JP2009019221A - STEEL CONTAINING LITTLE Al AND HAVING HIGH CLEANLINESS, AND MANUFACTURING METHOD THEREFOR - Google Patents

STEEL CONTAINING LITTLE Al AND HAVING HIGH CLEANLINESS, AND MANUFACTURING METHOD THEREFOR Download PDF

Info

Publication number
JP2009019221A
JP2009019221A JP2007180774A JP2007180774A JP2009019221A JP 2009019221 A JP2009019221 A JP 2009019221A JP 2007180774 A JP2007180774 A JP 2007180774A JP 2007180774 A JP2007180774 A JP 2007180774A JP 2009019221 A JP2009019221 A JP 2009019221A
Authority
JP
Japan
Prior art keywords
steel
molten steel
content
less
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007180774A
Other languages
Japanese (ja)
Other versions
JP5050692B2 (en
Inventor
Mitsuhiro Numata
光裕 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007180774A priority Critical patent/JP5050692B2/en
Publication of JP2009019221A publication Critical patent/JP2009019221A/en
Application granted granted Critical
Publication of JP5050692B2 publication Critical patent/JP5050692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel containing little Al, which has high cleanliness in spite of containing Al in a small amount of 0.004 to 0.01% for securing high weldability and superior toughness. <P>SOLUTION: The steel containing little Al and having the high cleanliness has a chemical composition comprising 0.0015 to 0.8% C, 0.01 to 0.8% Si, 0.1 to 2% Mn, 0.01 to 11% Ni and Cr in total, 0.004 to 0.01% Al, 0.0025% or less O, less than 0.0035% B, less than 0.1% Nb, less than 0.015% P, less than 0.0035% S, and the balance Fe with impurities; and contains inclusions which comprise, by mass%, 1 to 12% SiO<SB>2</SB>, and the balance one or more oxides of Al oxide and an Mn oxide. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高い清浄性を有する低Al含有鋼およびその製造方法に関し、詳しくは、清浄度を改善して清浄性を高めた低Al含有鋼とその鋼を安定して製造することができる溶鋼の精錬方法に関する。   The present invention relates to a low Al content steel having high cleanliness and a method for producing the same, and more particularly, a low Al content steel having improved cleanliness and improved cleanliness, and a molten steel capable of stably producing the steel. Relates to the refining method.

溶鉄、特に溶鋼中のAlは脱酸元素として広く用いられ、製品としての鋼(以下、「鋼材」ともいう。)の低酸素化に寄与している。しかしながら、Alで十分な脱酸を行うには、溶鋼中のAl含有量(以下、溶鋼中のAl含有量を「Al濃度」ということがある。同様に、溶鋼中の元素Xの含有量を「X濃度」ということがある。)を0.02〜0.06%の範囲としてAlを用いることが一般的である。これは、Alによる脱酸を安定化させるためである。   Molten iron, particularly Al in molten steel, is widely used as a deoxidizing element, and contributes to the reduction of oxygen in steel as a product (hereinafter also referred to as “steel material”). However, in order to perform sufficient deoxidation with Al, the Al content in the molten steel (hereinafter, the Al content in the molten steel is sometimes referred to as “Al concentration.” Similarly, the content of the element X in the molten steel is It is common to use Al in a range of 0.02 to 0.06%. This is to stabilize deoxidation by Al.

さらに、Alは溶鋼の加熱処理にも広く用いられている。すなわち、溶鋼にAlを添加し、さらに溶鋼に酸素を添加することによって溶鋼内でAlを酸化させ、この酸化熱を利用して溶鋼温度を上昇させるのである。上記の技術はAlの強い脱酸力を利用したものである。   Furthermore, Al is widely used for heat treatment of molten steel. That is, Al is added to the molten steel, and oxygen is further added to the molten steel to oxidize Al in the molten steel, and the temperature of the molten steel is raised using this oxidation heat. The above technique utilizes the strong deoxidizing power of Al.

以上の様に、Alは脱酸や溶鋼加熱に用いられるが、前述したように、Al濃度は0.02〜0.06%の範囲とするのが一般的であった。   As described above, Al is used for deoxidation and heating of molten steel, but as described above, the Al concentration is generally in the range of 0.02 to 0.06%.

そして、上記のAl濃度制御および溶鋼加熱処理は、二本の浸漬管を有し、溶鋼を環流させるRH式真空脱ガス装置(以下、「RH」という。)で行われることが多く、例えば特許文献1および特許文献2にその技術が開示されている。   The Al concentration control and the molten steel heat treatment are often performed by an RH vacuum degassing apparatus (hereinafter referred to as “RH”) having two dip tubes and circulating the molten steel. The technique is disclosed in Document 1 and Patent Document 2.

しかしながら、全ての鋼種において、上記の一般的な0.02〜0.06%というAl濃度での処理を行うことにより、鋼材中に高い量のAlを含むことが許容されるというものではない。   However, not all steel types are allowed to contain a high amount of Al in the steel material by performing the treatment at the above-described general Al concentration of 0.02 to 0.06%.

例えば、溶接性や靱性の向上、さらには、介在物が起点となる欠陥の低減を目的とする鋼材については、Alの含有量が0.004〜0.01%と低いことが要求される場合が多く、Alの含有量が低いことに加えて、高い清浄性も同時に要求されることも多い。   For example, for steel materials intended to improve weldability and toughness, and further to reduce defects starting from inclusions, when the Al content is required to be as low as 0.004 to 0.01% In addition to the low Al content, high cleanliness is often required at the same time.

上記の0.004〜0.01%という低い量のAlを含有する鋼材を製造する場合にも、RHにおいて溶鋼に酸素を添加する方法が用いられるが、Al濃度、すなわち、溶鋼中のAl含有量が低下するために、Alによる脱酸作用が不安定になる。   Even in the case of producing a steel material containing a low amount of Al of 0.004 to 0.01%, a method of adding oxygen to molten steel in RH is used, but the Al concentration, that is, Al content in the molten steel is used. Since the amount is reduced, the deoxidation action by Al becomes unstable.

したがって、前記のような低Al含有鋼の製造に際しては、一般に、Alによる脱酸作用の不安定を解消するために、通常のいわゆる「Al脱酸鋼」よりもRHでの処理時間を長くし、かつ酸素ガスの上吹き量を増加させることが行われている。   Therefore, in the production of the low Al content steel as described above, in general, in order to eliminate the instability of deoxidation by Al, the treatment time in RH is longer than that of the so-called “Al deoxidized steel”. In addition, the amount of oxygen gas blown up is increased.

特開2002−30330号公報JP 2002-30330 A 特開平9249910号公報Japanese Patent Laid-Open No. 9249910

前記特許文献1や特許文献2で提案された技術を適用しても、0.004〜0.01%という低い量のAlを含有する鋼材を製造する場合には、RHでの処理時間を長くし、かつ酸素ガスの上吹き量を増加させることが必要となって、製造コストの上昇を避けられないことが多かった。   Even when the techniques proposed in Patent Document 1 and Patent Document 2 are applied, when a steel material containing a low amount of Al of 0.004 to 0.01% is manufactured, the processing time in RH is lengthened. However, it has become necessary to increase the amount of oxygen gas blown up, and an increase in manufacturing cost is often unavoidable.

しかも、低Al含有鋼の製造に際しては、安定した脱酸処理を行うために、RHにおける溶鋼の環流時間を延長することになるが、そうしたことを行っても製品としての鋼の清浄度、つまり、鋼材の清浄度にバラツキが生じて、清浄性が安定しないものであった。   Moreover, in the production of low Al content steel, in order to perform a stable deoxidation treatment, the circulation time of the molten steel in RH will be extended, but even if this is done, the cleanliness of the steel as a product, that is, The cleanliness of the steel material varied, and the cleanliness was not stable.

すなわち、同一のAl濃度の場合には、RHにおける環流時間を一定時間確保すれば、脱酸が安定して、介在物の浮上除去が促進されるため、清浄性は安定すると考えられるが、こうした処置を施しても、低Al含有鋼の場合には、良好な清浄性を安定して確保することができず、このため、高い溶接性や優れた靱性を有する0.004〜0.01%というAl含有量の低い鋼材を安定かつ安価に供給することが困難であった。   That is, in the case of the same Al concentration, if the reflux time in RH is ensured for a certain time, deoxidation is stabilized and the floating removal of inclusions is promoted, so the cleanliness is thought to be stable. Even if the treatment is performed, in the case of a low Al content steel, it is not possible to stably ensure good cleanliness, and therefore 0.004 to 0.01% having high weldability and excellent toughness. It has been difficult to stably and inexpensively supply a steel material having a low Al content.

そこで、本発明の目的は、高い溶接性や優れた靱性の確保のために、Alの含有量が0.004〜0.01%という低い値であるにも拘わらず高い清浄性を有する低Al含有鋼とその鋼を安定して製造することができる溶鋼の精錬方法を提供することである。   Accordingly, an object of the present invention is to achieve high weldability and excellent toughness with a low Al content having high cleanliness despite the low Al content of 0.004 to 0.01%. It is to provide a method for refining molten steel that can stably produce the contained steel and the steel.

一般に、清浄度は脱酸平衡で決定される溶鋼中の酸素含有量(酸素濃度)と脱酸反応で生じた介在物の溶鋼中残留の総和で決まる。したがって、溶鋼中の脱酸元素の含有量、具体的にはAl濃度が一定で、介在物除去を支配するRHでの処理時間が一定であれば、清浄度にバラツキが生じて清浄性が不安定になることは原理的には生じるものではない。   In general, cleanliness is determined by the sum of the oxygen content (oxygen concentration) in the molten steel determined by deoxidation equilibrium and the residual residues in the molten steel resulting from the deoxidation reaction. Therefore, if the content of deoxidizing element in the molten steel, specifically, the Al concentration is constant and the treatment time in RH that governs inclusion removal is constant, the cleanliness varies and the cleanliness is not good. Stabilization does not occur in principle.

しかしながら、現実には、Al濃度およびRHでの処理時間が一定であっても、清浄度にバラツキが生じて清浄性に不安定さが認められることから、工業規模の大型反応容器内では、Al濃度を低減すると何らかの原因により、脱酸平衡が不安定になっていると考えられる。   However, in reality, even if the treatment time with Al concentration and RH is constant, the cleanliness varies, and instability is observed in cleanliness. When the concentration is reduced, it is considered that the deoxidation equilibrium is unstable due to some cause.

そこで、本発明者らは、低Al濃度域での脱酸反応と酸素濃度変化について検討し、その結果種々の知見を得て本発明を完成させた。   Therefore, the present inventors have studied deoxidation reaction and oxygen concentration change in a low Al concentration region, and as a result, obtained various findings and completed the present invention.

本発明の要旨は、下記(1)および(2)に示す高い清浄性を有する低Al含有鋼ならびに(3)〜(7)に示す高い清浄性を有する低Al含有鋼の製造方法にある。   The gist of the present invention resides in the low Al-containing steel having high cleanliness shown in the following (1) and (2) and the low Al-containing steel having high cleanliness shown in (3) to (7).

(1)質量%で、C:0.0015〜0.8%、Si:0.01〜0.8%、Mn:0.1〜2%、NiとCrの合計:0.01〜11%、Al:0.004〜0.01%、O:0.0025%以下、B:0.0035%未満、Nb:0.1%未満、P:0.015%未満、S:0.0035%未満を含有し、残部はFeおよび不純物からなる化学組成で、鋼中における介在物が、質量%で、SiO2を1〜12%含有し、残部はAl酸化物およびMn酸化物のうちの1種以上からなるものであることを特徴とする高い清浄性を有する低Al含有鋼。 (1) By mass%, C: 0.0015 to 0.8%, Si: 0.01 to 0.8%, Mn: 0.1 to 2%, the total of Ni and Cr: 0.01 to 11% , Al: 0.004 to 0.01%, O: 0.0025% or less, B: less than 0.0035%, Nb: less than 0.1%, P: less than 0.015%, S: 0.0035% The balance is a chemical composition composed of Fe and impurities, the inclusions in the steel contain 1 to 12% of SiO 2 by mass%, and the balance is one of Al oxide and Mn oxide. A low Al-containing steel having high cleanliness, characterized by comprising more than seeds.

(2)質量%で、C:0.0015〜0.8%、Si:0.01〜0.8%、Mn:0.1〜2%、NiとCrの合計:0.01〜11%、Al:0.004〜0.01%、O:0.0025%以下、B:0.0035%未満、Nb:0.1%未満、P:0.015%未満、S:0.0035%未満、Ca:0.0028%以下を含有し、残部はFeおよび不純物からなる化学組成で、鋼中における介在物が、質量%で、SiO2を1〜12%含有し、残部はCa−Al酸化物およびCa−Mn酸化物のうちの1種以上からなるものであることを特徴とする高い清浄性を有する低Al含有鋼。 (2) By mass%, C: 0.0015 to 0.8%, Si: 0.01 to 0.8%, Mn: 0.1 to 2%, the total of Ni and Cr: 0.01 to 11% , Al: 0.004 to 0.01%, O: 0.0025% or less, B: less than 0.0035%, Nb: less than 0.1%, P: less than 0.015%, S: 0.0035% less, Ca: containing 0.0028% or less, the balance in the chemical composition of Fe and impurities, inclusions during steel, by mass%, containing SiO 2 1 to 12%, the balance Ca-Al A low Al-containing steel having high cleanliness, characterized by comprising at least one of oxide and Ca-Mn oxide.

(3)二本の浸漬管を有し、溶鋼を環流させるRH式真空脱ガス装置にて、溶鋼にAlを添加し、引き続き酸素ガスを上吹きして溶鋼中のAl含有量を0.004〜0.01%とする低Al含有鋼の製造方法であって、酸素ガス上吹き処理終了の1〜2min前に、溶鋼1トン当たり0.005〜0.02kgのAlを溶鋼に添加することを特徴とする高い清浄性を有する低Al含有鋼の製造方法。   (3) In an RH type vacuum degassing apparatus having two dip tubes and circulating the molten steel, Al is added to the molten steel, and subsequently oxygen gas is blown up to reduce the Al content in the molten steel to 0.004. A method for producing a low Al-containing steel with a content of ~ 0.01%, wherein 0.005 to 0.02 kg of Al per ton of molten steel is added to the molten steel 1 to 2 minutes before the end of the oxygen gas top blowing process. A method for producing a low Al content steel having high cleanliness characterized by the following.

(4)酸素ガス上吹き処理終了の1〜2min前に溶鋼1トン当たりに添加するAl量が、下記(1)式を満足するものであることを特徴とする上記(3)に記載の高い清浄性を有する低Al含有鋼の製造方法。
−0.833[Al]+0.022≧M≧−0.833[Al]+0.015・・・・・(1)。
なお、(1)式においてMおよび[Al]は、それぞれ、
M:酸素ガス上吹き処理終了の1〜2min前に溶鋼1トン当たりに添加するAl量(kg)、
[Al]:質量%で、0.004〜0.01%の範囲にある、酸素ガス上吹き処理終了後の溶鋼中のAl含有量の目標値、
を表す。
(4) The high amount as described in (3) above, wherein the amount of Al added per ton of molten steel satisfies the following formula (1) 1 to 2 minutes before the end of the oxygen gas top blowing treatment A method for producing a low Al content steel having cleanliness.
−0.833 [Al] + 0.022 ≧ M ≧ −0.833 [Al] +0.015 (1).
In the formula (1), M and [Al] are respectively
M: Al amount (kg) to be added per ton of molten steel 1 to 2 minutes before the end of the oxygen gas top blowing process,
[Al]: The target value of the Al content in the molten steel after completion of the oxygen gas top blowing treatment, in the range of 0.004 to 0.01% by mass%,
Represents.

(5)酸素ガス上吹き処理終了後、溶鋼1トン当たりCa純分で0.05〜0.17kgのCaまたはCa合金を溶鋼に添加することを特徴とする上記(3)または(4)に記載の高い清浄性を有する低Al含有鋼の製造方法。   (5) In the above (3) or (4), 0.05 to 0.17 kg of Ca or Ca alloy is added to the molten steel in an amount of pure Ca per ton of molten steel after completion of the oxygen gas top blowing treatment. A method for producing a low Al-containing steel having high cleanliness as described.

(6)上記(1)または(2)に記載された高い清浄性を有する低Al含有鋼の製造方法であって、AlおよびOを除く化学組成が請求項1に記載されたものである溶鋼を、RH式真空脱ガス装置にて処理することを特徴とする上記(3)または(4)に記載の高い清浄性を有する低Al含有鋼の製造方法。   (6) A method for producing a low Al-containing steel having high cleanliness described in (1) or (2) above, wherein the chemical composition excluding Al and O is as described in claim 1 Is processed with a RH type vacuum degassing apparatus, The manufacturing method of the low Al content steel which has the high cleanliness as described in said (3) or (4) characterized by the above-mentioned.

(7)上記(2)に記載された高い清浄性を有する低Al含有鋼の製造方法であって、Al、OおよびCaを除く化学組成が請求項2に記載されたものである溶鋼を、RH式真空脱ガス装置にて処理することを特徴とする上記(5)に記載の高い清浄性を有する低Al含有鋼の製造方法。   (7) A method for producing a low Al-containing steel having high cleanliness described in (2) above, wherein the chemical composition excluding Al, O and Ca is the one described in claim 2, The method for producing a low Al-containing steel having high cleanliness as described in (5) above, wherein the treatment is performed by an RH type vacuum degassing apparatus.

以下、上記(1)および(2)に示す高い清浄性を有する低Al含有鋼に係る発明ならびに(3)〜(7)に示す高い清浄性を有する低Al含有鋼の製造方法に係る発明を、それぞれ、「本発明(1)」〜「本発明(7)」という。また、総称して「本発明」ということがある。   Hereinafter, the invention related to the low Al-containing steel having high cleanliness shown in the above (1) and (2) and the invention related to the method for producing the low Al-containing steel having high cleanliness shown in (3) to (7). These are referred to as “present invention (1)” to “present invention (7)”, respectively. Also, it may be collectively referred to as “the present invention”.

本発明の低Al含有鋼は、Alの含有量が0.004〜0.01%という低い値であるにも拘わらず高い清浄性を有する。このため、溶接性および靱性に優れる。なお、本発明の低Al含有鋼のうちでもCaを含むものは、高い清浄性を維持したままで介在物の球状化がなされているので、より一層良好な特性を有する。これら本発明の低Al含有鋼は、本発明の方法によって安価に製造することができる。   The low Al-containing steel of the present invention has high cleanliness despite the low Al content of 0.004 to 0.01%. For this reason, it is excellent in weldability and toughness. Among the low Al-containing steels of the present invention, those containing Ca have much better characteristics because inclusions are spheroidized while maintaining high cleanliness. These low Al-containing steels of the present invention can be produced at low cost by the method of the present invention.

以下、本発明の各要件について詳しく説明する。   Hereinafter, each requirement of the present invention will be described in detail.

(A)鋼の化学組成
先ず、本発明の高い清浄性を有する低Al含有鋼における化学組成とその限定理由について述べる。なお、以下の説明において、各元素の含有量の「%」表示は「質量%」を意味する。
(A) Chemical composition of steel First, the chemical composition in the low Al content steel which has the high cleanliness of this invention, and its reason for limitation are described. In the following description, “%” display of the content of each element means “mass%”.

C:0.0015〜0.8%
Cは、弱い脱酸作用を有する元素である。その含有量が0.0015%未満では、脱酸作用が十分でなく、予備脱酸が不安定となる。一方、Cの含有量が高くなると脱酸力が強くなり過ぎ、特に、0.8%を超えると、RHなどの減圧反応装置ではその影響が無視できなくなって介在物制御が不安定となる。したがって、Cの含有量を0.0015〜0.8%とした。なお、Cの含有量は0.01〜0.35%とすることが好ましい。
C: 0.0015 to 0.8%
C is an element having a weak deoxidizing action. If the content is less than 0.0015%, the deoxidation action is not sufficient, and the preliminary deoxidation becomes unstable. On the other hand, when the content of C increases, the deoxidizing power becomes too strong. In particular, when it exceeds 0.8%, the influence cannot be ignored in a reduced pressure reaction apparatus such as RH, and inclusion control becomes unstable. Therefore, the content of C is set to 0.0015 to 0.8%. In addition, it is preferable that content of C shall be 0.01 to 0.35%.

Si:0.01〜0.8%
Siは、脱酸作用を有する元素である。しかしながら、本発明のような低Al含有鋼の場合には、Siの含有量が0.01%未満では十分な脱酸効果が得られず、逆に、Siの含有量が0.8%を超えると、その影響が大きくなってSiO2の含有量の高い介在物となる。したがって、Siの含有量を0.01〜0.8%とした。なお、Siの含有量は0.05 〜 0.35%とすることが好ましい。
Si: 0.01 to 0.8%
Si is an element having a deoxidizing action. However, in the case of the low Al content steel as in the present invention, if the Si content is less than 0.01%, a sufficient deoxidation effect cannot be obtained, and conversely, the Si content is less than 0.8%. exceeds the, the high inclusions of the SiO 2 content in the effect increases. Therefore, the Si content is set to 0.01 to 0.8%. Note that the Si content is preferably 0.05 to 0.35%.

Mn:0.1〜2%
Mnは、強度向上作用および脱酸作用を有する。しかしながら、Mnの含有量が0.1%未満では、鋼に所望の強度を具備させることができない。一方、Mnの脱酸力はSiよりも弱いものの、Mnの含有量が多くなり、特に、2%を超えると、脱酸反応に及ぼす影響が大きくなるので介在物中に多量のMnOが生成し、清浄度が高くなって清浄性が低下する。したがって、Mnの含有量を0.1〜2%とした。なお、Mnの含有量は0.3〜1.5%とすることが好ましい。
Mn: 0.1 to 2%
Mn has a strength improving action and a deoxidizing action. However, if the Mn content is less than 0.1%, the steel cannot have the desired strength. On the other hand, although the deoxidizing power of Mn is weaker than that of Si, the content of Mn increases, and in particular, if it exceeds 2%, the influence on the deoxidation reaction increases, so that a large amount of MnO is generated in the inclusions. As a result, the degree of cleanliness increases and the cleanliness decreases. Therefore, the Mn content is set to 0.1 to 2%. In addition, it is preferable that content of Mn shall be 0.3-1.5%.

NiとCrの合計:0.01〜11%
NiおよびCrは、鋼の機械的性質や耐食性を高める作用を有する。しかしながら、NiとCrの含有量の合計で0.01%未満の場合には効果が得られない。なお、NiおよびCrは、脱酸作用に影響しないものの酸素活量に影響を及ぼすので、両者の含有量の合計が多くなり、特に、11%を超えると、溶鋼中の酸素の含有量である酸素濃度が増加するため清浄性が低下する。したがって、NiとCrの含有量の合計を0.01〜11%とした。
Total of Ni and Cr: 0.01-11%
Ni and Cr have the effect of enhancing the mechanical properties and corrosion resistance of steel. However, when the total content of Ni and Cr is less than 0.01%, no effect is obtained. In addition, since Ni and Cr do not affect the deoxidation effect, but affect the oxygen activity, the total content of both increases, and in particular, when it exceeds 11%, it is the oxygen content in the molten steel. As the oxygen concentration increases, cleanliness decreases. Therefore, the total content of Ni and Cr is set to 0.01 to 11%.

Al:0.004〜0.01%
Alは、脱酸作用を有する。しかしながら、Alの含有量が0.004%未満では、その効果が得られない。一方、Alの含有量が高くなり、特に、0.01%を超えると、溶接性や靱性の低下、さらには、介在物が起点となる欠陥の発生を招くことがある。したがって、Alの含有量を0.004〜0.01%とした。なお、Alの含有量は 0.006〜0.009%とすることが好ましい。
Al: 0.004 to 0.01%
Al has a deoxidizing action. However, if the Al content is less than 0.004%, the effect cannot be obtained. On the other hand, when the content of Al increases, particularly when it exceeds 0.01%, weldability and toughness may be deteriorated, and defects starting from inclusions may be caused. Therefore, the Al content is set to 0.004 to 0.01%. The Al content is preferably 0.006 to 0.009%.

O:0.0025%以下
O(酸素)の含有量が0.0025%を超えると介在物の個数が多くなり、清浄度が高くなって清浄性の低下をきたす。したがって、Oの含有量を0.0025%以下とした。なお、Oの含有量は0.0018%以下とすることが好ましい。
O: 0.0025% or less When the content of O (oxygen) exceeds 0.0025%, the number of inclusions increases, the cleanliness increases, and the cleanliness decreases. Therefore, the content of O is set to 0.0025% or less. The O content is preferably 0.0018% or less.

B:0.0035%未満
Bは、比較的強い脱酸力を有する元素であり、その含有量が高くなって、特に、0.0035%以上になると、介在物形態が変化して介在物中のSiO2の含有量が過度に低下する場合がある。したがって、Bの含有量を0.0035%未満とした。なお、Bの含有量は0.0015%以下とすることが好ましい。
B: Less than 0.0035% B is an element having a relatively strong deoxidizing power, and its content becomes high. In particular, when the content is 0.0035% or more, the inclusion form changes and the inclusion is contained in the inclusion. In some cases, the SiO 2 content may be excessively reduced. Therefore, the B content is less than 0.0035%. The B content is preferably 0.0015% or less.

Nb:0.1%未満
Nbは、凝固過程で炭窒化物を形成する元素である。Nbの含有量が高くなって、特に、0.1%以上になると、前記の介在物の個数が多くなり、清浄度が高くなって清浄性の低下をきたすとともに、機械的性質の低下も招く場合がある。したがって、Nbの含有量を0.1%未満とした。なお、Nbの含有量は0.05%以下とすることが好ましい。
Nb: less than 0.1% Nb is an element that forms carbonitrides during the solidification process. When the content of Nb is increased, especially when the content is 0.1% or more, the number of the inclusions is increased, the cleanliness is increased and the cleanliness is lowered, and the mechanical properties are also lowered. There is a case. Therefore, the Nb content is less than 0.1%. The Nb content is preferably 0.05% or less.

P:0.015%未満
Pは、中心偏析しやすい元素である。その含有量が高くなり、特に、0.015%以上になると、中心偏析が著しくなって、機械的性質、なかでも靱性の大きな低下を招く。したがって、Pの含有量を0.015%未満とした。なお、Pの含有量は0.01%以下とすることが好ましい。
P: Less than 0.015% P is an element that easily segregates in the center. When the content becomes high, particularly 0.015% or more, the center segregation becomes remarkable, and mechanical properties, particularly toughness, are greatly reduced. Therefore, the P content is less than 0.015%. In addition, it is preferable that content of P shall be 0.01% or less.

S:0.0035%未満
Sは、凝固過程で硫化物を形成する元素である。Sの含有量が高くなって、特に、0.0035%以上になると、前記の介在物の個数が多くなり、清浄度が高くなって清浄性の低下をきたすとともに、耐食性や機械的性質の低下を招く場合がある。したがって、Sの含有量を0.0035%未満とした。なお、Sの含有量は0.0015%以下とすることが好ましい。
S: Less than 0.0035% S is an element that forms a sulfide during the solidification process. When the S content is high, especially 0.0035% or more, the number of the inclusions increases, the cleanliness increases and the cleanliness decreases, and the corrosion resistance and mechanical properties decrease. May be invited. Therefore, the S content is less than 0.0035%. The S content is preferably 0.0015% or less.

上記の理由から、本発明(1)に係る高い清浄性を有する低Al含有鋼は、C、Si、Mn、NiとCr、Al、O、B、Nb、P、Sを上述した範囲で含有し、残部はFeおよび不純物からなる化学組成であることと規定した。   For the above reasons, the low Al-containing steel having high cleanliness according to the present invention (1) contains C, Si, Mn, Ni and Cr, Al, O, B, Nb, P, S in the above-described range. The balance is defined as a chemical composition composed of Fe and impurities.

本発明に係る高い清浄性を有する低Al含有鋼には、必要に応じて、上記本発明(1)におけるFeの一部に代えて、Ca:0.0028%以下を含有するものとすることができる。すなわち、介在物を球状化してより優れた特性を得るために、前記の量のCaを、本発明(1)の高い清浄性を有する低Al含有鋼におけるFeの一部に代えて、含有してもよい。以下、このことに関して説明する。   The low Al-containing steel having high cleanliness according to the present invention shall contain Ca: 0.0028% or less in place of part of Fe in the present invention (1) as necessary. Can do. That is, in order to obtain inclusions with better characteristics by spheroidizing inclusions, the above amount of Ca is contained instead of a part of Fe in the low Al-containing steel having high cleanliness of the present invention (1). May be. Hereinafter, this will be described.

Ca:0.0028%以下
Caは、介在物を球状化する作用を有するので、この目的のために含有させてもよい。しかしながら、Caの含有量が多くなり、特に、0.0028%を超えると、CaによるSiO2の還元が進行して介在物中におけるSiO2の含有量が低下し、後述するように、清浄度が高くなって清浄性の低下を招く。したがって、添加する場合のCaの含有量を0.0028%以下とした。
Ca: 0.0028% or less Ca has an action of spheroidizing inclusions and may be contained for this purpose. However, when the content of Ca increases, especially when it exceeds 0.0028%, the reduction of SiO 2 by Ca proceeds and the content of SiO 2 in the inclusions decreases. Becomes higher, resulting in a decrease in cleanliness. Therefore, when Ca is added, the content of Ca is set to 0.0028% or less.

前記したCaの効果を確実に得るためには、Caの含有量を0.0004%以上とすることが好ましい。このため、添加する場合のより望ましいCa含有量は0.0004〜0.0028%である。   In order to reliably obtain the effect of Ca described above, the Ca content is preferably 0.0004% or more. For this reason, the more desirable Ca content in the case of adding is 0.0004 to 0.0028%.

上述の理由から、本発明(2)に係る高い清浄性を有する低Al含有鋼は、C、Si、Mn、NiとCr、Al、O、B、Nb、P、S、Caを既に述べた範囲で含有し、残部はFeおよび不純物からなる化学組成であることと規定した。   For the reasons described above, the low Al-containing steel having high cleanliness according to the present invention (2) has already described C, Si, Mn, Ni and Cr, Al, O, B, Nb, P, S, and Ca. It was specified that the chemical composition was comprised of Fe and impurities.

なお、Ti、V、Mo、WおよびCuはその含有量が、それぞれ、0.025%未満、0.1%未満、0.3%未満、2%未満および0.5%未満であれば、介在物組成に影響を及ぼすことがない。したがって、Ti:0.025%未満、V:0.1%未満、Mo:0.3%未満、W:2%未満およびCu:0.5%未満のうちの1種以上の元素を、本発明(1)および本発明(2)の高い清浄性を有する低Al含有鋼の機械的性質や耐食性など各種特性を向上させるために含有させてもよい。   If the contents of Ti, V, Mo, W and Cu are less than 0.025%, less than 0.1%, less than 0.3%, less than 2% and less than 0.5%, respectively, The inclusion composition is not affected. Therefore, one or more elements selected from Ti: less than 0.025%, V: less than 0.1%, Mo: less than 0.3%, W: less than 2% and Cu: less than 0.5% You may make it contain in order to improve various characteristics, such as a mechanical property and corrosion resistance of the low Al content steel which has the high cleanliness of invention (1) and this invention (2).

(B)鋼中の介在物
本発明(1)の高い清浄性を有する低Al含有鋼においては、鋼中における介在物が、質量%で、SiO2を1〜12%含有し、残部はAl酸化物およびMn酸化物のうちの1種以上からなるものでなければならない。
(B) Inclusions in Steel In the low Al-containing steel having high cleanliness of the present invention (1), the inclusions in the steel are 1% by mass and contain 1 to 12% of SiO 2 with the balance being Al. It must consist of one or more of oxides and Mn oxides.

また、本発明(2)の高い清浄性を有する低Al含有鋼では、鋼中における介在物が、質量%で、SiO2を1〜12%含有し、残部はCa−Al酸化物およびCa−Mn酸化物のうちの1種以上からなるものでなければならない。 Further, the low Al-containing steel having high cleanliness of the present invention (2), inclusions in the steel, by mass%, the SiO 2 containing 1-12%, the remainder Ca-Al oxide and Ca- It must consist of one or more of the Mn oxides.

上記の規定は、本発明者らが行った調査結果に基づくものであり、以下、本発明(1)の場合を例に挙げて、詳しく説明する。   The above rules are based on the results of investigation conducted by the present inventors, and will be described in detail below by taking the case of the present invention (1) as an example.

本発明者らは、先ず、Alの含有量を0.004〜0.01%の間で種々変化させて、前記(A)項で述べた本発明(1)の化学組成を有する各種の鋼を150kgるつぼ内で溶解した。そして、凝固後の鋼について、鋼中介在物の量と組成の関係を走査型電子顕微鏡を用いて詳細に調査した。なお、介在物の量は倍率を1000倍として、走査型電子顕微鏡で約7cm2の試料表面を観察し、介在物の個数を計測する方法で評価し、また、組成はEPMAにて評価した。さらに、介在物量の比較のために、Alの含有量が0.035%の鋼における介在物の個数を1とした「介在物個数指数」を求めた。 The inventors first changed various contents of Al between 0.004 to 0.01%, and various steels having the chemical composition of the present invention (1) described in the above section (A). Was dissolved in a 150 kg crucible. And about the steel after solidification, the relationship between the quantity of inclusions in steel and a composition was investigated in detail using the scanning electron microscope. The amount of inclusions was evaluated by a method in which the magnification was 1000 times, the surface of a sample of about 7 cm 2 was observed with a scanning electron microscope and the number of inclusions was counted, and the composition was evaluated by EPMA. Furthermore, for comparison of the amount of inclusions, an “inclusion number index” was obtained in which the number of inclusions in a steel having an Al content of 0.035% was 1.

その結果、下記(a)〜(c)の事項が明らかになった。   As a result, the following items (a) to (c) became clear.

(a)Alの含有量が同一でも、介在物の個数に差が認められる。このことは、0.004〜0.01%という低い量のAl含有域で清浄度にバラツキが生じることを裏付けるものである。   (A) Even if the Al content is the same, a difference is observed in the number of inclusions. This confirms that the cleanliness varies in the low Al content range of 0.004 to 0.01%.

(b)同一のAl含有量の場合に、介在物が多い鋼と少ない鋼とでは、介在物の組成に差が生じている。すなわち、介在物が多い鋼中に存在する介在物が極めてSiO2の含有量の少ないAl主体のAl-Si-Mn系もしくはAl-O系、またはSiO2の含有量の多いSi主体のSi-Al-Mn-Oであるのに対し、介在物が少ない鋼中に存在する介在物は特定の範囲のSiO2を含有したAl-Si-Mn-O系である。 (B) In the case of the same Al content, there is a difference in the composition of inclusions between steel with a lot of inclusions and steel with little inclusions. That is, inclusions often inclusions present in the steel is very low Al entities of the content of SiO 2 Al-Si-Mn based or Al-O system, or the SiO 2 content of more Si principal Si- In contrast to Al—Mn—O, inclusions present in steel with few inclusions are Al—Si—Mn—O system containing a specific range of SiO 2 .

(c)上記(b)の介在物が少ない鋼中に存在する介在物中のSiO2を定量すると、SiO2の含有量は、質量%で、1〜12%である。つまり、前記(A)項で述べた本発明(1)の化学組成の場合においては、介在物中のSiO2の含有量を1〜12%とすることで清浄性が高くなり、逆に、介在物中のSiO2の含有量が1%未満と低いかまたは12%を超えて高い場合には清浄性が低下した。 (C) When SiO 2 in the inclusions present in the steel having a small amount of inclusions in (b) is quantified, the content of SiO 2 is 1% to 12% by mass%. That is, in the case of the chemical composition of the present invention (1) described in the above section (A), the cleanliness is increased by setting the content of SiO 2 in the inclusions to 1 to 12%. When the content of SiO 2 in the inclusions was as low as less than 1% or as high as more than 12%, the cleanliness deteriorated.

なお、図1に、介在物中のSiO2の含有量(質量%)と前記介在物個数指数との関係の一例を示す。なお、図1においては、介在物中のSiO2の含有量の単位は「%」で表記した。 FIG. 1 shows an example of the relationship between the content (mass%) of SiO 2 in inclusions and the inclusion number index. In FIG. 1, the unit of the content of SiO 2 in the inclusion is represented by “%”.

上記の事項は次のように理解することができる。   The above matters can be understood as follows.

すなわち、製品としての鋼におけるAlの含有量が0.1%を超えて高い場合は、溶鋼中のAl含有量であるAl濃度も高いため脱酸反応が安定化し、溶鋼中では常に同一の酸素濃度および介在物量となる。しかしながら、製品としての鋼におけるAlの含有量が低下するとAl濃度も低下するため、溶鋼中のSi含有量であるSi濃度の影響を受けやすくなる。なお、上記のSi濃度の影響の程度は再現性に乏しく、強く影響を受ける場合と影響が小さい場合があるが、これは、Al脱酸前の僅かな介在物量の差に起因すると考えられる。   That is, when the Al content in the steel as a product is higher than 0.1%, the deoxidation reaction is stabilized because the Al concentration, which is the Al content in the molten steel, is high, and the same oxygen is always present in the molten steel. Concentration and amount of inclusions. However, when the Al content in the steel as a product decreases, the Al concentration also decreases, so that it is easily affected by the Si concentration, which is the Si content in the molten steel. Note that the degree of influence of the Si concentration is poor in reproducibility and may be strongly affected or may be small, but this is considered to be caused by a slight difference in the amount of inclusions before Al deoxidation.

すなわち、Al濃度が低い場合でも、平衡論上はAl23が安定であるが、この場合、脱酸平衡は「Al−O」平衡となるため、Al濃度の低下に伴って、酸素濃度が単調に増加する。 That is, even when the Al concentration is low, Al 2 O 3 is stable in terms of equilibrium, but in this case, the deoxidation equilibrium becomes the “Al—O” equilibrium, and therefore, as the Al concentration decreases, the oxygen concentration Increases monotonically.

一方、Al脱酸前の介在物量が多い場合は、総体的にAlが不足するため、速度論的に「Al−O」平衡とはならずに、「Al−Si−O」平衡となる。この時、介在物はAl23から「Al23−SiO2」に変化し、Al23およびSiO2の活量は低下する。この結果、酸素濃度が低下するため介在物量が低減される。 On the other hand, when the amount of inclusions before Al deoxidation is large, since Al is generally insufficient, the “Al—Si—O” equilibrium is obtained instead of the “Al—O” equilibrium in terms of kinetics. At this time, inclusions change from Al 2 O 3 to “Al 2 O 3 —SiO 2 ”, and the activities of Al 2 O 3 and SiO 2 decrease. As a result, the amount of inclusions is reduced because the oxygen concentration is lowered.

そして、さらにAlが総体的に不足すると「Si−O」平衡が優勢となり、介在物中におけるSiO2の含有量が増加することで、SiO2の活量が増加する。このため、酸素濃度が増加し、その結果、介在物量が再び増加に転ずる。 Further, when Al is totally insufficient, the “Si—O” equilibrium becomes dominant, and the content of SiO 2 in the inclusion increases, so that the activity of SiO 2 increases. For this reason, the oxygen concentration increases, and as a result, the amount of inclusions begins to increase again.

上記のことは、Alの含有量が0.004〜0.01%という低い鋼の場合には、Al脱酸だけではなく、「Al−Si」複合脱酸を考慮する必要があり、そして、複合脱酸により最も酸素濃度が低下する時の介在物の組成が、介在物中のSiO2の含有量が1〜12%であることを示すものである。したがって、鋼中における介在物が、質量%で、SiO2を1〜12%含有し、残部はAl酸化物およびMn酸化物のうちの1種以上からなるものであれば、本発明(1)に係る高い清浄性を有する低Al含有鋼が得られることになる。 The above should be considered not only for Al deoxidation, but also for “Al-Si” complex deoxidation in the case of steel with a low Al content of 0.004 to 0.01%, and The composition of the inclusion when the oxygen concentration is the lowest due to the combined deoxidation indicates that the content of SiO 2 in the inclusion is 1 to 12%. Therefore, if the inclusions in the steel contain 1 to 12% by mass of SiO 2 and the balance is composed of one or more of Al oxide and Mn oxide, the present invention (1) Thus, a low Al-containing steel having high cleanliness can be obtained.

同様の理由で、Ca処理する場合について、鋼中における介在物が、質量%で、SiO2を1〜12%含有し、残部はCa−Al酸化物およびCa−Mn酸化物のうちの1種以上からなるものであれば、本発明(2)に係る高い清浄性を有する低Al含有鋼が得られることになる。Caは酸素活量を低減することは可能であるが、酸素濃度を大きく低減することが困難であることは相互作用助係数から理解できる。よって、Caを用いても酸素濃度を低減する、すなわち、介在物量を低減するには前述したSi-Al-O平衡を活用する必要がある。したがって、Ca処理を行う場合でも介在物中のSiO2の含有量の適正範囲は変化しないと考えられる。 For the same reason, in the case of Ca treatment, the inclusions in the steel contain 1% to 12% by mass of SiO 2 with the balance being one of Ca—Al oxide and Ca—Mn oxide. If it consists of the above, the low Al content steel which has the high cleanliness based on this invention (2) will be obtained. Although it is possible to reduce the oxygen activity of Ca, it can be understood from the interaction coefficient that it is difficult to greatly reduce the oxygen concentration. Therefore, in order to reduce the oxygen concentration even when Ca is used, that is, to reduce the amount of inclusions, it is necessary to utilize the Si—Al—O equilibrium described above. Therefore, it is considered that the appropriate range of the content of SiO 2 in the inclusion does not change even when Ca treatment is performed.

(C)製造方法
高い清浄性を有する低Al含有鋼は、得られた各鋼材における介在物を観察して、清浄度が目標とする値以下の清浄性に優れたものだけを選別する方法によって得ることができるが、この場合の歩留まりは極めて低いものとなってしまう。
(C) Manufacturing method Low Al-containing steel having high cleanliness is obtained by observing the inclusions in each steel material obtained and selecting only those having excellent cleanliness below the target value of cleanliness. Although the yield can be obtained, the yield in this case is extremely low.

また、介在物をより積極的に制御する方法として、スラグまたはフラックスを利用して取鍋精錬を行う方法があるが、製造コストの増加を招いてしまう。   Moreover, as a method of more actively controlling inclusions, there is a method of performing ladle refining using slag or flux, but this leads to an increase in manufacturing cost.

そこで、本発明者らは、良好な生産性と高い歩留まりを確保し、しかも、清浄度が目標とする値以下の清浄性に優れた低Al含有鋼を安定して得るための方法として、Al濃度を最も容易に制御できるRHを用いた処理について検討した。その結果、下記(d)および(e)の事項が明らかになった。   Therefore, the present inventors have ensured good productivity and a high yield, and as a method for stably obtaining a low Al-containing steel excellent in cleanliness with a cleanliness value equal to or less than a target value, Al The treatment using RH that can control the concentration most easily was examined. As a result, the following items (d) and (e) became clear.

(d)既に「(B)鋼中の介在物」の項で述べたように、清浄性にバラツキが生じるのは低Al濃度域で脱酸平衡が、速度論的に「Al−O」または「Al−Si−O」のいずれか一方に偏向するためである。このため、反応速度を制御して、上記の脱酸平衡を一定にすれば、清浄性にバラツキが生じることを抑止できる。   (D) As already described in the section “(B) Inclusions in Steel”, the variation in cleanliness is caused by deoxidation equilibrium in the low Al concentration region, kinetically “Al-O” or This is because it is deflected to one of “Al—Si—O”. For this reason, if the reaction rate is controlled to make the above-mentioned deoxidation equilibrium constant, it is possible to prevent variations in cleanliness.

(e)反応速度を制御する方法はいくつかあるが、鋼の精錬において最も簡便な方法は反応物質の溶鋼中の含有量を制御することである。しかしながら、本発明が対象とする低Al含有鋼の場合、溶鋼中のAl含有量であるAl濃度を高めることはできない。   (E) Although there are several methods for controlling the reaction rate, the simplest method in refining steel is to control the content of reactants in the molten steel. However, in the case of the low Al-containing steel targeted by the present invention, the Al concentration, which is the Al content in the molten steel, cannot be increased.

そこで、検討を行った結果、下記(f)の事項が明らかになった。   As a result of the examination, the following item (f) became clear.

(f)脱酸平衡が偏向するのは低Al濃度域特有の現象である。このため、低Al濃度域になった時点、すなわち、酸素ガス上吹き終了直前の適正な時期に適正量のAlを溶鋼に添加することで、脱酸の偏向を制御できる。すなわち、溶鋼へのAlの添加量が多すぎれば低Al含有鋼が製造できないだけではなく、介在物がAl23となってしまう。また、溶鋼へのAlの添加量が少なすぎれば、介在物中でのSiO2の含有量が極めて少なくなってしまう。さらに、酸素ガス上吹き終了前における溶鋼へのAl添加時期が、早すぎれば添加するAlの効果が消失し、逆に、遅すぎれば添加したAlがそのまま鋼中に残留してしまう。そして、上述のいずれの場合にも、鋼の清浄度は高くなって、所望の高い清浄性を有する鋼を得ることができない。したがって、脱酸平衡は、完全に「Al−O」系に変化させるのではなく、少量のSiを影響させた「Al−Si−O」系に偏向させることで清浄性を高める必要がある。 (F) Depolarization of the deoxidation equilibrium is a phenomenon peculiar to a low Al concentration region. For this reason, the deflection of deoxidation can be controlled by adding an appropriate amount of Al to the molten steel at the time when the low Al concentration region is reached, that is, at the appropriate time immediately before the end of the oxygen gas top blowing. That is, if the amount of Al added to the molten steel is too large, not only low Al-containing steel cannot be produced, but also the inclusions become Al 2 O 3 . Further, if too small, the addition amount of Al in the molten steel, the content of SiO 2 in the inclusions becomes extremely small. Furthermore, if the Al addition time to the molten steel before the end of oxygen gas blowing is too early, the effect of the added Al disappears. Conversely, if it is too late, the added Al remains in the steel as it is. And in any of the above-mentioned cases, the cleanliness of the steel becomes high, and the steel having the desired high cleanliness cannot be obtained. Therefore, the deoxidation equilibrium does not completely change to the “Al—O” system, but it is necessary to improve the cleanliness by deviating to the “Al—Si—O” system in which a small amount of Si is affected.

そこで、本発明者らはさらに、酸素ガス上吹き処理終了直前に溶鋼へ添加するAl量とその添加時期について検討するために、溶鋼実験装置を用いて溶鋼1トンにAlを添加した後で酸素ガスを上吹きし、次いで、酸素ガス上吹き処理終了前に、溶鋼へ添加するAl量を0.001〜0.03kg、つまり、溶鋼1トン当たり0.001〜0.03kgの範囲で、また、その添加時期を酸素ガス上吹き処理終了前5〜0minの範囲で、それぞれ変化させ、凝固後の鋼について、鋼中介在物量を調査した。なお、酸素ガス上吹き処理終了後の溶鋼中のAl含有量(Al濃度)は0.005〜0.0075%とした。   Therefore, in order to examine the amount of Al to be added to the molten steel immediately before the end of the oxygen gas top blowing treatment and the timing of the addition, the present inventors further added oxygen to 1 ton of molten steel using a molten steel experimental apparatus. The amount of Al added to the molten steel is 0.001 to 0.03 kg, that is, in the range of 0.001 to 0.03 kg per ton of the molten steel before the oxygen gas top blowing treatment is completed. The addition time was changed in the range of 5 to 0 min before the end of the oxygen gas top blowing treatment, and the amount of inclusions in the steel was investigated for the solidified steel. In addition, Al content (Al concentration) in the molten steel after completion | finish of oxygen gas top blowing process was 0.005-0.0075%.

なお、鋼中介在物の量は倍率を1000倍として、走査型電子顕微鏡で約7cm2の試料表面を観察し、介在物の個数を計測する方法で評価した。また、介在物量の比較のために、既に「(B)鋼中の介在物」の項で述べたAlの含有量が0.035%の鋼における介在物の個数を1とした「介在物個数指数」を求めた。 The amount of inclusions in the steel was evaluated by a method in which the magnification was set to 1000 and the surface of a sample of about 7 cm 2 was observed with a scanning electron microscope and the number of inclusions was measured. For comparison of the amount of inclusions, the number of inclusions in the steel with an Al content of 0.035% already described in the section “(B) Inclusions in steel” is “1. The index was determined.

図2に、上記の調査結果を示す。なお、図2においては、酸素ガス上吹き処理終了前の時間を「上吹き終了までの時間」と表記した。この時間が「0」とは、酸素ガス上吹き処理終了と溶鋼へのAl添加とが同時であったことを意味する。図2の右の各数値は、各マークについて、それぞれ、溶鋼へ添加したAl量が0.001〜0.03kg、つまり、溶鋼1トン当たり0.001〜0.03kgのいずれかであることを示す。   FIG. 2 shows the results of the above investigation. In FIG. 2, the time before the end of the oxygen gas top blowing process is expressed as “time until the top blowing end”. This time “0” means that the end of the oxygen gas top blowing treatment and the addition of Al to the molten steel were simultaneous. Each numerical value on the right in FIG. 2 indicates that for each mark, the amount of Al added to the molten steel is 0.001 to 0.03 kg, that is, 0.001 to 0.03 kg per ton of molten steel. Show.

図2から、下記(g)および(h)の事項が明らかになった。   From FIG. 2, the following items (g) and (h) became clear.

(g)Alの添加量によらず、酸素ガス上吹き処理終了の2min前よりも早く溶鋼へAlを添加した場合、または、溶鋼へのAl添加時期が、酸素ガス上吹き処理終了の前1min未満の遅い場合は、介在物個数指数が大きく清浄性に劣る。   (G) Regardless of the addition amount of Al, when Al is added to the molten steel earlier than 2 minutes before the end of the oxygen gas top blowing process, or when the Al addition time to the molten steel is 1 min before the end of the oxygen gas top blowing process In the case of a lower speed, the inclusion number index is large and the cleanliness is poor.

上記の(g)は、溶鋼へのAl添加時期が早すぎる場合、また逆に、遅すぎる場合のいずれであっても、脱酸偏向に影響を与えることができないことを示している。   The above (g) shows that the deoxidation deflection cannot be affected if the Al addition time to the molten steel is too early or conversely too late.

(h)溶鋼へのAl添加時期を、酸素ガス上吹き処理終了の前1〜2minとした場合は、介在物個数指数の減少が認められるが、その減少が生じるのは、溶鋼へ添加したAl量が0.005〜0.02kg、つまり、溶鋼1トン当たり0.005〜0.02kgの範囲にある場合だけである。   (H) When the Al addition time to the molten steel is 1 to 2 minutes before the end of the oxygen gas top blowing process, a decrease in the inclusion number index is observed, but the decrease is caused by the Al added to the molten steel. Only when the amount is in the range of 0.005 to 0.02 kg, that is, 0.005 to 0.02 kg per ton of molten steel.

上記の(h)は、既に述べたように、溶鋼へのAlの添加量が多すぎれば、介在物がAl23となってしまい、また、溶鋼へのAlの添加量が少なすぎれば、介在物中でのSiO2の含有量が極めて少なくなってしまって、いずれの場合にも、鋼の清浄度が高くなるからである。 In the case of (h), as already described, if the amount of Al added to the molten steel is too large, the inclusion becomes Al 2 O 3, and if the amount of Al added to the molten steel is too small. This is because the content of SiO 2 in the inclusions is extremely reduced, and in any case, the cleanliness of the steel is increased.

以上のことから、本発明(3)においては、二本の浸漬管を有し、溶鋼を環流させるRH式真空脱ガス装置にて、溶鋼にAlを添加し、引き続き酸素ガスを上吹きする処理に際し、「酸素ガス上吹き処理終了の1〜2min前に、溶鋼1トン当たり0.005〜0.02kgのAlを溶鋼に添加すること」と規定した。   From the above, in the present invention (3), the treatment is performed by adding Al to the molten steel and then continuously blowing oxygen gas in the RH vacuum degassing apparatus having two dip tubes and circulating the molten steel. At that time, it was defined that “0.005 to 0.02 kg of Al per ton of molten steel should be added to the molten steel 1 to 2 minutes before the end of the oxygen gas top blowing process”.

次に本発明者らは、図2において、Alの含有量が0.035%の鋼における介在物の個数を1として求めた介在物個数指数が0.8〜0.9程度で、前記通常のいわゆる「Al脱酸鋼」よりも清浄性に優れる場合があることから、低Al含有鋼の場合であっても脱酸平衡を「Al−Si−O」系に適正に制御すればさらに高い清浄化効果が得られると推測するに至った。   Next, in FIG. 2, the present inventors found that the inclusion number index obtained by setting the number of inclusions in steel having an Al content of 0.035% as 1 is about 0.8 to 0.9, May be superior to the so-called “Al deoxidized steel”, and even if it is a low Al-containing steel, it is even higher if the deoxidation equilibrium is appropriately controlled to the “Al—Si—O” system. It came to guess that the cleaning effect was acquired.

本発明(3)は、低Al濃度域で溶鋼中に少量のAlを添加することが特徴であるから、厳密には、酸素ガス上吹き処理後のAl濃度によって、溶鋼中に添加すべきAlの適正量が変化するはずである。   Since the present invention (3) is characterized by adding a small amount of Al to the molten steel in a low Al concentration region, strictly speaking, Al to be added to the molten steel depending on the Al concentration after the oxygen gas top blowing treatment. The appropriate amount of should change.

そこで、本発明者らは、前述の場合と同様の方法で、すなわち、溶鋼実験装置を用いて溶鋼1トンにAlを添加した後で酸素ガスを上吹き処理し、次いで、酸素ガス上吹き処理終了前に、溶鋼へ添加するAl量を0.005〜0.02kg、つまり、溶鋼1トン当たり0.005〜0.02kgの範囲、また、その添加時期を酸素ガス上吹き処理終了前2〜1minの範囲として、酸素ガス上吹き処理終了後の溶鋼中のAl含有量(Al濃度)を種々変化させ、凝固後の鋼について、鋼中介在物量を調査した。   Therefore, the inventors of the present invention performed the oxygen gas top blowing process in the same manner as described above, that is, after adding Al to 1 ton of molten steel using a molten steel experimental apparatus, and then the oxygen gas top blowing process. Before completion, the amount of Al added to the molten steel is 0.005 to 0.02 kg, that is, 0.005 to 0.02 kg per ton of molten steel, and the addition timing is 2 to 2 before the end of the oxygen gas top blowing treatment. In the range of 1 min, the Al content (Al concentration) in the molten steel after completion of the oxygen gas top blowing treatment was variously changed, and the amount of inclusions in the steel was investigated for the steel after solidification.

なお、鋼中介在物の量は倍率を1000倍として、走査型電子顕微鏡で約7cm2の試料表面を観察し、介在物の個数を計測する方法で評価した。また、介在物量の比較のために、既に述べたAlの含有量が0.035%の鋼における介在物の個数を1とした「介在物個数指数」を求めた。 The amount of inclusions in the steel was evaluated by a method in which the magnification was set to 1000 and the surface of a sample of about 7 cm 2 was observed with a scanning electron microscope and the number of inclusions was measured. Further, for comparison of the amount of inclusions, an “inclusion number index” in which the number of inclusions in the steel having the Al content of 0.035% described above was 1 was determined.

その結果、下記(i)の事項が明らかになった。   As a result, the following item (i) became clear.

(i)酸素ガス上吹き処理終了後のAl濃度と溶鋼中へのAl添加量によって介在物個数指数0.8〜0.95が得られる場合がある。   (I) Inclusion number index of 0.8 to 0.95 may be obtained depending on the Al concentration after the oxygen gas top blowing treatment and the amount of Al added to the molten steel.

そこで、回帰分析して、図3を得た。なお、図3では、酸素ガス上吹き処理終了後のAl濃度を「最終Al濃度」、その単位を「%」で、また、「介在物個数指数」を「介在物指数」、Al添加量の単位を「kg/ton」と表記した。図中における実線と破線はそれぞれ、Mを酸素ガス上吹き処理終了の1〜2min前に溶鋼1トン当たりに添加するAl量(kg)、[Al]を質量%で、0.004〜0.01%の範囲にある、酸素ガス上吹き処理終了後の溶鋼中のAl含有量の目標値として、M=−0.833[Al]+0.022のラインおよびM=−0.833[Al]+0.015のラインを示す。   Therefore, regression analysis was performed to obtain FIG. In FIG. 3, the Al concentration after the oxygen gas top blowing process is “final Al concentration”, the unit is “%”, the “inclusion number index” is “inclusion index”, and the Al addition amount is The unit was expressed as “kg / ton”. In the figure, the solid line and the broken line respectively represent the amount of Al (kg) added per 1 ton of molten steel before the end of the oxygen gas up-blowing process, and [Al] in mass%, 0.004 to 0.00. As a target value of Al content in the molten steel after completion of the oxygen gas top blowing treatment in the range of 01%, a line of M = −0.833 [Al] +0.022 and M = −0.833 [Al] +0.015 line is shown.

図3から、下記(j)の事項が明らかになった。   From FIG. 3, the following item (j) became clear.

(j)介在物個数指数0.8〜0.95が得られるのは、前記(1)式、「−0.833[Al]+0.022≧M≧−0.833[Al]+0.015」の式を満足する場合である。   (J) The inclusion number index of 0.8 to 0.95 can be obtained by the formula (1), “−0.833 [Al] + 0.022 ≧ M ≧ −0.833 [Al] +0.015. Is satisfied.

以上のことから、本発明(4)においては、酸素ガス上吹き処理終了の1〜2min前に溶鋼1トン当たりに添加するAl量が、前記(1)式を満足するものであることと規定した。   From the above, in the present invention (4), it is specified that the amount of Al added per ton of molten steel before the end of the oxygen gas top blowing process satisfies the above formula (1). did.

上述のとおり、本発明(3)や本発明(4)によって、清浄度を改善して清浄性を高めた低Al含有鋼を得ることができるが、生成する介在物は、塊状またはクラスター状のAl−Si−O系介在物である。しかしながら、鋼種によっては、介在物の球状化が必要とされる場合がある。   As described above, according to the present invention (3) or the present invention (4), a low Al-containing steel having improved cleanliness and improved cleanliness can be obtained. Al-Si-O inclusions. However, spheroidization of inclusions may be required depending on the steel type.

一般に、介在物の球状化に対しては、Ca処理が広く用いられており、その最適条件も既に多数のものが開発されている。そして、本発明(3)および本発明(4)における酸素ガス上吹き処理後の脱酸、介在物状態は安定しているので、Ca処理を適用することができる。   In general, Ca treatment is widely used for spheroidization of inclusions, and many optimum conditions have already been developed. And since the deoxidation and inclusion state after the oxygen gas top blowing treatment in the present invention (3) and the present invention (4) are stable, the Ca treatment can be applied.

ただし、既に(f)項で述べたように、脱酸平衡は、完全に「Al−O」系に変化させるのではなく、少量のSiを影響させた「Al−Si−O」系に偏向させる必要があるため、Caの添加量と溶鋼中のCaの含有量であるCa濃度は任意ではない。例えば、Ca添加量が多すぎるとCa濃度が高くなりすぎるため、CaによるSiO2還元が進行し介在物中でのSiO2の含有量が極めて少なくなってしまう。一方、Ca濃度が低すぎると介在物の球状化が図れない。 However, as already described in the section (f), the deoxidation equilibrium is not completely changed to the “Al—O” system, but is changed to the “Al—Si—O” system in which a small amount of Si is influenced. Therefore, the Ca concentration, which is the Ca content and the Ca content in the molten steel, is not arbitrary. For example, if the amount of Ca added is too large, the Ca concentration becomes too high, so that SiO 2 reduction by Ca proceeds and the content of SiO 2 in the inclusions becomes extremely small. On the other hand, when the Ca concentration is too low, inclusions cannot be spheroidized.

そこで、本発明者らは、前述の場合と同様の方法で、すなわち、溶鋼実験装置を用いて溶鋼1トンにAlを添加した後で酸素ガスを上吹き処理し、次いで、酸素ガス上吹き処理終了前に、溶鋼へ添加するAl量を0.005〜0.02kg、つまり、溶鋼1トン当たり0.005〜0.02kgの範囲、また、その添加時期を酸素ガス上吹き処理終了前2〜1minの範囲として、酸素ガス上吹き処理終了後の溶鋼中のAl含有量(Al濃度)を種々変化させるとともに、酸素ガス上吹き処理終了後、Caの純分が変化するようにCaまたはCa合金を添加し、凝固後の鋼について、Ca含有量、介在物中のSiO2の含有量(質量%)および介在物の球状化率を調査した。 Therefore, the inventors of the present invention performed the oxygen gas top blowing process in the same manner as described above, that is, after adding Al to 1 ton of molten steel using a molten steel experimental apparatus, and then the oxygen gas top blowing process. Before completion, the amount of Al added to the molten steel is 0.005 to 0.02 kg, that is, 0.005 to 0.02 kg per ton of molten steel, and the addition timing is 2 to 2 before the end of the oxygen gas top blowing treatment. In the range of 1 min, the Al content (Al concentration) in the molten steel after completion of the oxygen gas top blowing treatment is variously changed, and the Ca or Ca alloy is changed so that the pure content of Ca changes after the oxygen gas top blowing treatment is finished. In the steel after solidification, the Ca content, the content (mass%) of SiO 2 in inclusions and the spheroidization rate of inclusions were investigated.

なお、介在物中のSiO2の含有量(質量%)は、EPMAにより測定し、また、介在物の量を倍率を1000倍として、走査型電子顕微鏡で約7cm2の試料表面を観察し、介在物の個数を計測する方法で求め、下記の式によって介在物の球状化率を評価した。なお、式中の「球状介在物」とは短径と長径の比である「長径/短径」の値が1.3未満の介在物を指す。
介在物の球状化率(%)=(球状介在物個数)/(観察した介在物個数)×100。
The content (mass%) of SiO 2 in inclusions was measured by EPMA, and the amount of inclusions was set to 1000 times, and the surface of a sample of about 7 cm 2 was observed with a scanning electron microscope. The number of inclusions was determined by a method, and the spheroidization rate of inclusions was evaluated by the following formula. In addition, the “spherical inclusion” in the formula refers to an inclusion having a value of “major axis / minor axis”, which is a ratio of the minor axis to the major axis, of less than 1.3.
Inclusion spheroidization rate (%) = (number of spherical inclusions) / (number of observed inclusions) × 100.

上記の調査結果を整理して、図4に、溶鋼1トン当たりに添加したCa純分での量(kg)が介在物の球状化率に及ぼす影響を示す。また、図5に、溶鋼1トン当たりに添加したCa純分での量(kg)が、Ca含有量および介在物中のSiO2の含有量(質量%)に及ぼす影響を示す。 FIG. 4 shows the influence of the amount (kg) of pure Ca added per 1 ton of molten steel on the spheroidization rate of inclusions. FIG. 5 shows the influence of the amount (kg) of pure Ca added per ton of molten steel on the Ca content and the content (mass%) of SiO 2 in inclusions.

なお、図4および図5においては、溶鋼1トン当たりに添加したCa純分での量を「Ca添加量(kg/ton)」と表記した。   4 and 5, the amount of pure Ca added per ton of molten steel is expressed as “Ca addition amount (kg / ton)”.

図4から下記(k)の事項が、また、図5から下記(l)の事項が明らかになった。   The following item (k) is clarified from FIG. 4, and the following item (l) is clarified from FIG.

(k)溶鋼1トン当たりCa純分で0.05kg以上のCaまたはCa合金を溶鋼に添加することによって、介在物の球状化率を100%とすることができる。   (K) By adding 0.05 kg or more of Ca or Ca alloy in the amount of pure Ca per ton of molten steel, the spheroidization rate of inclusions can be made 100%.

(l)溶鋼1トン当たりCa純分で0.17kg以下のCaまたはCa合金を溶鋼に添加することによって、介在物のSiO2の含有量を、前記「(B)鋼中の介在物」の項で述べた1質量%以上とすることができる。そして、上記Ca純分で0.05〜0.17kg/トンのCaまたはCa合金を溶鋼に添加することによって、Ca含有量を0.0004〜0.0028%とすることができる。 (L) By adding 0.17 kg or less of Ca or Ca alloy in a pure amount of Ca per ton of molten steel to the molten steel, the content of SiO 2 in the inclusion is changed to that of “(B) inclusion in steel”. 1% by mass or more as described in the section. And Ca content can be made into 0.0004 to 0.0028% by adding 0.05 to 0.17 kg / ton of Ca or Ca alloy to the molten steel with the said pure Ca content.

したがって、介在物の球状化率、介在物組成およびCa含有量を同時に満足するには、溶鋼1トン当たりCa純分で0.05〜0.17kgのCaまたはCa合金を溶鋼に添加することが必要である。   Therefore, in order to satisfy the spheroidization rate of inclusions, the inclusion composition, and the Ca content at the same time, 0.05 to 0.17 kg of Ca or Ca alloy in terms of pure Ca per ton of molten steel should be added to the molten steel. is necessary.

以上のことから、本発明(5)においては、本発明(3)または本発明(4)の製造方法において、酸素ガス上吹き処理終了後、溶鋼1トン当たりCa純分で0.05〜0.17kgのCaまたはCa合金を溶鋼に添加することと規定した。   From the above, in the present invention (5), in the production method of the present invention (3) or the present invention (4), 0.05 to 0 in terms of pure Ca per ton of molten steel after completion of the oxygen gas top blowing treatment. It was specified that .17 kg of Ca or Ca alloy was added to the molten steel.

なお、本発明(1)または本発明(2)に係る高い清浄性を有する低Al含有鋼は、AlおよびOを除く化学組成が本発明(1)に記載されたものである溶鋼を、RH式真空脱ガス装置にて処理することを特徴とする本発明(3)または本発明(4)の製造方法である本発明(6)によって製造することができる。   In addition, the low Al-containing steel having high cleanliness according to the present invention (1) or the present invention (2) is a RH which has a chemical composition excluding Al and O described in the present invention (1). It can manufacture by this invention (6) which is a manufacturing method of this invention (3) or this invention (4) characterized by processing by a type | formula vacuum degassing apparatus.

また、本発明(2)に係る高い清浄性を有する低Al含有鋼は、Al、OおよびCaを除く化学組成が本発明(2)に記載されたものである溶鋼を、RH式真空脱ガス装置にて処理することを特徴とする本発明(5)の製造方法である本発明(7)によって製造することができる。   Further, the low Al content steel having high cleanliness according to the present invention (2) is an RH vacuum degassing of a molten steel whose chemical composition excluding Al, O and Ca is described in the present invention (2). It can manufacture by this invention (7) which is a manufacturing method of this invention (5) characterized by processing with an apparatus.

以下、本発明の製造方法について、具体的に、「転炉→RH→連続鋳造」というプロセスを用いて、さらに詳しく説明する。   Hereinafter, the manufacturing method of the present invention will be specifically described in detail using a process of “converter → RH → continuous casting”.

先ず、転炉での処理を終了した後、溶鋼を取鍋内に出鋼する。なお、Alの添加は出鋼時に行ってもよいし、次工程のRHで行ってもよい。   First, after finishing the processing in the converter, the molten steel is taken out into the ladle. The addition of Al may be performed at the time of steel output or may be performed by RH in the next step.

次に、取鍋をRHへ移送し、RHでの処理を開始する。RHでは、成分調整、脱ガスなどの処理を適宜実施してよいが、溶鋼に酸素ガスを上吹き処理する前に、本発明(3)または本発明(4)の場合には溶鋼の化学組成を、Al濃度およびO濃度を除いて所望の鋼組成に調整し、また、本発明(5)の場合には溶鋼の化学組成を、Al濃度、O濃度およびCa濃度を除いて所望の鋼組成に調整する。   Next, the ladle is transferred to the RH, and the treatment with the RH is started. In RH, component adjustment, degassing, and the like may be performed as appropriate. However, before the oxygen gas is blown over the molten steel, in the case of the present invention (3) or the present invention (4), the chemical composition of the molten steel. In the case of the present invention (5), the chemical composition of the molten steel is adjusted to the desired steel composition excluding the Al concentration, O concentration and Ca concentration. Adjust to.

さらに、本発明(6)の場合には溶鋼の化学組成を、Al濃度およびO濃度を除いて具体的に本発明(1)または本発明(2)の鋼組成に調整し、本発明(7)の場合には溶鋼の化学組成を、Al濃度、O濃度およびCa濃度を除いて具体的に本発明(2)の鋼組成に調整する。   Further, in the case of the present invention (6), the chemical composition of the molten steel is specifically adjusted to the steel composition of the present invention (1) or the present invention (2) except for the Al concentration and the O concentration. ), The chemical composition of the molten steel is specifically adjusted to the steel composition of the present invention (2) except for the Al concentration, O concentration and Ca concentration.

この後、溶鋼にAlを添加し、次に、RHでの酸素ガス上吹き処理を行う。   Thereafter, Al is added to the molten steel, and then an oxygen gas top blowing treatment with RH is performed.

なお、溶鋼へのAlの添加量は、溶鋼内でAlを酸化させ、この酸化熱を利用して溶鋼温度を所望の温度まで上昇させるのに必要な量と酸素ガス上吹き処理後の目標とする溶鋼中のAl含有量であるAl濃度から決定することができる。この場合、個々のRHごとに、Alと酸素の反応効率およびお昇熱速度は異なるものの、それらは各RHにおける操業実績から容易に求めることができる。そして、その操業実績を基にしてAl添加量を決定し、溶鋼に添加する。ただし、上述のとおり、溶鋼への上記のAl添加は酸素ガス上吹き処理前に行わなければならない。   The amount of Al added to the molten steel is determined by the amount required to oxidize Al in the molten steel and increase the molten steel temperature to a desired temperature using this oxidation heat, and the target after the oxygen gas top blowing treatment. It can be determined from the Al concentration which is the Al content in the molten steel. In this case, although the reaction efficiency of Al and oxygen and the heating rate are different for each RH, they can be easily obtained from the operation results in each RH. And based on the operation performance, Al addition amount is determined and added to molten steel. However, as described above, the Al addition to the molten steel must be performed before the oxygen gas top blowing treatment.

上記溶鋼へのAlの添加の後に、酸素ガス上吹き処理を開始する。   After the addition of Al to the molten steel, the oxygen gas top blowing process is started.

酸素ガス上吹き処理は、上吹きランスを介して行うが、ランスノズルの形状は特に規定する必要はなく、どのようなものでもよい。ただし、酸素と溶鋼中のAl含有量であるAl濃度の反応効率を安定させるためには、ジェット動圧が高いノズルを用いるのが望ましい。   The oxygen gas top blowing treatment is performed through the top blowing lance, but the shape of the lance nozzle need not be particularly defined and may be any type. However, in order to stabilize the reaction efficiency of oxygen and Al concentration, which is the Al content in molten steel, it is desirable to use a nozzle having a high jet dynamic pressure.

また、酸素流量は溶鋼1トン当たり0.06〜0.18m3(Normal)/minとすることが望ましい。これは、酸素流量が少ないほど、脱酸は安定するももの、溶鋼1トン当たり0.06m3(Normal)/min未満であれば処理時間が長くなって昇熱速度が遅くなるので酸素量が増加してコストの上昇を招いてしまうからである。一方、酸素流量が大きいほど処理時間は短縮できるが、酸素ガス上吹き処理末期の脱酸平衡が不安定になり、特に、溶鋼1トン当たり0.18m3(Normal)/minを超えると、酸素ガス上吹き処理末期の脱酸平衡が極めて不安定になってしまう場合があるためである。 The oxygen flow rate is preferably 0.06 to 0.18 m 3 (normal) / min per ton of molten steel. This is because the smaller the oxygen flow rate, the more stable the deoxidation. If the flow rate is less than 0.06 m 3 (normal) / min per ton of molten steel, the treatment time becomes longer and the heating rate becomes slower. This is because the cost increases. On the other hand, as the oxygen flow rate is large processing time can be shortened, deoxidation equilibrium of the oxygen gas on the blowing process end becomes unstable, especially when more than molten steel per ton 0.18m 3 (Normal) / min, oxygen This is because the deoxidation equilibrium at the end of the gas top blowing process may become extremely unstable.

さらに、ランスと真空槽内溶鋼表面との鉛直距離は1〜4mであることが望ましい。これは、上記の距離が1m未満の場合には、溶鋼からの飛沫飛散でランスが損耗しやすくなり、また、4mを超えて大きい場合には、湯面でのジェット動圧が低下して、反応効率が低下する場合があるためである。   Furthermore, it is desirable that the vertical distance between the lance and the surface of the molten steel in the vacuum chamber is 1 to 4 m. This is because when the distance is less than 1 m, the lance is easily worn by splashing from the molten steel, and when it is greater than 4 m, the jet dynamic pressure on the molten metal surface is reduced. It is because reaction efficiency may fall.

上述のようにして、溶鋼へAlを添加した後で、上吹きランスを介して酸素ガスを溶鋼表面に吹き付ける。そして次に、酸素ガス上吹き処理終了の1〜2min前に、溶鋼1トン当たり0.005〜0.02kgのAlを溶鋼に添加する。この後、酸素ガス上吹き処理を終了する。   As described above, after adding Al to the molten steel, oxygen gas is sprayed onto the surface of the molten steel through an upper blowing lance. Next, 0.005 to 0.02 kg of Al per ton of molten steel is added to the molten steel 1 to 2 minutes before the end of the oxygen gas top blowing process. Thereafter, the oxygen gas top blowing process is terminated.

上記の処理の後、連続鋳造すれば、凝固後の鋼として、鋼中における介在物が、質量%で、SiO2を1〜12%含有し、残部はAl酸化物およびMn酸化物のうちの1種以上からなり、しかも、AlとOの含有量がそれぞれ、0.004〜0.01%および0.0025%以下である高い清浄性を有する低Al含有鋼が得られる。 If the continuous casting is performed after the above treatment, inclusions in the steel as a steel after solidification are contained in mass% and contain SiO 2 in an amount of 1 to 12%, with the balance being Al oxide and Mn oxide. A low Al-containing steel having high cleanliness, which is composed of one or more kinds and has Al and O contents of 0.004 to 0.01% and 0.0025% or less, respectively, is obtained.

なお、上記の場合において、酸素ガス上吹き処理終了の1〜2min前に溶鋼1トン当たりに添加するAl量が、前記の(1)式を満足すれば、清浄度が改善されてより一層清浄性の高い低Al含有鋼を得ることができる。   In the above case, if the amount of Al added per ton of molten steel satisfies the above equation (1) 1-2 minutes before the end of the oxygen gas top blowing treatment, the cleanliness is improved and the cleaner is further purified. A low Al-containing steel with high properties can be obtained.

したがって、酸素ガス上吹き処理終了の1〜2min前に溶鋼1トン当たりに添加するAl量は、前記の(1)式を満足するものであることが好ましい。   Therefore, it is preferable that the amount of Al added per ton of molten steel 1 to 2 minutes before the end of the oxygen gas top blowing process satisfies the above formula (1).

なお、酸素ガス上吹き処理終了後に再度Alを添加することは好ましくない。これは、「Al−Si−O」系に偏向させた脱酸平衡が、Alの添加によって再び不安定化し、清浄度が高くなって良好な清浄性を確保できなくなるからである。   In addition, it is not preferable to add Al again after completion of the oxygen gas top blowing process. This is because the deoxidation equilibrium deflected to the “Al—Si—O” system is destabilized again by the addition of Al, the degree of cleanliness becomes high, and good cleanability cannot be secured.

同様の理由で、酸素ガス上吹き処理終了後にSiを添加することも好ましくないが、他の成分元素に関して、酸素ガス上吹き処理終了に添加することによって成分調整してもよい。   For the same reason, it is not preferable to add Si after the end of the oxygen gas top blowing process. However, other component elements may be adjusted by adding them at the end of the oxygen gas top blowing process.

なお、酸素ガス上吹き処理終了後は、環流処理を引き続き行うことが望ましい。これは、酸素ガス上吹き処理終了後に環流処理を行うことによって、酸素との反応で生成した介在物の浮上分離がなされるために、一層良好な清浄性が得られるためである。   It should be noted that after the oxygen gas top blowing process is completed, it is desirable to continue the reflux process. This is because the inclusions generated by the reaction with oxygen are floated and separated by performing the reflux treatment after the oxygen gas top blowing treatment is completed, so that better cleanliness can be obtained.

特に、上記環流処理の時間が5min以上であれば、より優れた清浄性を確保することができ、12min以上であれば、極めて良好な清浄性を確保することができる。   In particular, if the reflux treatment time is 5 min or longer, more excellent cleanliness can be secured, and if it is 12 min or longer, extremely good cleanability can be secured.

なお、上記環流処理の時間は、生産効率やコストの面から、20minを上限とすればよい。   In addition, what is necessary is just to make 20 minutes the upper limit of the time of the said recirculation | reflux processing from the surface of production efficiency or cost.

酸素ガス上吹き処理終了後、溶鋼1トン当たりCa純分で0.05〜0.17kgのCaまたはCa合金を溶鋼に添加してもよい。この際の添加方法は、一般的なインジェクション法やワイヤ−法でよい。   After completion of the oxygen gas top blowing process, 0.05 to 0.17 kg of Ca or Ca alloy may be added to the molten steel in terms of pure Ca per ton of molten steel. The addition method at this time may be a general injection method or a wire method.

上記のCa合金とは、CaSi、CaAlやFeCaなどのCa合金の他に、CaOなどのフラックスと混合した金属CaまたはCa合金を含むものを指す。   Said Ca alloy refers to what contains metal Ca or Ca alloy mixed with fluxes, such as CaO, in addition to Ca alloys, such as CaSi, CaAl, and FeCa.

なお、CaまたはCa合金の添加速度は、Ca純分で溶鋼1トン当たり0.03〜1.0kg/minであることが望ましい。添加速度が溶鋼1トン当たり、0.03kg/min未満の場合は、溶鋼中のCa活量を十分に高めることができないため、また、1.0kg/minを超えて大きい場合は、溶鋼中のCa活量が大きくなりすぎるため、それぞれ、鋼中介在物の量と組成が適正な条件から外れてしまう場合がある。   The addition rate of Ca or Ca alloy is preferably 0.03 to 1.0 kg / min per ton of molten steel in terms of pure Ca. If the rate of addition is less than 0.03 kg / min per ton of molten steel, the Ca activity in the molten steel cannot be sufficiently increased, and if greater than 1.0 kg / min, Since the Ca activity becomes too large, the amount and composition of inclusions in the steel may deviate from appropriate conditions.

次に、スラグについて説明する。   Next, slag will be described.

一般に、高い清浄性を有する鋼を製造する場合には、スラグ中のFeOやMnOなどの低級酸化物濃度は低い方が望ましいことはよく知られているが、本発明においてもスラグ中のFeOとMnOの合計濃度は6%以下であることが望ましい。   In general, when manufacturing steel having high cleanliness, it is well known that lower oxide concentrations such as FeO and MnO in the slag are desirable, but also in the present invention, FeO in the slag The total concentration of MnO is desirably 6% or less.

また、本発明において、スラグ中のCaOとAl23の質量比は1〜2.5であることが望ましい。 In the present invention, the mass ratio of CaO to Al 2 O 3 in the slag is preferably 1 to 2.5.

本発明は、溶鋼内反応を活用するものであって、スラグ−溶鋼間反応は用いないためスラグの影響は小さいが、上記スラグ組成範囲以外では、鋳込み中にスラグから再酸化を受けて、清浄度が大きくなって清浄性が低下する場合がある。なお、スラグ組成の調整方法としては、転炉出鋼時にスラグ改質剤を添加する方法や、RH処理前に取鍋精錬装置にて溶鋼−スラグを撹拌する方法がある。   The present invention utilizes the reaction in molten steel, and since the reaction between slag and molten steel is not used, the influence of slag is small. However, except for the above slag composition range, the slag undergoes reoxidation during casting and is clean. The degree of cleanliness may decrease and cleanliness may decrease. In addition, as a method for adjusting the slag composition, there are a method of adding a slag modifier at the time of converter steelmaking, and a method of stirring molten steel-slag with a ladle refining device before RH treatment.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples.

20種類の溶鋼250トンを転炉で精錬し、取鍋をRHへ移送し、RHで処理を開始した。   Twenty kinds of molten steel (250 tons) were refined in a converter, the ladle was transferred to RH, and the treatment was started with RH.

表1に示す鋼1〜8および鋼12〜19は、RH処理開始直後に各種合金を添加して、AlおよびO以外の成分を所定の値に調整した。次いで、溶鋼にAlを添加した後、上吹きランスから酸素ガスを38m3(Normal)/min(溶鋼1トン当たり0.152m3(Normal)/min)で4〜10min間上吹き処理した。なお、酸素ガス上吹き処理中に、表2に示す条件でAlの量と添加時期を変化させて溶鋼へのAl添加を行い、酸素ガス上吹き処理終了後に8min間環流を行ってから、連続鋳造してスラブを作製した。 In Steels 1 to 8 and Steels 12 to 19 shown in Table 1, various alloys were added immediately after the start of the RH treatment, and components other than Al and O were adjusted to predetermined values. Then, after addition of Al in the molten steel was blown treated on inter 4~10min at 38m oxygen gas from the top lance 3 (Normal) / min (molten steel per ton 0.152m 3 (Normal) / min) . During the oxygen gas top blowing process, Al was added to the molten steel by changing the amount and addition time of Al under the conditions shown in Table 2, and after the oxygen gas top blowing process was completed, the mixture was refluxed for 8 minutes, and then continuously. A slab was produced by casting.

また、表1に示す鋼9〜11および鋼20は、RH処理開始直後に各種合金を添加して、Al、OおよびCa以外の成分を所定の値に調整した。次いで、上記の鋼1〜8および鋼12〜19の場合と同様に、溶鋼にAlを添加した後、上吹きランスから酸素ガスを38m3(Normal)/minで4〜10min間上吹き処理した。なお、酸素ガス上吹き処理中に、表2に示す条件でAlの量と添加時期を変化させて溶鋼へのAl添加を行い、酸素ガス上吹き処理終了後、表2に示すように、Ca純分で0.01〜0.20kgのCaまたはCa合金を溶鋼に添加し、さらに、8min間環流を行ってから、連続鋳造してスラブを作製した。 Further, in Steels 9 to 11 and Steel 20 shown in Table 1, various alloys were added immediately after the start of the RH treatment, and components other than Al, O, and Ca were adjusted to predetermined values. Next, as in the case of steels 1 to 8 and steels 12 to 19, after adding Al to the molten steel, oxygen gas was blown from the top blowing lance at 38 m 3 (normal) / min for 4 to 10 minutes. . In addition, during the oxygen gas top blowing treatment, Al was added to the molten steel while changing the amount of Al and the addition timing under the conditions shown in Table 2. After the oxygen gas top blowing treatment was completed, as shown in Table 2, A pure content of 0.01 to 0.20 kg of Ca or Ca alloy was added to the molten steel, and after refluxing for 8 minutes, continuous casting was performed to produce a slab.

Figure 2009019221
Figure 2009019221

Figure 2009019221
Figure 2009019221

上記のようにして得た各スラブについて、鋼中介在物の量と組成の関係を走査型電子顕微鏡を用いて調査した。すなわち、介在物の量は倍率を1000倍として、走査型電子顕微鏡で約7cm2の試料表面を観察し、介在物の個数を計測する方法で評価し、また、組成はEPMAにて評価した。 About each slab obtained as mentioned above, the relationship between the amount of inclusions in steel and the composition was investigated using a scanning electron microscope. That is, the amount of inclusions was evaluated by a method in which the magnification was 1000 times, the surface of a sample of about 7 cm 2 was observed with a scanning electron microscope and the number of inclusions was counted, and the composition was evaluated by EPMA.

さらに、介在物量の比較のために、既に「(B)鋼中の介在物」の項で述べたAlの含有量が0.035%のいわゆる「Al脱酸鋼」における介在物の個数を1とした「介在物個数指数」を求め、また、Ca処理した試験番号9〜11および試験番号20について、下記の式によって介在物の球状化率を求めた。
介在物の球状化率(%)=(球状介在物個数)/(観察した介在物個数)×100。
Furthermore, for comparison of the amount of inclusions, the number of inclusions in the so-called “Al deoxidized steel” having an Al content of 0.035% already described in the section “(B) inclusions in steel” is 1 The inclusion inclusion index was determined, and the inclusions spheroidization rate was determined from the following formulas for test numbers 9 to 11 and test number 20 treated with Ca.
Inclusion spheroidization rate (%) = (number of spherical inclusions) / (number of observed inclusions) × 100.

なお、既に述べたように、「球状介在物」とは短径と長径の比である「長径/短径」の値が1.3未満の介在物を指す。   As described above, the “spherical inclusion” refers to an inclusion having a value of “major axis / minor axis”, which is a ratio of the minor axis to the major axis, of less than 1.3.

表3に、上記の各試験結果をまとめて示す。   Table 3 summarizes the above test results.

Figure 2009019221
Figure 2009019221

表3から、本発明(1)または本発明(2)の条件を満たす試験番号1〜11の場合、低Al含有鋼であっても、その介在物個数指数は0.81〜1.03で、いわゆる「Al脱酸鋼」と同等またはそれ以上の清浄性を有することが明らかである。   From Table 3, in the case of test numbers 1 to 11 satisfying the conditions of the present invention (1) or the present invention (2), the inclusion number index is 0.81 to 1.03 even for a low Al-containing steel. It is clear that it has cleanliness equivalent to or better than so-called “Al deoxidized steel”.

そして、上記試験番号1〜11のうちでも、その製造条件が本発明(4)の条件を満たす試験番号4〜11は、特に清浄性に優れることが明らかである。   And among the said test numbers 1-11, it is clear that the test numbers 4-11 whose manufacturing conditions satisfy | fill the conditions of this invention (4) are excellent in especially cleanliness.

さらに、上記試験番号4〜11のうちでも、Ca処理の条件が本発明(5)の条件を満たす試験番号9および試験番号10の場合、介在物の球状化率は100%であり、より優れた特性が確保できる。   Furthermore, among the above test numbers 4 to 11, when the conditions of Ca treatment are test number 9 and test number 10 that satisfy the condition of the present invention (5), the inclusion spheroidization rate is 100%, which is more excellent. Characteristics can be secured.

これに対して、本発明(1)または本発明(2)の条件から外れた試験番号12〜20の場合、その介在物個数指数は1.22〜2.10で、いわゆる「Al脱酸鋼」と比べて劣ることが明らかである。   In contrast, in the case of test numbers 12 to 20 that deviate from the conditions of the present invention (1) or the present invention (2), the inclusion number index is 1.22 to 2.10, so-called “Al deoxidized steel”. Is clearly inferior to

本発明の低Al含有鋼は、Alの含有量が0.004〜0.01%という低い値であるにも拘わらず高い清浄性を有する。このため、溶接性および靱性に優れる。なお、本発明の低Al含有鋼のうちでもCaを含むものは、高い清浄性を維持したままで介在物の球状化がなされているので、より一層良好な特性を有する。これら本発明の低Al含有鋼は、本発明の方法によって安価に製造することができる。   The low Al-containing steel of the present invention has high cleanliness despite the low Al content of 0.004 to 0.01%. For this reason, it is excellent in weldability and toughness. Among the low Al-containing steels of the present invention, those containing Ca have much better characteristics because inclusions are spheroidized while maintaining high cleanliness. These low Al-containing steels of the present invention can be produced at low cost by the method of the present invention.

介在物中のSiO2の含有量(質量%)と介在物個数指数との関係の一例を示す図である。なお、介在物中のSiO2の含有量の単位は「%」で表記した。Is a diagram showing an example of the relationship between the content of SiO 2 in the inclusions (mass%) and inclusions number index. In addition, the unit of the content of SiO 2 in the inclusion is expressed by “%”. 酸素ガス上吹き処理終了前に溶鋼1トン当たりに添加するAl量とその添加時期が介在物個数指数に及ぼす影響を示す図である。なお、酸素ガス上吹き処理終了前の時間を「上吹き終了までの時間」と表記した。この図2の右の各数値は、各マークについて、それぞれ、溶鋼へ添加したAl量が0.001〜0.03kg、つまり、溶鋼1トン当たり0.001〜0.03kgのいずれかであることを示す。It is a figure which shows the influence which the amount of Al added per ton of molten steel before completion | finish of oxygen gas top blowing process, and its addition time have on the number index of inclusions. In addition, the time before the end of the oxygen gas top blowing process was expressed as “time until the top blowing end”. Each numerical value on the right side of FIG. 2 indicates that for each mark, the amount of Al added to the molten steel is 0.001 to 0.03 kg, that is, 0.001 to 0.03 kg per ton of molten steel. Indicates. 酸素ガス上吹き処理終了の1〜2min前に溶鋼1トン当たりに添加するAl量と酸素ガス上吹き処理終了後のAl濃度が介在物個数指数に及ぼす影響を示す図である。なお、図中では、酸素ガス上吹き処理終了後のAl濃度を「最終Al濃度」、その単位を「%」で、また、「介在物個数指数」を「介在物指数」、Al添加量の単位を「kg/ton」と表記した。It is a figure which shows the influence which the amount of Al added per ton of molten steel 1-2 minutes before completion | finish of oxygen gas top blowing process and Al concentration after completion | finish of oxygen gas top blowing process has on the number index of inclusions. In the figure, the Al concentration after finishing the oxygen gas top blowing process is “final Al concentration”, the unit is “%”, the “inclusion number index” is “inclusion index”, and the Al addition amount is The unit was expressed as “kg / ton”. 溶鋼1トン当たりに添加したCa純分での量(kg)が介在物の球状化率に及ぼす影響を示す図である。なお、図中では、溶鋼1トン当たりに添加したCa純分での量を「Ca添加量(kg/ton)」と表記した。It is a figure which shows the influence which the quantity (kg) in Ca pure added per ton of molten steel has on the spheroidization rate of inclusions. In the figure, the amount of pure Ca added per ton of molten steel was expressed as “Ca addition amount (kg / ton)”. 溶鋼1トン当たりに添加したCa純分での量(kg)が、Ca含有量および介在物中のSiO2の含有量(質量%)に及ぼす影響を示す図である。なお、図中では、溶鋼1トン当たりに添加したCa純分での量を「Ca添加量(kg/ton)」と表記した。Molten steel 1 amount in Ca pure content added per ton (kg) is a diagram showing the effect on Ca content and the content of SiO 2 in the inclusions (mass%). In the figure, the amount of pure Ca added per ton of molten steel was expressed as “Ca addition amount (kg / ton)”.

Claims (7)

質量%で、C:0.0015〜0.8%、Si:0.01〜0.8%、Mn:0.1〜2%、NiとCrの合計:0.01〜11%、Al:0.004〜0.01%、O:0.0025%以下、B:0.0035%未満、Nb:0.1%未満、P:0.015%未満、S:0.0035%未満を含有し、残部はFeおよび不純物からなる化学組成で、鋼中における介在物が、質量%で、SiO2を1〜12%含有し、残部はAl酸化物およびMn酸化物のうちの1種以上からなるものであることを特徴とする高い清浄性を有する低Al含有鋼。 In mass%, C: 0.0015 to 0.8%, Si: 0.01 to 0.8%, Mn: 0.1 to 2%, Ni and Cr total: 0.01 to 11%, Al: 0.004 to 0.01%, O: 0.0025% or less, B: less than 0.0035%, Nb: less than 0.1%, P: less than 0.015%, S: less than 0.0035% The balance is a chemical composition composed of Fe and impurities, the inclusions in the steel are in mass% and contain 1 to 12% of SiO 2 , and the balance is from one or more of Al oxide and Mn oxide. A low Al-containing steel having high cleanliness, characterized in that 質量%で、C:0.0015〜0.8%、Si:0.01〜0.8%、Mn:0.1〜2%、NiとCrの合計:0.01〜11%、Al:0.004〜0.01%、O:0.0025%以下、B:0.0035%未満、Nb:0.1%未満、P:0.015%未満、S:0.0035%未満、Ca:0.0028%以下を含有し、残部はFeおよび不純物からなる化学組成で、鋼中における介在物が、質量%で、SiO2を1〜12%含有し、残部はCa−Al酸化物およびCa−Mn酸化物のうちの1種以上からなるものであることを特徴とする高い清浄性を有する低Al含有鋼。 In mass%, C: 0.0015 to 0.8%, Si: 0.01 to 0.8%, Mn: 0.1 to 2%, Ni and Cr total: 0.01 to 11%, Al: 0.004 to 0.01%, O: 0.0025% or less, B: less than 0.0035%, Nb: less than 0.1%, P: less than 0.015%, S: less than 0.0035%, Ca : The content is 0.0028% or less, the balance is a chemical composition composed of Fe and impurities, the inclusions in the steel are 1% by mass and contain SiO 2 in an amount of 1 to 12%, and the balance is Ca-Al oxide and A low Al-containing steel having high cleanliness, characterized by comprising at least one of Ca-Mn oxides. 二本の浸漬管を有し、溶鋼を環流させるRH式真空脱ガス装置にて、溶鋼にAlを添加し、引き続き酸素ガスを上吹きして溶鋼中のAl含有量を0.004〜0.01%とする低Al含有鋼の製造方法であって、酸素ガス上吹き処理終了の1〜2min前に、溶鋼1トン当たり0.005〜0.02kgのAlを溶鋼に添加することを特徴とする高い清浄性を有する低Al含有鋼の製造方法。   In an RH-type vacuum degassing apparatus having two dip tubes and circulating the molten steel, Al is added to the molten steel, and then oxygen gas is blown up to reduce the Al content in the molten steel from 0.004 to 0.00. A method for producing a low Al content steel of 01%, characterized in that 0.005 to 0.02 kg of Al per ton of molten steel is added to the molten steel 1 to 2 minutes before the end of the oxygen gas top blowing process. A method for producing a low Al content steel having high cleanliness. 酸素ガス上吹き処理終了の1〜2min前に溶鋼1トン当たりに添加するAl量が、下記(1)式を満足するものであることを特徴とする請求項3に記載の高い清浄性を有する低Al含有鋼の製造方法。
−0.833[Al]+0.022≧M≧−0.833[Al]+0.015・・・・・(1)。
なお、(1)式においてMおよび[Al]は、それぞれ、
M:酸素ガス上吹き処理終了の1〜2min前に溶鋼1トン当たりに添加するAl量(kg)、
[Al]:質量%で、0.004〜0.01%の範囲にある、酸素ガス上吹き処理終了後の溶鋼中のAl含有量の目標値、
を表す。
The high cleanliness according to claim 3, wherein the amount of Al added per ton of molten steel 1 to 2 minutes before the end of the oxygen gas top blowing treatment satisfies the following formula (1): Manufacturing method of low Al content steel.
−0.833 [Al] + 0.022 ≧ M ≧ −0.833 [Al] +0.015 (1).
In the formula (1), M and [Al] are respectively
M: Al amount (kg) to be added per ton of molten steel 1 to 2 minutes before the end of the oxygen gas top blowing process,
[Al]: The target value of the Al content in the molten steel after completion of the oxygen gas top blowing treatment, in the range of 0.004 to 0.01% by mass%,
Represents.
酸素ガス上吹き処理終了後、溶鋼1トン当たりCa純分で0.05〜0.17kgのCaまたはCa合金を溶鋼に添加することを特徴とする請求項3または4に記載の高い清浄性を有する低Al含有鋼の製造方法。   The high cleanliness according to claim 3 or 4, wherein 0.05 to 0.17 kg of Ca or Ca alloy is added to the molten steel in terms of pure Ca per ton of molten steel after the oxygen gas top blowing treatment. The manufacturing method of the low Al content steel which has. 請求項1または2に記載された高い清浄性を有する低Al含有鋼の製造方法であって、AlおよびOを除く化学組成が請求項1に記載されたものである溶鋼を、RH式真空脱ガス装置にて処理することを特徴とする請求項3または4に記載の高い清浄性を有する低Al含有鋼の製造方法。   A method for producing a low-Al-containing steel having high cleanliness as claimed in claim 1 or 2, wherein the molten steel having a chemical composition excluding Al and O as described in claim 1 is subjected to RH vacuum desorption. The method for producing low Al-containing steel having high cleanliness according to claim 3 or 4, wherein the treatment is performed by a gas apparatus. 請求項2に記載された高い清浄性を有する低Al含有鋼の製造方法であって、Al、OおよびCaを除く化学組成が請求項2に記載されたものである溶鋼を、RH式真空脱ガス装置にて処理することを特徴とする請求項5に記載の高い清浄性を有する低Al含有鋼の製造方法。   A method for producing a low-Al-containing steel having high cleanliness as described in claim 2, wherein the molten steel having a chemical composition excluding Al, O and Ca described in claim 2 is subjected to RH vacuum desorption. The method for producing a low Al-containing steel having high cleanliness according to claim 5, wherein the treatment is performed by a gas device.
JP2007180774A 2007-07-10 2007-07-10 Low Al content steel having high cleanliness and method for producing the same Active JP5050692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007180774A JP5050692B2 (en) 2007-07-10 2007-07-10 Low Al content steel having high cleanliness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007180774A JP5050692B2 (en) 2007-07-10 2007-07-10 Low Al content steel having high cleanliness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009019221A true JP2009019221A (en) 2009-01-29
JP5050692B2 JP5050692B2 (en) 2012-10-17

Family

ID=40359122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180774A Active JP5050692B2 (en) 2007-07-10 2007-07-10 Low Al content steel having high cleanliness and method for producing the same

Country Status (1)

Country Link
JP (1) JP5050692B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245385A (en) * 2012-05-28 2013-12-09 Nippon Steel & Sumitomo Metal Corp Thick steel plate excellent in haz toughness
JP2014005527A (en) * 2012-05-28 2014-01-16 Nippon Steel & Sumitomo Metal Steel excellent in welding heat-affected zone toughness

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08144008A (en) * 1994-11-28 1996-06-04 Sumitomo Metal Ind Ltd High tensile strength steel and its production
JP2000119803A (en) * 1998-10-08 2000-04-25 Kawasaki Steel Corp Steel sheet for drum can good in surface property and drum can made of steel
JP2002030330A (en) * 1999-12-17 2002-01-31 Nkk Corp Method for heating molten steel in vacuum refining furnace
JP2004315963A (en) * 2003-03-31 2004-11-11 Kobe Steel Ltd Steel having excellent toughness in weld heat-affected zone, and its producing method
JP2006283154A (en) * 2005-04-01 2006-10-19 Sumitomo Metal Ind Ltd Method for heating molten steel
JP2006312760A (en) * 2005-05-06 2006-11-16 Sumitomo Metal Ind Ltd Clean steel and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08144008A (en) * 1994-11-28 1996-06-04 Sumitomo Metal Ind Ltd High tensile strength steel and its production
JP2000119803A (en) * 1998-10-08 2000-04-25 Kawasaki Steel Corp Steel sheet for drum can good in surface property and drum can made of steel
JP2002030330A (en) * 1999-12-17 2002-01-31 Nkk Corp Method for heating molten steel in vacuum refining furnace
JP2004315963A (en) * 2003-03-31 2004-11-11 Kobe Steel Ltd Steel having excellent toughness in weld heat-affected zone, and its producing method
JP2006283154A (en) * 2005-04-01 2006-10-19 Sumitomo Metal Ind Ltd Method for heating molten steel
JP2006312760A (en) * 2005-05-06 2006-11-16 Sumitomo Metal Ind Ltd Clean steel and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245385A (en) * 2012-05-28 2013-12-09 Nippon Steel & Sumitomo Metal Corp Thick steel plate excellent in haz toughness
JP2014005527A (en) * 2012-05-28 2014-01-16 Nippon Steel & Sumitomo Metal Steel excellent in welding heat-affected zone toughness

Also Published As

Publication number Publication date
JP5050692B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5262075B2 (en) Method for producing steel for pipes with excellent sour resistance
JP6686837B2 (en) Highly clean steel manufacturing method
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
JP6524801B2 (en) High purity steel and its refining method
JP5541310B2 (en) Manufacturing method of highly clean steel
JP2007319872A (en) Method for producing high-s free cutting steel wire rod
KR101361867B1 (en) Method for producing high-cleanness steel
JP5050692B2 (en) Low Al content steel having high cleanliness and method for producing the same
JP5047477B2 (en) Secondary refining method for high Al steel
JP4656007B2 (en) Method of processing molten iron by adding Nd and Ca
JP5332568B2 (en) Denitrification method for molten steel
JP6825399B2 (en) How to melt clean steel
JP5590056B2 (en) Manufacturing method of highly clean steel
JPH10212514A (en) Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance
JP6766687B2 (en) Refining method of molten steel
JP2010116610A (en) Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat
JP3632922B2 (en) Steel making and refining method for spring steel and spring steel wire obtained by using the steel making and refining method
JP6555068B2 (en) Flux for refining molten steel and method for refining molten steel
JP6816501B2 (en) Refining method of molten steel
JP5056826B2 (en) Steel for continuous casting and method for producing the same
JP4609325B2 (en) Treatment method of molten iron by Nd addition
JP2007113038A (en) Method for producing low carbon sulfur free-cutting steel
JP3807377B2 (en) Ca treatment method for low Al molten steel
JP5803843B2 (en) Manufacturing method of high carbon steel
JP6269229B2 (en) Melting method of high clean steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Ref document number: 5050692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350