JP7043915B2 - Method of raising the temperature of molten steel - Google Patents

Method of raising the temperature of molten steel Download PDF

Info

Publication number
JP7043915B2
JP7043915B2 JP2018054190A JP2018054190A JP7043915B2 JP 7043915 B2 JP7043915 B2 JP 7043915B2 JP 2018054190 A JP2018054190 A JP 2018054190A JP 2018054190 A JP2018054190 A JP 2018054190A JP 7043915 B2 JP7043915 B2 JP 7043915B2
Authority
JP
Japan
Prior art keywords
molten steel
oxygen
temperature
blown
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018054190A
Other languages
Japanese (ja)
Other versions
JP2019167561A (en
Inventor
惇史 久志本
鉄平 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018054190A priority Critical patent/JP7043915B2/en
Publication of JP2019167561A publication Critical patent/JP2019167561A/en
Application granted granted Critical
Publication of JP7043915B2 publication Critical patent/JP7043915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本願は、RH真空脱ガス装置の真空槽内において、減圧下で酸素を溶鋼表面に吹き付けて溶鋼を昇温する方法を開示する。 The present application discloses a method for raising the temperature of molten steel by blowing oxygen onto the surface of molten steel under reduced pressure in the vacuum chamber of the RH vacuum degassing device.

転炉出鋼後の二次精錬工程において、溶鋼の成分調整、脱ガス処理等が行われるが、処理中に溶鋼温度が大きく低下するため、次工程である鋳造に適正な溶鋼温度に調整するという目的で昇温処理が行われる。一般的な溶鋼の昇温方法として、RHに代表される真空槽を具備した環流型真空脱ガス装置において、真空槽内上吹きランスから溶鋼表面に酸素を吹付け、溶鋼中Alと反応させてその酸化熱を利用する方法が挙げられる。 In the secondary smelting process after converter steelmaking, the composition of molten steel is adjusted, degassing treatment, etc. are performed, but since the molten steel temperature drops significantly during the processing, the molten steel temperature is adjusted to an appropriate temperature for casting, which is the next process. The temperature rise process is performed for the purpose. As a general method for raising the temperature of molten steel, in a recirculation type vacuum degassing device equipped with a vacuum chamber typified by RH, oxygen is blown onto the surface of the molten steel from a top-blown lance in the vacuum chamber and reacted with Al in the molten steel. A method of utilizing the heat of oxidation can be mentioned.

上記昇温プロセスにおいて着酸速度を向上させようとした場合、一般的に上吹き酸素ジェットをハードブローに制御することが有効である。例えば特許文献1では、酸素供給圧力を一定とし、該圧力と真空度の比がノズルスロート部面積とノズル吐出口面積の比から算出されるマッハ数より大きくすると脱炭速度が向上し、逆に小さくすると溶融金属の昇熱を効率よく実施できるとしている。これは、前者においては酸素ジェットをノズル出口で適正に膨張させ、ハードブローとすることで着酸速度を向上させることができ、後者においてはジェットをソフトブローとしてCOとの二次燃焼反応を生じさせることで、溶融金属を効率的に昇温できるという考え方である。 When trying to improve the acidation rate in the temperature raising process, it is generally effective to control the top-blown oxygen jet to hard blow. For example, in Patent Document 1, when the oxygen supply pressure is constant and the ratio of the pressure to the degree of vacuum is larger than the Mach number calculated from the ratio of the nozzle throat area to the nozzle discharge port area, the decarburization rate is improved, and conversely. If it is made smaller, the heat of the molten metal can be efficiently increased. In the former case, the oxygen jet can be properly expanded at the nozzle outlet and hard blowed to improve the acidation rate, and in the latter case, the jet is used as a soft blow to cause a secondary combustion reaction with CO. The idea is that the temperature of the molten metal can be raised efficiently by making the molten metal warm.

しかしながら、脱炭期に酸素ジェットをハードブローとしてしまうと激しい溶鋼飛散(溶鋼スプラッシュ)により炉壁が著しく損耗してしまうことに加え、溶鋼が過酸化な状態となりFeOが過剰に生成してしまう。さらに、Alを多量に含む溶鋼を前提とした場合、COガスは殆ど発生しないため二次燃焼反応は活用できず、特許文献1に記載の考え方では溶鋼の昇熱は困難である。 However, if the oxygen jet is hard blown during the decarburization period, the furnace wall is significantly worn due to severe molten steel scattering (molten steel splash), and the molten steel is in a peroxidized state and FeO is excessively generated. Further, on the premise of molten steel containing a large amount of Al, the secondary combustion reaction cannot be utilized because CO gas is hardly generated, and it is difficult to heat the molten steel according to the idea described in Patent Document 1.

送酸時の溶鋼スプラッシュの問題に対し、特許文献2では、ラバールノズルのスロート径を30~80mm、出口径を80~140mmとすることで、ジェットの動圧を高すぎず、かつ低すぎない範囲に制御でき、送酸時の溶鋼スプラッシュを大きく低減できるとしている。 In response to the problem of molten steel splash during acid feeding, in Patent Document 2, the throat diameter of the Laval nozzle is set to 30 to 80 mm and the outlet diameter is set to 80 to 140 mm, so that the dynamic pressure of the jet is not too high and not too low. It is said that it can be controlled to a large extent and the molten steel splash during acid feeding can be greatly reduced.

しかしながら、ラバールランスによるジェットの噴流挙動はノズル径以外にも酸素流量、真空度といった因子にも大きく左右されるため、ノズル形状を特許文献2の範囲に制御したからといって必ずしも溶鋼スプラッシュを抑制できるわけではない。 However, the jet jet behavior due to the rubber lance is greatly affected by factors such as the oxygen flow rate and the degree of vacuum in addition to the nozzle diameter. Therefore, even if the nozzle shape is controlled within the range of Patent Document 2, the molten steel splash is not necessarily suppressed. I can't do it.

一方で、溶鋼への酸素供給条件によってはAl以外にSi、MnおよびFeが燃焼してSiO、MnOおよびFeOといった低級酸化物が生じ得る。このような低級酸化物は耐火物の溶損を著しく促進させることに加え、これらが取鍋スラグに吸収されることでスラグの酸化度が増加して溶鋼の再酸化や復硫といった弊害をも生じさせる。例えば特許文献3には、吹き付ける酸素ガスの流量と、溶鋼の環流量との比を適正範囲に調整し、かつ、加熱処理前の真空槽内の雰囲気圧力を段階的に変動させ、真空槽内の攪拌を制御することを特徴とする溶鋼の加熱方法が開示されている。この技術は、反応領域へのAl供給促進により局所的なAl欠乏を抑制して低級酸化物の生成を抑制する技術であるが、昇温処理初期は耐火物損耗抑制のため槽内圧力を高めとし、溶鋼Al濃度低下によりAl欠乏抑制が困難となる処理末期にかけて圧力を低下させて攪拌を強化、低級酸化物の還元を指向している。 On the other hand, depending on the oxygen supply conditions to the molten steel, Si, Mn and Fe may be burned in addition to Al to form lower oxides such as SiO 2 , MnO and FeO. In addition to significantly promoting the melting damage of refractories, such lower oxides increase the degree of oxidation of the slag by being absorbed by the ladle slag, which also has adverse effects such as reoxidation and desulfurization of the molten steel. Cause. For example, in Patent Document 3, the ratio of the flow rate of the oxygen gas to be blown and the ring flow rate of the molten steel is adjusted to an appropriate range, and the atmospheric pressure in the vacuum chamber before the heat treatment is changed stepwise in the vacuum chamber. A method for heating molten steel, which is characterized by controlling the stirring of the gas, is disclosed. This technology suppresses the formation of lower oxides by suppressing local Al deficiency by promoting the supply of Al to the reaction region. The pressure is reduced toward the end of the treatment, which makes it difficult to suppress Al deficiency due to the decrease in the Al concentration of the molten steel, and the stirring is strengthened, aiming at the reduction of lower oxides.

しかしながら、環流量という指標はRH真空脱ガス装置全体の溶鋼の循環を記述するための指標であり、酸素ガス流量と環流量との比では真空槽内での局所的な混合を詳細に記述することができない。さらに、真空度は低圧力側でばらつきが非常に大きく、かつ排気開始から所定の圧力に到達するまで時間がかかるため、精錬時期に応じて真空度を精緻に制御することは極めて困難である。 However, the index of ring flow rate is an index for describing the circulation of molten steel in the entire RH vacuum degassing device, and the ratio of oxygen gas flow rate to ring flow rate describes in detail the local mixing in the vacuum chamber. Can't. Further, the degree of vacuum varies greatly on the low pressure side, and it takes time from the start of exhaust to reach a predetermined pressure, so that it is extremely difficult to precisely control the degree of vacuum according to the refining time.

特開平4-59913号公報Japanese Unexamined Patent Publication No. 4-59913 特開2017-75399号公報Japanese Unexamined Patent Publication No. 2017-75399 特許第4277819号公報Japanese Patent No. 4277819

上記したような従来の手法では、送酸時に生じる溶鋼スプラッシュおよび低級酸化物の生成といった弊害を抑制しつつ高い昇温効率を得ることは困難であるという課題がある。 With the conventional method as described above, there is a problem that it is difficult to obtain a high temperature rise efficiency while suppressing adverse effects such as the formation of molten steel splash and lower oxides generated at the time of acid feeding.

本願は、上記課題を解決するための手段の一つとして、RH真空脱ガス装置の真空槽内において、減圧下で酸素を溶鋼表面に吹き付けて溶鋼を昇温する方法であって、前記酸素を吹き付けるランスの先端形状が、直径D(m)のスロート部と、出口直径D(m)の円錐形の拡大部とからなり、下記式(1)から求められる適正ノズル前圧P (Pa)と下記式(2)から求められる操業ノズル前圧P(Pa)との比P/P 0.408以上0.718以下とする、溶鋼の昇温方法を開示する。 The present application is a method of spraying oxygen on the surface of molten steel under reduced pressure to raise the temperature of the molten steel in a vacuum chamber of an RH vacuum degassing device as one of means for solving the above-mentioned problems. The tip shape of the spraying lance consists of a throat portion with a diameter D t (m) and a conical enlarged portion with an outlet diameter De (m), and the appropriate nozzle front pressure P 0 * obtained from the following formula (1). Disclosed is a method for raising the temperature of molten steel so that the ratio P 0 / P 0 * of (Pa) and the operating nozzle pre-pressure P 0 (Pa) obtained from the following formula (2) is 0.408 or more and 0.718 or less. ..

(D/D=14.92×(P/P 1.43×{1-(P/P 0.286} …(1)
=P+12.89×Q/D …(2)
(ここで、P:真空槽内圧力(Pa)、Q:上吹き酸素流量(Nm/min)である。)
(D t / De e ) 4 = 14.92 × (P e / P 0 * ) 1.43 × {1- (P e / P 0 * ) 0.286 }… (1)
P 0 = P e + 12.89 × Q T / D t 2 … (2)
(Here, Pe : Vacuum chamber pressure (Pa), QT : Top-blown oxygen flow rate (Nm 3 / min).)

本開示の溶鋼の昇温方法において、下記式(3)及び(4)により求められるランスから上吹きされた酸素ジェットによる真空槽内溶鋼の攪拌動力ε(W)と、下記式(5)から求められるRH真空脱ガス装置の溶鋼環流を目的として吹き込まれたガスによる真空槽内溶鋼の攪拌動力ε(W)との比ε/εを0.3以上0.6以下とすることが好ましい。 In the method for raising the temperature of molten steel of the present disclosure, the stirring power ε T (W) of the molten steel in the vacuum chamber by the oxygen jet top-blown from the lance obtained by the following equations (3) and (4) and the following equation (5). The ratio ε T / ε B to the stirring power ε B (W) of the molten steel in the vacuum chamber by the gas blown for the purpose of the molten steel recirculation of the RH vacuum degassing device obtained from Is preferable.

ε=5.24×10×Q/H …(3)
M=[5×{(P/P0.285-1}]0.5 …(4)
ε=6.18×QT{2.3log(1+ρH/P)+(1-T/T)} …(5)
(ここで、M:上吹き酸素ジェットのマッハ数、H:ランス―湯面間距離(m)、Q:環流ガス流量(Nm/min)、T:溶鋼温度(K)、ρ:溶鋼密度(kg/m)、H:環流ガス吹込み羽口―真空槽内溶鋼湯面間距離(m)、T:環流ガス温度(K)である。)
ε T = 5.24 × 10 3 × Q T D t M 2 / HT … (3)
M = [5 × {(P 0 / P e ) 0.285 -1}] 0.5 ... (4)
ε B = 6.18 × Q B T {2.3 log (1 + ρH B / P e ) + (1-T g / T)}… (5)
(Here, M: Mach number of top-blown oxygen jet, HT: Lance-hot water surface distance (m), Q B : Circulating gas flow rate (Nm 3 / min), T : Molten steel temperature (K), ρ: Molten steel density (kg / m 3 ), H B : Circulation gas blowing tuyere-distance between molten steel molten metal surface in vacuum tank (m), T g : Recirculation gas temperature (K).

本開示の溶鋼の昇温方法によれば、適正ノズル前圧と操業ノズル前圧との比を所定範囲内に制御して、ノズル近傍での酸素ジェットの膨張状態を制御することで、送酸時に生じる溶鋼スプラッシュおよび低級酸化物の生成といった弊害を抑制しつつ、高い昇温効率を得ることができる。 According to the method for raising the temperature of molten steel of the present disclosure, the ratio of the appropriate nozzle pre-pressure to the operating nozzle pre-pressure is controlled within a predetermined range, and the expansion state of the oxygen jet in the vicinity of the nozzle is controlled to send acid. It is possible to obtain high heating efficiency while suppressing adverse effects such as the generation of molten steel splash and lower oxides that sometimes occur.

Al燃焼率とP/P との関係を示す図である。It is a figure which shows the relationship between Al combustion rate and P 0 / P 0 * . 耐火物損耗速度とP/P との関係を示す図である。図中、○、△、×はそれぞれ図1における○、△、×と対応している。It is a figure which shows the relationship between the refractory wear rate and P 0 / P 0 * . In the figure, ◯, Δ, and × correspond to ◯, Δ, and × in FIG. 1, respectively. 昇温速度とε/εとの関係を示す図である。図中、○、△、×はそれぞれ図1及び2における○、△、×と対応している。It is a figure which shows the relationship between the temperature rise rate and ε T / ε B. In the figure, ◯, Δ, and × correspond to ◯, Δ, and × in FIGS. 1 and 2, respectively.

1.用語の定義
本願において「環流」とは、RH真空脱ガス装置にて浸漬管から環流ガスを導入して溶鋼を環流させることを指し、「OB(Oxygen Blowing)処理」とは、真空槽内のランスから酸素を溶鋼表面に吹き付け、溶鋼中Alと反応させてその反応熱により溶鋼の昇温を行う処理を指す。また、「反応領域」とは、溶鋼表面に上吹きした酸素と溶鋼成分が直接反応している領域を指し、「低級酸化物」とは、AlよりもOとの親和力が弱いSi、MnおよびFeがOと反応して生成した酸化物を指す。
1. 1. Definition of terms In the present application, "circulation" refers to introducing recirculation gas from a dipping tube in an RH vacuum degassing device to recirculate molten steel, and "OB (Oxygen Blooming) treatment" means in a vacuum chamber. It refers to the process of spraying oxygen from the lance onto the surface of the molten steel, reacting it with Al in the molten steel, and raising the temperature of the molten steel by the heat of the reaction. The "reaction region" refers to a region in which oxygen blown over the surface of the molten steel and the molten steel component directly react with each other, and the "lower oxide" refers to Si, Mn, and Mn, which have a weaker affinity for O than Al. Refers to an oxide produced by the reaction of Fe with O.

2.溶鋼の昇温方法の詳細
ラバールノズルにおいて、スロート部から出口部にかけて連続の式、等エントロピー流の式を考慮すると、スロート径と出口径との比D/D、および、雰囲気圧力(真空槽内圧力)と適正ノズル前圧との比P/P の間には下記式(1)に示す関係が成り立つ(例えばE.ラサクリシュナンら:「圧縮性流れの理論(丸善出版)」(H20/6/15発行))。下記式(1)をみると、D、DおよびPが決まれば、適正ノズル前圧P は一義に決まることがわかる。
(D/D=14.92×(P/P 1.43×{1-(P/P 0.286} …(1)
2. 2. Details of the method for raising the temperature of molten steel In the Laval nozzle, considering the continuous equation from the throat to the outlet and the equation of the isentropic flow, the ratio D t / De e of the throat diameter to the outlet diameter and the atmospheric pressure (vacuum tank). The ratio P e / P 0 * between the internal pressure) and the proper nozzle pre-pressure holds the relationship shown in the following equation (1) (for example, E. Lavalschnan et al .: "Theory of compressive flow (Maruzen Publishing)). (Issued on June 15, H20). Looking at the following equation (1), it can be seen that if D t , De and Pe are determined, the appropriate nozzle front pressure P 0 * is uniquely determined.
(D t / De e ) 4 = 14.92 × (P e / P 0 * ) 1.43 × {1- (P e / P 0 * ) 0.286 }… (1)

また、実操業におけるノズル前圧Pは、上吹き酸素流量QおよびDの関数として下記式(2)に示す経験式から求めることが出来る(小谷ら:鉄と鋼, 62(1976), 1795.)。
=P+12.89×Q/D …(2)
In addition, the nozzle pre-pressure P 0 in actual operation can be obtained from the empirical formula shown in the following formula (2) as a function of the top-blown oxygen flow rates Q T and D t (Otani et al .: Iron and Steel, 62 (1976)). , 1795.).
P 0 = P e + 12.89 × Q T / D t 2 … (2)

一般的にP とPとが等しい条件でジェットが適正膨張となり、ジェットの動圧が最も高くなる、すなわちハードブローとなることが知られている。しかしながら、本発明者らの知見では、ジェットがハードブローとなることで溶鋼スプラッシュが著しく増加することに加え、酸素が吹き込まれる反応領域近傍のAl欠乏が促進されてしまい、結果として低級酸化物の生成を著しく増加させてしまう。このことから、本発明者らは、ノズル前圧を適正膨張条件からあえて外し、かつP/P を適切な範囲に制御することで、溶鋼スプラッシュを増加させることなく昇熱速度を大きく向上できることを見出した。 It is generally known that the jet expands properly under the condition that P 0 * and P 0 are equal, and the dynamic pressure of the jet becomes the highest, that is, hard blow. However, according to the findings of the present inventors, the hard blow of the jet significantly increases the molten steel splash and promotes Al deficiency near the reaction region where oxygen is blown, resulting in lower oxides. It will significantly increase the production. For this reason, the present inventors intentionally remove the nozzle prepressure from the appropriate expansion conditions and control P 0 / P 0 * to an appropriate range to increase the heat rise rate without increasing the molten steel splash. I found that it could be improved.

一方で、低級酸化物の生成を更に抑制するためには、溶鋼に吸収された酸素を溶鋼流動により真空槽外に排出させ、装置全体に均一に分散させることが重要である。本発明者らは、上吹き酸素ジェットおよび環流ガスによる真空槽内溶鋼の攪拌動力密度、εおよびεのバランスε/εを制御することで、吸収された酸素の分散状態を制御できることを見出した。これは、反応領域近傍における酸素濃度が、酸素が吸収される速度と、吸収された酸素が反応領域から移動する速度のバランスで決定されるためであり、これらは概ね攪拌動力密度と一定の相関があるためである。 On the other hand, in order to further suppress the formation of lower oxides, it is important to discharge the oxygen absorbed in the molten steel to the outside of the vacuum chamber by the flow of the molten steel and uniformly disperse it throughout the apparatus. The present inventors control the dispersed state of absorbed oxygen by controlling the stirring power density of the molten steel in the vacuum chamber by the top-blown oxygen jet and the recirculation gas, and the balance ε T / ε B of ε T and ε B. I found out what I could do. This is because the oxygen concentration in the vicinity of the reaction region is determined by the balance between the rate at which oxygen is absorbed and the rate at which the absorbed oxygen moves from the reaction region, and these are generally correlated with the stirring power density. Because there is.

以上の通り、本発明者らは、鋭意検討を重ねた結果、以下に説明する溶鋼の昇温方法を完成させた。 As described above, as a result of repeated diligent studies, the present inventors have completed the method for raising the temperature of molten steel described below.

すなわち、本開示の溶鋼の昇温方法は、RH真空脱ガス装置の真空槽内において、減圧下で酸素を溶鋼表面に吹き付けて溶鋼を昇温する方法であって、前記酸素を吹き付けるランスの先端形状が、直径D(m)のスロート部と、出口直径D(m)の円錐形の拡大部とからなり、下記式(1)から求められる適正ノズル前圧P (Pa)と下記式(2)から求められる操業ノズル前圧P(Pa)との比P/P を0.4以上0.75以下とすることを特徴とする。 That is, the method for raising the temperature of the molten steel of the present disclosure is a method of spraying oxygen on the surface of the molten steel under reduced pressure in the vacuum chamber of the RH vacuum degassing device to raise the temperature of the molten steel, and the tip of the lance for blowing the oxygen. The shape consists of a throat portion with a diameter D t (m) and a conical enlarged portion with an outlet diameter De (m), and the appropriate nozzle front pressure P 0 * (Pa) obtained from the following equation (1). It is characterized in that the ratio P 0 / P 0 * with the operating nozzle front pressure P 0 (Pa) obtained from the following equation (2) is 0.4 or more and 0.75 or less.

(D/D=14.92×(P/P 1.43×{1-(P/P 0.286} …(1)
=P+12.89×Q/D …(2)
(ここで、P:真空槽内圧力(Pa)、Q:上吹き酸素流量(Nm/min)である。)
(D t / De e ) 4 = 14.92 × (P e / P 0 * ) 1.43 × {1- (P e / P 0 * ) 0.286 }… (1)
P 0 = P e + 12.89 × Q T / D t 2 … (2)
(Here, Pe : Vacuum chamber pressure (Pa), QT : Top-blown oxygen flow rate (Nm 3 / min).)

適正ノズル前圧P (Pa)と操業ノズル前圧P(Pa)との比P/P が1に近いほど酸素ジェットは適正膨張となり、ハードブローとなる。しかしながら、上述したように、P/P を過度に増加させると溶鋼のスプラッシュが著しく増加することに加え、酸素が吹き込まれる反応領域近傍のAl欠乏が促進されてしまい、低級酸化物の生成を著しく増加させてしまう。一方で、P/P を過度に低下させてしまうと、酸素ジェットがソフトブローとなり酸素の溶鋼への吸収速度が著しく低下してしまう。本発明者らは、後述する効果の確認方法に則り、250tonの溶鋼をRH真空脱ガス装置にてOB処理を行い、Al燃焼率および耐火物損耗速度とP/P の関係を調査した。その結果を図1及び2に示す。P/P が0.4以上0.75以下の範囲において、Al燃焼率が高く、かつ耐火物損耗速度が低位であることがわかる。したがって、上記課題を解決するためには、P/P を0.4以上0.75以下の範囲に制御する必要がある。P/P は下限が好ましくは0.45以上、より好ましくは0.50以上であり、上限が好ましくは0.70以下、より好ましくは0.60以下である。 The closer the ratio P 0 / P 0 * of the proper nozzle pre-pressure P 0 * (Pa) to the operating nozzle pre-pressure P 0 (Pa) is to 1, the more proper the oxygen jet expands and the hard blow becomes. However, as described above, when P 0 / P 0 * is excessively increased, the splash of molten steel is remarkably increased, and Al deficiency in the vicinity of the reaction region where oxygen is blown is promoted, so that the lower oxide It will significantly increase the production. On the other hand, if P 0 / P 0 * is excessively lowered, the oxygen jet becomes a soft blow and the absorption rate of oxygen into the molten steel is significantly lowered. The present inventors OB-treated 250 ton of molten steel with an RH vacuum degassing device according to the method for confirming the effect described later, and investigated the relationship between Al combustion rate and refractory wear rate and P 0 / P 0 * . did. The results are shown in FIGS. 1 and 2. It can be seen that in the range of P 0 / P 0 * of 0.4 or more and 0.75 or less, the Al combustion rate is high and the refractory wear rate is low. Therefore, in order to solve the above problems, it is necessary to control P 0 / P 0 * in the range of 0.4 or more and 0.75 or less. The lower limit of P 0 / P 0 * is preferably 0.45 or more, more preferably 0.50 or more, and the upper limit is preferably 0.70 or less, more preferably 0.60 or less.

本開示の溶鋼の昇温方法においては、下記式(3)及び(4)により求められるランスから上吹きされた酸素ジェットによる真空槽内溶鋼の攪拌動力ε(W)と、下記式(5)から求められるRH真空脱ガス装置の溶鋼環流を目的として吹き込まれたガスによる真空槽内溶鋼の攪拌動力ε(W)との比ε/εを0.3以上0.6以下とすることが好ましい。 In the method for raising the temperature of the molten steel of the present disclosure, the stirring power ε T (W) of the molten steel in the vacuum chamber by the oxygen jet top-blown from the lance obtained by the following equations (3) and (4) and the following equation (5). ), The ratio ε T / ε B to the stirring power ε B (W) of the molten steel in the vacuum chamber by the gas blown for the purpose of recirculating the molten steel of the RH vacuum degassing device is 0.3 or more and 0.6 or less. It is preferable to do so.

ε=5.24×10×Q/H …(3)
M=[5×{(P/P0.285-1}]0.5 …(4)
ε=6.18×QT{2.3log(1+ρH/P)+(1-T/T)} …(5)
(ここで、M:上吹き酸素ジェットのマッハ数、H:ランス―湯面間距離(m)、Q:環流ガス流量(Nm/min)、T:溶鋼温度(K)、ρ:溶鋼密度(kg/m)、H:環流ガス吹込み羽口―真空槽内溶鋼湯面間距離(m)、T:環流ガス温度(K)である。)
ε T = 5.24 × 10 3 × Q T D t M 2 / HT … (3)
M = [5 × {(P 0 / P e ) 0.285 -1}] 0.5 ... (4)
ε B = 6.18 × Q B T {2.3 log (1 + ρH B / P e ) + (1-T g / T)}… (5)
(Here, M: Mach number of top-blown oxygen jet, HT: Lance-hot water surface distance (m), Q B : Circulating gas flow rate (Nm 3 / min), T : Molten steel temperature (K), ρ: Molten steel density (kg / m 3 ), H B : Circulation gas blowing tuyere-distance between molten steel molten metal surface in vacuum tank (m), T g : Recirculation gas temperature (K).

酸素が吹き込まれている反応領域近傍における酸素濃度は、酸素が吸収される速度と、吸収された酸素が反応領域から移動する速度とのバランスで決定される。したがって、上吹き酸素ジェットおよび環流ガスによる真空槽内溶鋼へ与える攪拌動力の比、ε/εと昇温速度との間には一定の相間があると考えた。そこで本発明者らは、上記したP/P が0.4以上0.75以下の範囲内でε/εを変更した条件にてOB処理を行い、昇温速度を測定した。その結果を図3に示す。昇温速度はε/εが0.3以上0.6以下の範囲において高い値を示すことを見出した。これは、ε/εが0.3を下回るとジェットの動圧が低位となって着酸速度が大きく低下してしまい、0.6を上回るとジェットのエネルギーが過剰となり、環流ガスによる溶鋼の流動を妨げてしまい吸収した酸素の分散が効率的に行われなかったためと考えられる。したがって、ε/εは0.3以上0.6以下の範囲であることが好ましい。下限はより好ましくは0.4以上、さらに好ましくは0.45以上である。 The oxygen concentration in the vicinity of the reaction region where oxygen is blown is determined by the balance between the rate at which oxygen is absorbed and the rate at which the absorbed oxygen moves from the reaction region. Therefore, it was considered that there is a constant phase between ε T / ε B and the rate of temperature rise, which is the ratio of the stirring power given to the molten steel in the vacuum chamber by the top-blown oxygen jet and the recirculation gas. Therefore, the present inventors performed OB treatment under the condition that ε T / ε B was changed within the range where P 0 / P 0 * was 0.4 or more and 0.75 or less, and measured the temperature rise rate. .. The results are shown in FIG. It was found that the rate of temperature rise shows a high value in the range of ε T / ε B of 0.3 or more and 0.6 or less. This is because when ε T / ε B is less than 0.3, the dynamic pressure of the jet becomes low and the acidation rate drops significantly, and when it exceeds 0.6, the energy of the jet becomes excessive and it is due to the reflux gas. It is probable that the flow of molten steel was hindered and the absorbed oxygen was not efficiently dispersed. Therefore, ε T / ε B is preferably in the range of 0.3 or more and 0.6 or less. The lower limit is more preferably 0.4 or more, still more preferably 0.45 or more.

3.補足:OB処理条件
真空槽内の真空度Pが高すぎると、噴射したジェットが雰囲気を巻き込んで大きく減衰してしまい、昇温効率が著しく低下してしまう。この考えから、通常、酸素上吹き時のPは13.3kPa(100Torr)未満とすることが多く、本開示の溶鋼の昇温方法においてもこの程度の値に制御することが望ましい。上記の式(1)、(2)から明らかなように、本開示の溶鋼の昇温方法においては、このようにPを特定の値としたうえで、ランスの先端形状(D、D)に応じて上吹き酸素流量Qを調整することで、P/P を0.4以上0.75以下の範囲に制御することができる。
3. 3. Supplement: OB processing conditions If the degree of vacuum Pe in the vacuum chamber is too high, the jet jet that has been injected entrains the atmosphere and is greatly attenuated, resulting in a significant decrease in temperature rise efficiency. From this point of view, Pe is usually less than 13.3 kPa (100 Torr) at the time of oxygen top blowing, and it is desirable to control it to such a value even in the method for raising the temperature of molten steel of the present disclosure. As is clear from the above equations (1) and (2), in the method for raising the temperature of the molten steel of the present disclosure, the tip shape of the lance (D t , D) is set to a specific value in this way. By adjusting the top-blown oxygen flow rate QT according to e ), P 0 / P 0 * can be controlled in the range of 0.4 or more and 0.75 or less.

一般的に酸素上吹き時のランス高さHは、低すぎると超ハードブローとなり溶鋼スプラッシュおよびランスへの地金付着が生じ易く、逆に高すぎるとソフトブローとなり酸素吸収速度の低下、さらにはジェットが真空槽内壁面と衝突し、耐火物損耗を促進させ易い。従って、通常操業においてHは2.0m以上5.0m以下の範囲であることが望ましい。 Generally, if the lance height HT at the time of oxygen blow is too low, it becomes an ultra-hard blow and the metal is likely to adhere to the molten steel splash and the lance, and conversely, if it is too high, it becomes a soft blow and the oxygen absorption rate decreases. The jet collides with the inner wall surface of the vacuum chamber, and it is easy to accelerate the wear of refractory materials. Therefore, it is desirable that the HT is in the range of 2.0 m or more and 5.0 m or less in normal operation.

また、ノズル前圧Pの絶対値が高いほどジェットがハードブローとなり、酸素の吸収速度が高位となる。したがって、P/P を0.4以上0.75以下とすることに加えて、Pの絶対値を0.1MPa以上とすることが望ましい。 Further, the higher the absolute value of the nozzle front pressure P 0 , the harder the jet becomes, and the higher the oxygen absorption rate becomes. Therefore, in addition to setting P 0 / P 0 * to 0.4 or more and 0.75 or less, it is desirable to set the absolute value of P 0 to 0.1 MPa or more.

さらに、真空槽内溶鋼の攪拌動力密度は、環流ガス吹込み羽口―真空槽内溶鋼湯面間距離Hに大きく影響する。この値は、真空槽浸漬管の取鍋溶鋼への浸漬深さ、槽内真空度、すなわち溶鋼の吸上げ高さを調整することで制御できる。操業条件にも依存するが、通常Hの値は1.5m以上3.0m以下程度であり、本開示の溶鋼の昇温方法においてもこの程度に制御することが望ましい。 Further, the stirring power density of the molten steel in the vacuum chamber greatly affects the distance HB between the tuyere for blowing the reflux gas and the molten steel surface in the vacuum chamber. This value can be controlled by adjusting the immersion depth of the vacuum tank immersion pipe in the ladle molten steel, the degree of vacuum in the tank, that is, the suction height of the molten steel. Although it depends on the operating conditions, the value of HB is usually about 1.5 m or more and 3.0 m or less, and it is desirable to control it to this extent even in the method for raising the temperature of molten steel of the present disclosure.

尚、本開示の溶鋼の昇温方法に用いられるRH真空脱ガス装置そのものについては、公知の装置をいずれも採用可能である。上吹きランスについても、先端形状が上記したスロート部と拡大部とを有するものであればよく、一般的なランスをいずれも採用可能である。これらの構成は自明であることから、ここでは詳細な説明を省略する。 As the RH vacuum degassing device itself used in the method for raising the temperature of molten steel of the present disclosure, any known device can be adopted. As for the top-blown lance, any general lance can be adopted as long as the tip shape has the above-mentioned throat portion and enlarged portion. Since these configurations are self-explanatory, detailed description thereof will be omitted here.

また、本開示の溶鋼の昇温方法に適用される溶鋼についても、転炉出鋼後にRH真空脱ガス工程を経由し、ステンレス等の高合金を除く一般的な炭素鋼をいずれも採用可能である。転炉出鋼後の溶鋼は概ねAl等を含んでいることから、本開示の方法によってAlと酸素とを反応させて溶鋼を適切に昇温させることができる。 Further, as for the molten steel applied to the method for raising the temperature of the molten steel of the present disclosure, any general carbon steel excluding high alloys such as stainless steel can be adopted via the RH vacuum degassing process after the converter is ejected. be. Since the molten steel after the transfer from the converter contains Al and the like, the molten steel can be appropriately heated by reacting Al with oxygen by the method of the present disclosure.

以下、実施例及び比較例を示しつつ本開示の溶鋼の昇温方法についてさらに詳細に説明する。 Hereinafter, the method for raising the temperature of the molten steel of the present disclosure will be described in more detail with reference to Examples and Comparative Examples.

1.評価基準
以下に示す実施例及び比較例に係る溶鋼の昇温方法について、Al燃焼率(上吹きした酸素がAlと反応した割合)、耐火物損耗速度、および昇温速度の3つの指標をもって評価した。
1. 1. Evaluation Criteria The method for raising the temperature of molten steel according to the examples and comparative examples shown below is evaluated using three indexes: Al combustion rate (ratio of top-blown oxygen reacting with Al), refractory wear rate, and temperature rise rate. did.

1.1.Al燃焼率
Al燃焼率は、OB処理直前および直後にて溶鋼サンプルを採取し、化学分析で得たAl濃度[Al](質量%)から下記式(6)、(7)を用いて算出した。
1.1. Al combustion rate The Al combustion rate was calculated using the following formulas (6) and (7) from the Al concentration [Al] (mass%) obtained by collecting molten steel samples immediately before and after the OB treatment and performing chemical analysis. ..

Al燃焼率=([Al]OB前―[Al]OB後)/OB量・・・(6)
OB量=32×100×Q×OB時間/22.4/溶鋼質量・・・(7)
Al combustion rate = ([Al] before OB- [Al] after OB ) / OB amount ... (6)
OB amount = 32 x 100 x QT x OB time / 22.4 / molten steel mass ... (7)

ここでOB量とは、上吹きした全酸素量を溶鋼中濃度に換算した値であり、Al燃焼率とは上吹きした全酸素量のうちAlの燃焼に使われたものの割合を示す。この値が低いということは、多くの酸素が排気ロスあるいは低級酸化物の生成に使用されたことを意味し、昇温速度の低下や低級酸化物による耐火物の損耗に繋がる。したがって、Al燃焼率は70%以上であることが望ましい。 Here, the OB amount is a value obtained by converting the total oxygen amount blown up into the concentration in the molten steel, and the Al combustion rate indicates the ratio of the total oxygen amount blown up to be used for burning Al. A low value means that a large amount of oxygen was used for exhaust loss or the formation of lower oxides, leading to a decrease in the rate of temperature rise and wear of refractories due to the lower oxides. Therefore, it is desirable that the Al combustion rate is 70% or more.

1.2.耐火物損耗速度
耐火物損耗速度は、同一の条件でOB処理を100ch実施し、このときのランス下端-湯面間における真空槽内側壁の耐火物の肉厚の減少量をch数で割った値とした。炉壁耐火物の損耗は主に送酸時のスプラッシュによる地金付着、低級酸化物と耐火物の化学反応による浸食が主要因とされており、本指標はスプラッシュおよび低級酸化物の生成の度合いの評価に適していると考えた。また、使用する真空槽のサイズにもよるが、炉壁耐火物の厚みは数100mmである場合が多く、槽を数100ch連続して使用することを考えた場合、耐火物損耗速度は3.0mm/ch以下であることが望ましい。
1.2. Refractory wear rate For the refractory wear rate, 100 channels of OB treatment were performed under the same conditions, and the amount of decrease in the wall thickness of the refractory on the inner wall of the vacuum tank between the lower end of the lance and the surface of the molten metal was divided by the number of channels. It was set as a value. The main factors for wear of refractory refractories are the adhesion of bare metal due to the splash during acid transfer and the erosion due to the chemical reaction between the lower oxide and the refractory. I thought it was suitable for the evaluation of. Further, although it depends on the size of the vacuum tank used, the thickness of the refractory on the furnace wall is often several hundred mm, and when considering the continuous use of the tank for several hundred channels, the rate of wear of the refractory is 3. It is desirable that it is 0 mm / ch or less.

1.3.昇温速度
昇温速度は、OB処理直前および直後にて酸素プローブによる溶鋼の測温を実施し、このときの温度から下記式(8)にて求まる値とした。この昇温速度が遅いと処理時間の大幅な延長、酸素原単位の増大を招くことから、昇温速度は3.0℃/min以上であることが望ましい。
1.3. Temperature rise rate The temperature rise rate was set to a value obtained by the following formula (8) from the temperature at which the temperature of the molten steel was measured with an oxygen probe immediately before and after the OB treatment. If the temperature rise rate is slow, the treatment time is significantly extended and the oxygen intensity is increased. Therefore, the temperature rise rate is preferably 3.0 ° C./min or more.

昇温速度=(TOB後―TOB前)/OB時間・・・(8) Temperature rise rate = ( after TOB- before TOB) / OB time ... (8)

以上の通り、以下に示す実施例及び比較例において、Al燃焼率が70%以上、耐火物損耗速度が3.0mm/ch以下、および昇温速度が3.0℃/min以上であったものを所望の効果が得られたと判断し、これらに加え昇温速度が4.0℃/min以上であったものを所望の効果が特に顕著に得られたと判断した。 As described above, in the examples and comparative examples shown below, the Al combustion rate was 70% or more, the refractory wear rate was 3.0 mm / ch or less, and the temperature rise rate was 3.0 ° C./min or more. It was judged that the desired effect was obtained, and in addition to these, those having a temperature rising rate of 4.0 ° C./min or more were judged to have obtained the desired effect particularly remarkably.

2.実施例及び比較例に係る溶鋼の昇温方法
転炉吹錬を終えた溶鋼を取鍋に出鋼した後に、上吹きランスを具備した真空槽を取鍋内溶鋼に挿入、溶鋼を吸引して環流処理を開始し、任意のタイミングにてOB処理を開始した。実施例、比較例ともすべて、溶鋼量は250ton規模、溶鋼温度は1600~1640℃であった。OB処理に際し、真空槽内圧力P、ノズルスロート径D、出口径D、上吹き酸素流量Q、環流ガス流量Q、ランス―湯面間距離H、環流ガス吹込み羽口―真空槽内溶鋼湯面間距離Hを操作因子として下記表1及び2のように変化させた。また、計算簡略化のため、εを算出する際の溶鋼密度ρは7000kg/m、溶鋼温度Tは1873K、および環流ガス温度Tgは300Kで一定とし、他の精錬条件は以下の通りとした。
2. 2. Method for raising the temperature of molten steel according to Examples and Comparative Examples After the molten steel that has been blown in a converter is put out in a pan, a vacuum tank equipped with a top-blown lance is inserted into the molten steel in the pan, and the molten steel is sucked. The recirculation treatment was started, and the OB treatment was started at an arbitrary timing. In both Examples and Comparative Examples, the amount of molten steel was 250 ton scale, and the molten steel temperature was 1600 to 1640 ° C. During OB processing, vacuum chamber pressure P e , nozzle throat diameter D t , outlet diameter D e , top blown oxygen flow rate Q T , recirculation gas flow rate Q B , lance-to-water surface distance HT , recirculation gas blowing tuyere. -The distance between the molten steel surfaces in the vacuum chamber HB was changed as an operating factor as shown in Tables 1 and 2 below. For simplification of calculation, the molten steel density ρ when calculating ε B is constant at 7000 kg / m 3 , the molten steel temperature T is 1873 K, and the reflux gas temperature T g is 300 K, and other refining conditions are as follows. did.

OB処理前溶鋼組成:
[C] :0.05~0.20質量%
[Si]:0.05~0.50質量%
[Mn]:0.30~1.00質量%
[Al]:0.10~0.20質量%
OB処理時間:10min
Molten steel composition before OB treatment:
[C]: 0.05 to 0.20% by mass
[Si]: 0.05 to 0.50% by mass
[Mn]: 0.30 to 1.00 mass%
[Al]: 0.10 to 0.20% by mass
OB processing time: 10 min

OB処理前後にて溶鋼サンプル採取し、サンプルの一部を化学分析に供することでOB処理前後のAl濃度を求め、上記式(6)、(7)からAl燃焼率を算出した。また、同一の条件にてOB処理を100ch実施したタイミングにて真空槽内耐火物の肉厚の減少量を測定し、耐火物損耗速度を算出した。さらに、溶鋼サンプルに加えてOB処理前後にて酸素プローブによる測温を実施し、上記式(8)から昇温速度を算出した。実施例及び比較例におけるAl燃焼率、耐火物損耗速度を下記表1に、昇温速度の値を下記表2に記載する。 A molten steel sample was taken before and after the OB treatment, and a part of the sample was subjected to chemical analysis to obtain the Al concentration before and after the OB treatment, and the Al combustion rate was calculated from the above formulas (6) and (7). Further, the amount of decrease in the wall thickness of the refractory in the vacuum chamber was measured at the timing when the OB treatment was carried out for 100 channels under the same conditions, and the wear rate of the refractory was calculated. Further, in addition to the molten steel sample, the temperature was measured with an oxygen probe before and after the OB treatment, and the temperature rise rate was calculated from the above formula (8). The Al combustion rate and the refractory wear rate in Examples and Comparative Examples are shown in Table 1 below, and the values of the temperature rise rate are shown in Table 2 below.

Figure 0007043915000001
Figure 0007043915000001

Figure 0007043915000002
Figure 0007043915000002

表1、2に示す結果から明らかなように、P/P を0.4以上0.75以下とした場合、Al燃焼率、耐火物損耗速度、および昇温速度のすべてにおいて良好な結果となった(実施例1~7)。特に、P/P を0.4以上0.75以下とすると同時に、ε/εを0.3以上0.6以下とした場合、昇温速度がより顕著に高まった(実施例1~5)。実施例6は、ε/εが小さく上吹き酸素ジェットの動圧が低位であり、酸素の溶鋼への吸収速度がやや低位であったと考えられる。一方、実施例7は、ε/εが大きく上吹き酸素ジェットが真空槽内溶鋼の流動を阻害してしまい吸収された酸素の分散が効率的になされなかったため、Al燃焼率がやや低位であったと考えられる。このように所望の効果を最大限発揮しようとした場合、P/P だけでなくε/εも併せて制御することが望ましい。 As is clear from the results shown in Tables 1 and 2, when P 0 / P 0 * is 0.4 or more and 0.75 or less, the Al combustion rate, the refractory wear rate, and the temperature rise rate are all good. The result was (Examples 1 to 7). In particular, when P 0 / P 0 * was set to 0.4 or more and 0.75 or less, and at the same time, ε T / ε B was set to 0.3 or more and 0.6 or less, the heating rate was significantly increased (implemented). Examples 1-5). In Example 6, it is probable that ε T / ε B was small, the dynamic pressure of the top-blown oxygen jet was low, and the absorption rate of oxygen into the molten steel was slightly low. On the other hand, in Example 7, the Al combustion rate was slightly low because the ε T / ε B was large and the top-blown oxygen jet obstructed the flow of the molten steel in the vacuum chamber and the absorbed oxygen was not efficiently dispersed. It is probable that it was. When trying to maximize the desired effect in this way, it is desirable to control not only P 0 / P 0 * but also ε T / ε B.

一方で、表1、2に示す結果から明らかなように、P/P を0.4未満とした場合や0.75超とした場合、所望の効果が得られなかった(比較例1~4)。比較例1は、真空槽内の圧力が高く、ノズルから噴射された酸素ジェットが著しく減衰してしまい、動圧の低下にて酸素の吸収が効率的になされなかったと考えられる。逆に比較例2は、P/P が非常に高く酸素ジェットがハードブローであり、Al以外の溶鋼成分の燃焼が顕著に生じてしまったことに加え、溶鋼のスプラッシュが多量に発生して耐火物損耗速度が著しく増加してしまった。比較例3は、P/P が著しく低いためジェットの減衰が顕著であり、比較例1と同様動圧の低下にて酸素の吸収が効率的になされなかったと考えられる。さらに比較例4は、P/P が低いことに加え、ε/εが高過ぎることから、酸素の溶鋼への吸収や、吸収した酸素の分散がともに不十分であったため、所望の効果が得られなかった。 On the other hand, as is clear from the results shown in Tables 1 and 2, when P 0 / P 0 * is set to less than 0.4 or more than 0.75, the desired effect cannot be obtained (Comparative Example). 1-4). In Comparative Example 1, it is considered that the pressure in the vacuum chamber was high, the oxygen jet ejected from the nozzle was significantly attenuated, and the oxygen was not efficiently absorbed due to the decrease in dynamic pressure. On the contrary, in Comparative Example 2, P 0 / P 0 * was very high and the oxygen jet was a hard blow, and in addition to the remarkable combustion of molten steel components other than Al, a large amount of molten steel splash was generated. As a result, the rate of wear of refractories has increased significantly. In Comparative Example 3, since P 0 / P 0 * was extremely low, the jet attenuation was remarkable, and it is considered that oxygen was not efficiently absorbed due to the decrease in dynamic pressure as in Comparative Example 1. Further, in Comparative Example 4, in addition to the low P 0 / P 0 * , the ε T / ε B was too high, so that both absorption of oxygen into the molten steel and dispersion of the absorbed oxygen were insufficient. The desired effect was not obtained.

以上の通り、RH真空脱ガス装置の真空槽内において、減圧下で酸素を溶鋼表面に吹き付けて溶鋼を昇温する方法において、送酸時に生じる溶鋼スプラッシュおよび低級酸化物の生成といった弊害を抑制しつつ高い昇温効率を得るためには、P/P を0.4以上0.75以下とすることが重要である。また、P/P を0.4以上0.75以下とすることに加えて、ε/εを0.3以上0.6以下とすることで、より高い昇温効率を確保できる。 As described above, in the method of spraying oxygen on the molten steel surface under reduced pressure to raise the temperature of the molten steel in the vacuum chamber of the RH vacuum degassing device, adverse effects such as the formation of molten steel splash and lower oxides generated during acid feeding are suppressed. In order to obtain high temperature rise efficiency, it is important to set P 0 / P 0 * to 0.4 or more and 0.75 or less. In addition to setting P 0 / P 0 * to 0.4 or more and 0.75 or less, setting ε T / ε B to 0.3 or more and 0.6 or less ensures higher temperature rise efficiency. can.

本開示の溶鋼の昇温方法は、転炉出鋼後の二次精錬工程において、次工程である鋳造に適正な溶鋼温度に調整する場合に利用可能である。 The method for raising the temperature of molten steel of the present disclosure can be used in the secondary refining step after converter steelmaking to adjust the molten steel temperature to be appropriate for casting, which is the next step.

Claims (2)

RH真空脱ガス装置の真空槽内において、減圧下で酸素を溶鋼表面に吹き付けて溶鋼を昇温する方法であって、
前記酸素を吹き付けるランスの先端形状が、直径D(m)のスロート部と、出口直径D(m)の円錐形の拡大部とからなり、
下記式(1)から求められる適正ノズル前圧P (Pa)と下記式(2)から求められる操業ノズル前圧P(Pa)との比P/P 0.408以上0.718以下とする、
溶鋼の昇温方法。
(D/D=14.92×(P/P 1.43×{1-(P/P 0.286} …(1)
=P+12.89×Q/D …(2)
(ここで、P:真空槽内圧力(Pa)、Q:上吹き酸素流量(Nm/min)である。)
In the vacuum chamber of the RH vacuum degassing device, oxygen is blown onto the surface of the molten steel under reduced pressure to raise the temperature of the molten steel.
The tip shape of the lance that blows oxygen consists of a throat portion with a diameter of D t (m) and a conical enlarged portion with an outlet diameter of De (m).
The ratio P 0 / P 0 * of the proper nozzle front pressure P 0 * (Pa) obtained from the following formula (1) and the operating nozzle front pressure P 0 (Pa) obtained from the following formula (2) is 0.408 or more. 0.718 or less,
How to raise the temperature of molten steel.
(D t / De e ) 4 = 14.92 × (P e / P 0 * ) 1.43 × {1- (P e / P 0 * ) 0.286 }… (1)
P 0 = P e + 12.89 × Q T / D t 2 … (2)
(Here, Pe : Vacuum chamber pressure (Pa), QT : Top-blown oxygen flow rate (Nm 3 / min).)
下記式(3)及び(4)により求められるランスから上吹きされた酸素ジェットによる真空槽内溶鋼の攪拌動力ε(W)と、下記式(5)から求められるRH真空脱ガス装置の溶鋼環流を目的として吹き込まれたガスによる真空槽内溶鋼の攪拌動力ε(W)との比ε/εを0.3以上0.6以下とする、
請求項1に記載の溶鋼の昇温方法。
ε=5.24×10×Q/H …(3)
M=[5×{(P/P0.285-1}]0.5 …(4)
ε=6.18×QT{2.3log(1+ρH/P)+(1-T/T)} …(5)
(ここで、M:上吹き酸素ジェットのマッハ数、H:ランス―湯面間距離(m)、Q:環流ガス流量(Nm/min)、T:溶鋼温度(K)、ρ:溶鋼密度(kg/m)、H:環流ガス吹込み羽口―真空槽内溶鋼湯面間距離(m)、T:環流ガス温度(K)である。)
The stirring power ε T (W) of the molten steel in the vacuum chamber by the oxygen jet blown from the lance obtained by the following formulas (3) and (4) and the molten steel of the RH vacuum degassing device obtained from the following formula (5). The ratio ε T / ε B to the stirring power ε B (W) of the molten steel in the vacuum chamber by the gas blown for the purpose of recirculation shall be 0.3 or more and 0.6 or less.
The method for raising the temperature of molten steel according to claim 1.
ε T = 5.24 × 10 3 × Q T D t M 2 / HT … (3)
M = [5 × {(P 0 / P e ) 0.285 -1}] 0.5 ... (4)
ε B = 6.18 × Q B T {2.3 log (1 + ρH B / P e ) + (1-T g / T)}… (5)
(Here, M: Mach number of top-blown oxygen jet, HT: Lance-hot water surface distance (m), Q B : Circulating gas flow rate (Nm 3 / min), T : Molten steel temperature (K), ρ: Molten steel density (kg / m 3 ), H B : Circulation gas blowing tuyere-distance between molten steel molten metal surface in vacuum tank (m), T g : Recirculation gas temperature (K).
JP2018054190A 2018-03-22 2018-03-22 Method of raising the temperature of molten steel Active JP7043915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018054190A JP7043915B2 (en) 2018-03-22 2018-03-22 Method of raising the temperature of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054190A JP7043915B2 (en) 2018-03-22 2018-03-22 Method of raising the temperature of molten steel

Publications (2)

Publication Number Publication Date
JP2019167561A JP2019167561A (en) 2019-10-03
JP7043915B2 true JP7043915B2 (en) 2022-03-30

Family

ID=68106375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054190A Active JP7043915B2 (en) 2018-03-22 2018-03-22 Method of raising the temperature of molten steel

Country Status (1)

Country Link
JP (1) JP7043915B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129335A (en) 1998-10-20 2000-05-09 Nkk Corp Production of extra-low sulfur steel excellent in cleanliness
JP2003073727A (en) 2001-08-30 2003-03-12 Sumitomo Metal Ind Ltd Lance for reduced pressure smelting
JP2008150683A (en) 2006-12-19 2008-07-03 Kobe Steel Ltd Method for manufacturing steel wire rod excellent in fatigue characteristic
JP2017075399A (en) 2015-10-15 2017-04-20 Jfeスチール株式会社 Top-blown lance, vacuum degasser and vacuum degassing treatment method
JP2017075400A (en) 2015-10-15 2017-04-20 Jfeスチール株式会社 Top-blown lance, vacuum degasser and vacuum degassing treatment method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116501B2 (en) * 1991-07-02 1995-12-13 川崎製鉄株式会社 Oxygen blowing method of molten metal in degassing vessel under reduced pressure
JPH0881712A (en) * 1994-09-13 1996-03-26 Sumitomo Metal Ind Ltd Vacuum-degassing method of molten steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129335A (en) 1998-10-20 2000-05-09 Nkk Corp Production of extra-low sulfur steel excellent in cleanliness
JP2003073727A (en) 2001-08-30 2003-03-12 Sumitomo Metal Ind Ltd Lance for reduced pressure smelting
JP2008150683A (en) 2006-12-19 2008-07-03 Kobe Steel Ltd Method for manufacturing steel wire rod excellent in fatigue characteristic
JP2017075399A (en) 2015-10-15 2017-04-20 Jfeスチール株式会社 Top-blown lance, vacuum degasser and vacuum degassing treatment method
JP2017075400A (en) 2015-10-15 2017-04-20 Jfeスチール株式会社 Top-blown lance, vacuum degasser and vacuum degassing treatment method

Also Published As

Publication number Publication date
JP2019167561A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6343844B2 (en) Method for refining molten steel in vacuum degassing equipment
AU695201B2 (en) Process for vacuum refining of molten steel
CN109385503B (en) Carbon-manganese-protecting converter steelmaking process
JP7043915B2 (en) Method of raising the temperature of molten steel
CN108148945B (en) A kind of blowing process that RH refining furnace second-time burning efficiency can be improved
JP6953714B2 (en) Method of raising the temperature of molten steel
JP2008169407A (en) Method for desulfurizing molten steel
JP4360270B2 (en) Method for refining molten steel
JP6323688B2 (en) Desulfurization method for molten steel
JP6766673B2 (en) Hot compresses
JP2018100427A (en) Method for producing low sulfur steel
JP5822073B2 (en) Converter refining method with excellent dust generation suppression effect
JP4085898B2 (en) Melting method of low carbon high manganese steel
JP4780910B2 (en) How to remove hot metal
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
JP4277819B2 (en) Heating method of molten steel
JP7036993B2 (en) Method for producing low carbon ferromanganese
JP3293023B2 (en) Vacuum blowing method for molten steel
JP4466287B2 (en) Method of refining molten steel under reduced pressure and top blowing lance for refining
JP2724035B2 (en) Vacuum decarburization of molten steel
JP2008255421A (en) Molten steel heating method
JP2006070292A (en) Method for refining molten steel under reduced pressure and top-blowing lance for refining
JP4470673B2 (en) Vacuum decarburization refining method for molten steel
JP6798342B2 (en) Low nitrogen steel melting method and gas spraying equipment
JP2897639B2 (en) Refining method for extremely low sulfur steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R151 Written notification of patent or utility model registration

Ref document number: 7043915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151