JP2006283154A - Method for heating molten steel - Google Patents

Method for heating molten steel Download PDF

Info

Publication number
JP2006283154A
JP2006283154A JP2005106410A JP2005106410A JP2006283154A JP 2006283154 A JP2006283154 A JP 2006283154A JP 2005106410 A JP2005106410 A JP 2005106410A JP 2005106410 A JP2005106410 A JP 2005106410A JP 2006283154 A JP2006283154 A JP 2006283154A
Authority
JP
Japan
Prior art keywords
molten steel
oxygen
heating
atmospheric pressure
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005106410A
Other languages
Japanese (ja)
Other versions
JP4277819B2 (en
Inventor
Mitsuhiro Numata
光裕 沼田
Yoshihiko Higuchi
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005106410A priority Critical patent/JP4277819B2/en
Publication of JP2006283154A publication Critical patent/JP2006283154A/en
Application granted granted Critical
Publication of JP4277819B2 publication Critical patent/JP4277819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the service life of a refractory in a vacuum vessel without reducing the heating efficiency, when molten steel is heated by blowing oxygen gas in an RH-vacuum degassing apparatus provided with two sets of immersion tubes and the vacuum vessel. <P>SOLUTION: In the method for heating the molten steel by blowing the oxygen gas to the surface of the molten steel having 0.01-0.1% Al concentration and reacting Al in the molten steel and the blown oxygen gas with the RH-vacuum degassing apparatus provided with two sets of the immersion tubes and the vacuum vessel; in the case of being 0.2-0.5(V/Q)(Nm<SP>3</SP>/ton) to the ratio of V(Nm<SP>3</SP>/min): the flowing rate of the blown oxygen gas and Q(ton/min): the reflux volume of the molten metal, the pressure in the inner part of the vacuum vessel is controlled according with the following (1)-(3) formulas, A1≤t/T≤A2: 5.3kPa≤P≤13kPa...(1), A3≤t/T≤A4: 2.7kPa≤P≤4.7kPa...(2) and A5≤t/T≤A6: P≤1.3kPa...(3). Wherein, A1=0.2, A2=0.55, A3=0.6, A4=0.75, A5=0.8, A6=1.0 and (t): time from the starting of heating (oxygen blowing time) and T: the total time for heat treating time (total time for oxygen top-blown) and P: the pressure in the vacuum vessel. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶鋼の加熱方法に関し、具体的には、二本の浸漬管と真空槽とを備えるRH真空脱ガス装置において酸素ガスを吹き付けて溶鋼を加熱する際に、加熱効率を低下させることなく、真空槽の耐火物の寿命向上を図る方法に関する。   The present invention relates to a method for heating molten steel. Specifically, when heating molten steel by spraying oxygen gas in an RH vacuum degassing apparatus including two dip tubes and a vacuum tank, heating efficiency is reduced. The present invention relates to a method for improving the life of a refractory in a vacuum chamber.

二次精錬の主な目的の一つとして溶鋼温度の調整がある。転炉等から取鍋へ出鋼された溶鋼は、二次精錬により、成分調整や脱ガス等が行われるとともに、二次精錬の次行程である鋳造に適正な温度に調整するという重要な処理が行われる。   One of the main purposes of secondary refining is the adjustment of molten steel temperature. The molten steel delivered from the converter, etc. to the ladle is subjected to secondary refining for component adjustment and degassing, and at the same time, the temperature is adjusted to a suitable temperature for casting, which is the next process of secondary refining. Is done.

溶鋼の温度が鋳造に適正な温度よりも高い場合に適正な温度に低下することは、時間延長や冷鉄材の投入等を行えばよく、容易である。一方、溶鋼の温度が適正な温度よりも低い場合に適正な温度に上昇するには、電極加熱や誘導加熱等の加熱方法もあるが、経済的理由から、RH真空脱ガス装置において酸素ガスを溶鋼に吹き付ける方法が一般的に用いられる。   When the temperature of the molten steel is higher than the temperature appropriate for casting, it is easy to decrease the temperature to an appropriate temperature by extending the time or introducing a cold iron material. On the other hand, there are heating methods such as electrode heating and induction heating to raise the molten steel to an appropriate temperature when the temperature of the molten steel is lower than the appropriate temperature, but for economic reasons, oxygen gas is used in the RH vacuum degassing apparatus. A method of spraying molten steel is generally used.

すなわち、溶鋼にAl又はSi等の金属を添加し、RH真空脱ガス装置の真空槽内溶鋼に酸素ガスを吹き付ける。吹き付けられた酸素ガスは溶鋼中のAlと反応して酸化熱を生じる。この酸化熱を用いて溶鋼温度を上昇させる。この処理は操業が容易であることや温度の調整精度が高いため、よく利用されている。   That is, a metal such as Al or Si is added to the molten steel, and oxygen gas is sprayed onto the molten steel in the vacuum chamber of the RH vacuum degassing apparatus. The blown oxygen gas reacts with Al in the molten steel to generate heat of oxidation. This oxidation heat is used to raise the molten steel temperature. This treatment is often used because of its easy operation and high temperature adjustment accuracy.

さらに、この処理は、これまでにも様々な改善により清浄度向上や効率向上が図られてきた。例えば、特許文献1には、溶鋼中Al濃度と環流量との積から算出される真空槽内に流入するAl量と、ノズルからの送酸量とを指標として制御することにより、スラグ中のMnO及びFeOの生成を抑制し、溶鋼の清浄性を悪化させることなく、RH真空脱ガス装置で溶鋼を昇熱する発明が開示されている。   Further, this process has been improved in cleanliness and efficiency by various improvements so far. For example, in Patent Document 1, by controlling the amount of Al flowing into the vacuum chamber calculated from the product of the Al concentration in the molten steel and the ring flow rate, and the amount of acid sent from the nozzle as an index, An invention is disclosed in which the generation of MnO and FeO is suppressed and the molten steel is heated with an RH vacuum degassing apparatus without deteriorating the cleanliness of the molten steel.

しかし、RH真空脱ガス装置において酸素ガスを吹き付けることにより溶鋼を昇温するこの処理には、真空槽の耐火物の損耗が進行し易いという問題があった。この問題を解決すべく、特許文献2には、RH真空脱ガス装置の真空槽の内張り構造を、側壁をマグネシア−炭素質不焼成レンガとするとともに、敷及び環流管を耐火骨材に占める割合で1%未満(本明細書では特にことわりがない限り「%」は「質量%」を意味するものとする)としたキャスタブル耐火物とする発明が、特許文献3には、RH真空脱ガス装置の下部槽の内張り構造を、少なくとも溶鋼接触部をC含有量が5%未満のマグネシアカーボンレンガとし、残余の部分をC含有量が5〜9%のマグネシアカーボンレンガとする発明が、さらに、特許文献4には、RH脱ガス装置の真空槽内に昇降自在に配置されて酸素含有ガスを上吹きする鉛直ランスの中心軸を、環流管内径の領域内に位置させて酸素含有ガスを噴射することにより、真空槽の耐火物の損耗を防止する発明が、それぞれ開示されている。
特開平9−249910号公報 特開2001−89808号公報 特開2002−285228号公報 特開平9−143546号公報
However, this process of raising the temperature of the molten steel by blowing oxygen gas in the RH vacuum degassing apparatus has a problem that the refractory in the vacuum tank tends to wear out. In order to solve this problem, Patent Document 2 describes the ratio of the lining structure of the vacuum chamber of the RH vacuum degassing apparatus, the side walls of which are magnesia-carbonaceous unfired bricks, and the floor and the reflux pipe in the refractory aggregate. The invention is a castable refractory having a content of less than 1% (“%” means “mass%” unless otherwise specified) in this specification. Further, the invention is further disclosed in which the lining structure of the lower tank is made of magnesia carbon brick having at least a molten steel contact portion with a C content of less than 5% and a magnesia carbon brick with a C content of 5 to 9%. In Document 4, the central axis of a vertical lance that is disposed in a vacuum chamber of an RH degassing device so as to be able to move up and down and blows the oxygen-containing gas upward is located within the region of the inner diameter of the reflux pipe, and oxygen-containing gas is injected. By , The invention prevents wear of the refractory of the vacuum tank is disclosed, respectively.
JP-A-9-249910 JP 2001-89808 A JP 2002-285228 A JP-A-9-143546

特許文献2〜4により開示された発明により、確かに真空槽内の耐火物の損耗は軽減される。しかし、耐火物の損耗が解消されたわけではなく、さらなる耐火物の寿命向上が望まれる。   The inventions disclosed in Patent Documents 2 to 4 certainly reduce the wear of the refractory in the vacuum chamber. However, the wear of the refractory has not been eliminated, and further improvement in the life of the refractory is desired.

RH脱ガス装置を用いた溶鋼の加熱時における耐火物の損耗機構は、以下のように考えられる。溶鋼の表面に吹き付けられた酸素ガスは、溶鋼へ吸収されて主に溶鋼中のAlと反応する。吹き付けられた酸素が全て溶鋼中のAlと反応すればアルミナのみが生成することとなる。しかし、Alと反応できなかった酸素は溶鋼と反応し、FeOxを形成する。このFeOxが耐火物と接触すると、耐火物の主成分であるMgOと反応し、その融点を1600℃以下まで低下させる。一般に溶鋼の加熱中の真空槽の内部の溶鋼の温度は1600℃以上となるため、耐火物は容易に溶損する。   The wear mechanism of the refractory during the heating of the molten steel using the RH degassing apparatus is considered as follows. The oxygen gas sprayed on the surface of the molten steel is absorbed by the molten steel and mainly reacts with Al in the molten steel. If all the oxygen sprayed reacts with Al in the molten steel, only alumina will be produced. However, oxygen that could not react with Al reacts with the molten steel to form FeOx. When this FeOx comes into contact with the refractory, it reacts with MgO, which is the main component of the refractory, and lowers its melting point to 1600 ° C. or lower. In general, since the temperature of the molten steel inside the vacuum chamber during heating of the molten steel is 1600 ° C. or higher, the refractory is easily melted.

酸素ガスの溶鋼への吸収:(1/2)O(g)→[O]・・・(6)
吸収された酸素の反応 :3[O]+2[Al]→Al・・・(7)
Fe+x[O]→FeO・・・(8)
このため、溶鋼加熱時の耐火物の損耗を低減するには、(8)式に示す反応を極力抑制し、(7)式に示す反応を推進すればよいこととなる。
Absorption of oxygen gas into molten steel: (1/2) O 2 (g) → [O] (6)
Reaction of absorbed oxygen: 3 [O] +2 [Al] → Al 2 O 3 (7)
Fe + x [O] → FeO x (8)
For this reason, in order to reduce the wear of the refractory during heating of the molten steel, the reaction shown in the equation (8) should be suppressed as much as possible and the reaction shown in the equation (7) should be promoted.

しかしながら、これまでは、このような考え方に基づいて溶鋼を加熱することは検討されてこなかった。そこで、本発明者らは、このような考え方を前提として鋭意検討を重ねた結果、本発明を完成した。   However, until now, heating the molten steel based on such a concept has not been studied. Therefore, the present inventors completed the present invention as a result of intensive studies on the premise of such a concept.

本発明は、二本の浸漬管と真空槽とを備えるRH真空脱ガス装置にて、Al濃度が0.01%以上0.1%以下である溶鋼の表面に酸素ガスを吹き付け、溶鋼中のAlと吹き付けた酸素ガスとを反応させることにより溶鋼を加熱する方法であって、吹き付ける酸素ガスの流量V(Nm/min)と、溶鋼の環流量Q(ton/min)との比(V/Q)(Nm/ton)が0.2以上0.5以下であるとき、下記(1)〜(3)式にしたがって真空槽の内部の圧力を制御することを特徴とする溶鋼の加熱方法である。 In the present invention, an RH vacuum degassing apparatus including two dip tubes and a vacuum tank is used to blow oxygen gas onto the surface of molten steel having an Al concentration of 0.01% or more and 0.1% or less. A method of heating molten steel by reacting Al with a sprayed oxygen gas, the ratio of the flow rate V (Nm 3 / min) of the sprayed oxygen gas to the ring flow rate Q (ton / min) of the molten steel (V / Q) When the (Nm 3 / ton) is 0.2 or more and 0.5 or less, the heating of the molten steel is characterized in that the pressure inside the vacuum chamber is controlled according to the following formulas (1) to (3): Is the method.

A1≦t/T≦A2:5.3kPa≦P≦13kPa ・・・・・・・(1)
A3≦t/T≦A4:2.7kPa≦P≦4.7kPa ・・・・・・・(2)
A5≦t/T≦A6:P≦1.3kPa ・・・・・・・(3)
ただし、A1=0.2、A2=0.55、A3=0.6、A4=0.75、A5=0.8、A6=1.0であり、tは加熱開始(酸素上吹き開始)からの経過時間(min)を示し、Tは総加熱処理時間(総酸素上吹き時間,酸素上吹き開始から酸素上吹き終了までの時間)(min)であり、Pは真空槽内の圧力(kPa)である。
A1 ≦ t / T ≦ A2: 5.3 kPa ≦ P ≦ 13 kPa (1)
A3 ≦ t / T ≦ A4: 2.7 kPa ≦ P ≦ 4.7 kPa (2)
A5 ≦ t / T ≦ A6: P ≦ 1.3 kPa (3)
However, A1 = 0.2, A2 = 0.55, A3 = 0.6, A4 = 0.75, A5 = 0.8, A6 = 1.0, and t is heating start (oxygen top blowing start) , T is the total heat treatment time (total oxygen blowing time, time from the start of oxygen blowing to the end of oxygen blowing) (min), P is the pressure in the vacuum chamber ( kPa).

本発明に係る溶鋼の加熱方法により、二本の浸漬管と真空槽とを備えるRH真空脱ガス装置において酸素ガスを吹き付けて溶鋼を加熱する際に、加熱効率を低下させることなく、真空槽の耐火物の寿命向上を図ることができる。   By heating the molten steel by spraying oxygen gas in an RH vacuum degassing apparatus comprising two dip tubes and a vacuum chamber, the heating method of the molten steel according to the present invention reduces the heating efficiency without reducing the heating efficiency. The life of the refractory can be improved.

以下、本発明に係る溶鋼の加熱方法を実施するための最良の形態を、添付図面を参照しながら詳細に説明する。
本発明を、転炉、RH真空脱ガス装置及び連続鋳造機を用いて鋼を製造する場合を例にとって、説明する。
Hereinafter, the best mode for carrying out the method for heating molten steel according to the present invention will be described in detail with reference to the accompanying drawings.
The present invention will be described by taking as an example the case of manufacturing steel using a converter, an RH vacuum degassing apparatus, and a continuous casting machine.

転炉で脱炭処理を行った後、溶鋼を取鍋へ出鋼し、取鍋をRH真空脱ガス装置へ移動する。RH真空脱ガス装置において溶鋼の加熱処理を行うが、この加熱処理はRH真空脱ガス処理の初期、中期又は末期のいずれの時期に行ってもよい。   After performing decarburization processing in the converter, the molten steel is taken out into a ladle and the ladle is moved to an RH vacuum degasser. Although the molten steel is heat-treated in the RH vacuum degassing apparatus, this heat treatment may be performed at any time of the initial stage, the middle stage, or the end stage of the RH vacuum degassing process.

通常はRH真空脱ガス処理の開始直後に所定量のAlを含有した溶鋼表面に酸素上吹きを行い、溶鋼を加熱する。溶鋼中Alは酸素上吹きを行う前に予め添加しておくことが望ましい。酸素上吹きを行いながら適宜Alを添加することも可能であるが、最適時期を誤ると速度バランスが崩れてしまうため好ましくない。   Usually, immediately after the start of the RH vacuum degassing treatment, oxygen is blown over the surface of the molten steel containing a predetermined amount of Al to heat the molten steel. It is desirable that Al in the molten steel is added in advance before oxygen top blowing. Although it is possible to add Al appropriately while blowing oxygen, it is not preferable because the speed balance will be lost if the optimum time is incorrect.

加熱処理時の酸素供給方法は酸素ガスを溶鋼表面に吹き付ける方法を用いる。吹き付けは、真空槽内溶鋼直上に配置した上吹きランスや、真空槽側壁に配した斜め挿入ランス等を用いて行うことが例示される。用いるランスのノズル形状は特に問わないが、単孔ノズルであることが望ましい。複孔ノズルであると火点面積が雰囲気圧力により大きく変動することがあるからである。   The oxygen supply method at the time of heat processing uses the method of spraying oxygen gas on the molten steel surface. It is exemplified that the spraying is performed by using an upper blowing lance disposed directly above the molten steel in the vacuum chamber, an oblique insertion lance disposed on the side wall of the vacuum chamber, or the like. The shape of the lance nozzle to be used is not particularly limited, but a single hole nozzle is desirable. This is because the hot spot area may vary greatly depending on the atmospheric pressure in the case of a multihole nozzle.

このように、本実施の形態では、2本の浸漬管と真空槽とを備えるRH真空脱ガス装置において真空槽の内部の溶鋼の表面に酸素ガスを吹き付ける方法を対象とする。これは、この方法における耐火物の損耗機構が、(6)〜(8)式を参照しながら上述したものであるためである。   Thus, the present embodiment is directed to a method in which oxygen gas is sprayed onto the surface of molten steel inside the vacuum chamber in an RH vacuum degassing apparatus including two dip tubes and a vacuum chamber. This is because the refractory wear mechanism in this method is as described above with reference to equations (6) to (8).

(7)式の反応を優先的に進行させるには酸素との反応部、すなわち真空槽内への溶鋼供給速度が高いほうがよい。これは、反応部でのAl欠乏を抑制することにより(7)式の反応を優先させるとともに(8)式の反応を抑制するためである。   In order to advance the reaction of formula (7) preferentially, it is better that the molten steel supply rate into the reaction part with oxygen, that is, the vacuum chamber, is high. This is to suppress the reaction of the formula (8) while giving priority to the reaction of the formula (7) by suppressing the Al deficiency in the reaction part.

また、このAl供給速度は酸素供給速度、すなわち上吹き酸素流量とのバランスを考慮する必要もある。Alの供給速度は環流量Q(ton/min)により示すことが可能であり、また酸素供給量は上吹き酸素流量V(Nm/min)により示されるため、環流量Q(ton/min)及び上吹き酸素流量Vのバランスが重要となる。ここで、溶鋼に吹き付ける上吹き酸素流量V(Nm/min)は、V=標準状態での酸素ガス供給総量(Nm3)/上吹き時間(min)として求められ、環流量Q(ton/min)は、Q=11.4×G1/3×D4/3×{ln(P1/P0)}1/3、ただし、G:ガス流量(Nl/min)、D:浸漬管内径(m)、P1、P0:吹き込み位置、真空槽における圧力(Pa)として求められる。 In addition, the Al supply rate needs to take into account the balance between the oxygen supply rate, that is, the top blown oxygen flow rate. Since the supply rate of Al can be indicated by the ring flow rate Q (ton / min), and the oxygen supply amount is indicated by the top blowing oxygen flow rate V (Nm 3 / min), the ring flow rate Q (ton / min) And the balance of the top blowing oxygen flow rate V becomes important. Here, the top blowing oxygen flow rate V (Nm 3 / min) sprayed on the molten steel is obtained as V = total oxygen gas supply amount in the standard state (Nm 3 ) / top blowing time (min), and the ring flow rate Q (ton / min) ) Is Q = 11.4 × G 1/3 × D 4/3 × {ln (P1 / P0)} 1/3 , where G: gas flow rate (Nl / min), D: dip tube inner diameter (m ), P1, P0: the blowing position and the pressure (Pa) in the vacuum chamber.

本例では、環流量Q(ton/min)と上吹き酸素流量V(Nm/min)との比(V/Q)が0.2(Nm/ton)以上0.5(Nm/ton)以下である範囲について検討した。また、(6)〜(8)式の反応は、溶鋼中Al濃度の影響も受ける可能性があるため、本例では、溶鋼中Al濃度が0.01%以上0.1%以下である条件で検討した。 In this example, the ratio (V / Q) between the ring flow rate Q (ton / min) and the top blowing oxygen flow rate V (Nm 3 / min) is 0.2 (Nm 3 / ton) or more and 0.5 (Nm 3 / min). ton) The range which is below was examined. Moreover, since reaction of (6)-(8) type | formula may also receive the influence of Al concentration in molten steel, in this example, conditions with Al concentration in molten steel being 0.01% or more and 0.1% or less I examined it.

以上は物質収支の観点から検討した結果であるが、(7)式の反応と(8)式の反応のバランスは、さらに複雑な因子の影響を受ける。
第一の因子は、酸素吸収速度である。前述したように、Alと反応できなかった、いわば余剰酸素がFeOを形成する。余剰酸素は前述した比(V/Q)にもよるが、(7)式の反応速度を、(6)式の反応速度が上回った場合に発生する。つまり、(7)式の反応と(6)式の反応のバランスも重要となる。ここで、(6)式の反応速度は酸素流量の他に雰囲気圧力の影響を受ける。(6)式の反応速度は(9)式により示される。
Although the above is the result of examination from the viewpoint of mass balance, the balance between the reaction of the equation (7) and the reaction of the equation (8) is influenced by more complicated factors.
The first factor is the oxygen absorption rate. As described above, so-called surplus oxygen that could not react with Al forms FeO x . Although surplus oxygen depends on the ratio (V / Q) described above, it occurs when the reaction rate of the equation (7) exceeds the reaction rate of the equation (6). That is, the balance between the reaction of formula (7) and the reaction of formula (6) is also important. Here, the reaction rate of the equation (6) is influenced by the atmospheric pressure in addition to the oxygen flow rate. The reaction rate of the formula (6) is shown by the formula (9).

d[O]/dt=k([O]e―[O])・・・(9)
(9)式においてkは速度定数であり、[O]eは平衡酸素濃度である。平衡酸素濃度[O]eは(10)式により示されるが、平衡酸素濃度[O]eは酸素分圧PO2が高いほど高くなる。すなわち、雰囲気圧力が高いほど、酸素吸収速度は大きくなる。
d [O] / dt = k ([O] e- [O]) (9)
In equation (9), k is a rate constant, and [O] e is an equilibrium oxygen concentration. The equilibrium oxygen concentration [O] e is expressed by the equation (10), and the equilibrium oxygen concentration [O] e becomes higher as the oxygen partial pressure PO2 is higher. That is, the higher the atmospheric pressure, the greater the oxygen absorption rate.

K=[O]/PO2 1/2・・・(10)
以上から、真空槽の内部の圧力(雰囲気圧力)を制御することにより(6)式の反応の速度を制御し、余剰酸素の発生を抑制することにより(8)式の反応を抑制できる。しかし、過度の制御は(7)式の反応の速度も低下させてしまう。
K = [O] / P O2 1/2 (10)
From the above, the reaction rate of the equation (6) can be controlled by controlling the pressure (atmospheric pressure) inside the vacuum chamber, and the reaction of the equation (8) can be suppressed by suppressing the generation of excess oxygen. However, excessive control also decreases the rate of the reaction of equation (7).

第二の因子は、生成したFeOのAlによる還元の影響である。(8)式の反応により生成したFeOは、(11)式の反応にしたがってAlに還元される。
FeOx+(2/3)xAl→(x/3)Al+Fe・・・(11)
(11)式の反応は、Al濃度が高い場合と撹拌が強い場合に早く進行する。溶鋼中Al濃度が低くなると、(11)式の反応はより速度が低下するため、撹拌をより強くする必要がある。しかし、RH真空脱ガス装置では、通常の取鍋精錬装置とは異なり、撹拌を自由に制御できない。真空槽内の撹拌を強めるには、より高真空として環流ガスによる撹拌を強める方法が最も簡便である。
The second factor is the effect of reduction of the generated FeO x by Al. FeO x produced by the reaction of the formula (8) is reduced to Al according to the reaction of the formula (11).
FeOx + (2/3) xAl → (x / 3) Al 2 O 3 + Fe (11)
The reaction of formula (11) proceeds quickly when the Al concentration is high and when the stirring is strong. When the Al concentration in the molten steel is lowered, the reaction of the formula (11) is further reduced in speed, so that the stirring needs to be made stronger. However, unlike an ordinary ladle refining device, stirring cannot be freely controlled in the RH vacuum degassing device. In order to increase the stirring in the vacuum chamber, a method of increasing the stirring by the reflux gas with a higher vacuum is the simplest.

以上から、比(Q/V)がある値の場合において(8)式の反応を抑制して(7)式の反応を優先的かつ効率的に進行させるには、溶鋼中Al濃度に応じて(i)酸素吸収速度を制御すること、及び(ii)真空槽内の撹拌を強めることが重要である。   From the above, when the ratio (Q / V) is a certain value, the reaction of the formula (8) is suppressed and the reaction of the formula (7) is advanced preferentially and efficiently according to the Al concentration in the molten steel. It is important to (i) control the oxygen absorption rate and (ii) increase the agitation in the vacuum chamber.

これを実現するには幾つかの方法が考えられるが、最も簡便な方法は、溶鋼の加熱処理中に連続的に雰囲気圧力を変化させることである。一般的には雰囲気圧力を一定として酸素上吹きを行うが、この雰囲気圧力を適正に変化させることが有効である。   Several methods are conceivable to realize this, but the simplest method is to continuously change the atmospheric pressure during the heat treatment of the molten steel. In general, oxygen is blown at a constant atmospheric pressure, but it is effective to appropriately change the atmospheric pressure.

しかしながら、これらの方法は各速度過程のバランスを適正化することが重要であり、条件を推算することが難しい。そこで、溶鋼の加熱処理中の真空度を制御し、反応効率と耐火物損耗速度とを調査した。   However, in these methods, it is important to optimize the balance of each speed process, and it is difficult to estimate the conditions. Therefore, the degree of vacuum during the heat treatment of the molten steel was controlled, and the reaction efficiency and the refractory wear rate were investigated.

調査は300トン溶鋼を処理するRH真空脱ガス装置を用い、上吹きランスから溶鋼表面に酸素を吹き付けた。この時、環流量Q(ton/min)と、上吹き酸素流量V(Nm/min)とを、比(V/Q)が0.35〜0.42(Nm/ton)となるように、調整した。また、溶鋼中Al濃度は溶鋼加熱処理後で0.013%以上0.095%以下とした。 In the investigation, an RH vacuum degassing apparatus for treating 300 tons of molten steel was used, and oxygen was blown from the top blowing lance onto the surface of the molten steel. At this time, the ratio (V / Q) of the ring flow rate Q (ton / min) and the top blowing oxygen flow rate V (Nm 3 / min) is 0.35 to 0.42 (Nm 3 / ton). Adjusted. The Al concentration in the molten steel was set to 0.013% or more and 0.095% or less after the molten steel heat treatment.

さらに、酸素上吹き中の真空槽の真空度を幾つかのパターンで変化させ、反応効率と耐火物寿命とを測定した。また、一般的な処理条件である加熱処理中の雰囲気圧力を8kPaで一定とした条件を基準条件イとした。なお、測定値には以下の整理を行ったので、基準条件イの反応効率指数及び耐火物寿命指数はいずれも1となる。   Furthermore, the degree of vacuum of the vacuum chamber during oxygen blowing was changed in several patterns, and the reaction efficiency and the refractory life were measured. In addition, a condition in which the atmospheric pressure during the heat treatment, which is a general treatment condition, was constant at 8 kPa was set as a reference condition (a). In addition, since the following arrangement was performed for the measured values, both the reaction efficiency index and the refractory life index under the reference condition A are 1.

反応効率指数={(Alと反応した添加酸素ガス量)/(添加した酸素ガスの総量)}
/(基準条件イの反応効率)
耐火物寿命指数=(基準条件イでの損耗速度)/(各条件での損耗速度)
図1は、溶鋼加熱処理時間における真空槽内の雰囲気圧力制御パターンa〜fを、基準条件イとともに示すグラフであり、図2は、溶鋼加熱処理時間における真空槽内の雰囲気圧力制御パターンg〜jを示すグラフである。なお、溶鋼加熱処理時間は処理毎に異なるために処理時間の長さを用いるのは妥当ではないので、溶鋼加熱処理時間を、無次元時間=実時間{加熱開始(酸素上吹き開始)からの経過時間}/{総溶鋼加熱処理時間(純酸素上吹き時間)}として整理した。なお、本調査における溶鋼加熱処理時間は5〜12分である。
Reaction efficiency index = {(amount of added oxygen gas reacted with Al) / (total amount of added oxygen gas)}
/ (Reaction efficiency of standard condition i)
Refractory life index = (Abrasion rate under standard conditions a) / (Abrasion rate under each condition)
FIG. 1 is a graph showing the atmospheric pressure control patterns a to f in the vacuum tank during the molten steel heat treatment time together with the reference condition A, and FIG. 2 is a graph showing the atmospheric pressure control patterns g to f in the vacuum tank during the molten steel heat treatment time. It is a graph which shows j. In addition, since it is not appropriate to use the length of the treatment time because the molten steel heat treatment time varies depending on the treatment, the molten steel heat treatment time is determined as follows: dimensionless time = actual time {start of heating (start of oxygen top blowing) Elapsed time} / {total molten steel heat treatment time (pure oxygen top blowing time)}. In addition, the molten steel heat processing time in this investigation is 5 to 12 minutes.

図3は、図1、2に示す雰囲気圧力制御パターンa〜jにより得られた反応効率指数及び耐火物寿命指数を示すグラフである。なお、反応効率指数及び耐火物寿命指数ともに50回の処理を行った際のデータである。   FIG. 3 is a graph showing the reaction efficiency index and the refractory life index obtained by the atmospheric pressure control patterns a to j shown in FIGS. The reaction efficiency index and the refractory life index are data when 50 times of treatment are performed.

図3にグラフで示すように、雰囲気圧力を一定とした雰囲気圧力制御パターンa、hは基準条件イに近い結果となった。一方、雰囲気圧力を低位で一定とした雰囲気圧力制御パターンe、fは反応効率が基準条件イよりも低くなったが、耐火物の損耗は抑制された。これは、雰囲気圧力が低いために(6)式の反応が抑制され、結果として(7)式の反応が低下したことにより反応効率は低下するものの、(6)式の反応の抑制により(8)式の反応が抑制されたことにより耐火物の損耗が抑制されたものと考えられる。しかし、反応効率が低く実操業には必ずしも適当ではない。   As shown in the graph of FIG. 3, the atmospheric pressure control patterns a and h with the atmospheric pressure kept constant were close to the reference condition A. On the other hand, the atmospheric pressure control patterns e and f in which the atmospheric pressure was kept low and constant had a reaction efficiency lower than that of the reference condition A, but the wear of the refractory was suppressed. This is because the reaction of the formula (6) is suppressed because the atmospheric pressure is low, and as a result, the reaction efficiency decreases due to the decrease of the reaction of the formula (7), but the suppression of the reaction of the formula (6) (8 It is considered that the wear of the refractory was suppressed by suppressing the reaction of the formula. However, the reaction efficiency is low and not necessarily suitable for actual operation.

一方、段階的に雰囲気圧力を変動させた雰囲気圧力制御パターンb、c、dは、反応効率が高く、かつ耐火物の損耗速度も小さい。一方、同様に段階的に雰囲気圧力を変動制御した雰囲気圧力制御パターンg、i、jに関して、雰囲気圧力制御パターンgは効果が殆どなく、雰囲気圧力制御パターンi、jは寿命指数がやや改善するものの反応効率が低い。このことは、段階的な雰囲気圧力制御パターンの変更は有効であるが、雰囲気圧力制御パターンには最適な条件が存在することを示している。   On the other hand, the atmospheric pressure control patterns b, c, d in which the atmospheric pressure is changed in stages have high reaction efficiency and a low refractory wear rate. On the other hand, regarding the atmospheric pressure control patterns g, i, and j in which the atmospheric pressure is similarly fluctuated stepwise, the atmospheric pressure control pattern g has little effect, and the atmospheric pressure control patterns i and j have a slightly improved life index. The reaction efficiency is low. This indicates that although the stepwise change of the atmospheric pressure control pattern is effective, there are optimum conditions for the atmospheric pressure control pattern.

さらに、図3に示すグラフから本実験条件において最も高い効果を得られたのは雰囲気圧力制御パターンb、c、dである。よって、最適な条件は雰囲気圧力制御パターンbと雰囲気圧力制御パターンdとの間に存在すると考えることができ、雰囲気圧力制御パターンbと雰囲気圧力制御パターンdとから設定される3つの領域A、B、Cを同時に満足することが有効であると考えられる。なお、雰囲気圧力制御パターンb、c、dともに領域A、B、Cへの移行パターンは異なるが、ある時間域にある圧力領域をA、B、Cを通過することで高い効果が得られることから、3つの領域A、B、Cの全領域を通過ことが最も重要な条件であるとともに、各領域A〜C間の移行パターンの影響は小さいことがわかる。さらに、雰囲気圧力制御パターンf、h、i、jでは、3つの領域A、B、Cの何れか一つ、あるいは二つの通過では効果が得られないことからも、3つの領域A、B、Cを全て満足することが有効であることがわかる。   Furthermore, the atmospheric pressure control patterns b, c, and d obtained the highest effect under the present experimental conditions from the graph shown in FIG. Therefore, it can be considered that the optimum condition exists between the atmospheric pressure control pattern b and the atmospheric pressure control pattern d, and the three regions A and B set by the atmospheric pressure control pattern b and the atmospheric pressure control pattern d are set. , C at the same time is considered effective. The atmospheric pressure control patterns b, c, and d have different transition patterns to the regions A, B, and C, but a high effect can be obtained by passing the pressure regions in a certain time region through A, B, and C. From this, it can be seen that passing through all three regions A, B, and C is the most important condition, and the influence of the transition pattern between the regions A to C is small. Furthermore, in the atmospheric pressure control pattern f, h, i, j, since the effect cannot be obtained in one of the three regions A, B, C, or two passes, the three regions A, B, It can be seen that it is effective to satisfy all of C.

以上の結果から、(a)雰囲気圧力を一定に制御するよりも、処理進行に伴い雰囲気圧力を制御することが必要であること、(b)処理進行に伴う雰囲気圧力制御パターンの変更には最適条件が存在すること、及び(c)この最適条件とは雰囲気圧力制御パターンb、c、dであることがわかる。   From the above results, (a) it is necessary to control the atmospheric pressure as the process proceeds rather than controlling the atmospheric pressure to be constant, and (b) optimal for changing the atmospheric pressure control pattern as the process proceeds. It can be seen that the conditions exist, and (c) the optimum conditions are the atmospheric pressure control patterns b, c, d.

そして、雰囲気圧力制御パターンb、c、d、すなわち、(6)〜(8)式ならびに(11)式のバランスを最適化し、高反応効率と損耗抑制とを同時に図ることができる条件は、図1、2のグラフにおける領域A、B及びCをいずれも通過するように加熱処理時の真空槽の雰囲気の圧力を制御することであり、これは(1)〜(3)式により表される。ただし、比(V/Q)は0.2以上0.5以下であり、溶鋼中Al濃度は0.01%以上0.1%以下である。   And the conditions under which the atmospheric pressure control patterns b, c, d, that is, the balance of the formulas (6) to (8) and (11) can be optimized and high reaction efficiency and wear suppression can be simultaneously achieved are shown in FIG. The pressure in the atmosphere of the vacuum chamber during the heat treatment is controlled so that all of the regions A, B and C in the graphs 1 and 2 pass, and this is expressed by the equations (1) to (3). . However, the ratio (V / Q) is 0.2 or more and 0.5 or less, and the Al concentration in the molten steel is 0.01% or more and 0.1% or less.

A1≦t/T≦A2:5.3kPa≦P≦13kPa・・・(1)
A3≦t/T≦A4:2.7kPa≦P≦4.7kPa・・・(2)
A5≦t/T≦A6:P≦1.3kPa・・・(3)
ただし、A1=0.2、A2=0.55、A3=0.6、A4=0.75、A5=0.8、A6=1.0であり、tは加熱開始(酸素上吹き開始)からの経過時間(min)を示し、Tは総加熱処理時間(総酸素上吹き時間)(min)であり、Pは真空槽内の圧力(kPa)である。
A1 ≦ t / T ≦ A2: 5.3 kPa ≦ P ≦ 13 kPa (1)
A3 ≦ t / T ≦ A4: 2.7 kPa ≦ P ≦ 4.7 kPa (2)
A5 ≦ t / T ≦ A6: P ≦ 1.3 kPa (3)
However, A1 = 0.2, A2 = 0.55, A3 = 0.6, A4 = 0.75, A5 = 0.8, A6 = 1.0, and t is heating start (oxygen top blowing start) , T is the total heat treatment time (total oxygen top blowing time) (min), and P is the pressure in the vacuum chamber (kPa).

さらに、図3のグラフにおける雰囲気圧力制御パターンb、c、dのバラツキにおける最大値を得た条件を整理した結果、図4のグラフを得た。(1)〜(3)式を満足すれば図3のグラフに示す効果が得られるが、さらにその効果を高めるには図4に示すグラフから、(4)及び(5)式を満足することが望ましい。   Furthermore, as a result of arranging the conditions for obtaining the maximum values in the variations of the atmospheric pressure control patterns b, c, d in the graph of FIG. 3, the graph of FIG. 4 was obtained. If the expressions (1) to (3) are satisfied, the effect shown in the graph of FIG. 3 can be obtained. To further enhance the effect, the expressions (4) and (5) are satisfied from the graph shown in FIG. Is desirable.

A3=0.74(V/Q)−0.12・・・(4)
A5=0.96(V/Q)−0.95・・・(5)
これは、先に述べたように、比(V/Q)も余剰酸素の生成に影響するため、比(V/Q)に応じて真空槽の雰囲気の圧力変化を厳密に制御することにより、さらに効果が高まることを示している。
A3 = 0.74 (V / Q) -0.12 (4)
A5 = 0.96 (V / Q) -0.95 (5)
As described above, since the ratio (V / Q) also affects the generation of surplus oxygen, by strictly controlling the pressure change in the atmosphere of the vacuum chamber according to the ratio (V / Q), It shows that the effect is further increased.

また、本実施の形態では、加熱処理以外の雰囲気圧力は特に限定を要さないが、加熱処理中の雰囲気圧力は(1)〜(3)式を満足することが必須であり、さらに、(4)式及び(5)式をともに満足することが望ましい。また、加熱処理前の雰囲気圧力が5.3kPa未満である場合、加熱処理前に5.3kPa以上の圧力に高めることが望ましい。   In the present embodiment, the atmospheric pressure other than the heat treatment is not particularly limited, but it is essential that the atmospheric pressure during the heat treatment satisfies the expressions (1) to (3). It is desirable to satisfy both 4) and 5). Moreover, when the atmospheric pressure before heat processing is less than 5.3 kPa, it is desirable to raise to the pressure of 5.3 kPa or more before heat processing.

真空槽の内部の雰囲気圧力の制御は、真空槽の排気装置の運転を制御する方法や、真空槽の内部あるいは排気系へ不活性ガス等の導入量を調整する方法等により行えばよい。
各雰囲気圧力への変更は、以下の手順で行うことが例示される。溶鋼の目標温度と現状温度測定値とから必要な温度上昇量を求める。現状温度は例えば消耗型熱電対等を用いて測定することができる。必要な温度上昇量を求めたら、これに応じて必要な総酸素量とAl量とが決定される。酸素量と温度上昇量との関係は、実績を基に求めておけばよい。設備の上吹き酸素流量が既知であるので、総酸素上吹き時間が計算される。これをTとする。次に、実処理時間tとTの比(t/T)を用いて(1)〜(3)式を満足するように雰囲気圧力を制御する。
Control of the atmospheric pressure inside the vacuum chamber may be performed by a method of controlling the operation of the exhaust device of the vacuum chamber, a method of adjusting the amount of inert gas introduced into the vacuum chamber or the exhaust system, and the like.
The change to each atmospheric pressure is exemplified by the following procedure. The required temperature rise is obtained from the target temperature of the molten steel and the current temperature measurement value. The current temperature can be measured using, for example, a consumable thermocouple. Once the required temperature rise is determined, the required total oxygen amount and Al amount are determined accordingly. The relationship between the oxygen amount and the temperature increase amount may be obtained based on actual results. Since the equipment top blowing oxygen flow rate is known, the total oxygen top blowing time is calculated. This is T. Next, the atmospheric pressure is controlled so as to satisfy the expressions (1) to (3) using the ratio (t / T) of the actual processing time t and T.

これにより、二本の浸漬管と真空槽とを備えるRH式真空脱ガス装置において酸素ガスを用いて溶鋼を加熱する際に、加熱効率を低下させることなく、真空槽の耐火物の寿命向上を図ることができるようになる。   Thereby, when heating molten steel using oxygen gas in an RH-type vacuum degassing apparatus having two dip tubes and a vacuum tank, the life of the refractory in the vacuum tank is improved without reducing the heating efficiency. It becomes possible to plan.

なお、上述した本発明に係る溶鋼の加熱方法は、Alと酸素ガスを用いて溶鋼を加熱する技術であるが、溶鋼がそれ以外の成分、例えばC、Si、Mn、Ti等を含有していても適用でき、またその濃度には依存しない。ただし、Cr含有量が10%超、Ni含有量が15%超であると、Cr、Ni等の優先酸化も進行するため、溶鋼のCr含有量は10%以下、Ni含有量は15%以下であることが望ましい。また、溶鋼の加熱処理前に、真空脱炭による極低炭素化処理を施された溶鋼に対しても適用可能である。   In addition, although the heating method of the molten steel which concerns on this invention mentioned above is a technique which heats molten steel using Al and oxygen gas, molten steel contains other components, for example, C, Si, Mn, Ti, etc. Can be applied, and does not depend on its concentration. However, if the Cr content exceeds 10% and the Ni content exceeds 15%, the preferential oxidation of Cr, Ni, etc. also proceeds, so the Cr content of the molten steel is 10% or less and the Ni content is 15% or less. It is desirable that Moreover, it is applicable also to the molten steel which performed the ultra-low carbonization process by vacuum decarburization before the heat processing of molten steel.

表1に示す溶鋼量及び組成を有する転炉出鋼後の溶鋼を、溶鋼300トンを処理するRH真空脱ガス装置、又は溶鋼90トンを処理するRH真空脱ガス装置へ移動し、いずれかのRH真空脱ガス装置によりはじめに溶鋼加熱処理を行い、引き続き真空脱ガス処理および成分調整を行い、番号1〜25の試料を得た。   Move the molten steel after the converter steel having the molten steel amount and composition shown in Table 1 to an RH vacuum degassing apparatus that processes 300 tons of molten steel, or an RH vacuum degassing apparatus that processes 90 tons of molten steel, First, molten steel heat treatment was performed by an RH vacuum degassing apparatus, and then vacuum degassing treatment and component adjustment were performed, and samples 1 to 25 were obtained.

Figure 2006283154
Figure 2006283154

表1に示した溶鋼成分ならびに加熱処理時間は、各処理条件での平均値を示した。表中、Aは本発明の(1)式におけるA1を示し、Bは本発明の(2)式におけるA3を示し、Cは本発明の(3)式におけるA5を示す。また、反応効率指数は平均値を、耐火物損耗指数は約50回処理後の値である。   The molten steel components and the heat treatment time shown in Table 1 showed average values under each treatment condition. In the table, A represents A1 in the formula (1) of the present invention, B represents A3 in the formula (2) of the present invention, and C represents A5 in the formula (3) of the present invention. The reaction efficiency index is an average value, and the refractory wear index is a value after about 50 treatments.

なお、表1における番号2、5、14、17の試料は、RH真空脱ガス装置で真空脱炭処理を行った後に、溶鋼にAlを添加してから溶鋼加熱処理を行ったものである。
番号1〜25の試料について反応効率指数及び耐火物損耗指数を求めた。結果を表1に併せて示す。
Note that samples Nos. 2, 5, 14, and 17 in Table 1 were obtained by performing vacuum decarburization with an RH vacuum degasser and then performing molten steel heat treatment after adding Al to the molten steel.
The reaction efficiency index and the refractory wear index were determined for the samples Nos. 1 to 25. The results are also shown in Table 1.

表1に示すように、本発明によれば、反応効率が高く、同時に耐火物損耗を抑制できることがわかる。一方、比較例では、耐火物損耗抑制効果がほとんど認められず、また、反応効率も高められないことがわかる。   As shown in Table 1, according to the present invention, it can be seen that the reaction efficiency is high and refractory wear can be suppressed at the same time. On the other hand, in the comparative example, it can be seen that the refractory wear suppression effect is hardly recognized and the reaction efficiency is not improved.

溶鋼加熱処理時間における雰囲気圧力制御パターンを示すグラフである。It is a graph which shows the atmospheric pressure control pattern in molten steel heat processing time. 溶鋼加熱処理時間における雰囲気圧力制御パターンを示すグラフである。It is a graph which shows the atmospheric pressure control pattern in molten steel heat processing time. 雰囲気圧力制御パターンにより得られた反応効率指数及び耐火物寿命指数を示すグラフである。It is a graph which shows the reaction efficiency index | exponent and refractory life index | exponent which were obtained by the atmospheric pressure control pattern. (V/Q)と、雰囲気圧力切り替えの無次元処理時間との関係を示すグラフである。It is a graph which shows the relationship between (V / Q) and the dimensionless processing time of atmospheric pressure switching.

Claims (1)

二本の浸漬管と真空槽とを備えるRH真空脱ガス装置にて、Al濃度が0.01質量%以上0.1質量%以下である溶鋼の表面に酸素ガスを吹き付け、溶鋼中のAlと吹き付けた酸素ガスとを反応させることにより溶鋼を加熱する方法であって、吹き付ける前記酸素ガスの流量V(Nm/min)と、前記溶鋼の環流量Q(ton/min)との比(V/Q)(Nm/ton)が0.2以上0.5以下であるとき、(1)〜(3)式にしたがって前記真空槽の内部の圧力を制御することを特徴とする溶鋼の加熱方法。
A1≦t/T≦A2:5.3kPa≦P≦13kPa ・・・・・・・(1)
A3≦t/T≦A4:2.7kPa≦P≦4.7kPa ・・・・・・・(2)
A5≦t/T≦A6:P≦1.3kPa ・・・・・・・(3)
ただし、A1=0.2、A2=0.55、A3=0.6、A4=0.75、A5=0.8、A6=1.0であり、
t:加熱開始(酸素上吹き開始)からの経過時間(min)
T:総加熱処理時間(総酸素上吹き時間)(min)
P:真空槽内の圧力(kPa)
である。
In an RH vacuum degassing apparatus including two dip tubes and a vacuum tank, oxygen gas is sprayed onto the surface of the molten steel having an Al concentration of 0.01% by mass or more and 0.1% by mass or less. A method of heating molten steel by reacting with blown oxygen gas, the ratio of the flow rate V (Nm 3 / min) of the blown oxygen gas to the ring flow rate Q (ton / min) of the molten steel (V / Q) When the (Nm 3 / ton) is 0.2 or more and 0.5 or less, the heating of the molten steel is characterized in that the pressure inside the vacuum chamber is controlled according to the equations (1) to (3). Method.
A1 ≦ t / T ≦ A2: 5.3 kPa ≦ P ≦ 13 kPa (1)
A3 ≦ t / T ≦ A4: 2.7 kPa ≦ P ≦ 4.7 kPa (2)
A5 ≦ t / T ≦ A6: P ≦ 1.3 kPa (3)
However, A1 = 0.2, A2 = 0.55, A3 = 0.6, A4 = 0.75, A5 = 0.8, A6 = 1.0,
t: Elapsed time from start of heating (start of oxygen top blowing) (min)
T: Total heat treatment time (total oxygen blowing time) (min)
P: Pressure in the vacuum chamber (kPa)
It is.
JP2005106410A 2005-04-01 2005-04-01 Heating method of molten steel Active JP4277819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106410A JP4277819B2 (en) 2005-04-01 2005-04-01 Heating method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106410A JP4277819B2 (en) 2005-04-01 2005-04-01 Heating method of molten steel

Publications (2)

Publication Number Publication Date
JP2006283154A true JP2006283154A (en) 2006-10-19
JP4277819B2 JP4277819B2 (en) 2009-06-10

Family

ID=37405360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106410A Active JP4277819B2 (en) 2005-04-01 2005-04-01 Heating method of molten steel

Country Status (1)

Country Link
JP (1) JP4277819B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019221A (en) * 2007-07-10 2009-01-29 Sumitomo Metal Ind Ltd STEEL CONTAINING LITTLE Al AND HAVING HIGH CLEANLINESS, AND MANUFACTURING METHOD THEREFOR

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019221A (en) * 2007-07-10 2009-01-29 Sumitomo Metal Ind Ltd STEEL CONTAINING LITTLE Al AND HAVING HIGH CLEANLINESS, AND MANUFACTURING METHOD THEREFOR

Also Published As

Publication number Publication date
JP4277819B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
RU2433189C2 (en) Method for obtaining steel for steel pipes with excellent resistance in acid medium
JP2011516720A (en) Method for producing ultra-low carbon ferritic stainless steel
JP4487812B2 (en) Method for producing low phosphorus hot metal
JP4277819B2 (en) Heating method of molten steel
JP5200380B2 (en) Desulfurization method for molten steel
JP2010116610A (en) Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat
JPH10130714A (en) Production of steel for wire rod excellent in wire drawability and cleanliness
JP6766673B2 (en) Hot compresses
JP5273125B2 (en) Molten metal vacuum refining nozzle
JP2000119732A (en) Melting method for high cleanliness extra-low carbon steel
JP4085898B2 (en) Melting method of low carbon high manganese steel
JP5131827B2 (en) Method for heating molten steel and method for producing rolled steel
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
JP7043915B2 (en) Method of raising the temperature of molten steel
WO2022259807A1 (en) Molten steel secondary refining method and steel production method
JPH0633133A (en) Production of ultralow carbon steel
JP2009019221A (en) STEEL CONTAINING LITTLE Al AND HAVING HIGH CLEANLINESS, AND MANUFACTURING METHOD THEREFOR
JPH0941028A (en) Production of high purity ultra-low carbon steel
JP3127733B2 (en) Manufacturing method of ultra clean ultra low carbon steel
JP3902446B2 (en) Converter blowing method
JPH09111331A (en) Ladle reining apparatus
JP2563721B2 (en) Decarburization refining method for molten steel containing chromium
JP2008255421A (en) Molten steel heating method
JP6331851B2 (en) Heating method of molten steel in ladle
JP4020125B2 (en) Method of melting high cleanliness steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4277819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350