JP4751600B2 - Optical deflection element and image display device - Google Patents

Optical deflection element and image display device Download PDF

Info

Publication number
JP4751600B2
JP4751600B2 JP2004333081A JP2004333081A JP4751600B2 JP 4751600 B2 JP4751600 B2 JP 4751600B2 JP 2004333081 A JP2004333081 A JP 2004333081A JP 2004333081 A JP2004333081 A JP 2004333081A JP 4751600 B2 JP4751600 B2 JP 4751600B2
Authority
JP
Japan
Prior art keywords
incident
electrode
layer
resistor layer
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004333081A
Other languages
Japanese (ja)
Other versions
JP2006145664A (en
Inventor
ゆみ 松木
浩之 杉本
才明 鴇田
由希子 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004333081A priority Critical patent/JP4751600B2/en
Publication of JP2006145664A publication Critical patent/JP2006145664A/en
Application granted granted Critical
Publication of JP4751600B2 publication Critical patent/JP4751600B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この本発明は、電圧を印加されると入射光の光路をシフトさせて出射する光偏向素子及び該光偏向素子を利用した画像表示装置に関する。 The present invention relates to an image display apparatus using the light deflecting element and the light deflection element that emits shifts the optical path of the incident light to be energized.

液晶等の画素数及び画素ピッチを固定された画像表示素子を用いて高解像度の画像を表示するためには、画像表示素子自体の画素を小さくして画素ピッチを短くする必要がある。しかし、画像表示素子の画素を小さくして画素ピッチを細かくすることは、技術的に困難でコストが高くなる傾向にあるため、画像表示素子の解像度を維持したまま、表示される画像を高解像度にする技術が求められる。   In order to display a high-resolution image using an image display element having a fixed number of pixels and a pixel pitch, such as liquid crystal, it is necessary to reduce the pixel pitch by shortening the pixels of the image display element itself. However, since it is technically difficult and costly to reduce the pixel pitch of the image display element and reduce the pixel pitch, it is necessary to increase the resolution of the displayed image while maintaining the resolution of the image display element. The technology to make is required.

ここで、画像表示素子の各画素を画素ピッチの中間位置にわずかにシフトさせて表示させることができれば、画像表示素子の本来の解像度以上の画像を得ることができる。特許文献1には、スメクチックC相の強誘電性液晶層を透明基板間に挟んで透明基板間の導電性のスペーサに電圧を印加して強誘電性液晶層に平行な電界を印加し、強誘電性液晶分子を傾けて透明基板を透過する光をシフトさせる素子が提案されている。   Here, if each pixel of the image display element can be displayed with a slight shift to an intermediate position of the pixel pitch, an image having a resolution higher than the original resolution of the image display element can be obtained. In Patent Document 1, a smectic C-phase ferroelectric liquid crystal layer is sandwiched between transparent substrates, a voltage is applied to a conductive spacer between the transparent substrates, and an electric field parallel to the ferroelectric liquid crystal layer is applied. There has been proposed an element that tilts dielectric liquid crystal molecules to shift light transmitted through a transparent substrate.

特許文献1では、光を透過する領域の全面に抵抗体層を設けており、素子の有効面積を広くとる場合、電極間の距離を増すに従い強誘電性液晶層の面内で均一な電界を得られない。特に、電極間の中央部分での電界の向きや大きさのばらつきが顕著であり、電極間の中央部分における電極に垂直な成分は、電極近傍と比べて著しく小さくなり、液晶分子を均一に傾けることができず光のシフト量が不均一となる。   In Patent Document 1, a resistor layer is provided on the entire surface of a region that transmits light. When the effective area of the element is increased, a uniform electric field is generated in the plane of the ferroelectric liquid crystal layer as the distance between the electrodes is increased. I can't get it. In particular, the variation in the direction and magnitude of the electric field in the central part between the electrodes is remarkable, and the component perpendicular to the electrode in the central part between the electrodes is significantly smaller than in the vicinity of the electrodes, and the liquid crystal molecules are tilted uniformly. Cannot be achieved, and the amount of light shift becomes non-uniform.

特開2003−098504号公報JP 2003-098504 A

本発明は、基板間に保持された液晶の面内に平行かつ均一な電界を印加して、透過する光を均一にシフトさせる、小型の光偏向素子及び該光偏向素子を用いて光を多方向にシフトさせて高解像度の画像を表示する画像表示装置を提供することを目的とする。 The present invention applies a parallel and uniform electric field in the plane of the liquid crystal held between the substrates, to uniformly shift the transmitted light, multi-light have use a small light deflector and the light deflecting element An object of the present invention is to provide an image display device that displays a high-resolution image by shifting in the direction.

この発明の光偏向素子は、一対の基板とスペーサと液晶層と電極ライン群と抵抗体層と導通部とを備え、基板は透明で平行に配置され、スペーサは均一な厚さの部材を有して基板間の一定の有効領域を囲むように配置され、液晶層は基板間に挟まれた有効領域内で層法線方向を基板面に直交させたキラルスメクチックC相を形成し、電極ライン群は互いに平行かつ液晶層に平行な複数の線状の電極を各基板と液晶層との間で有効領域に重なる位置にそれぞれ有し、一方の基板側において有効領域の両端に位置する電極と他方の基板側において有効領域の両端に位置する電極とは両端部においてそれぞれ平行に対向して配置され、抵抗体層は一方の基板の電極を横断して直列接続する線状の抵抗体と、他方の基板の電極を横断して直列接続する線状の抵抗体とを有し、一方の基板側に設けられた線状の抵抗体と他方の基板側に設けられた線状の抵抗体とは平行に対向して有効領域外に配置され、導通部は抵抗体の両端部をそれぞれ基板間で電気的に接続する。そして、この光偏向素子において、抵抗体層と導通部とは一体に形成されている。 The optical deflection element of the present invention includes a pair of substrates, a spacer, a liquid crystal layer, an electrode line group, a resistor layer, and a conductive portion, the substrate is transparent and arranged in parallel, and the spacer has a member having a uniform thickness. The liquid crystal layer is arranged so as to surround a certain effective area between the substrates, and the liquid crystal layer forms a chiral smectic C phase in which the normal direction of the layer is perpendicular to the substrate surface in the effective area sandwiched between the substrates. The group has a plurality of linear electrodes parallel to each other and parallel to the liquid crystal layer at positions overlapping the effective region between each substrate and the liquid crystal layer, and electrodes positioned at both ends of the effective region on one substrate side, On the other substrate side, the electrodes located at both ends of the effective region are arranged to face each other in parallel at both ends, and the resistor layer is a linear resistor that is connected in series across the electrodes of one substrate; Connect in series across the electrodes on the other substrate A linear resistor provided on one substrate side and a linear resistor provided on the other substrate side are arranged in parallel to face outside the effective region, The conductive portion electrically connects both ends of the resistor between the substrates. In this optical deflection element, the resistor layer and the conducting portion are formed integrally.

の光偏向素子において、導通部は抵抗体層の全体を基板間で電気的に接続するとよい。また、この光偏向素子において、導通部はスペーサの一部により形成されているとよい。 In the light deflector of this, the conduction portion may the entire resistor layer electrically connecting between the substrates. In the optical deflection element of this, it may conduction portion is formed by a portion of the spacer.

この発明の画像表示装置は、原画像表示部と光偏向デバイスと表示制御部とを備え、原画像表示部は、2次元に配列した画素で画像を表示し、光偏向デバイスは、2つの上記いずれかの光偏向素子と偏光面回転素子とを有し、2つの光偏向素子は液晶層の層法線方向を一致させるとともに電極ライン群の両端の電極に電圧を印加されることにより発生する電界の方向を直交させ、偏光面回転素子は2つの光偏向素子の間で透過光の偏光方向を直角に回転させ、表示制御部は、原画像表示部の画像を順次切り替えて表示させながら、1または複数の画像ごとに、光偏向デバイスの一方の光偏向素子に印加する電圧の極性と、光偏向デバイスの他方の光偏向素子に印加する電圧の極性との組み合わせを切り替えることにより、原画像表示部の画像をシフトさせる。   The image display apparatus according to the present invention includes an original image display unit, an optical deflection device, and a display control unit. The original image display unit displays an image with pixels arranged in two dimensions, and the optical deflection device includes two of the above-described optical deflection devices. One of the light deflecting elements and the polarization plane rotating element are provided, and the two light deflecting elements are generated by applying a voltage to the electrodes at both ends of the electrode line group while matching the normal direction of the liquid crystal layer. The direction of the electric field is orthogonalized, the polarization plane rotation element rotates the polarization direction of the transmitted light at a right angle between the two light deflection elements, and the display control unit sequentially switches and displays the image of the original image display unit, By switching the combination of the polarity of the voltage applied to one optical deflection element of the optical deflection device and the polarity of the voltage applied to the other optical deflection element of the optical deflection device for each one or a plurality of images, Display image To shift.

この発明の光偏向素子によれば、抵抗体層の両端を基板間でそれぞれ導通して基板間で一定にすることにより、抵抗体層の電位勾配を基板間において対称的に形成しながら長手方向に一定の割合で変化させることができるため、抵抗体層に接続された位置で決定される電極ライン群の各電極の電位を正確に設定して液晶層の面内に均一な電界を形成してシフト量を均一にできるとともに、抵抗体層の端部から外部電源に接続する端子を設ける領域を減らして素子を小型に形成し、さらに、外部電源への配線を少なくできる。また、さらに、抵抗体層と導通部とが一体に形成されることにより、抵抗体層と導通部の接続不良の発生を防げるとともに、抵抗体層と導通部とを別に形成する場合に比較して光偏向素子の製造工程を簡易化できる。 According to the optical deflection element of the present invention , both ends of the resistor layer are electrically connected between the substrates to make them constant between the substrates, thereby forming the potential gradient of the resistor layers symmetrically between the substrates in the longitudinal direction. Therefore, the electric potential of each electrode of the electrode line group determined at the position connected to the resistor layer is accurately set to form a uniform electric field in the plane of the liquid crystal layer. Thus, the shift amount can be made uniform, the area for providing the terminal connected to the external power source from the end of the resistor layer can be reduced, the element can be formed in a small size, and the wiring to the external power source can be reduced. Furthermore, since the resistor layer and the conductive portion are integrally formed, the connection failure between the resistor layer and the conductive portion can be prevented, and compared with the case where the resistor layer and the conductive portion are formed separately. Thus, the manufacturing process of the optical deflection element can be simplified.

さらに、導通部が抵抗体層の全体を基板間で電気的に接続することにより、抵抗体層の電位勾配を基板間でより対称的に形成できる Furthermore, when the conductive portion electrically connects the entire resistor layer between the substrates, the potential gradient of the resistor layer can be formed more symmetrically between the substrates .

さらに、導通部がスペーサの一部により形成されていることにより、液晶層の厚さを規制するスペーサを設ける領域を必要としないため、光偏向素子をより小型に形成できるとともに、製造工程を簡易化できる。   Further, since the conducting portion is formed by a part of the spacer, it is not necessary to provide a region for providing a spacer for regulating the thickness of the liquid crystal layer, so that the light deflection element can be formed more compactly and the manufacturing process can be simplified. Can be

この発明の画像表示装置によれば、小型で均一に出射光をシフトできる光偏向素子を用いて、画像表示素子の解像度以上の画像を、小さな装置で高品質に表示できる。   According to the image display device of the present invention, it is possible to display an image having a resolution higher than that of the image display device with a small device with high quality by using a small optical deflection element capable of uniformly shifting the emitted light.

第1の参考形態の光偏向素子1は、図1(a)の平面図、図1(b)の正面図、図1(c)のA1-A2断面図、図1(d)の側面図に示すように、入射側基板10と出射側基板11とスペーサ12と、入射側電極ライン群100と入射側抵抗体層103と出射側電極ライン群110と出射側抵抗体層111と、導通部13と誘電体層14と配向膜15と液晶層16とを備える。なお、入射側及び出射側は説明の便宜上設定したものであり、入射側と出射側とを入れ替えてもよい。 The light deflecting element 1 of the first reference embodiment includes a plan view of FIG. 1A, a front view of FIG. 1B, a cross-sectional view taken along line A1-A2 of FIG. 1C, and a side view of FIG. As shown in FIG. 4, the incident side substrate 10, the emission side substrate 11, the spacer 12, the incident side electrode line group 100, the incident side resistor layer 103, the emission side electrode line group 110, the emission side resistor layer 111, and the conduction portion. 13, a dielectric layer 14, an alignment film 15, and a liquid crystal layer 16. Note that the incident side and the emission side are set for convenience of explanation, and the incident side and the emission side may be interchanged.

入射側基板10及び出射側基板11は、ガラス基板等の薄い透明な材質で長方形に形成され、数μm〜百μm程度の間隔で平行に配置されている。スペーサ12は、数μm〜百μm程度の一定厚さのフィルムや数μm〜百μm程度の直径を有する球状体等で形成されており、入射側基板10と出射側基板11との間の外周付近に挟まれて、光を透過させる一定の有効領域を囲むように線状に配置されて、入射側基板10と出射側基板11とを均一な間隔で平行に保持している。   The incident side substrate 10 and the emission side substrate 11 are formed in a rectangular shape with a thin transparent material such as a glass substrate, and are arranged in parallel at intervals of about several μm to hundred μm. The spacer 12 is formed of a film having a constant thickness of about several μm to hundred μm, a spherical body having a diameter of about several μm to hundred μm, and the outer periphery between the incident side substrate 10 and the outgoing side substrate 11. It is arranged in a line so as to surround a certain effective region that transmits light, sandwiched between the vicinity, and the incident side substrate 10 and the emission side substrate 11 are held in parallel at a uniform interval.

入射側電極ライン群100は、入射側基板10の出射側基板11に対向する面にITO薄膜で直線状に形成された複数の電極で構成され、有効領域を横断するように配置されている。入射側電極ライン群100の各電極は互いに等間隔で平行に並んでおり、両端部の入射側第1電極101及び入射側第2電極102はスペーサ12で囲まれた有効領域の外部に面積の広い端子をそれぞれ有して、外部電源に接続しやすくされている。   The incident-side electrode line group 100 is composed of a plurality of electrodes formed in a straight line with an ITO thin film on the surface of the incident-side substrate 10 facing the output-side substrate 11, and is arranged so as to cross the effective region. The electrodes of the incident-side electrode line group 100 are arranged in parallel at equal intervals, and the incident-side first electrode 101 and the incident-side second electrode 102 at both ends have an area outside the effective area surrounded by the spacer 12. Each has a wide terminal to facilitate connection to an external power source.

入射側抵抗体層103は、スペーサ12で囲まれた有効領域外部において、複数の入射側電極ライン群100の端部全てを電気的に直列に接続する直線状の抵抗体の薄膜で形成されている。入射側抵抗体層103の幅及び膜厚は均一に形成されており、両端に電圧を印加すると長手方向に沿って均一な電位勾配を形成する。入射側抵抗体層103の表面抵抗率は、抵抗体が安定的に機能し、抵抗破壊等がなく、光偏向素子の液晶層への熱による悪影響をなくすため、1×107Ω/□以上であることが望ましい。入射側抵抗体層103を形成する抵抗体には、所望の抵抗値を発現し、入射側電極ライン群100上に形成できるもの、例えば、酸化クロム、酸化スズ、酸化アンチモン、酸化亜鉛、ATO(アンチモン含有酸化スズ)、またはこれらの微粒子を樹脂中に分散させた材料等を用いる。 The incident-side resistor layer 103 is formed of a linear resistor thin film that electrically connects all the ends of the plurality of incident-side electrode line groups 100 in series outside the effective region surrounded by the spacers 12. Yes. The incident-side resistor layer 103 has a uniform width and film thickness. When a voltage is applied to both ends, a uniform potential gradient is formed along the longitudinal direction. The surface resistivity of the incident-side resistor layer 103 is 1 × 10 7 Ω / □ or more so that the resistor functions stably, there is no resistance breakdown, and the adverse effect of heat on the liquid crystal layer of the light deflection element is eliminated. It is desirable that The resistor that forms the incident-side resistor layer 103 has a desired resistance value and can be formed on the incident-side electrode line group 100, such as chromium oxide, tin oxide, antimony oxide, zinc oxide, ATO ( Antimony-containing tin oxide) or a material in which these fine particles are dispersed in a resin is used.

有効領域外に配置される入射側抵抗体層103の幅は、有効領域内を通る入射側電極ライン群100の幅に比較すると広く、抵抗体材料により多少異なり、外部から衝撃を受けたときや電源への接続工程において剥離や断線を発生しない程度に広いことが好ましく、光偏向素子1の外形サイズを大きくしすぎない程度に狭いことが好ましいため、1mmから5mm程度であることが望ましい。   The width of the incident-side resistor layer 103 disposed outside the effective region is wider than the width of the incident-side electrode line group 100 passing through the effective region, and differs slightly depending on the resistor material. Since it is preferable that the width is large enough not to cause peeling or disconnection in the step of connecting to the power source, and it is preferable that the optical deflection element 1 is narrow enough not to make the outer size of the light deflection element 1 too large, it is preferably about 1 mm to 5 mm.

入射側抵抗体層103の形成方法には、蒸着やスパッタ等を用いることができ、塗布型の抵抗体を材料に用いる場合には、スピンコート方法、フレキソ印刷やスクリーン印刷等の印刷方法、ノズルやインクジェット方式等の噴射方法等を用いることができる。入射側抵抗体層103を形成する領域以外に材料が拡散する場合には、入射側抵抗体層103を形成する領域以外にマスキングを行う。   The incident side resistor layer 103 can be formed by vapor deposition, sputtering, or the like. When a coating type resistor is used as a material, a spin coating method, a printing method such as flexographic printing or screen printing, a nozzle, etc. Or an injection method such as an inkjet method. When the material diffuses outside the region where the incident side resistor layer 103 is formed, masking is performed outside the region where the incident side resistor layer 103 is formed.

出射側基板11と出射側電極ライン群110と出射側抵抗体層111とは、入射側基板10と入射側電極ライン群100と入射側抵抗体層103と、それぞれ同様の材質で形成され、スペーサ12を挟んでそれぞれ対称的に配置されている。出射側電極ライン群110の一端の出射側第1電極111が入射側第1電極101と平行に対向して配置され、出射側電極ライン群110の他端の出射側第2電極112が入射側第2電極102と平行に対向して配置されていれば、必ずしも全ての電極が対向した位置に配置されていなくてもよく、電極の本数、各電極の幅、各電極の間隔、各電極間の電位差等は必ずしも同じでなくてもよく、光路サイズ、光路偏向量、液晶材料等に基づいて適宜設定される。   The exit-side substrate 11, the exit-side electrode line group 110, and the exit-side resistor layer 111 are formed of the same material as the entrance-side substrate 10, the entrance-side electrode line group 100, and the entrance-side resistor layer 103, respectively. 12 are arranged symmetrically with respect to each other. The exit-side first electrode 111 at one end of the exit-side electrode line group 110 is disposed in parallel with the entrance-side first electrode 101, and the exit-side second electrode 112 at the other end of the exit-side electrode line group 110 is placed on the entrance side. As long as the second electrodes 102 are arranged in parallel and opposed to each other, all the electrodes need not be arranged at the opposed positions. The number of electrodes, the width of each electrode, the interval between the electrodes, and the distance between the electrodes The potential difference and the like are not necessarily the same, and are appropriately set based on the optical path size, the optical path deflection amount, the liquid crystal material, and the like.

導通部13は、有効領域外において、入射側第1電極101と出射側第1電極111とを電気的に接続するとともに、入射側第2電極102と出射側第2電極112とを電気的に接続している。導通部13は、半田やドータイト(商標)等の形成時に流動性をもつ導通材料や、導電性テープ等の導通材料を、入射側電極ライン群100の電極と出射側電極ライン群110の電極との間に充填したものであってもよく、あらかじめ入射側基板10及び出射側基板11の導通部13を形成する領域に設けたスルーホールから、形成時に流動性をもつ導通材料を注入したものであってもよい。   The conduction portion 13 electrically connects the incident side first electrode 101 and the emission side first electrode 111 outside the effective region, and electrically connects the incident side second electrode 102 and the emission side second electrode 112. Connected. The conductive portion 13 is made of a conductive material having fluidity when forming solder, Dotite (trademark) or the like, or a conductive material such as a conductive tape between the electrode of the incident side electrode line group 100 and the electrode of the output side electrode line group 110. In this case, a conductive material having fluidity is injected from a through hole provided in a region where the conductive portion 13 of the incident side substrate 10 and the emission side substrate 11 is formed in advance. There may be.

導通部13で導通された入射側第1電極101と出射側第1電極111とにより形成される第1電極端子17、及び導通部13で導通された入射側第2電極102と出射側第2電極112とにより形成される第2電極端子18は、それぞれ外部電源の異なる電極に接続される。   The first electrode terminal 17 formed by the incident-side first electrode 101 and the emission-side first electrode 111 conducted by the conduction unit 13, and the incident-side second electrode 102 and the emission-side second conducted by the conduction unit 13. The second electrode terminal 18 formed by the electrode 112 is connected to a different electrode of the external power source.

誘電体層14は、カバーガラス等の誘電体により、入射側基板10と入射側電極ライン群100とを覆うように形成されるとともに、出射側基板11と入射側電極ライン群110とを覆うように形成されている。配向膜15は、入射側基板10側及び出射側基板11側の誘電体層14の対向する面をそれぞれ薄膜状に覆い、表面の液晶分子を入射側配向膜15に対して垂直方向に配向させる機能を有し、シランカップリング剤や市販の液晶用垂直配向材等で構成される。液晶層16は、配向膜15に挟まれてスペーサ12で囲われた空間に充填したキラルスメクチックC相の強誘電性液晶で形成されている。   The dielectric layer 14 is formed by a dielectric such as a cover glass so as to cover the incident side substrate 10 and the incident side electrode line group 100, and so as to cover the emission side substrate 11 and the incident side electrode line group 110. Is formed. The alignment film 15 covers the opposing surfaces of the dielectric layer 14 on the incident side substrate 10 side and the emission side substrate 11 side in a thin film shape, and aligns the liquid crystal molecules on the surface in a direction perpendicular to the incident side alignment film 15. It has a function and is composed of a silane coupling agent, a commercially available vertical alignment material for liquid crystal, or the like. The liquid crystal layer 16 is formed of a chiral smectic C phase ferroelectric liquid crystal filled in a space surrounded by the spacers 12 between the alignment films 15.

一般に、キラルスメクチックC相の強誘電性液晶は、液晶分子の長軸方向に層構造をなし、液晶分子の長軸方向が層法線方向からわずかに傾いており、外部電界が働かない状態で各層毎に液晶ダイレクタ方向が螺旋的に回転しているいわゆる螺旋構造をもつ。キラルスメクチックC相の強誘電性液晶は、不斉炭素を分子構造に有して自発分極Psをもつため、外部電界Eが印加されると自発分極Psと外部電界Eとにより定まる方向に液晶分子を再配列させ、液晶分子の再配列により複屈折性を有する。キラルスメクチックC相の強誘電性液晶は、主鎖、スペーサ、骨格、結合部、キラル部等の構造をもち、主鎖構造は、ポリアクリレート、ポリメタクリレート、ポリシロキサン、ポリオキシエチレン等で形成され、分子回転を担う骨格、結合部、キラル部を主鎖と結合させるスペーサは、適当な長さのメチレン鎖等で形成され、カイラル部とビフェニル構造など剛直な骨格とを結合する結合部は、(-COO-)結合等で形成される。   In general, a ferroelectric liquid crystal having a chiral smectic C phase has a layer structure in the major axis direction of the liquid crystal molecule, and the major axis direction of the liquid crystal molecule is slightly inclined from the normal direction of the layer, and an external electric field does not work. Each layer has a so-called spiral structure in which the liquid crystal director direction is spirally rotated. Since the chiral smectic C phase ferroelectric liquid crystal has an asymmetric carbon in its molecular structure and spontaneous polarization Ps, the liquid crystal molecules are oriented in a direction determined by the spontaneous polarization Ps and the external electric field E when an external electric field E is applied. Are rearranged and have birefringence due to rearrangement of liquid crystal molecules. Chiral smectic C-phase ferroelectric liquid crystals have a main chain, spacer, skeleton, bond, and chiral structure, and the main chain structure is made of polyacrylate, polymethacrylate, polysiloxane, polyoxyethylene, etc. The skeleton responsible for molecular rotation, the binding part, the spacer that connects the chiral part to the main chain is formed of a methylene chain of an appropriate length, etc., and the binding part that connects the chiral part and a rigid skeleton such as a biphenyl structure, It is formed by a (-COO-) bond or the like.

液晶層16に充填されたキラルスメクチックC相の強誘電性液晶は、入射側配向膜15に垂直に螺旋構造の回転軸を向けたホメオトロピック配向をなし、基板面に対してほぼ垂直な層法線方向をもつ層構造を形成している。なお、液晶層16は、キラルスメクチックC相を形成する各層毎に液晶ダイレクタが対向する方向を向く反強誘電性液晶で構成されたものであってもよい。   The chiral smectic C-phase ferroelectric liquid crystal filled in the liquid crystal layer 16 has a homeotropic alignment in which the rotation axis of the helical structure is directed perpendicular to the incident-side alignment film 15 and is a layer method substantially perpendicular to the substrate surface. A layer structure having a linear direction is formed. The liquid crystal layer 16 may be composed of an antiferroelectric liquid crystal that faces the direction in which the liquid crystal directors face each layer forming the chiral smectic C phase.

図1(d)の側面図に示すように、入射側基板10側からY軸に沿って直線偏光した入射光をX方向に入射しながら、第1電極端子17を第2電極端子18より高電位とする電圧V0を印加し、または、第2電極端子18を第1電極端子17より高電位とする電圧-V0を印加することにより、以下に説明するようにX方向を進行方向として、Y方向の正負にシフトした出射光を得る。   As shown in the side view of FIG. 1D, the first electrode terminal 17 is higher than the second electrode terminal 18 while incident light linearly polarized along the Y-axis is incident in the X direction from the incident-side substrate 10 side. By applying a voltage V0 as a potential, or by applying a voltage -V0 that causes the second electrode terminal 18 to have a higher potential than the first electrode terminal 17, the X direction is set as the traveling direction as described below, and Y Emission light shifted in the positive and negative directions is obtained.

第1電極端子17を第2電極端子18より高電位とする電圧V0を印加すると、第1電極端子17では、導通部13で導通された入射側第1電極101と出射側第1電極111とが同電位となり、第2電極端子18では、導通部13で導通された入射側第2電極102と出射側第2電極112とが同電位となるため、隣接した入射側抵抗体層13の両端の電位と出射側抵抗体層15の両端の電位とが同じになる。   When a voltage V0 that makes the first electrode terminal 17 higher potential than the second electrode terminal 18 is applied, the first electrode terminal 17 is connected to the incident side first electrode 101 and the emission side first electrode 111 that are conducted by the conduction unit 13. And the second electrode terminal 18 has the same potential on the incident side second electrode 102 and the emission side second electrode 112 conducted at the conducting portion 13, so that both ends of the adjacent incident side resistor layer 13 are connected to each other. And the potentials at both ends of the output-side resistor layer 15 are the same.

入射側抵抗体層13には、高電位の入射側第1電極101から低電位の入射側第2電極102に向かうZ方向に電流が流れ、Z方向へ直線的に降下する連続的な電位勾配が形成されると同時に、出射側抵抗体層15には、高電位の出射側第1電極111から低電位の出射側第2電極112に向かうZ方向に電流が流れ、Z方向へ直線的に降下する連続的な電位勾配が形成される。入射側抵抗体層13の出射側抵抗体層15の両端の電位がそれぞれ等しいため、入射側抵抗体層13の電位勾配と出射側抵抗体層15の電位勾配とは、対称的に形成される。   In the incident-side resistor layer 13, a current flows in the Z direction from the high-potential incident-side first electrode 101 toward the low-potential incident-side second electrode 102, and a continuous potential gradient that linearly drops in the Z-direction. Is formed, a current flows in the Z-direction from the high-potential output-side first electrode 111 to the low-potential output-side second electrode 112 in the output-side resistor layer 15, and linearly extends in the Z-direction. A continuous potential gradient that falls is formed. Since the potentials at both ends of the exit-side resistor layer 15 of the incident-side resistor layer 13 are equal to each other, the potential gradient of the incident-side resistor layer 13 and the potential gradient of the exit-side resistor layer 15 are formed symmetrically. .

入射側電極ライン群100の各電極上の電位は、入射側抵抗体層103と接触する位置で入射側抵抗体層103が有する電位に等しくなり、入射側第1電極101に近い電極から、入射側第2電極102に近い電極に向って、Z方向に断続的に電位が降下する。入射側電極ライン群100の各電極により液晶層18には、入射側第1電極101から入射側第2電極102へ向うZ方向の電界が形成される。ここで、Z方向において入射側電極ライン群100の各電極の間の電界がZ方向にほぼ平行になるのに対し、入射側電極ライン群100の各電極の近傍の電界は入射側基板10に垂直なX方向成分を多くもつ。誘電体層14は、入射側電極ライン群の各電極の近傍で発生する電界のX方向成分を緩和して、液晶層18においてZ方向により均一な電界を発生させる。   The potential on each electrode of the incident-side electrode line group 100 is equal to the potential of the incident-side resistor layer 103 at a position in contact with the incident-side resistor layer 103, and is incident from an electrode close to the incident-side first electrode 101. The potential drops intermittently in the Z direction toward the electrode close to the second side electrode 102. An electric field in the Z direction from the incident side first electrode 101 to the incident side second electrode 102 is formed in the liquid crystal layer 18 by each electrode of the incident side electrode line group 100. Here, the electric field between the electrodes of the incident side electrode line group 100 in the Z direction is substantially parallel to the Z direction, whereas the electric field in the vicinity of each electrode of the incident side electrode line group 100 is applied to the incident side substrate 10. It has many vertical X direction components. The dielectric layer 14 relaxes the X direction component of the electric field generated in the vicinity of each electrode of the incident side electrode line group, and generates a uniform electric field in the Z direction in the liquid crystal layer 18.

液晶層18は、Z方向の電界によりキラルスメクチックC相の強誘電性液晶のダイレクタをY方向に一律に傾け、平均的な光学軸を傾斜させて複屈折性を有する。Y軸に沿って直線偏光した入射光は、入射側基板10側からX方向に向けて進行し、液晶層18に入射するとY方向にわずかに屈折して直進し、液晶層18から出射する際に逆方向にわずかに屈折してX方向に進行して出射側基板11側から出射する。光偏向素子1からの出射光は、入射光と方向が同じでY方向にシフト量d1だけシフトしている。   The liquid crystal layer 18 has birefringence by tilting the director of the chiral smectic C-phase ferroelectric liquid crystal uniformly in the Y direction and tilting the average optical axis by the electric field in the Z direction. The incident light linearly polarized along the Y-axis travels in the X direction from the incident-side substrate 10 side, enters the liquid crystal layer 18, refracts slightly in the Y direction, travels straight, and exits from the liquid crystal layer 18. The light is slightly refracted in the opposite direction, proceeds in the X direction, and is emitted from the emission side substrate 11 side. The outgoing light from the optical deflection element 1 has the same direction as the incident light and is shifted by the shift amount d1 in the Y direction.

一方、第2電極端子18を第1電極端子17より高電位とする電圧-V0を印加すると、液晶層18に−Z方向の均一な電界が生じ、液晶層18におけるキラルスメクチックC相の強誘電性液晶のダイレクタは−Y方向に傾き、Y軸に沿って直線偏光した入射光は、入射側基板10側からX方向に向けて進行し、液晶層18に入射すると−Y方向にわずかに屈折して直進し、液晶層18から出射する際に逆方向にわずかに屈折してX方向に進行して出射側基板11から出射する。光偏向素子1からの出射光は、入射光と方向が同じで−Y方向にシフト量d2だけシフトしている。シフト量d1及びシフト量d2は、液晶層18の厚さと、Y軸に沿って直線偏光した入射光に対するキラルスメクチックC相の強誘電性液晶の屈折率で決まり、屈折率は液晶分子の傾き量に依存し、液晶分子の傾きは印加される電界の大きさに依存する。   On the other hand, when a voltage −V 0 that makes the second electrode terminal 18 higher potential than the first electrode terminal 17 is applied, a uniform electric field in the −Z direction is generated in the liquid crystal layer 18, and the chiral smectic C phase ferroelectric in the liquid crystal layer 18. The director of the liquid crystal is tilted in the -Y direction, and the linearly polarized incident light travels in the X direction from the incident side substrate 10 side and enters the liquid crystal layer 18 to be slightly refracted in the -Y direction. Then, the light travels straight, refracts slightly in the opposite direction when exiting from the liquid crystal layer 18, travels in the X direction, and exits from the exit substrate 11. The outgoing light from the optical deflection element 1 has the same direction as the incident light and is shifted by the shift amount d2 in the −Y direction. The shift amount d1 and the shift amount d2 are determined by the thickness of the liquid crystal layer 18 and the refractive index of the ferroelectric liquid crystal of the chiral smectic C phase with respect to the incident light linearly polarized along the Y axis. The inclination of the liquid crystal molecules depends on the magnitude of the applied electric field.

この光偏向素子1によれば、導通部13を設けることにより入射側抵抗体層103の両端と出射側抵抗体層113の両端との電位を等しくして入射側抵抗体層103及び出射側抵抗体層113に電位勾配を対称的かつ均一に形成でき、入射側抵抗体層103及び出射側抵抗体層113に接続される位置で決定される入射側電極ライン群100及び出射側電極ライン群110の各電極の電位を正確に設定して液晶層18の電界をZ方向に均一にして有効領域内で均一に光をシフトすることができる。   According to this optical deflecting element 1, by providing the conducting portion 13, the potentials at both ends of the incident-side resistor layer 103 and both ends of the output-side resistor layer 113 are equalized, and the incident-side resistor layer 103 and the output-side resistor The potential gradient can be formed in the body layer 113 symmetrically and uniformly, and the incident-side electrode line group 100 and the emission-side electrode line group 110 are determined at positions connected to the incident-side resistor layer 103 and the emission-side resistor layer 113. The electric potential of each electrode can be set accurately to make the electric field of the liquid crystal layer 18 uniform in the Z direction, and light can be uniformly shifted within the effective region.

この光偏向素子1によれば、入射側第1電極101と出射側第1電極111と入射側第2電極102と出射側第2電極112とをべつべつに電源に接続する場合に比べて、配線を半減させることができるとともに、電源に接続するために入射側基板10及び出射側基板11に設ける端子の占める面積を小さくできるため、有効面積に対する光偏向素子1の大きさを小さくすることができる。   According to this light deflection element 1, the wiring is compared with the case where the incident-side first electrode 101, the emitting-side first electrode 111, the incident-side second electrode 102, and the emitting-side second electrode 112 are all connected to the power source. Can be reduced by half, and the area occupied by the terminals provided on the incident side substrate 10 and the emission side substrate 11 for connection to the power source can be reduced, so that the size of the light deflection element 1 with respect to the effective area can be reduced. .

この光偏向素子1によれば、有効領域外で直線状に設けられた入射側抵抗体層103及び出射側抵抗体層113は、例えば有効領域に面状に抵抗体を設ける場合に比較して極めて小さな領域であるため、抵抗ムラ等に起因した電位のばらつきや、導通部13の接触不良を排除しやすく、導通部13を設けることによる対称的な電位勾配の形成を正確に行うことができ、入射側抵抗体層103及び出射側抵抗体層113に形成される電位勾配と接触位置で決定される入射側電極ライン群100及び出射側電極ライン群110の電位を正確に設定することができる。   According to the light deflection element 1, the incident side resistor layer 103 and the emission side resistor layer 113 provided linearly outside the effective region are compared with, for example, a case where a resistor is provided in a planar shape in the effective region. Since it is an extremely small region, it is easy to eliminate variations in potential due to resistance unevenness and the like, and poor contact of the conductive portion 13, and a symmetrical potential gradient can be accurately formed by providing the conductive portion 13. The potentials of the incident-side electrode line group 100 and the outgoing-side electrode line group 110 determined by the potential gradient formed in the incident-side resistor layer 103 and the outgoing-side resistor layer 113 and the contact position can be accurately set. .

具体的に、40mm×40mmの有効面積をもつ光偏向素子1を製造した。まず、大きさ70mm×50mm、厚さ1mmのガラス板で形成された入射側基板10に、長手方向に対して平行な幅10μm、ピッチ100μmのITOライン電極を400本形成して入射側電極ライン群100を形成した。入射側電極ライン群100の両端の電極には、有効領域外に面積の広い領域を接続して形成した。次に、入射側基板10の短辺側の端部から20mmを除いた50mm×50mmの領域に、厚さ150μmのカバーガラスで形成された誘電体層14を、厚さ10μmの光学用UV接着剤を用いて全面に貼付けた。次に、誘電体層14の表面を垂直配向剤JALS2021-R2で処理して配向膜15を形成した。次に、誘電体層14を設けていない領域において、入射側電極ライン群100の端部付近を横断するようにアンチモン含有酸化スズ(大阪セメント社製R308)を約3mm幅で印刷して入射側抵抗体層103を形成した。次に、カバーガラスの面内40mm×40mmの有効面積を線状に囲むように、径50μmの粒子を混入した接着剤で構成されるスペーサ12を設けた。同じ製造方法により、出射側基板11に、出射側電極ライン群110、誘電体層14、配向膜15、出射側抵抗体層113を形成した。次に、入射側電極ライン群100に出射側電極ライン群110の各電極を平行に対向させ、入射側抵抗体層103に出射側抵抗体層113を平行に対向させて、入射側基板10側の部材と出射側基板11側の部材とを接着した。次に、接着した部材を90度に加熱した状態で、入射側基板10と出射側基板11との間でスペーサ12に囲まれた空間に、強誘電性液晶(チッソ製CS1029)を毛管法で注入して液晶層18を形成した。接着した部材の加熱時には、入射側抵抗体層103及び出射側抵抗体層113を加熱しないように誘電体層14を設けた領域のみを加熱した。次に、入射側第1電極101と出射側第1電極111との間、及び入射側第2電極102と出射側第2電極112との間に流動性のある導通材料をそれぞれ充填して固めることにより導通部13を形成した。第1電極端子17と第2電極端子18とを外部電源に接続して電圧を印加したところ有効領域全面で光路が均一にシフトした。素子の外形サイズは70mm×50mmと小型に形成できた。   Specifically, the optical deflection element 1 having an effective area of 40 mm × 40 mm was manufactured. First, 400 ITO line electrodes having a width of 10 μm parallel to the longitudinal direction and a pitch of 100 μm are formed on the incident side substrate 10 formed of a glass plate having a size of 70 mm × 50 mm and a thickness of 1 mm to form an incident side electrode line. Group 100 was formed. The electrodes on both ends of the incident side electrode line group 100 were formed by connecting a wide area outside the effective area. Next, a dielectric layer 14 formed of a cover glass having a thickness of 150 μm is bonded to a 10 μm thick optical UV adhesive in a 50 mm × 50 mm region excluding 20 mm from the short side end of the incident side substrate 10. It was affixed to the entire surface using an agent. Next, the surface of the dielectric layer 14 was treated with the vertical alignment agent JALS2021-R2 to form the alignment film 15. Next, in a region where the dielectric layer 14 is not provided, an antimony-containing tin oxide (R308, manufactured by Osaka Cement Co., Ltd.) is printed with a width of about 3 mm so as to cross the vicinity of the end of the incident-side electrode line group 100. A resistor layer 103 was formed. Next, a spacer 12 made of an adhesive mixed with particles having a diameter of 50 μm was provided so as to linearly surround an effective area of 40 mm × 40 mm in the surface of the cover glass. The emission side electrode line group 110, the dielectric layer 14, the alignment film 15, and the emission side resistor layer 113 were formed on the emission side substrate 11 by the same manufacturing method. Next, each electrode of the output-side electrode line group 110 is made to face the incident-side electrode line group 100 in parallel, and the output-side resistor layer 113 is made to face the incident-side resistor layer 103 in parallel. These members and the member on the emission side substrate 11 side were bonded. Next, in a state where the bonded member is heated to 90 degrees, a ferroelectric liquid crystal (CS1029 made by Chisso) is applied to the space surrounded by the spacer 12 between the incident side substrate 10 and the emission side substrate 11 by a capillary method. The liquid crystal layer 18 was formed by injection. At the time of heating the bonded member, only the region where the dielectric layer 14 was provided was heated so that the incident-side resistor layer 103 and the emission-side resistor layer 113 were not heated. Next, a conductive material having fluidity is filled and hardened between the incident side first electrode 101 and the emission side first electrode 111 and between the incident side second electrode 102 and the emission side second electrode 112. Thereby, the conduction | electrical_connection part 13 was formed. When a voltage was applied by connecting the first electrode terminal 17 and the second electrode terminal 18 to an external power source, the optical path was uniformly shifted over the entire effective area. The external size of the element was as small as 70mm x 50mm.

比較のため、上記具体例と同じ入射側基板10側の部材と出射側基板11側の部材とを、入射側抵抗体層103と出射側抵抗体層113とを対向させないように接着し、両端にある4箇所の電極から接続線でそれぞれ電源に接続することにより、導通部13を設けない光偏向素子を製造したところ、有効面積40mm×40mmに対して素子外形サイズが90mm×50mmと大きくなった。   For comparison, the same member on the incident side substrate 10 and the member on the output side substrate 11 side as in the above specific example are bonded so that the incident side resistor layer 103 and the output side resistor layer 113 do not face each other. An optical deflection element without the conducting part 13 was manufactured by connecting each of the four electrodes to the power supply with connection lines, and the element outer size increased to 90 mm x 50 mm for an effective area of 40 mm x 40 mm. It was.

第2の参考形態の光偏向素子2は、図2(a)の平面図、図2(b)の正面図、図2(c)の側面図に示すように、第1の参考形態と同様の入射側基板10と出射側基板11とスペーサ12と、入射側電極ライン群100と入射側抵抗体層103と出射側電極ライン群110と出射側抵抗体層113と、誘電体層14と配向膜15と液晶層16とを備え、第1の参考形態の導通部13と異なる位置に配置された導通部20を備える。 Light deflecting element 2 of the second reference embodiment is a plan view of FIG. 2 (a), the front view of FIG. 2 (b), as shown in the side view of FIG. 2 (c), like the first referential embodiment The incident side substrate 10, the output side substrate 11, the spacer 12, the incident side electrode line group 100, the incident side resistor layer 103, the output side electrode line group 110, the output side resistor layer 113, the dielectric layer 14, and the orientation. A conductive portion 20 including a film 15 and a liquid crystal layer 16 and disposed at a position different from the conductive portion 13 of the first reference embodiment is provided.

導通部20は、第1の参考形態の導通部15と同様の材料により形成され、入射側抵抗体層103の入射側第1電極101に近い一端と、出射側抵抗体層113の出射側第1電極111に近い一端とを電気的に接続するとともに、入射側抵抗体層103の入射側第2電極102に近い一端と、出射側抵抗体層113の出射側第2電極112に近い一端とを電気的に接続している。入射側抵抗体層103及び出射側抵抗体層113の材料に、高温処理により劣化しやすい抵抗体を用いる場合、導通部13には高温処理を必要としないドータイト(商標)や導電性テープ等の導通材料を用いることが好ましい。 The conducting portion 20 is formed of the same material as that of the conducting portion 15 of the first reference embodiment. The conducting portion 20 has one end near the incident-side first electrode 101 of the incident-side resistor layer 103 and the emitting-side first layer of the emitting-side resistor layer 113. One end close to the first electrode 111 is electrically connected, one end near the incident-side second electrode 102 of the incident-side resistor layer 103, and one end near the emission-side second electrode 112 of the emission-side resistor layer 113 Are electrically connected. When a resistor that is easily deteriorated by high-temperature processing is used as the material of the incident-side resistor layer 103 and the emission-side resistor layer 113, the conductive portion 13 such as Dotite (trademark) or conductive tape that does not require high-temperature processing is used. It is preferable to use a conductive material.

入射側第1電極101に近い側の導通部20と入射側抵抗体層103の一端と出射側抵抗体層113の一端とにより形成される第1電極端子21と、入射側第2電極102に近い側の導通部20と入射側抵抗体層103の一端と出射側抵抗体層113の一端とにより形成される第2電極端子22をそれぞれ外部電源に接続する。入射側第1電極101、入射側第2電極102、出射側第1電極111、及び出射側第2電極112には、外部電源に接続するための面積の広い端子を設ける必要がない。光偏向素子2の動作は第1の参考形態と同様である。 To the first electrode terminal 21 formed by the conducting portion 20 on the side close to the incident side first electrode 101, one end of the incident side resistor layer 103 and one end of the output side resistor layer 113, and the incident side second electrode 102 The second electrode terminals 22 formed by the conductive portion 20 on the near side, one end of the incident-side resistor layer 103, and one end of the output-side resistor layer 113 are each connected to an external power source. The incident-side first electrode 101, the incident-side second electrode 102, the emission-side first electrode 111, and the emission-side second electrode 112 do not need to be provided with a terminal having a large area for connection to an external power source. The operation of the optical deflection element 2 is the same as in the first reference embodiment.

この光偏向素子2によれば、導通部20を設けることにより入射側抵抗体層103の両端と出射側抵抗体層113の両端との電位を等しくして入射側抵抗体層103及び出射側抵抗体層113に電位勾配を対称的かつ均一に形成でき、入射側抵抗体層103及び出射側抵抗体層113に接続される位置で決定される入射側電極ライン群100及び出射側電極ライン群110の各電極の電位を正確に設定して液晶層18の電界をZ方向に均一にして有効領域内で均一に光をシフトすることができる。   According to this optical deflection element 2, by providing the conducting portion 20, the potentials at both ends of the incident-side resistor layer 103 and both ends of the output-side resistor layer 113 are equalized, and the incident-side resistor layer 103 and the output-side resistor The potential gradient can be formed in the body layer 113 symmetrically and uniformly, and the incident-side electrode line group 100 and the emission-side electrode line group 110 are determined at positions connected to the incident-side resistor layer 103 and the emission-side resistor layer 113. The electric potential of each electrode can be set accurately to make the electric field of the liquid crystal layer 18 uniform in the Z direction, and light can be uniformly shifted within the effective region.

この光偏向素子2によれば、幅の広い入射側抵抗体層103と出射側抵抗体層113とを導通部20で導通することにより、入射側電極ライン群100及び出射側電極ライン群110を構成する幅の狭い電極に広い面積の端子を形成して導通する場合に比べて、有効面積に対する光偏向素子2の大きさを小さくすることができる。   According to this optical deflecting element 2, the entrance-side electrode line group 100 and the exit-side electrode line group 110 are connected by connecting the wide entrance-side resistor layer 103 and the exit-side resistor layer 113 through the conducting portion 20. The size of the light deflection element 2 with respect to the effective area can be reduced as compared with the case where a terminal having a large area is formed on a narrow electrode to be formed and conducted.

この光偏向素子2によれば、入射側第1電極101と出射側第1電極111と入射側第2電極102と出射側第2電極112とをべつべつに電源に接続する場合に比べて、配線を半減させることができるとともに、電源に接続するために入射側基板10及び出射側基板11に設ける端子の占める面積を小さくできるため、有効面積に対する光偏向素子2の大きさを小さくすることができる。   According to the light deflecting element 2, the incident-side first electrode 101, the emission-side first electrode 111, the incident-side second electrode 102, and the emission-side second electrode 112 are connected to the power supply in comparison with each other. The area occupied by the terminals provided on the incident side substrate 10 and the emission side substrate 11 for connection to the power source can be reduced, so that the size of the light deflection element 2 with respect to the effective area can be reduced. .

この光偏向素子2によれば、有効領域外で直線状に設けられた入射側抵抗体層103及び出射側抵抗体層113は、例えば有効領域に面状に抵抗体を設ける場合に比較して極めて小さな領域であるため、抵抗ムラ等に起因した電位のばらつきや、導通部20の接触不良を排除しやすく、導通部20を設けることによる対称的な電位勾配の形成を正確に行うことができ、入射側抵抗体層103及び出射側抵抗体層113に形成される電位勾配と接触位置で決定される入射側電極ライン群100及び出射側電極ライン群110の電位を正確に設定することができる。   According to this optical deflection element 2, the incident side resistor layer 103 and the emission side resistor layer 113 provided linearly outside the effective region are compared with, for example, a case where a resistor is provided in a planar shape in the effective region. Since it is an extremely small region, it is easy to eliminate variations in potential due to resistance unevenness and the like, and poor contact of the conductive portion 20, and a symmetrical potential gradient can be accurately formed by providing the conductive portion 20. The potentials of the incident-side electrode line group 100 and the outgoing-side electrode line group 110 determined by the potential gradient formed in the incident-side resistor layer 103 and the outgoing-side resistor layer 113 and the contact position can be accurately set. .

具体的に、入射側抵抗体層103と出射側抵抗体層113との間に導通部20を備え、40mm×40mmの有効面積をもつ光偏向素子2を製造した。まず、大きさ53mm×50mm、厚さ1mmのガラス板で形成された入射側基板10に、長手方向に対して平行な幅10μm、ピッチ100μmのITOライン電極を400本形成して入射側電極ライン群100を形成した。次に、入射側基板10の短辺側の端部から3mmを除いた50mm×50mmの領域に、厚さ150μmのカバーガラスで形成された誘電体層14を、厚さ10μmの光学用UV接着剤を用いて全面に貼付けた。次に、誘電体層14の表面を垂直配向剤JALS2021-R2で処理して配向膜15を形成した。次に、誘電体層14をマスキングして、誘電体層14を設けていない3mm幅の領域に、CrSiOを約500Åの膜厚にスパッタすることにより入射側電極ライン群100の端部を横断する入射側抵抗体層103を形成した。次に、カバーガラスの面内40mm×40mmの有効面積を線状に囲むように、径50μmの粒子を混入した接着剤で構成されるスペーサ12を設けた。同じ製造方法により、出射側基板11に、出射側電極ライン群110、誘電体層14、配向膜15、出射側抵抗体層113を形成した。次に、入射側電極ライン群100に出射側電極ライン群110の各電極を平行に対向させ、入射側抵抗体層103に出射側抵抗体層113を平行に対向させて、入射側基板10側の部材と出射側基板11側の部材とを接着した。次に、接着した部材を90度に加熱した状態で、入射側基板10と出射側基板11との間でスペーサ12に囲まれた空間に、強誘電性液晶(チッソ製CS1029)を毛管法で注入して液晶層18を形成した。接着した部材の加熱時には、入射側抵抗体層103及び出射側抵抗体層113を加熱しないように誘電体層14を設けた領域のみを加熱した。次に、入射側抵抗体層103及び出射側抵抗体層113の両端部の間に、流動性のある導通材料をそれぞれ充填して固めることにより導通部20を形成した。第1電極端子21と第2電極端子22とを外部電源に接続して電圧を印加したところ有効領域全面で光路が均一にシフトした。素子の外形サイズは53mm×50mmと小型に形成できた。   Specifically, the optical deflection element 2 having the conduction area 20 between the incident side resistor layer 103 and the emission side resistor layer 113 and having an effective area of 40 mm × 40 mm was manufactured. First, 400 ITO line electrodes having a width of 10 μm and a pitch of 100 μm parallel to the longitudinal direction are formed on an incident side substrate 10 formed of a glass plate having a size of 53 mm × 50 mm and a thickness of 1 mm to form an incident side electrode line. Group 100 was formed. Next, a dielectric layer 14 formed of a cover glass having a thickness of 150 μm is applied to a 50 μm × 50 mm region excluding 3 mm from the end on the short side of the incident side substrate 10, and an optical UV adhesive having a thickness of 10 μm is bonded. It was affixed to the entire surface using an agent. Next, the surface of the dielectric layer 14 was treated with the vertical alignment agent JALS2021-R2 to form the alignment film 15. Next, the dielectric layer 14 is masked, and CrSiO is sputtered to a thickness of about 500 mm in a 3 mm wide region where the dielectric layer 14 is not provided, thereby crossing the end of the incident-side electrode line group 100. The incident side resistor layer 103 was formed. Next, a spacer 12 made of an adhesive mixed with particles having a diameter of 50 μm was provided so as to linearly surround an effective area of 40 mm × 40 mm in the surface of the cover glass. The emission side electrode line group 110, the dielectric layer 14, the alignment film 15, and the emission side resistor layer 113 were formed on the emission side substrate 11 by the same manufacturing method. Next, each electrode of the output-side electrode line group 110 is made to face the incident-side electrode line group 100 in parallel, and the output-side resistor layer 113 is made to face the incident-side resistor layer 103 in parallel. These members and the member on the emission side substrate 11 side were bonded. Next, in a state where the bonded member is heated to 90 degrees, a ferroelectric liquid crystal (CS1029 made by Chisso) is applied to the space surrounded by the spacer 12 between the incident side substrate 10 and the emission side substrate 11 by a capillary method. The liquid crystal layer 18 was formed by injection. At the time of heating the bonded member, only the region where the dielectric layer 14 was provided was heated so that the incident-side resistor layer 103 and the emission-side resistor layer 113 were not heated. Next, between the both end portions of the incident side resistor layer 103 and the emission side resistor layer 113, the conductive portion 20 was formed by filling and solidifying a fluid conductive material. When a voltage was applied by connecting the first electrode terminal 21 and the second electrode terminal 22 to an external power source, the optical path was uniformly shifted over the entire effective area. The external size of the element was 53mm x 50mm and could be made small.

そして、本発明の実施形態の光偏向素子2は、図3(a)の平面図、図3(b)の正面図、図3(c)の側面図に示すように、第2の参考形態の光変更素子2において、入射側抵抗体層103と出射側抵抗体層113と導通部20とを一体に形成した抵抗体層23を備えるものである。入射側基板10と出射側基板11との隙間は0.1mm〜1.0mm程度と狭いため、抵抗体層23を、スパッタ、スピンコート、フレキソ印刷等の印刷方法等で形成することは困難であるため、塗布型抵抗体材料を用いたノズルやインクジェット方式による噴射方法で形成することが望ましい。抵抗体層23を形成する際に適宜必要な熱処理や紫外線照射処理は、入射側基板10及び出射側基板11の開放された端部から容易に行うことができる。入射側電極ライン群100と出射側電極ライン群110のすべての電極を抵抗体層23で導通することにより、抵抗体層23を1回の工程で形成できるため、入射側抵抗体層103と出射側抵抗体層113との間を導通部20で導通する工程を不要にできるとともに、導通不良を発生しにくくでき、光偏向素子2の信頼性を高めることができる。 The optical deflection element 2 according to the embodiment of the present invention has a second reference embodiment as shown in the plan view of FIG. 3A, the front view of FIG. 3B, and the side view of FIG. in the optical change element 2, in which a resistor layer 23 which is formed integrally with the conductive portion 20 and the incident-side resistor layer 103 and the exit-side resistor layer 113. Since the gap between the incident side substrate 10 and the outgoing side substrate 11 is as narrow as about 0.1 mm to 1.0 mm, it is difficult to form the resistor layer 23 by a printing method such as sputtering, spin coating or flexographic printing. It is desirable to form by a nozzle using an application type resistor material or an injection method by an ink jet method. The heat treatment and the ultraviolet irradiation treatment necessary as needed when forming the resistor layer 23 can be easily performed from the open ends of the incident side substrate 10 and the emission side substrate 11. Since all the electrodes of the incident-side electrode line group 100 and the emission-side electrode line group 110 are electrically connected by the resistor layer 23, the resistor layer 23 can be formed in a single process. It is possible to eliminate the need for the step of conducting the portion between the side resistor layer 113 and the conductive portion 20 and to prevent the occurrence of poor conduction and to improve the reliability of the optical deflection element 2.

第3の参考形態の光偏向素子3は、図4(a)の平面図、図4(b)のB1-B2断面図に示すように、第1の参考形態と同様の入射側基板10と出射側基板11と、入射側電極ライン群100と入射側抵抗体層103と出射側電極ライン群110と出射側抵抗体層113と、誘電体層14と配向膜15と液晶層16とを備え、第1の参考形態におけるスペーサ12と導通部13との機能を兼ね備えた導通部30を備える。 Optical deflection element 3 of the third reference embodiment is a plan view of FIG. 4 (a), as shown in B1-B2 cross-sectional view of FIG. 4 (b), the incident-side substrate 10 in the same way as in the first referential embodiment The output side substrate 11, the incident side electrode line group 100, the incident side resistor layer 103, the output side electrode line group 110, the output side resistor layer 113, the dielectric layer 14, the alignment film 15, and the liquid crystal layer 16 are provided. The conducting portion 30 having the functions of the spacer 12 and the conducting portion 13 in the first reference embodiment is provided.

誘電体層14は、入射側基板10及び出射側基板11よりも小さく形成されており、導通部30は、例えば、高さ精度の揃った金属柱の配列や、異方性導電フィルム等で形成され、入射側抵抗体層103と出射側抵抗体層113との間に挟まれて、入射側抵抗体層103と出射側抵抗体層113とを入射側基板10の面に対して垂直方向に導通させるとともに、液晶層16の間隔を維持している。光偏向素子2の動作は第1の参考形態と同様である。 The dielectric layer 14 is formed to be smaller than the incident side substrate 10 and the emission side substrate 11, and the conductive portion 30 is formed of, for example, an array of metal columns with uniform height accuracy, an anisotropic conductive film, or the like. And sandwiched between the incident-side resistor layer 103 and the output-side resistor layer 113 so that the incident-side resistor layer 103 and the output-side resistor layer 113 are perpendicular to the surface of the incident-side substrate 10. While conducting, the distance between the liquid crystal layers 16 is maintained. The operation of the optical deflection element 2 is the same as in the first reference embodiment.

入射側抵抗体層103及び出射側抵抗体層113は、薄膜形成できるCrSio等の抵抗体を材料として数100Åに形成し、入射側抵抗体層103及び出射側抵抗体層113を形成した領域と形成しない領域とにおいて、導通部30を挟んだことによる厚さのムラを極めて小さくすることが望ましい。導通部30は、表面に金属をコーティングした球状スペーサ粒子等であってもよい。導通部30は、入射側抵抗体層103及び出射側抵抗体層113と確実に導通するため、加工時に流動性をもつ導通材料を入射側抵抗体層103及び出射側抵抗体層113との間に設けたものであってもよい。導通部30は、光偏向素子3の耐性を向上するため、入射側抵抗体層103及び出射側抵抗体層113との間に接着材を設けて固定したものであってもよい。   The incident-side resistor layer 103 and the emission-side resistor layer 113 are formed with a resistor such as CrSio, which can be formed into a thin film, to several hundreds of inches, and the incident-side resistor layer 103 and the emission-side resistor layer 113 are formed. It is desirable to extremely reduce the thickness unevenness caused by sandwiching the conductive portion 30 in the region where the conductive layer 30 is not formed. The conducting portion 30 may be spherical spacer particles whose surface is coated with metal. Since the conducting portion 30 reliably conducts with the incident-side resistor layer 103 and the exit-side resistor layer 113, a conducting material having fluidity during processing is provided between the incident-side resistor layer 103 and the exit-side resistor layer 113. May be provided. In order to improve the resistance of the light deflection element 3, the conducting portion 30 may be one that is fixed by providing an adhesive between the incident side resistor layer 103 and the emission side resistor layer 113.

この光偏向素子3によれば、導通部30を設けることにより入射側抵抗体層103と出射側抵抗体層113の電位を対称的に等しくして入射側抵抗体層103及び出射側抵抗体層113に電位勾配を対称的かつ均一に形成でき、入射側抵抗体層103及び出射側抵抗体層113に接続される位置で決定される入射側電極ライン群100及び出射側電極ライン群110の各電極の電位を正確に設定して液晶層18の電界をZ方向に均一にして有効領域内で均一に光をシフトすることができる。   According to this optical deflection element 3, by providing the conducting portion 30, the incident-side resistor layer 103 and the exit-side resistor layer 113 are made symmetrically equal in potential so that the entrance-side resistor layer 103 and the exit-side resistor layer are provided. The potential gradient can be formed symmetrically and uniformly at 113, and each of the incident-side electrode line group 100 and the emission-side electrode line group 110 determined at a position connected to the incident-side resistor layer 103 and the emission-side resistor layer 113. The electric potential of the electrode can be set accurately to make the electric field of the liquid crystal layer 18 uniform in the Z direction, and light can be uniformly shifted within the effective region.

この光偏向素子3によれば、導通部30を形成する工程で入射側抵抗体層103と出射側抵抗体層113とを導通できるため、スペーサと導通部とを別の材料で形成する場合に比較して少ない工程で製造できる。この光偏向素子3によれば、スペーサと導通部との機能を兼ね備えた導通部30を備えることにより、有効面積に対する光偏向素子3の大きさを小さくすることができる。   According to this optical deflection element 3, since the entrance-side resistor layer 103 and the exit-side resistor layer 113 can be conducted in the step of forming the conducting portion 30, the spacer and the conducting portion are formed using different materials. In comparison, it can be manufactured with fewer steps. According to the light deflection element 3, the size of the light deflection element 3 with respect to the effective area can be reduced by providing the conduction portion 30 having the functions of the spacer and the conduction portion.

この光偏向素子3によれば、入射側第1電極101と出射側第1電極111と入射側第2電極102と出射側第2電極112とをべつべつに電源に接続する場合に比べて、配線を半減させることができるとともに、電源に接続するために入射側基板10及び出射側基板11に設ける端子の占める面積を小さくできるため、有効面積に対する光偏向素子3の大きさを小さくすることができる。   According to this light deflection element 3, compared to the case where the incident-side first electrode 101, the emission-side first electrode 111, the incident-side second electrode 102, and the emission-side second electrode 112 are all connected to the power source. Can be halved, and the area occupied by the terminals provided on the incident side substrate 10 and the emission side substrate 11 for connection to the power source can be reduced, so that the size of the light deflection element 3 with respect to the effective area can be reduced. .

この光偏向素子3によれば、有効領域外で直線状に設けられた入射側抵抗体層103及び出射側抵抗体層113は、例えば有効領域に面状に抵抗体を設ける場合に比較して極めて小さな領域であるため、抵抗ムラ等に起因した電位のばらつきや、導通部13の接触不良を排除しやすく、導通部13を設けることによる対称的な電位勾配の形成を正確に行うことができ、入射側抵抗体層103及び出射側抵抗体層113に形成される電位勾配と接触位置で決定される入射側電極ライン群100及び出射側電極ライン群110の電位を正確に設定することができる。   According to the light deflection element 3, the incident side resistor layer 103 and the emission side resistor layer 113 provided linearly outside the effective region are compared with, for example, a case where a resistor is provided in a planar shape in the effective region. Since it is an extremely small region, it is easy to eliminate variations in potential due to resistance unevenness and the like, and poor contact of the conductive portion 13, and a symmetrical potential gradient can be accurately formed by providing the conductive portion 13. The potentials of the incident-side electrode line group 100 and the outgoing-side electrode line group 110 determined by the potential gradient formed in the incident-side resistor layer 103 and the outgoing-side resistor layer 113 and the contact position can be accurately set. .

具体的に、入射側抵抗体層103と出射側抵抗体層113とを導通させるとともに液晶層16のスペーサとして機能する導通部30を備え、45mm×45mmの有効面積をもつ光偏向素子3を製造した。まず、大きさ50mm×50mm、厚さ1mmのガラス板で形成された入射側基板10に、1辺に平行な幅10μm、ピッチ100μmのITOライン電極を400本形成して入射側電極ライン群100を形成した。次に、入射側基板10の各辺から5mmを除いた45mm×45mmの領域に、厚さ150μmのカバーガラスで形成された誘電体層14を、厚さ10μmの光学用UV接着剤を用いて全面に貼付けた。次に、誘電体層14の表面を垂直配向剤JALS2021-R2で処理して配向膜15を形成した。次に、誘電体層14をマスキングして、誘電体層14を設けていない5mm幅の領域のうちの一辺側にのみ直線状に、CrSiOを約500Åの膜厚にスパッタすることにより入射側電極ライン群100の端部を横断する入射側抵抗体層103を形成した。次に、誘電体層14を囲む5mm幅の領域に、370μm角の立方体のアルミ柱を並べて配置して導通部30を形成した。同じ製造方法により、出射側基板11に、出射側電極ライン群110、誘電体層14、配向膜15、出射側抵抗体層113を形成した。次に、入射側電極ライン群100に出射側電極ライン群110の各電極を平行に対向させ、入射側抵抗体層103に出射側抵抗体層113を平行に対向させて、入射側基板10側の部材と出射側基板11側の部材とを接着した。次に、接着した部材を90度に加熱した状態で、入射側基板10と出射側基板11との間で導通部30に囲まれた空間に、強誘電性液晶(チッソ製CS1029)を毛管法で注入して液晶層18を形成した。接着した部材の加熱時には、入射側抵抗体層103及び出射側抵抗体層113を加熱しないように誘電体層14を設けた領域のみを加熱した。第1電極端子31と第2電極端子32とを外部電源に接続して電圧を印加したところ有効領域全面で光路が均一にシフトした。素子の外形サイズは50mm×50mmと小型に形成できた。   Specifically, the light deflecting element 3 having an effective area of 45 mm × 45 mm is provided, which includes the conducting portion 30 that conducts the entrance-side resistor layer 103 and the exit-side resistor layer 113 and functions as a spacer of the liquid crystal layer 16. did. First, 400 ITO line electrodes having a width of 10 μm parallel to one side and a pitch of 100 μm are formed on the incident side substrate 10 formed of a glass plate having a size of 50 mm × 50 mm and a thickness of 1 mm, and the incident side electrode line group 100 is formed. Formed. Next, a dielectric layer 14 formed of a cover glass having a thickness of 150 μm is applied to a 45 mm × 45 mm region excluding 5 mm from each side of the incident side substrate 10 by using an optical UV adhesive having a thickness of 10 μm. Affixed to the entire surface. Next, the surface of the dielectric layer 14 was treated with the vertical alignment agent JALS2021-R2 to form the alignment film 15. Next, the dielectric layer 14 is masked, and the incident side electrode is sputtered to a thickness of about 500 mm in a straight line only on one side of the 5 mm wide region where the dielectric layer 14 is not provided. The incident-side resistor layer 103 that crosses the end of the line group 100 was formed. Next, conductive portions 30 were formed by arranging 370 μm square cubic aluminum columns side by side in a 5 mm wide region surrounding the dielectric layer 14. The emission side electrode line group 110, the dielectric layer 14, the alignment film 15, and the emission side resistor layer 113 were formed on the emission side substrate 11 by the same manufacturing method. Next, each electrode of the output-side electrode line group 110 is made to face the incident-side electrode line group 100 in parallel, and the output-side resistor layer 113 is made to face the incident-side resistor layer 103 in parallel. These members and the member on the emission side substrate 11 side were bonded. Next, in a state where the bonded member is heated to 90 degrees, a ferroelectric liquid crystal (CS1029 manufactured by Chisso) is applied to the space surrounded by the conductive portion 30 between the incident side substrate 10 and the emission side substrate 11 by a capillary method. To form a liquid crystal layer 18. At the time of heating the bonded member, only the region where the dielectric layer 14 was provided was heated so that the incident-side resistor layer 103 and the emission-side resistor layer 113 were not heated. When a voltage was applied by connecting the first electrode terminal 31 and the second electrode terminal 32 to an external power source, the optical path was uniformly shifted over the entire effective area. The external size of the element was able to be formed as small as 50mm x 50mm.

なお、図5(a)の平面図及び図5(b)のC1-C2断面図に示すように、導通部30は、入射側抵抗体層103と出射側抵抗体層113との間に配置せず、入射側抵抗体層103及び出射側抵抗体層113に隣接して入射側電極ライン群100と出射側電極ライン群110との各電極を横断して、対向する各電極を導通させるようにしたものであってもよい。   As shown in the plan view of FIG. 5A and the C1-C2 cross-sectional view of FIG. 5B, the conductive portion 30 is disposed between the incident-side resistor layer 103 and the emission-side resistor layer 113. Instead, the electrodes facing the entrance-side electrode line group 100 and the exit-side electrode line group 110 are adjacent to the entrance-side resistor layer 103 and the exit-side resistor layer 113 so that the opposing electrodes are conducted. It may be the one.

本発明の実施形態の画像表示装置4は、図6の構成図に示すように原画像表示部40と光偏向デバイス41と投射レンズ42とスクリーン43と表示制御部44とを備える。 The image display apparatus 4 according to the embodiment of the present invention includes an original image display unit 40, a light deflection device 41, a projection lens 42, a screen 43, and a display control unit 44 as shown in the configuration diagram of FIG.

原画像表示部40は、光源400と拡散板401とマイクロレンズアレイ402と画像表示素子403とを有する。光源400は、2次元アレイ状に配列したRGB3色のLEDを高速に切り替えて各色の照明光を出射する。拡散板401は照明光を均一化し、マイクロレンズアレイ402は均一化された照明光の集光率を高めて画像表示素子403の各画素に入射させる。画像表示素子403は、水平走査方向及び垂直走査方向に2次元に画素を固定して配列した透過型液晶表示素子で構成され、照明光を空間光変調して一定の解像度の画像光を出射する。なお、液晶表示素子に照射する光の色を高速に切り替えてカラー表示を行うフィールドシーケンシャル方式の液晶表示素子を用いる画像表示部について説明するが、原画像表示部は他の構成により画像を表示してもよい。   The original image display unit 40 includes a light source 400, a diffusion plate 401, a microlens array 402, and an image display element 403. The light source 400 emits illumination light of each color by switching RGB three-color LEDs arranged in a two-dimensional array at high speed. The diffusing plate 401 makes the illumination light uniform, and the microlens array 402 increases the concentration rate of the uniformed illumination light and makes it incident on each pixel of the image display element 403. The image display element 403 is configured by a transmissive liquid crystal display element in which pixels are two-dimensionally fixed and arranged in the horizontal scanning direction and the vertical scanning direction, and emits image light with a certain resolution by spatially modulating illumination light. . Although an image display unit using a field sequential type liquid crystal display element that performs color display by switching the color of light applied to the liquid crystal display element at high speed will be described, the original image display unit displays an image with another configuration. May be.

光偏向デバイス41は、直線偏光板410と第1光偏向素子411と偏光面回転素子412と第2光偏向素子413とを有する。直線偏光板410は、原画像表示部40から出射される画像光を水平走査方向に沿った直線偏光に変換する。なお、原画像表示部40から出射される画像光が既に水平走査方向に直線偏光されていれば、直線偏光板410はなくてもよい。第1光偏向素子411は、電圧V1を印加されると水平走査方向に直線偏向して入射する画像光を画像表示素子403の水平走査方向の一方にシフト量d1だけシフトして出射し、逆極性の電圧-V1を印加されると逆方向にシフト量d1だけシフトして出射する。第1光偏向素子411のシフト量d1は、画像表示素子403の水平走査方向の画素ピッチの半分である。   The optical deflection device 41 includes a linear polarizing plate 410, a first optical deflection element 411, a polarization plane rotating element 412, and a second optical deflection element 413. The linear polarizing plate 410 converts image light emitted from the original image display unit 40 into linearly polarized light along the horizontal scanning direction. If the image light emitted from the original image display unit 40 is already linearly polarized in the horizontal scanning direction, the linearly polarizing plate 410 may be omitted. When the voltage V1 is applied, the first light deflection element 411 emits the image light that is linearly deflected in the horizontal scanning direction and shifted to one side of the image display element 403 in the horizontal scanning direction by the shift amount d1, and vice versa. When the polarity voltage -V1 is applied, the light is emitted while being shifted by the shift amount d1 in the reverse direction. The shift amount d1 of the first light deflection element 411 is half of the pixel pitch of the image display element 403 in the horizontal scanning direction.

偏光面回転素子412は、第1光偏向素子411と第2光偏向素子413との間に設けられて、第1光偏向素子411から出射される直線偏光を90度回転させて垂直走査方向に沿った直線偏光に変換して第2光偏向素子413に入射させる。第2光偏向素子413は、電圧V2を印加されると垂直走査方向に直線偏向して入射される画像光を垂直走査方向の一方にシフト量d2だけシフトして出射し、逆極性の電圧-V2を印加されると逆方向にシフト量d2だけシフトして出射する。第2光偏向素子413のシフト量d2は、画像表示素子403の垂直走査方向の画素ピッチの半分である。   The polarization plane rotation element 412 is provided between the first light deflection element 411 and the second light deflection element 413, and rotates the linearly polarized light emitted from the first light deflection element 411 by 90 degrees in the vertical scanning direction. The linearly polarized light is converted into incident light and incident on the second light deflecting element 413. When the voltage V2 is applied, the second light deflecting element 413 emits image light that is linearly deflected in the vertical scanning direction, shifted by one shift amount d2 in the vertical scanning direction, and has a reverse polarity voltage −. When V2 is applied, the light beam is shifted by the shift amount d2 in the reverse direction. The shift amount d2 of the second light deflection element 413 is half the pixel pitch of the image display element 403 in the vertical scanning direction.

光偏向デバイス41は、第1光偏向素子411に印加する電圧V1及び電圧-V1、第2光偏向素子413に印加する電圧V2及び電圧-V2の組み合わせの4つのうちからいずれかを選択して、第1光偏向素子411と第2光偏向素子413とに同時に電圧を印加されることにより、原画像表示部40から出射される画像光を画像表示素子403の画素配列の対角線の4方向のいずれかにシフトさせる。   The optical deflection device 41 selects any one of four combinations of the voltage V1 and the voltage −V1 applied to the first optical deflection element 411 and the voltage V2 and the voltage −V2 applied to the second optical deflection element 413. By applying a voltage simultaneously to the first light deflecting element 411 and the second light deflecting element 413, the image light emitted from the original image display unit 40 is converted into the four diagonal directions of the pixel array of the image display element 403. Shift to one.

投射レンズ42は、光偏向デバイス41でシフトされた画像光を拡大してスクリーン43に投射する。表示制御部44は、光源400を点灯させ、画像表示素子403に画像を表示させ、光偏向デバイス41に電圧を印加して画像光のシフト方向を制御し、光源400と画像表示素子403と光偏向デバイス41とを同期制御する。   The projection lens 42 magnifies and projects the image light shifted by the light deflection device 41 onto the screen 43. The display control unit 44 turns on the light source 400, displays an image on the image display element 403, applies a voltage to the light deflection device 41 to control the shift direction of the image light, and controls the light source 400, the image display element 403, and the light. Synchronously controls the deflection device 41.

最終的に表示される1フレームの画像は、あらかじめ全画素を水平方向及び垂直方向に2ラインごとに区切り4画素ごとの画素群に分け、各画素群内の4つの位置の画素ごとにまとめた4つの画像に分割して処理される。1フレームの画像を表示する画像信号の画面フィールドは、分割された画像単位に4つのサブフィールドに分割されている。さらに、各サブフィールドの画像はRGBの3つに分割されている。表示制御部44は、図7の信号図に示すように、光源400のLEDの色を順に切り替えながら、画像表示素子403にサブフィールドごとにRGB3色の画像を順次表示させるとともに、各サブフィールドの3色分の画像を表示するごとに光偏向デバイス41に印加する電圧を切り替えてシフト方向を4方向から選択し、各画素を各画素群内の本来の位置に配置させる。スクリーン43には、画像表示素子403の画素数を水平走査方向及び垂直走査方向に倍増した高解像度の画像が表示される。   In the image of one frame to be finally displayed, all the pixels are divided in advance in two lines in the horizontal direction and in the vertical direction, and divided into pixel groups for every four pixels, and are grouped for each pixel at four positions in each pixel group. It is divided into four images and processed. A screen field of an image signal for displaying an image of one frame is divided into four subfields for each divided image unit. Further, the image of each subfield is divided into three RGB. As shown in the signal diagram of FIG. 7, the display control unit 44 causes the image display element 403 to sequentially display RGB three-color images for each subfield while sequentially switching the colors of the LEDs of the light source 400, and for each subfield. Each time an image for three colors is displayed, the voltage applied to the light deflection device 41 is switched to select a shift direction from four directions, and each pixel is arranged at an original position in each pixel group. On the screen 43, a high-resolution image obtained by doubling the number of pixels of the image display element 403 in the horizontal scanning direction and the vertical scanning direction is displayed.

この画像表示装置4によれば、水平走査方向及び垂直走査方向のみかけ上の画素数を倍増することにより、使用する画像表示素子403の解像度よりも高精細な画像を表示できる。光偏向デバイス41に光偏向素子1を用いることにより、小さなスペースで画像全体にわたって均一なシフト量を得ることができ、表示する画像領域全体にわたって高精細な画像を得られる。なお、光偏向素子は本発明のいずれの光偏向素子であってもよい。   According to the image display device 4, by multiplying the apparent number of pixels in the horizontal scanning direction and the vertical scanning direction, it is possible to display an image with higher definition than the resolution of the image display element 403 to be used. By using the optical deflection element 1 in the optical deflection device 41, a uniform shift amount can be obtained over the entire image in a small space, and a high-definition image can be obtained over the entire image area to be displayed. The light deflection element may be any of the light deflection elements of the present invention.

具体的に、素子の外形サイズ50mm×50mmである光偏光素子3を用いると、光偏向素子3を配置するとともに光偏向素子3を表示制御部44へ接続するために必要なスペースは、約55mm×55mmと少なかった。これに対し、比較のために作成した導通部を有さず90mm×50mmの外形を有する光偏向素子を配置して表示制御部44へ接続するためには、最低でも約100mm×100mmの面空間が必要であった。   Specifically, when the light polarizing element 3 having an element outer size of 50 mm × 50 mm is used, the space required for arranging the light deflecting element 3 and connecting the light deflecting element 3 to the display control unit 44 is about 55 mm. × 55mm and less. On the other hand, in order to arrange and connect to the display control unit 44 an optical deflecting element having an outer shape of 90 mm × 50 mm without having a conducting portion created for comparison, a surface space of at least about 100 mm × 100 mm Was necessary.

第1の参考形態の光偏向素子の構成図である。It is a block diagram of the optical deflection | deviation element of a 1st reference form. 第2の参考形態の光偏向素子の構成図である。It is a block diagram of the optical deflection | deviation element of a 2nd reference form. 施形態の他の光偏向素子の構成図である。It is a block diagram of another optical deflection element of implementation forms. 第3の参考形態の光偏向素子の構成図である。It is a block diagram of the optical deflection | deviation element of the 3rd reference form. 第3の参考形態の他の光偏向素子の構成図である。It is a block diagram of the other optical deflection | deviation element of a 3rd reference form. 施形態の画像表示装置の構成図である。It is a block diagram of an image display apparatus of implementation forms. 施形態の画像表示装置の信号図である。It is a signal diagram of an image display apparatus of implementation forms.

符号の説明Explanation of symbols

1;光偏向素子、2;光偏向素子、3;光偏向素子、4;画像表示装置、
10;入射側基板、11;出射側基板、12;スペーサ、13;導通部、
14;誘電体層、15;配向膜、16;液晶層、17;第1電極端子、
18;第2電極端子、20;導通部、21;第1電極端子、22;第2電極端子、
23;抵抗体層、30;導通部、40;原画像表示部、41;光偏向デバイス、
42;投射レンズ、43;スクリーン、44;表示制御部、
100;入射側電極ライン群、101;入射側第1電極、102;入射側第2電極、
103;入射側抵抗体層、110;出射側電極ライン群、111;出射側第1電極、
112;出射側第2電極、113;出射側抵抗体層、400;光源、401;拡散板、
402;マイクロレンズアレイ、403;画像表示素子、410;直線偏光板、
411;第1光偏向素子、412;偏光面回転素子、413;第2光偏向素子。
DESCRIPTION OF SYMBOLS 1; Optical deflection element, 2; Optical deflection element, 3; Optical deflection element, 4; Image display apparatus,
10; Incident side substrate, 11; Output side substrate, 12; Spacer, 13; Conducting portion,
14; dielectric layer, 15; alignment film, 16; liquid crystal layer, 17; first electrode terminal,
18; second electrode terminal, 20; conducting portion, 21; first electrode terminal, 22; second electrode terminal,
23; resistor layer, 30; conducting portion, 40; original image display portion, 41; light deflection device,
42; projection lens, 43; screen, 44; display control unit,
100; incident side electrode line group; 101; incident side first electrode; 102; incident side second electrode;
103; incident-side resistor layer; 110; emission-side electrode line group; 111; emission-side first electrode;
112; Emission side second electrode, 113; Emission side resistor layer, 400; Light source, 401; Diffusion plate,
402; microlens array; 403; image display element; 410; linearly polarizing plate;
411; first light deflection element; 412; polarization plane rotation element; 413; second light deflection element.

Claims (4)

対の基板とスペーサと液晶層と電極ライン群と抵抗体層と導通部とを備え、
前記基板は、透明で平行に配置され、
前記スペーサは、均一な厚さの部材を有して前記基板間の一定の有効領域を囲むように配置され、
前記液晶層は、前記基板間に挟まれた前記有効領域内で層法線方向を前記基板面に直交させたキラルスメクチックC相を形成し、
前記電極ライン群は、互いに平行かつ前記液晶層に平行な複数の線状の電極を各前記基板と前記液晶層との間で前記有効領域に重なる位置にそれぞれ有し、一方の前記基板側において前記有効領域の両端に位置する電極と他方の前記基板側において前記有効領域の両端に位置する電極とは両端部においてそれぞれ平行に対向して配置され、
前記抵抗体層は、一方の前記基板の電極を横断して直列接続する線状の抵抗体と、他方の前記基板の電極を横断して直列接続する線状の抵抗体とを有し、一方の前記基板側に設けられた線状の抵抗体と他方の前記基板側に設けられた線状の抵抗体とは平行に対向して前記有効領域外に配置され、
前記導通部は、前記抵抗体の両端部をそれぞれ前記基板間で電気的に接続し、
前記抵抗体層と前記導通部とは、一体に形成されていることを特徴とする光偏向素子。
And a conducting portion between the substrate and the spacer and the liquid crystal layer and the electrode line group of a pair and the resistive layer,
The substrates are transparent and arranged in parallel;
The spacer has a uniform thickness member and is disposed so as to surround a certain effective area between the substrates,
The liquid crystal layer forms a chiral smectic C phase in which the layer normal direction is orthogonal to the substrate surface within the effective region sandwiched between the substrates,
The electrode line group has a plurality of linear electrodes parallel to each other and parallel to the liquid crystal layer at positions overlapping the effective region between the substrate and the liquid crystal layer, respectively, on one substrate side The electrodes positioned at both ends of the effective area and the electrodes positioned at both ends of the effective area on the other substrate side are arranged to face each other in parallel at both ends,
The resistor layer includes a linear resistor that is connected in series across the electrode of one of the substrates, and a linear resistor that is connected in series across the electrode of the other substrate, The linear resistor provided on the substrate side and the linear resistor provided on the other substrate side are arranged in parallel to face outside the effective region,
The conductive portion electrically connects both ends of the resistor between the substrates ,
The optical deflection element, wherein the resistor layer and the conducting portion are formed integrally .
前記導通部は、前記抵抗体層の全体を前記基板間で電気的に接続する請求項に記載の光偏向素子 The optical deflection element according to claim 1 , wherein the conductive portion electrically connects the entire resistor layer between the substrates . 記導通部は、前記スペーサの一部により形成されている請求項1または請求項のいずれかに記載の光偏向素子。 Before SL conductive portion, the light deflecting element according to claim 1 or claim 2 is formed by a portion of the spacer. 原画像表示部と光偏向デバイスと表示制御部とを備え、
前記原画像表示部は、2次元に配列した画素で画像を表示し、
前記光偏向デバイスは、2つの請求項1から請求項のいずれかに記載の光偏向素子と偏光面回転素子とを有し、2つの前記光偏向素子は前記液晶層の層法線方向を一致させるとともに前記電極ライン群の両端の電極に電圧を印加されることにより発生する電界の方向を直交させ、前記偏光面回転素子は2つの前記光偏向素子の間で透過光の偏光方向を直角に回転させ、
前記表示制御部は、前記原画像表示部の画像を順次切り替えて表示させながら、1または複数の画像ごとに、前記光偏向デバイスの一方の光偏向素子に印加する電圧の極性と、前記光偏向デバイスの他方の光偏向素子に印加する電圧の極性との組み合わせを切り替えることにより、前記原画像表示部の画像をシフトさせることを特徴とする画像表示装置。
An original image display unit, a light deflection device, and a display control unit;
The original image display unit displays an image with two-dimensionally arranged pixels,
The optical deflecting device includes two optical deflecting elements according to any one of claims 1 to 3 and a polarization plane rotating element, and the two optical deflecting elements have a layer normal direction of the liquid crystal layer. The direction of the electric field generated by applying a voltage to the electrodes at both ends of the electrode line group is orthogonalized, and the polarization plane rotation element makes the polarization direction of the transmitted light perpendicular between the two light deflection elements. Rotate to
The display control unit sequentially switches and displays the images of the original image display unit, and for each image or a plurality of images, the polarity of a voltage applied to one light deflection element of the light deflection device, and the light deflection An image display apparatus characterized by shifting an image of the original image display section by switching a combination with a polarity of a voltage applied to the other light deflection element of the device.
JP2004333081A 2004-11-17 2004-11-17 Optical deflection element and image display device Expired - Fee Related JP4751600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004333081A JP4751600B2 (en) 2004-11-17 2004-11-17 Optical deflection element and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004333081A JP4751600B2 (en) 2004-11-17 2004-11-17 Optical deflection element and image display device

Publications (2)

Publication Number Publication Date
JP2006145664A JP2006145664A (en) 2006-06-08
JP4751600B2 true JP4751600B2 (en) 2011-08-17

Family

ID=36625474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004333081A Expired - Fee Related JP4751600B2 (en) 2004-11-17 2004-11-17 Optical deflection element and image display device

Country Status (1)

Country Link
JP (1) JP4751600B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890646A (en) * 2011-10-25 2014-06-25 日本电气硝子株式会社 Liquid crystal element and cell for liquid crystal element

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4833053B2 (en) 2006-03-14 2011-12-07 株式会社リコー Optical deflection element and image display device
JP5388711B2 (en) * 2009-06-12 2014-01-15 シチズンホールディングス株式会社 Liquid crystal optical element
US20150070607A1 (en) * 2012-04-06 2015-03-12 Sharp Kabushiki Kaisha Stereoscopic display apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098504A (en) * 2001-09-25 2003-04-03 Ricoh Co Ltd Optical deflecting element, optical deflector using it, and picture display device
JP4155563B2 (en) * 2003-02-28 2008-09-24 シチズンホールディングス株式会社 Liquid crystal light modulation device and driving method thereof
JP4261227B2 (en) * 2003-03-20 2009-04-30 株式会社リコー Optical deflection device and image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890646A (en) * 2011-10-25 2014-06-25 日本电气硝子株式会社 Liquid crystal element and cell for liquid crystal element
US9529243B2 (en) 2011-10-25 2016-12-27 Nippon Electric Glass Co., Ltd. Liquid crystal element and cell for liquid crystal element

Also Published As

Publication number Publication date
JP2006145664A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
US7929071B2 (en) Electric field generating device comprising an electric field generating resistor and line electrodes, light deflecting device having the same, and image display apparatus having the same
US6972822B2 (en) Field sequential liquid crystal display apparatus using active matrix liquid crystal display device
US7489383B2 (en) Optical axis deflecting method, optical axis deflecting element, optical path deflecting unit, method of driving optical axis deflecting element, and image display apparatus
JP2008158187A (en) Liquid crystal display element and method of manufacturing the same
JP4574428B2 (en) Optical axis deflection element, optical path deflection element, optical axis deflection method, optical path deflection method, optical axis deflection apparatus, optical path deflection apparatus, and image display apparatus
US7599036B2 (en) In-plane switching active matrix liquid crystal display apparatus
US7564508B2 (en) Light path shift device and image display device
JP2003098504A (en) Optical deflecting element, optical deflector using it, and picture display device
JP4751600B2 (en) Optical deflection element and image display device
TWI313383B (en) Liquid crystal display panel and method for driving the same
JP4295054B2 (en) Optical deflection apparatus, image display apparatus, optical writing apparatus, and image forming apparatus
JP2003098502A (en) Light deflector and image display device
JP4021697B2 (en) Optical path deflecting element, optical path deflecting device, image display apparatus, and optical path deflecting element driving method
JP2003090992A (en) Optical deflection device, picture display device using optical deflection device and method for controlling optical deflection device
JP3980908B2 (en) Optical path deflecting element, optical path deflecting element unit, and image display apparatus
JP2011033695A (en) Liquid crystal display
JP4917757B2 (en) Optical deflection element and image display device
JP2003315801A (en) Liquid crystal display device
JP4667826B2 (en) Optical deflection element, optical deflection device, image display apparatus, and optical deflection element manufacturing method
JP3947067B2 (en) Optical path shift element
JP2006162686A (en) Optical deflecting element, optical deflector provided with the element, and picture display device
JP2009069297A (en) Light deflector and image display device
JPS6364031A (en) Matrix display device
JP4060091B2 (en) Optical deflection element and image display device
JP2001255524A (en) Liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees