JP2006285047A - 液晶レンズ - Google Patents

液晶レンズ Download PDF

Info

Publication number
JP2006285047A
JP2006285047A JP2005106771A JP2005106771A JP2006285047A JP 2006285047 A JP2006285047 A JP 2006285047A JP 2005106771 A JP2005106771 A JP 2005106771A JP 2005106771 A JP2005106771 A JP 2005106771A JP 2006285047 A JP2006285047 A JP 2006285047A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
crystal composition
alignment
alignment film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005106771A
Other languages
English (en)
Inventor
Megumi Horiuchi
恵 堀内
Toshiro Yukinari
俊郎 行成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP2005106771A priority Critical patent/JP2006285047A/ja
Publication of JP2006285047A publication Critical patent/JP2006285047A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

【課題】 応答時間の早い液晶レンズを得る。
【解決手段】 それぞれ透明電極と配向膜を設けた第1の基板31と第2の基板41の間にネマティック液晶にカイラルネマティック液晶を配合して生成した液晶組成物47を封入して形成した液晶レンズ30において、前記第1の基板31の配向膜36と前記第2の基板41の配向膜46の配向方向を−5°〜+5°の角度範囲内でパラレル配向させ、前記第1の基板31と第2の基板41のギャップに対する前記液晶組成物47のピッチの比を0.05〜0.25にする。また、ギャップは10〜50μmの範囲にする。
【選択図】 図1

Description

本発明は液晶レンズに関し、特に応答性を高める技術に関する。
従来から、印加電圧によって焦点距離を可変し得る液晶レンズの開発が成されてきている。その従来技術の一つとして、下記の特許文献1に開示された技術を見ることができる。
特許公開2000−81600号公報
ここで、上記特許文献1に開示された従来技術の概要を図7、図8を用いて説明する。図7は特許文献1に示されたところの焦点距離可変レンズパネルのレーザ光照射方向から見た透視図を示しており、図8は図7におけるA−A線の模式的な断面図を示している。尚、図8はセルギャップやギャップ材の径を大幅に拡大して示していて、矢印Bの方向はレーザ光の照射方向を示している。
ここに示された焦点距離可変レンズパネル10は、図7、図8に示されるように、一対の透明なガラス基板である第1の基板11と第2の基板12を備えている。第1の基板11上には、中央に円形透明電極13と、その円形透明電極13の外側に同心円状に配置され、外側に向かってしだいにその幅及び間隔(スペース16)が狭くなる複数の環状透明電極15と、円形透明電極13から十字形に複数の環状透明電極15を横切って外側に延びる引き出し電極18と、その引き出し電極18の各外端部を互いに接続するように第1の基板11の周縁部付近に配置された外部端子電極19とを有する。そして、この第1の基板11の少なくとも円形透明電極13と環状透明電極15が形成された領域上に第1の配向膜23が設けられている。
また、第2の基板12上の全面には透明電極27が設けられ、この透明電極27上に第2の配向膜24が設けられている。そして、第1の基板11に設けた第1の配向膜23と第2の基板12に設けた第2の配向膜24とは、その配向方向が互いに平行していてパラレル配向をなす配置になっている。
複数の環状透明電極15の外側には、環状をなした第1のシール材20が設けられ、更に、第1の基板11と第2の基板12の周縁部には第2のシール材21が周縁部を囲うようにして設けられ、第1のシール材20と第2のシール材21との隙間の間にギャップ材22が配設されて、ギャップ材22によって一定のギャップを持って第1の基板11と第2の基板12とが第1のシール材20及び第2のシール材21によって接合した構成を取っている。そして、第1のシール材20で囲まれた内部、及び第1のシール材20と第2のシール材21とで囲まれた内部に液晶25を封入した構成を取っている。
円形の第1のシール材20は一部分に液晶注入口20aを持っており、この液晶注入口20aから液晶25が内部に充填されるようになっている。また、第1の基板11と第2の基板12の周縁部に設けた第2のシール材21にも、その一部分に液晶注入口21aを持っており、この液晶注入口21aから液晶25を注入するようになっている。また、この液晶注入口21aは液晶25を注入した後に封止するようになっている。またここで、液晶25はカイラル剤が添加されていないネマティック液晶を用いるのが好ましいとしている。
特許文献1によれば、上記のような構成としたことで、一対の基板上の透明電極間への印加電圧によって通過するレーザ光の焦点距離を可変することができるとされている。また、セルギャップを決めるギャップ材をレンズパネル部には設けない構成としたことで、ギャップ材輪郭部の光の回折や散乱がなくなり、検知される光強度が強くなって効率の良いレンズパネルが得られるとされている。また、レンズパネルのセルギャップ(d)と液晶の屈折率(Δn)との積を、即ち、Δnd=(λ/2)+nλ(λきレーザ光の波長、nは0又は正の整数)の関係が成立するように、セルギャップと液晶の屈折率を選定すると効率の良い焦点距離の可変が可能になるとしている。
しかしながら、ホモジニアス分子配列のネマティック液晶を用いた焦点距離可変レンズパネル(以降、液晶レンズと呼称する)にあっては、パネルの応答時間が遅いと云う問題を有している。図9は印加電圧波形(信号)と光透過度の応答波形を示した図で、図9の(a)は印加電圧波形、図9の(b)は光透過度の応答波形を示している。図9の(a)において、横軸に時間軸を取り、電圧の印加時(図中において、V-onと表示)と電圧の無印加時(図中において、V-offと表示)の電圧波形を示している。また、図9の(b)において、横軸は時間軸を取り、電圧印加(V-on)時と電圧無印加(V-off)における液晶の光透過度の応答波形示している。尚、図9の(b)中で、T-onは、電圧印加(V-on)した時の液晶分子の立ち上がり(液晶分子のねじれた配向状態から垂直に並んだ配向状態への変化)時間を表し、Turn−onと呼んで、略してT-onと表示している。このT-onの時間はV-onの時点から光透過率が90%になるまでの時間を示している。また、T-offは、V-on状態からV-off状態にした時の液晶分子の立ち下がり(液晶分子の垂直に並んだ配向状態から自然にねじれた配向状態への変化)時間を表し、Turn−offと呼んで、略してT-offと表示している。このT-offの時間は、V-offの時点から光透過率10%になるまでの時間を示している。ネマティック液晶を用いた場合は、立ち上がりT-onの時間は比較的短かく、また、印加電圧量の調整で早くすることができるが、立ち下がりT-offの時間は長く、しかも、印加電圧量に左右されない。動作時間(応答時間)はT-onの時間とT-offの時間に左右されることから、応答時間が遅いと云う問題を持っている。
液晶レンズをカメラなどに用いる場合は早いスピードでの焦点距離調整が必要とされる。また、焦点距離の調整範囲を少しでも広く取るにはセルギャップを大きく取ることが必要とされる。しかしながら、セルギャップを大きくすると尚一層応答時間が遅くなると云う問題を有する。
本発明は、上記課題に鑑みてなされたもので、応答時間の早い液晶レンズを見いだすことを目的とする。
上記の目的を達成するための手段として、本発明の請求項1に記載の発明は、透明基板に同心円状に形成した複数の透明な環状電極と配向膜とを備えた第1の基板と、透明基板に透明電極と配向膜とを備えた第2の基板とを一定のギャップを設けて対向して配置し、ネマティック液晶にカイラルネマティック液晶を配合して生成した液晶組成物を封入して形成した液晶レンズにおいて、前記第1の基板の配向膜と前記第2の配向膜との配向方向とがパラレル配向をなす下で、前記第1の基板と第2の基板のギャップに対する前記液晶組成物のピッチの比が0.05〜0.25であることを特徴とするものである。
また、本発明の請求項2に記載の発明は、前記の第1の基板と第2の基板とのギャップが10〜50μmであることを特徴とするものである。
また、本発明の請求項3に記載の発明は、前記液晶組成物の屈折率異方性が0.2〜0.3であることを特徴とするものである。
また、本発明の請求項4に記載の発明は、前記第1の基板の配向膜と前記第2の配向膜とのパラレル配向の角度誤差は−5°〜+5°範囲内であることを特徴とするものである。
第1、第2の基板のギャップと液晶組成物のピッチの比を0.05〜0.25に管理することによって、V-on状態からV-offしたときの液晶分子のT-off時間を15〜70%短縮することができ、短縮の効果を得る。
また、第1、第2の基板のギャップを10〜50μmに管理することによって、焦点距離調整が十分できて鮮明な映像を映し出すことができ、且つ、応答速度を早めることができる。
また、液晶組成物の屈折率異方性が0.2〜0.3のものを用いることによって焦点距離を長く取ることができる。
また、一対の配向膜のパラレル配向を−5°〜+5°の角度範囲内に押さえるとレンズ焦点の収差を小さく押さえることができ、焦点のピントが合わせ易くなる。
以下、本発明を実施するための最良の形態を図1〜図6を用いて説明する。最初に図の説明を行う。図1は本発明の実施形態に係る液晶レンズの平面図、図2は図1におけるD−D断面図を示している。また、図3は液晶レンズにおける液晶組成物の位相変調を説明する説明図、図4は液晶組成物のねじれピッチと応答時間との関係を説明する説明図、図5は液晶組成物の温度によるピッチの変化を示したグラフ図、図6は表1に示すT-off時間の測定値をグラフ化した図を示している。
本発明の液晶レンズ30は、図1、図2に示すように、第1の基板31と第2の基板41との一対の基板の間に液晶組成物47を封止材48を介して封入した構成を取る。図2において、矢印Gは光の進入方向を示していて、第1の基板31は光の進入方向に対して第2の基板41より遠のく方向に配置される。第1の基板31は、透明なガラスからなる透明基板32の下面に複数の電極を平面的に形成した電極層と配向膜36とを積層した構成を取る。複数の電極層は、図1に示すように、中央に形成した透明な円形電極33aと、この円形電極33aの周りに円形を4分割して4つの領域に分けて同心環状形状に形成した透明な複数の環状電極33bと、それぞれ2つの領域の環状電極33bと中央の円形電極33aに接続する2つの透明な引き出し電極34a、34bと、この2つの引き出し電極34a、34bのそれぞれに接続する2つの接続電極35a、35bとから成っている。接続電極35aは引き出し電極34aに接続し、引き出し電極34aは、図1中、左側の上と下の2つの領域の複数の環状電極33b及び中央の円形電極33aに接続している。また、接続電極35bは引き出し電極34bに接続し、引き出し電極34bは、図1中、右側の上と下の2つの領域の複数の環状電極33b及び中央の円形電極33aに接続している。
一方、第2の基板41は透明なガラスからなる透明基板42の上面に透明電極43と配向膜46とを積層した構成を取る。
そして、第1の基板31と第2の基板41を対向して配置し、図1及び図2に示してはいないが、スペーサを介して一定のギャップを設け、封止材48でもって液晶組成物47を封入して液晶レンズ30を形成している。ここでの液晶組成物47はネマティック液晶と微量のカイラルネマティック液晶を配合したものからなっている。また、第1の基板31の配向膜36の配向方向と第2の基板41の配向膜46の配向方向とは平行となるパラレル配向の配置を取っている。尚、図示はしていないが、第1の基板31の2つの接続電極35a、35b、及び第2の基板41の透明電極43には、外部から電圧を印加するために封止材48の外側に外部との接続端子を持っている。
図1において、複数の環状電極33bは外側に行くに従ってその幅は少しずつ細くなり、また、その間隔も少しずつ狭くなって形成されている。この環状電極33bが設けられた領域がレンズの働きをなす領域で、レンズ領域Eを形成する。また、このレンズ領域Eを除く領域Fは、左右に大きく2つに分かれており、図1の中では、左側には接続電極35aが形成され、右側には接続電極35bが形成されている。そして、接続電極35aと接続電極35bの何れか一方に正の電圧が印加され、他方に負の電圧が印加されるようになっている。
このような構成を取る液晶レンズ30に、接続電極35a、35b、及び透明電極43に所定の電圧を印加すると、液晶レンズ30の液晶組成物47に図3に示すような位相変調が現れる。図3において、縦軸に位相変化量を表し、横軸に液晶レンズ30のレンズ領域Eの半径Rを表し、Cは液晶レンズ30の中心を表している。中心から遠のくに従って位相変化量がなだらかなカーブをもって徐々に小さくなる。この作用によって、液晶レンズ30に入射する光が一点に集合して焦点位置が決まってくる。そして、液晶レンズの背後に設けた受光素子である撮像素子に焦点の合った鮮明な画像が写し取られる。
ここで、上記の液晶レンズ30を構成する各構成部品は次のような仕様になっている。第1の基板31、第2の基板41を構成する透明基板32、42は透明なガラス板が用いられる。ガラスとしてはソーダガラスや石英ガラス、ホウケイ酸ガラス、普通板ガラス等のものが利用され、多くは0.1〜1.1mmの厚みのものが用いられる。尚、ガラス以外にプラスチック板なども用いることができる。
第1の基板31を構成する円形電極33a、複数の環状電極33b、引き出し電極34a、34b、及び第2の基板41を構成する透明電極43は、錫をドープした酸化インジウムのITO(Indium Tin Oxide)膜や酸化亜鉛(ZnO)膜などで形成する。このITO膜や酸化亜鉛膜は真空蒸着法、スパッタリング法、CVD法等で形成し、その後、フォトリソグラフィ法によって所望の形状に仕上げられる。
第1の基板31を構成する接続電極35a、35bはITO膜や金属薄膜などで形成する。金属薄膜としては、例えば、Au金属膜などは導電性が良いので好適に適用できる。これは有機金化合物のインクを印刷方法で形成し、500°〜600°の温度での焼成を行うことによって樹脂分が蒸発し、Au金属の焼付け膜が形成されてAu金属薄膜が形成できる。接続電極35a、35bをAu金属膜等で形成すると電気抵抗値を小さく押さえることができ、円形電極33aや複数の環状電極33b、引き出し電極34a、34bの印加電圧精度を高める効果を生む。また、この接続電極35a、35bを遮光膜としての働きをさせることができ、レンズ領域Eをはっきりと区切ける効果も生む。しかしながら、この接続電極35a、35bはAu金属膜に限るものではなく、ITO膜で形成しても何ら支障はない。
第1の基板31、第2の基板41を構成する配向膜36、46はポリイミド樹脂などを用いて印刷法、スピン法などで形成し、コットンの布材などを用いてラビング処理して配向処理を施す。この一対の配向膜36、46の配置は、本発明の液晶レンズにおいては、一対の配向膜36、46のラビング方向の配置をパラレル配向をなす方向に配置を取る。即ち、第1の基板31に設けた配向膜36のラビング方向と第2の基板41に設けた配向膜46のラビング方向とを180°異なる正反対の方向に向けて配置する。この配置を取ることにより、液晶分子の配向方向が第1の基板31側、第2の基板41側共に同一配向方向になり、光の屈折方向を同一方向に揃えられる。ここで、本発明においては、一対の配向膜36、46のラビング方向の配置を−5°〜+5°の角度範囲内に納まるパラレル配向を取る。完全に0°なる方向配置は難しこと故に少なくとも−5°〜+5°の微小角度範囲内に納めるようにする。これにより、光の屈折分散を小さく押さえてレンズ焦点の収差を小さくし、レンズ焦点のピントが合い易くなる。
スペーサは第1の基板31と第2の基板41とに一定の間隔を与えるために設けるもので、スペーサの粒径でもってセルギャップ(d)を設定する。絶縁性と透明性が求められることからガラスボールやプラスチックボール、ファイバーガラス等が用いられる。本発明においては、セルギャップ(d)を10〜50μmに規制する。
セルギャップ(d)は、液晶分子の電圧のV-on時の応答時間や、電圧のV-off時の応答時間に大きく影響を及ぼす。また、セルギャップ(d)は焦点距離の調整範囲にも大きく影響を及ぼす。一般に、セルギャップと応答時間との関係は、セルギャップが大きくなると応答時間はほぼ比例的に遅くなる。本発明においては、セルギャップを10〜50μmの範囲に設定する。これは、セルギャップが10μmより小さく取ると焦点距離の調整範囲が狭まくなり、映像が不鮮明になったり、映像範囲が狭くなったりする問題が起きるからで、液晶レンズとして用いる場合は、各種実験の結果、その許容値としてMin10μmとして設定するものである。また、セルギャップが50μmより大きく取ると、焦点距離の調整範囲は広く取ることができるが、反面、応答速度が遅くなる。応答速度の許容範囲から見てMax50μmと設定している。
封止材48は熱硬化性樹脂や光硬化性樹脂を用いて形成する。樹脂としてはエポキシ樹脂やアクリル樹脂などを用いることができる。一部分に液晶組成物47を注入する開口部を設けてスクリーン印刷等で第1の基板31または第2の基板41の何れか一方側に形成する。そして、熱硬化性樹脂を用いた場合には150°〜200°に加熱の下で加圧して第1の基板31と第2の基板41とを接着固定する。開口部は液晶組成物47の注入後に紫外線硬化型接着剤などで封口する。尚、液晶組成物47の注入は真空注入方法にて行う。
液晶組成物47はネマティック液晶とカイラルネマティック液晶を配合したものからなる。カイラルネマティック液晶を配合する目的は、電圧をV-on(電圧印加)状態からV-off(電圧無印加)状態にしたときの液晶分子の立ち下がりの応答時間(T-off)を短くするために配合する。一般に、液晶分子が螺旋状にねじれを持った液晶組成物を用いた場合、図4に示すように、応答時間はねじれのピッチ(p)の大きさに比例する。図4から、ピッチが小さくなれば応答時間は短く、ピッチが大きくなれば応答時間は長くなる。そこで、液晶組成物47はピッチの小さい液晶組成物を用いる必要があるが、ピッチが小さい液晶組成物としては、カルボン酸液晶が主体の液晶組成物、特に、アルキルシクロヘキサンカルボン酸系化合物、アルキル安息香酸系化合物及び含フッ素トラン系化合物を混合した液晶組成物を挙げることができる。
カイラルネマティック液晶は、ネマティック液晶に光学活性化合物を添加してネマティック液晶の側鎖に光学活性置換基を設けてコレステリック相を持たせた液晶で、例えば下記の化学式1(化1)で示される化合物のカイラルネマティック液晶などが知られている。
Figure 2006285047
Figure 2006285047
Figure 2006285047
Figure 2006285047
Figure 2006285047
Figure 2006285047
Figure 2006285047
また、次の化学式2(化2)で示されるアゾベンゼン形の化合物8やアゾキシベンゼン形の化合物9などのカイラルネマティック液晶も知られている。
Figure 2006285047
Figure 2006285047
このようなカイラルネマティック液晶をネマティック液晶に配合して形成した液晶組成物47のピッチ(p)は温度による影響を強く受ける。図5は液晶組成物の温度によるピッチの変化を表したグラフで、E、F、H、I、Jの5種類のカイラルネマティック液晶をそれぞれホスト液晶(ネマティック液晶)に1重量%配合しての5種類の液晶組成物を生成し、温度変化(−20°C〜+70°C)によって各々の液晶組成物のピッチ(p)の変化をグラフに表したものである。尚、ホスト液晶はSD240150(富士色素株式会社製の商品番号)を用い、E、F、H、I、Jの5種類のカイラルネマティック液晶は、E:S−811(メルク社製の商品番号)、F:CNL617、H:CNL611L(何れも旭電化工業製の商品番号)、I:NYC−211133L、J:NYC−11133L(何れも富士色素株式会社製の商品番号)を用いたものである。
図5から次のことが分かる。Eのカイラルネマティック液晶化合物を配合した液晶組成物は温度変化に対してピッチの変化は略10.2〜10.8μmの範囲での変化を示し、変化幅は略0.6μmで非常に小さい。Fの化合物を配合した液晶組成物は温度変化に対してピッチは略10.5〜6.7の範囲で変化を示し、その変化幅は略3.8μmと大きな変化幅を持つ。また、温度が高くなるにつれてピッチは小さくなる。同様に、Hの化合物を配合した液晶組成物のピッチは略9.5〜7.1μmの範囲で変化し、その変化幅は略2.4μmと大きな変化幅を持つ。Iの化合物を配合した液晶組成物のピッチは略7.5〜6.5μmの範囲で変化を示し、変化幅は略1.0μmと極めて小さい。同様に、Jの化合物を配合した液晶組成物のピッチは略7.2〜6.4μmの範囲で変化を示し、変化幅は略0.8μmと極めて小さい。液晶組成物のピッチが温度変化による影響が少ないもの、更に、ピッチの小さいものが前述したT-off(立ち下がりの応答時間)時間を安定的に短くする。このことから、これに適合するものとして本発明では、IとJのカイラルネマティック液晶化合物を好適なカイラルネマティック液晶材料として選択する。
このカイラルネマティック液晶I(NYC−211133L)は下記の化学式3(化3)に示された化合物10の化学式を持った化合物であり、また、カイラルネマティック液晶 J(NYC−11133L)は化学式3に示された化合物11の化学式を持った化合物である。
Figure 2006285047
Figure 2006285047
さて、電圧をV-on状態からV-off状態にしたときの液晶分子の立ち下がりのT-off時間(応答時間)、は、セルギャップ(d)とネマティック液晶とカイラルネマティック液晶を配合して生成した液晶組成物47のピッチ(p)との比(d/p)によって大きく影響を受けることが判明した。即ち、セルギャップ(d)と液晶組成物のピッチ(p)との比d/p値を管理することによってT-off時間をコントロールできることが分かった。
次に示す表1は、セルギャップ(d)が25μmのときの、d/p値によるT-off時間の測定値と評価を示したものである。また、図6は表1に示すT-off時間の測定値をグラフに表したものである。セルギャップを25μmに設定し、SD240150(富士色素株式会社製の商品番号)なるネマティック液晶に、温度変化に安定性のある図5に示すJ:NYC−11133L(富士色素株式会社製の商品番号)なるカイラルネマティック液晶を用い、その配合量を調整してd/pの異なる液晶組成物を生成し、電圧10VのV-on状態から0VのV-off状態にしたときの25°C下におけるT-off時間を測定した。また、評価は下記に示す評価基準で行っている。
×: T-offの時間が短縮時間の管理目標である15%短縮に達しない。ある いは、V-onとV-offを繰り返したときの再現性が生まれない。
△: プレティルト角のバラツキを考慮すると再現性に危険が見込まれる。
○: T-offの時間が15%の短縮管理目標時間に達しており、また、プレテ ィルト角のバラツキを考慮しても再現性の範囲内にある。
Figure 2006285047
図6より、d/pの値を大きくするに従って直線的にT-off時間が短く(小さく)なることが分かる。
また、T-offの時間をネマティック液晶単独の液晶レンズのものより少なくとも15%以上の短縮を図ることを管理目標値として揚げ、この管理目標値を満足する最小のd/p値をミニマムd/p値とし、表1から、最小(Min)のd/p値を0.05に設定した。
一方、d/pの最大値に関しては、表1から、d/p値が0.27の場合にT-off時間に測定の度にバラツキが現れ、再現性が生まれなかった。これは、d/p値がある一定値以上になると液晶分子のねじれ状態がV-on、V-off時に元に戻らず、可逆性がなくなることからの原因によると判断された。即ち、d/p値がある一定値を越えると液晶組成物の液晶分子のねじれ状態が不安定領域(静的高度ツイストモード領域とも云われている)に入り、可逆性がなくなるものと判断された。従って、再現性のない領域のd/p値を持つ液晶組成物は使用できない。
また、この再現性の問題は液晶組成物の持っているプレティルト角によってもバラツキが現れる。低いプレティルト角を持つ液晶組成物を用いた場合は、再現性がなくなるところのd/p値のバラツキ範囲は小さいが、高プレティルト角を持つ液晶組成物になってくると再現性がなくなるところのd/p値のバラツキ範囲は大きくなってくる。本実施形態においては、低プレティルト角を持つカイラルネマティック液晶を配合した液晶組成物を用いているが、各種の実験の結果、d/p値が0.26の場合は再現性に影響を及ぼす危険性のある範囲と判断され、0.26のd/p値は好適な範囲から除外した。このことより、好適な範囲のd/p値の最大(Max)として0.25を設定した。
以上のことから、d/p値の好適な範囲を0.05〜0.25と設定する。この0.05〜0.25のd/p値を示す液晶組成物は、カイラルネマティック液晶J(NYC−11133L)の濃度を0.013%〜0.064%にすることによって得られる。また、カイラルネマティック液晶I(NYC−211133L)を用いた場合もほぼ同量の微量配合量で上記のd/p値が得られる。この配合量はセルギャップ(d)の設定値によって変える必要があり、そのセルギャップ(d)に対応しての配合量を設定するのが好ましい。
以上の構成を取る液晶組成物47を用いることによりT-off時間(立ち下がり応答時間)を、単にネマティック液晶を用いたものより15%〜70%小さく(短く)することができる。尚、T-on時間(立ち上がり応答時間)はカイラルネマティック液晶を混合することによって僅かに長くなる。しかしながら、T-on時間は印加する電圧量によっても調整することができるので、印加電圧を高くすることで立ち上がり応答時間を早めることができる。
尚、表1に示したd/p値とT-off時間との関係は、富士色素株式会社製のNYC−11133Lなるカイラルネマティック液晶を用いたもので求めたものであるが、ピッチの差も僅かで温度変化にも安定性のある図5に示すIのNYC−211133Lなるカイラルネマティック液晶を用いてもほぼ同じような数値結果を得る。
また、本発明に適用するカイラルネマティック液晶は、JのNYC-11133LやIのNCY-211133Lに限定するものではない。温度変化に対して変化の少ないピッチを持つカイラルネマティック液晶、例えば、図5に示したEのS-811などはピッチの変動幅が非常に小さいので十分適用できる。このEのS-811化学式1(化1)に示した化合物3のもので、光学活性炭素を有する4−n−ヘキシルオキシ安息香酸4’−(2−メチルブキシカルボニル)フェニルエステルである。また、温度変化に対してピッチの変動幅が大きいカイラルネマティック液晶を用いると、温度によってd/p値に大きなバラツキが現れて安定性が得られず、得られるT-off時間に信頼性が低くなる。従って、適用するには好ましい状況ではないが、もし適用する場合は、d/p値の許容幅を狭めて管理すると良い。
以上詳細に説明したように、液晶レンズのセルギャップ(d)を10〜50μmに制限し、セルギャップ(d)と液晶組成物のピッチ(p)の比、即ち、d/pを0.05〜0.25の範囲で管理することによってT-off時間を15%〜70%短縮することができる。
また、その中にあって、用いるカイラルネマティック液晶材料は、温度変化に対してピッチの変動幅も小さく、且つ、ピッチの小さいNYC-11133L、NCY-211133Lなるカイラルネマティック液晶材料を好適なものとして挙げることができる。
ここで、微量のカイラルネマティック液晶をネマティック液晶に混ぜて生成した液晶組成物47の屈折率異方性は大きいのが好ましい。屈折率が大きいとピント調整距離を長く取ることができる。本発明においては、微量のカイラルネマティック液晶をネマティック液晶に混ぜて生成した液晶組成物47の屈折率異方性は0.2〜0.3が好適なものとして規定する。本発明では、セルギャップ(d)と液晶組成物のピッチ(p)の比を0.05〜0.25と設定する。この設定値を満足させるカイラルネマティック液晶の配合量は前述したように極微量となる。このことら、液晶組成物47の屈折率異方性は用いたネマティック液晶の屈折率異方性で決まる。従って、屈折率異方性が0.2〜0.3の範囲のあるネマティック液晶、例えば、旭電化工業製のADK1520(屈折率異方性0.2)などを選択して用いるのが好ましい。屈折率異方性が大きいとピント調整距離を長く取れるのみならずT-off時間を短くできる効果もある。
本発明の実施形態に係る液晶レンズの平面図である。 図1におけるD−D断面図である。 液晶レンズにおける液晶組成物の位相変調を説明する説明図である。 液晶組成物のねじれピッチと応答時間との関係を説明する説明図である。 液晶組成物の温度によるピッチの変化を示したグラフ図である。 表1に示すT-off時間の測定値をグラフ化した図である。 従来技術として、特許文献1に示されたところの焦点距離可変レンズパネルのレーザ光照射方向から見た透視図である。 図7におけるA−A線の模式的な断面図である。 印加電圧波形(信号)と光透過度の応答波形を示した図で、図9の(a)は印加電圧波形図、図9の(b)は光透過度の応答波形図である。
符号の説明
30 液晶レンズ
31 第1の基板
32、42 透明基板
33a 円形電極
33b 環状電極
34a、34b 引き出し電極
35a、35b 接続電極
36、46 配向膜
41 第2の基板
43 透明電極
47 液晶組成物
48 封止材
d セルギャップ
p ピッチ

Claims (4)

  1. 透明基板に同心円状に形成した複数の透明な環状電極と配向膜とを備えた第1の基板と、透明基板に透明電極と配向膜とを備えた第2の基板とを一定のギャップを設けて対向して配置し、ネマティック液晶にカイラルネマティック液晶を配合して生成した液晶組成物を封入して形成した液晶レンズにおいて、前記第1の基板の配向膜と前記第2の配向膜との配向方向がパラレル配向をなす下で、前記第1の基板と前記第2の基板のギャップに対する前記液晶組成物のピッチの比が0.05〜0.25であることを特徴とする液晶レンズ。
  2. 前記第1の基板と第2の基板とのギャップが10〜50μmであることを特徴とする請求項1に記載の液晶レンズ。
  3. 前記液晶組成物の屈折率異方性が0.2〜0.3であることを特徴とする請求項1に記載の液晶レンズ。
  4. 前記第1の基板の配向膜と前記第2の配向膜とのパラレル配向は−5°〜+5°の角度範囲内であることを特徴とする請求項1に記載の液晶レンズ。
JP2005106771A 2005-04-01 2005-04-01 液晶レンズ Pending JP2006285047A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106771A JP2006285047A (ja) 2005-04-01 2005-04-01 液晶レンズ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106771A JP2006285047A (ja) 2005-04-01 2005-04-01 液晶レンズ

Publications (1)

Publication Number Publication Date
JP2006285047A true JP2006285047A (ja) 2006-10-19

Family

ID=37407025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106771A Pending JP2006285047A (ja) 2005-04-01 2005-04-01 液晶レンズ

Country Status (1)

Country Link
JP (1) JP2006285047A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088630A1 (ja) * 2011-12-16 2013-06-20 パナソニック株式会社 可変焦点レンズの制御装置、可変焦点レンズの制御方法、および電子メガネ
CN114002882A (zh) * 2021-11-26 2022-02-01 杭州英诺维科技有限公司 一种Mini LED背光源模组结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352453A (ja) * 1998-06-09 1999-12-24 Olympus Optical Co Ltd 光学特性可変光学素子
JP2000081600A (ja) * 1998-06-22 2000-03-21 Citizen Watch Co Ltd 焦点距離可変レンズパネルとその製造方法
JP2000353333A (ja) * 1999-06-10 2000-12-19 Sony Corp 光ピックアップ装置及び光学ディスク装置
WO2001023950A1 (fr) * 1999-09-27 2001-04-05 Citizen Watch Co., Ltd. Procede de production d'une plaque d'un dispositif optique a tres haute resolution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352453A (ja) * 1998-06-09 1999-12-24 Olympus Optical Co Ltd 光学特性可変光学素子
JP2000081600A (ja) * 1998-06-22 2000-03-21 Citizen Watch Co Ltd 焦点距離可変レンズパネルとその製造方法
JP2000353333A (ja) * 1999-06-10 2000-12-19 Sony Corp 光ピックアップ装置及び光学ディスク装置
WO2001023950A1 (fr) * 1999-09-27 2001-04-05 Citizen Watch Co., Ltd. Procede de production d'une plaque d'un dispositif optique a tres haute resolution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088630A1 (ja) * 2011-12-16 2013-06-20 パナソニック株式会社 可変焦点レンズの制御装置、可変焦点レンズの制御方法、および電子メガネ
JPWO2013088630A1 (ja) * 2011-12-16 2015-04-27 三井化学株式会社 可変焦点レンズの制御装置、可変焦点レンズの制御方法、および電子メガネ
US9541774B2 (en) 2011-12-16 2017-01-10 Mitsui Chemicals, Inc. Control device for variable focus lenses, control method for variable focus lenses, and electronic glasses
CN114002882A (zh) * 2021-11-26 2022-02-01 杭州英诺维科技有限公司 一种Mini LED背光源模组结构
CN114002882B (zh) * 2021-11-26 2024-04-30 杭州英诺维科技有限公司 一种Mini LED背光源模组结构

Similar Documents

Publication Publication Date Title
Ren et al. Tunable electronic lens using a gradient polymer network liquid crystal
KR101198185B1 (ko) 액정표시장치 및 그 제조방법
JP2986756B2 (ja) 電気光学的表示装置
US6977704B2 (en) Liquid crystal display
US5748275A (en) Liquid crystal display device and liquid crystal display apparatus
JP5578132B2 (ja) 液晶表示装置
JP5256714B2 (ja) 液晶表示素子及びその製造方法
Xu et al. Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal
KR20110033768A (ko) 액정 표시 장치
JP2001249363A (ja) 表示装置
JPH01120527A (ja) 液晶表示装置
JP2002277877A5 (ja)
WO2002056103A1 (fr) Affichage a cristaux liquides et son procede de fabrication
US8427619B2 (en) Liquid crystal display unit
Lim et al. Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field
US20130141675A1 (en) Liquid crystal display device
JPWO2005081051A1 (ja) 液晶光変調素子
JP2006285047A (ja) 液晶レンズ
WO2012090839A1 (ja) 液晶パネル、及び、液晶ディスプレイ
JP3776844B2 (ja) 液晶表示装置
WO2012090838A1 (ja) 液晶パネル、及び、液晶ディスプレイ
JP2011164273A (ja) 液晶表示素子
JP2009294320A (ja) 液晶表示装置
US20040218137A1 (en) Liquid crystal displays with multi-domains effect formed by surface gratings
JP2000162574A (ja) 液晶表示素子、及び液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080310

A131 Notification of reasons for refusal

Effective date: 20110125

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110318

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20110408

Free format text: JAPANESE INTERMEDIATE CODE: A02