (en) Light path shift device and image display device
JP2011221400A (en) Liquid crystal display and method for manufacturing liquid crystal display
JP2003098504A (en) Optical deflecting element, optical deflector using it, and picture display device
JP4917757B2 (en) Optical deflection element and image display device
JP4773649B2 (en) Optical deflection apparatus and image display apparatus
TW200420961A (en) Electro-optical device, electronic machine having the electro-optical device, and manufacturing method of the electro-optical device
KR100825237B1 (en) Liquid crystal display device
JP2006267906A (en) Optical deflecting element and image display device
JP2008292525A (en) Transmittance-controlling panel and display device
JP3980908B2 (en) Optical path deflecting element, optical path deflecting element unit, and image display apparatus
JPWO2003026898A1 (en) Liquid crystal shutter device
JP2008216966A (en) Manufacturing method of electrooptical device, electrooptical device, and electronic equipment
JP4751600B2 (en) Optical deflection element and image display device
JP2009069297A (en) Light deflector and image display device
US20100296013A1 (en) Panel
JP2911662B2 (en) Display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4917757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees