JP2563721B2 - Decarburization refining method for molten steel containing chromium - Google Patents

Decarburization refining method for molten steel containing chromium

Info

Publication number
JP2563721B2
JP2563721B2 JP4077730A JP7773092A JP2563721B2 JP 2563721 B2 JP2563721 B2 JP 2563721B2 JP 4077730 A JP4077730 A JP 4077730A JP 7773092 A JP7773092 A JP 7773092A JP 2563721 B2 JP2563721 B2 JP 2563721B2
Authority
JP
Japan
Prior art keywords
oxygen
gas
blown
molten steel
bath surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4077730A
Other languages
Japanese (ja)
Other versions
JPH05279725A (en
Inventor
中尾隆二
田中重典
森重博明
高野博範
小菅俊洋
浩 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4077730A priority Critical patent/JP2563721B2/en
Publication of JPH05279725A publication Critical patent/JPH05279725A/en
Application granted granted Critical
Publication of JP2563721B2 publication Critical patent/JP2563721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は含クロム溶鋼の脱炭精錬
法において、脱炭速度の向上をはかり、かつ、溶鋼中の
[Cr]の酸化を抑え、効率よく脱炭を行う方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently decarburizing a chromium-containing molten steel by improving the decarburizing rate and suppressing the oxidation of [Cr] in the molten steel.

【0002】[0002]

【従来の技術】従来、ステンレス鋼のごとき11wt%
以上のクロムを含む含クロム溶鋼の浴面下および浴面上
より酸素ガスまたは酸素ガス(以下、単に酸素という)
および希釈ガスを吹込む複合吹錬法において、溶鋼中の
[Cr]の酸化を抑え、効率よく脱炭を行う方法とし
て、例えば、特開昭55−158213号公報には、浴
面下に酸素および不活性ガスを吹き込んで脱炭を行うと
同時に該酸素量の少なくとも0.2倍に相当する量の酸
素を浴面上より供給し、浴面上より供給した酸素による
二次燃焼反応熱によって、脱炭の促進をはかる方法が記
載されている。
2. Description of the Related Art Conventionally, 11 wt% such as stainless steel
Oxygen gas or oxygen gas from below and above the bath surface of the chromium-containing molten steel containing chromium as described above.
As a method of suppressing the oxidation of [Cr] in the molten steel and efficiently decarburizing in a composite blowing method in which a diluting gas is blown, for example, JP-A-55-158213 discloses oxygen under the bath surface. And decarburization by blowing an inert gas, and at the same time, an amount of oxygen corresponding to at least 0.2 times the oxygen amount is supplied from the bath surface, and by the heat of secondary combustion reaction due to the oxygen supplied from the bath surface, , A method for promoting decarburization is described.

【0003】また、特開昭59−166617号公報に
は、上吹きは酸素、底吹きは酸素および不活性ガスの混
合ガスを用いる複合吹錬法で含クロム溶鋼を脱炭するに
際し、鋼中[C]濃度に応じて、ランス高さおよび上吹
き酸素量を制御することによって、浴面から発生するス
プラッシュを抑え、また、上吹き酸素による二次燃焼反
応熱によって、脱炭の促進をはかる方法が記載されてい
る。
Further, in Japanese Patent Laid-Open No. 59-166617, when decarburizing molten chromium-containing steel by a composite blowing method using oxygen for top blowing and mixed gas of oxygen and inert gas for bottom blowing, By controlling the height of the lance and the amount of top-blown oxygen according to the concentration of [C], the splash generated from the bath surface is suppressed, and the heat of secondary combustion reaction due to the top-blown oxygen promotes decarburization. The method is described.

【0004】一般に、複合吹錬による含クロム溶鋼の脱
炭反応は、浴面下より供給される酸素による脱炭反応と
浴面上より供給される酸素による脱炭反応に分けて考え
られるが、前記従来技術は、いずれも浴面上より供給さ
れる酸素による脱炭反応を改善した技術であって、浴面
下および浴面上の双方より供給される酸素による脱炭反
応の相関関係については着目されていない。
Generally, the decarburization reaction of molten chromium-containing steel by complex blowing can be divided into a decarburization reaction by oxygen supplied from below the bath surface and a decarburization reaction by oxygen supplied from above the bath surface. The above-mentioned conventional techniques are all techniques for improving the decarburization reaction due to oxygen supplied from above the bath surface, and the correlation between the decarburization reaction due to oxygen supplied from both below and above the bath surface is Not paid attention.

【0005】また、浴面下および浴面上より供給する酸
素の吹込み条件は溶鋼中[C]濃度によって適正値が存
在するはずであるが、前記従来技術では[C]濃度に対
応した十分な制御が行えないために、ばらつきが大き
い。
The conditions for blowing oxygen supplied from below the bath surface and above the bath surface should have appropriate values depending on the [C] concentration in the molten steel. Since it cannot be controlled easily, there are large variations.

【0006】[0006]

【発明が解決しようとする課題】複合吹錬法による含ク
ロム溶鋼の脱炭精錬において、底吹き条件および上吹き
条件を好適な範囲に維持することにより、不活性ガス使
用量を低減し脱炭速度の向上をはかり、かつ、溶鋼中ク
ロムの酸化を抑え、効率よく脱炭を行い、併せて、精錬
時間の短縮をはかるものである。
In the decarburization refining of molten chromium-containing steel by the composite blowing method, the amount of inert gas used is reduced by maintaining the bottom blowing condition and the top blowing condition in the suitable ranges. It is intended to improve the speed, suppress the oxidation of chromium in molten steel, and efficiently decarburize, and at the same time, shorten the refining time.

【0007】[0007]

【課題を解決するための手段】本発明は上述の課題を有
利に解決したものであり、含クロム溶鋼の浴面下および
浴面上に、酸素ガスまたは酸素ガスおよび希釈ガスを吹
込む脱炭精錬法において、前記溶鋼中の[C]濃度が
0.2wt%以上0.7wt%以下の領域において、浴
面下に酸素ガスおよび希釈ガスを、浴面上に酸素ガスの
みを(1) 式、(2) 式、(3) 式および(4)
式を満足する条件下で、吹込むことを特徴とする含ク
ロム溶鋼の脱炭精錬法である。
DISCLOSURE OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and decarburization in which oxygen gas or oxygen gas and a diluent gas are blown below and above the bath surface of molten steel containing chromium. In the refining method, in a region where the [C] concentration in the molten steel is 0.2 wt% or more and 0.7 wt% or less, oxygen gas and a dilution gas are provided below the bath surface, and only oxygen gas is provided on the bath surface by the formula (1) , (2), (3) and (4)
This is a decarburizing refining method for molten chromium-containing steel, which is characterized by blowing under conditions satisfying the formula.

【0008】 0.5≦A+B≦1.5 ……(1) 1≦A/B≦5 ……(2) 0.20≦C/(A+B)≦0.50 ……(3) 0.05≦L/LO ≦0.2 ……(4) A;浴面下に吹込む単位溶鋼重量当りの酸素ガス流量
[Nm3 /minT] B;浴面下に吹込む単位溶鋼重量当りの希釈ガス流量
[Nm3 /minT] C;浴面上に吹込む単位溶鋼重量当りの酸素ガス流量
[Nm3 /minT] L;浴面に吹込んだガスによる浴面の凹み深さ[mm] LO ;静止浴状態での溶鋼深さ[mm] 以下本発明について詳細に説明する。
0.5 ≦ A + B ≦ 1.5 (1) 1 ≦ A / B ≦ 5 (2) 0.20 ≦ C / (A + B) ≦ 0.50 (3) 0.05 ≦ L / L O ≦ 0.2 (4) A: Oxygen gas flow rate per unit molten steel weight blown below the bath surface [Nm 3 / minT] B: Dilution per unit molten steel weight blown below the bath surface Gas flow rate [Nm 3 / minT] C; Oxygen gas flow rate per unit molten steel weight blown onto the bath surface [Nm 3 / minT] L; Depth of depression on the bath surface due to gas blown onto the bath surface [mm] L O 2 ; depth of molten steel in stationary bath state [mm] The present invention will be described in detail below.

【0009】本発明の含クロム溶鋼の脱炭精錬法は図1
に例示するように複合吹錬による脱炭精錬法であり、
(a)は静止浴状態、(b)はガス吹込み状態を示し、
図中の1は上吹きランス、2は底吹き二重管羽口、3は
溶鋼、4はスラグを示し、上吹きランス1から酸素を、
底吹き二重管羽口2の内管から酸素または酸素および希
釈ガスを吹込む。図中5は上吹きによる浴面の火点部を
示す。
The decarburizing refining method for molten chromium-containing steel of the present invention is shown in FIG.
Is a decarburization refining method by compound blowing as illustrated in
(A) shows a static bath state, (b) shows a gas blowing state,
In the figure, 1 is a top blowing lance, 2 is a bottom blowing double pipe tuyere, 3 is molten steel, 4 is slag, and oxygen is supplied from the top blowing lance 1.
Oxygen or oxygen and a diluent gas are blown from the inner tube of the bottom-blown double-tube tuyere 2. In the figure, 5 indicates the hot spot of the bath surface by top blowing.

【0010】本発明は、含クロム溶鋼の複合吹錬におい
て、溶鋼中の[C]濃度が0,2wt%以上0.7wt
%以下の領域において、二重管羽口2の外管からは羽口
溶損防止用の保護用ガスを、内管からは一定流量以上の
酸素および希釈ガスを吹込むことによって、溶鋼を積極
的に撹拌し、浴面の流動を活発にする。また、内管から
吹込むガスのO2 /Ar比を好適値とすることによっ
て、溶鋼中クロムの酸化を抑え、かつ、不活性ガスの使
用量を抑える。一方、浴面上に吹込むガスは酸素のみと
し、吹込んだ酸素によって浴面上に高温域を形成させ
る。高温作用と前記の活発な流動作用とによって、浴面
において脱炭が極めて効率的に進行する。また、浴面上
に吹込む酸素ガスの火点温度は一般に2000℃以上で
あるため、希釈ガスを混合しなくても同等の脱炭効果が
得られる。
According to the present invention, in the compound blowing of chromium-containing molten steel, the [C] concentration in the molten steel is 0.2 wt% or more and 0.7 wt% or less.
%, The protective gas for preventing melting of tuyere is blown from the outer tube of the double tube tuyere 2, and the oxygen and dilution gas of a certain flow rate or more are blown from the inner tube to positively activate the molten steel. Agitate to make the flow on the bath surface vigorous. Further, by setting the O 2 / Ar ratio of the gas blown from the inner tube to a suitable value, the oxidation of chromium in the molten steel is suppressed and the amount of the inert gas used is suppressed. On the other hand, the only gas blown onto the bath surface is oxygen, and the blown oxygen forms a high temperature region on the bath surface. Due to the high temperature action and the vigorous flow action, decarburization proceeds extremely efficiently on the bath surface. Further, since the fire point temperature of the oxygen gas blown onto the bath surface is generally 2000 ° C. or higher, the same decarburizing effect can be obtained without mixing the diluent gas.

【0011】一般に、浴面下から二重管羽口を用いてガ
スを吹込む場合、前述のように外管からは羽口溶損防止
用にAr,LPG等の保護用ガスを、内管からは精錬用
に酸素または酸素および希釈ガスを吹込んでいる。底吹
きのみで含クロム溶鋼の脱炭を行う場合、溶鋼中のクロ
ムの酸化を抑えるために、[C]濃度の低下に伴って内
管に流す酸素流量を下げ、希釈ガス流量を上げていく方
法がとられている。
Generally, when a gas is blown from below the bath surface using a double tube tuyere, a protective gas such as Ar or LPG is supplied from the outer tube to prevent the tuyere from melting as described above. Is blowing oxygen or oxygen and diluent gas for refining. When decarburizing molten chromium-containing steel only by bottom blowing, in order to suppress oxidation of chromium in the molten steel, the flow rate of oxygen flowing through the inner pipe is decreased and the dilution gas flow rate is increased as the [C] concentration decreases. The method is taken.

【0012】図2(a)に従来法、図2(b)に本発明
法の上・底吹きガス吹錬パターンの例を示す。従来法で
はクロム酸化を極力抑える観点から、底吹きガスのO2
/Ar比を小さくする傾向にあり、かつ、上吹きでもA
r希釈を行う場合もある。本発明法では[C]濃度0.
2wt%以上0.7wt%以下の領域で、底吹きのO2
/Ar比を好適にすれば、底吹きの必要酸素流量を確保
でき、上吹きは希釈ガスを流さなくても、クロムの酸化
を抑えられることを知見し、上吹きは酸素のみの吹込み
とした。
FIG. 2A shows an example of the conventional method, and FIG. 2B shows an example of the top / bottom blown gas blowing pattern of the present invention. In the conventional method, from the viewpoint of suppressing chromium oxidation as much as possible, O 2 of the bottom blown gas is used.
/ Ar ratio tends to be small, and A
In some cases, r dilution is performed. In the method of the present invention, the [C] concentration is 0.
Bottom blown O 2 in the range of 2 wt% to 0.7 wt%
It has been found that if the / Ar ratio is optimized, the required oxygen flow rate for bottom blowing can be secured, and the top blowing can suppress the oxidation of chromium without flowing a diluent gas. did.

【0013】図3にSUS304ステンレス鋼の脱炭を
図2(b)の本発明法の吹錬パターンで吹錬を行った場
合の[C]濃度と脱炭酸素効率の関係を示す。なお、図
中の一点鎖線は平均値を示し、底吹きガスとして浴面下
の二重管羽口の内管から吹き込んだ酸素量は0.5Nm
3 /minTで、二重管羽口の内管から吹込んだ酸素と
アルゴンガスのO2 /Ar比[A/B]は1以上5以下
で、上吹き酸素量比率[C/(A+B)]は0.5、上
吹き酸素による浴面の凹み率L/LO は0.1で吹込ん
だ。脱炭酸素効率は吹込んだ酸素のうち脱炭に使用され
た酸素の割合を示し、また上吹きガスによる浴面の凹み
率は図1に基づいて説明される。図3より[C]濃度
0.2wt%以上では前記の条件であれば、高位の脱炭
酸素効率が得られた。また、[C]濃度0.2wt%未
満では、急激に脱炭酸素効率が低下する。
FIG. 3 shows the relationship between the [C] concentration and the decarbonation efficiency when decarburizing SUS304 stainless steel is blown according to the blowing pattern of the method of the present invention shown in FIG. 2 (b). Note that the alternate long and short dash line in the figure shows the average value, and the amount of oxygen blown from the inner tube of the double tube tuyere below the bath surface as the bottom blowing gas is 0.5 Nm.
At 3 / minT, the O 2 / Ar ratio [A / B] of oxygen and argon gas blown from the inner tube of the double tube tuyere is 1 or more and 5 or less, and the upper blown oxygen amount ratio [C / (A + B) ], And the dent ratio L / L O of the bath surface due to top-blown oxygen was 0.1. The decarboxylation efficiency shows the ratio of oxygen used for decarburization to the blown oxygen, and the depression ratio of the bath surface due to the top blowing gas will be explained based on FIG. From FIG. 3, at a [C] concentration of 0.2 wt% or more, a high decarboxylation efficiency was obtained under the above conditions. On the other hand, if the [C] concentration is less than 0.2 wt%, the decarboxylation efficiency will drop sharply.

【0014】なお、[C]濃度が0.7wt%を越えた
範囲でも脱炭酸素効率は高位に安定しているが、この範
囲では特開昭58−77519号公報に示されているよ
うに、底吹きは酸素のみで良いことが考えられる。
The decarboxylation efficiency is stable at a high level even in the range where the [C] concentration exceeds 0.7 wt%, but in this range, as shown in JP-A-58-77519. It is considered that bottom blowing is only oxygen.

【0015】本発明により、希釈ガスの使用量の低減お
よび浴面下より供給できる酸素量の増大がはかれる。
According to the present invention, the amount of diluent gas used can be reduced and the amount of oxygen that can be supplied below the bath surface can be increased.

【0016】次に、底吹き条件としては(1) 式および
(2) 式を満足する必要がある。図4は底吹きのみの吹錬
において、底吹きガス流量と脱炭酸素効率の関係を示
す。なお、脱炭酸素効率は溶鋼中[C]濃度が0.2w
t%以上0.7wt%以下の領域で底吹き酸素のうち脱
炭に作用した酸素の割合を示す。また、吹錬前の[C]
濃度は1.5wt%近傍での値であり、二重管羽口の外
管からの保護用ガス流量は0.05Nm3 /minTで
あり、また、底吹きO2 /Ar比は2〜4の範囲であっ
た。図4より底吹きガス流量が0.5Nm3 /minT
以上、1.5Nm3/minT以下で脱炭酸素効率が高
位に安定する。底吹きガス流量が0.5Nm3 /min
Tよりも少ない場合、鋼浴の撹拌力が小さくなり、供給
された酸素が[C]と反応するための反応界面積が小さ
くなり、供給された酸素はクロム酸化に使用されてスラ
グ中に(Cr23 )として移行する。また、底吹きガ
ス流量が1.5Nm3 /minTを超えると、スプラッ
シュ、ダストの発生が大きくなり、脱炭酸素効率が低下
する。
Next, as the bottom blowing condition, equation (1) and
It is necessary to satisfy the formula (2). FIG. 4 shows the relationship between the bottom blowing gas flow rate and the decarbonation efficiency in bottom blowing only blowing. In addition, decarbonation efficiency is 0.2 w when the [C] concentration in molten steel is
In the region of t% or more and 0.7 wt% or less, the ratio of oxygen that has acted for decarburization in bottom-blown oxygen is shown. Also, before blowing [C]
The concentration is a value near 1.5 wt%, the flow rate of the protective gas from the outer tube of the double tube tuyere is 0.05 Nm 3 / minT, and the bottom blown O 2 / Ar ratio is 2 to 4. Was in the range. From Figure 4, the bottom gas flow rate is 0.5 Nm 3 / minT.
As described above, the decarboxylation efficiency is stabilized at a high level at 1.5 Nm 3 / minT or less. Bottom blow gas flow rate is 0.5 Nm 3 / min
When it is less than T, the stirring power of the steel bath becomes small, the reaction interface area for the supplied oxygen to react with [C] becomes small, and the supplied oxygen is used for chromium oxidation and contained in the slag ( Cr 2 O 3 ). Further, when the bottom blown gas flow rate exceeds 1.5 Nm 3 / minT, splash and dust are increased and decarbonation efficiency is lowered.

【0017】図5は底吹きのみの吹錬において、底吹き
ガスのO2 /Ar比と脱炭酸素効率の関係を示す。な
お、脱炭酸素効率は溶鋼中[C]濃度が0.2wt%以
上0.7wt%以下の領域で底吹き酸素のうちで脱炭に
使用された割合を示す。また、吹錬前の[C]濃度は
1.5wt%近傍での値であり、全底吹きガス流量は
1.0Nm3 /minTで一定であり、、底吹きガスの
2 /Ar比は一定として吹錬を行った。図5より、底
吹きガスのO2 /Ar比が5を超えると急激に脱炭酸素
効率が低下する。これはO2 /Arが大きくなると脱炭
反応で生成してくるCOガスが多くなりすぎて、雰囲気
のCO分圧が高くなるために供給された酸素が脱炭反応
よりもクロム酸化に使用されることによる。また、底吹
きガスのO2 /Ar比が1未満でも脱炭効率は高位に安
定するが、O2 /Ar比が小さい場合、希釈ガスの使用
量が多くなり、かつ、酸素の吹込み速度が小さくなって
精錬時間の延長につながることから好ましくない。従っ
て、底吹き条件として(1) 式および(2) 式を満足する必
要がある。
FIG. 5 shows the relationship between the O 2 / Ar ratio of the bottom-blown gas and the decarbonation efficiency in the bottom-blown only blowing. The decarbonation efficiency indicates the proportion of bottom-blown oxygen used for decarburization in the region where the [C] concentration in molten steel is 0.2 wt% or more and 0.7 wt% or less. Further, the [C] concentration before blowing is a value in the vicinity of 1.5 wt%, the total bottom blowing gas flow rate is constant at 1.0 Nm 3 / minT, and the O 2 / Ar ratio of the bottom blowing gas is The training was carried out as a constant. From FIG. 5, when the O 2 / Ar ratio of the bottom-blown gas exceeds 5, the decarboxylation efficiency is sharply reduced. This is because when O 2 / Ar becomes large, the CO gas generated in the decarburization reaction becomes too large, and the CO partial pressure in the atmosphere becomes high, so the supplied oxygen is used for chromium oxidation rather than the decarburization reaction. It depends. Further, even if the O 2 / Ar ratio of the bottom-blown gas is less than 1, the decarburization efficiency is stable at a high level, but when the O 2 / Ar ratio is small, the amount of diluent gas used increases and the oxygen blowing rate is increased. Is smaller, which leads to extension of refining time, which is not preferable. Therefore, it is necessary to satisfy equations (1) and (2) as bottom blowing conditions.

【0018】図6は上吹きおよび底吹き酸素量に対する
上吹き酸素量比率[C/(A+B)]と脱炭速度比率の
関係を示す。
FIG. 6 shows the relationship between the top blown and bottom blown oxygen ratio [C / (A + B)] and the decarburization rate ratio.

【0019】なお、脱炭速度比率は溶鋼中[C]濃度
0.2wt%以上0.7wt%以下の領域において底吹
き酸素量が0.8Nm3 /minTで、上吹き酸素量比
率が0の場合の平均脱炭速度を100として指数化した
ものである。また全酸素流量は0.8Nm3 /minT
一定で、底吹きガスのO2 /Ar比[A/B]は2、上
吹き酸素による浴面の凹み率L/LO は0.1の場合の
値である。図6より横軸の値が0.20以上で0.50
以下の場合に縦軸の値が高位に安定する。これは上吹き
酸素量比率が小さい場合、上吹き酸素は底吹き酸素によ
る脱炭反応で生じたCOガスと反応してCO2 ガスを生
成する二次燃焼反応に殆どが使用され、脱炭反応に有効
に使用されない。また、上吹き酸素量比率が大きい場
合、上吹き火点部に供給される酸素量が過剰になり過
ぎ、供給された酸素が高酸素濃度の溶鋼を生成する以外
に[Cr]の酸化にも使用され、スラグ中の(Cr2
3 )濃度の上昇に働くことによる。従って、上吹き酸素
量の比率は(3) 式を満足する必要がある。
Regarding the decarburization rate ratio, the bottom blown oxygen amount was 0.8 Nm 3 / minT and the top blown oxygen amount ratio was 0 in the region where the [C] concentration in the molten steel was 0.2 wt% or more and 0.7 wt% or less. In this case, the average decarburization rate is 100 and indexed. The total oxygen flow rate is 0.8 Nm 3 / minT.
The values are constant when the O 2 / Ar ratio [A / B] of the bottom-blown gas is 2, and the depression ratio L / L O of the bath surface due to the top-blown oxygen is 0.1. From Fig. 6, if the value on the horizontal axis is 0.20 or more, 0.50
The value on the vertical axis stabilizes at a high level in the following cases. This is because when the top-blown oxygen amount ratio is small, the top-blown oxygen is mostly used in the secondary combustion reaction that reacts with the CO gas generated in the decarburization reaction by the bottom-blown oxygen to generate CO 2 gas, and the decarburization reaction Is not used effectively. Further, when the ratio of the amount of top-blown oxygen is large, the amount of oxygen supplied to the top-blown flash point becomes excessive, and the supplied oxygen not only produces molten steel with a high oxygen concentration but also oxidizes [Cr]. Used in the slag (Cr 2 O
3 ) By increasing the concentration. Therefore, the ratio of the amount of top-blown oxygen must satisfy equation (3).

【0020】図7は上吹きガスによる浴面の凹み率[L
/LO ]と脱炭酸素効率の関係を示す。なお、脱炭酸素
効率は溶鋼中[C]濃度0.2wt%以上0.7wt%
以下の領域で上吹き酸素のうち脱炭に使用された酸素の
割合を示す。なお、吹錬前の溶鋼中[Si]濃度は0.
1wt%以下、[C]濃度は1.5wt%近傍、上吹き
酸素量比率は0.4である。
FIG. 7 shows the depression ratio [L] of the bath surface due to the top-blown gas.
/ L O ] and the decarboxylation efficiency are shown. The decarbonation efficiency is 0.2 wt% or more and 0.7 wt% or more of [C] concentration in molten steel.
The ratio of oxygen used for decarburization among the top-blown oxygen is shown in the following region. The [Si] concentration in the molten steel before blowing was 0.
It is 1 wt% or less, the [C] concentration is around 1.5 wt%, and the top-blown oxygen amount ratio is 0.4.

【0021】図1(a)の静止浴状態での鋼浴深さLO
の溶鋼3に上吹きおよび底吹きのガスを供給すること
で、(b)の状態になる。ここで、上吹きガスによる浴
面の凹み深さLは(5) 式、(6) 式によって導か
れる。
Steel bath depth L O in the stationary bath state of FIG. 1 (a)
By supplying the top-blown and bottom-blown gases to the molten steel 3 of FIG. Here, the depth L of the dent on the bath surface due to the top-blown gas is derived from the equations (5) and (6).

【0022】 L=Lh ・exp(−0.78h/Lh ) ……(5) Lh =63.0・(QT /nd)2/3 ……(6) ここで、 L;上吹きガスによる浴面の凹み深さ[mm] h;上吹きランス・ギャップ[mm] QT ;上吹きガス流量[Nm3 /Hr] n;上吹きランス孔数 d;上吹きランス孔径[mm] つまり、上吹きランス・ギャップhを小さくし、吹込む
ガスの流速を大きくとることによって、浴面の凹み深さ
Lが大きくなり、L/LO も大きくなることになる。
L = L h · exp (−0.78 h / L h ) (5) L h = 63.0 · (Q T / nd) 2/3 (6) where L; above Depth of bath surface by blowing gas [mm] h; Top blowing lance gap [mm] Q T ; Top blowing gas flow rate [Nm 3 / Hr] n; Number of top blowing lance holes d; Top blowing lance hole diameter [mm That is, by reducing the top blowing lance gap h and increasing the flow velocity of the gas to be blown, the depth L of the depression on the bath surface increases and L / L O also increases.

【0023】図7よりL/LO が0.05以上で0.2
以下の範囲で縦軸の値が高位安定する。これは、L/L
O が小さい場合、上吹きによって供給される酸素のうち
で鋼浴表面まで到達する酸素の比率が小さく、該酸素は
気相中で二次燃焼反応に使用され、脱炭反応に有効に使
用されない。また、L/LO が大きい場合、上吹きによ
って供給される酸素の殆どが鋼浴表面まで到達するが、
この酸素は局部的に集中して供給されるために、溶鋼中
の[Cr]の酸化に使用され、脱炭反応に有効に使用さ
れない。また、L/LO が大き過ぎると、溶鋼のスプラ
ッシュ量が大きくなり、安定な操業が行えない問題点も
ある。従って、L/LO の値は(4) 式を満足する必要が
ある。
From FIG. 7, L / L O is 0.05 or more and 0.2
Within the following range, the value on the vertical axis is highly stable. This is L / L
When O is small, the ratio of oxygen reaching the steel bath surface is small among the oxygen supplied by top blowing, and the oxygen is used in the secondary combustion reaction in the gas phase and is not effectively used in the decarburization reaction. . When L / L O is large, most of the oxygen supplied by top blowing reaches the steel bath surface,
Since this oxygen is locally concentrated and supplied, it is used for the oxidation of [Cr] in the molten steel and is not effectively used for the decarburization reaction. Further, when the L / L O is too large, the splash of the molten steel is increased, there is a problem that can not be performed stable operation. Therefore, the value of L / L O must satisfy equation (4).

【0024】以上より、含クロム溶鋼の複合吹錬法によ
る脱炭精錬において、希釈ガスの使用量を低減し、か
つ、溶鋼中のクロムの酸化を抑え、効率よく脱炭を行う
ためには、[C]濃度0.2wt%以上0.7wt%以
下の溶鋼中へのガス吹込み条件を、先に示した(1) 式、
(2) 式、(3) 式および(4) 式を満足する条件とする必要
がある。実操業においては溶鋼温度との対応で条件を設
定する必要があるが、粗溶鋼の装入時に溶鋼組成および
溶鋼温度を把握し、また、[C]濃度0.7wt%まで
の吹錬状況を把握し、これらを基に、上吹き条件および
底吹きの条件を決定して、精錬を行う。L/LO の調整
は基本的には上吹きランス・ギャップの調整によって行
う。なお、目標温度より溶鋼温度が低い場合には上吹き
酸素量を多めにして操業することにより、調整が可能で
ある。
From the above, in the decarburization refining of the chromium-containing molten steel by the composite blowing method, in order to reduce the amount of the diluent gas used, suppress the oxidation of chromium in the molten steel, and perform the decarburization efficiently, [C] The conditions for gas injection into molten steel having a concentration of 0.2 wt% or more and 0.7 wt% or less are shown in the equation (1),
It is necessary to satisfy the conditions of Eqs. (2), (3), and (4). In the actual operation, it is necessary to set the conditions in correspondence with the molten steel temperature. However, the molten steel composition and the molten steel temperature are grasped at the time of charging the crude molten steel, and the [C] concentration up to 0.7 wt% is confirmed. Grasping is performed, and based on these, top blowing conditions and bottom blowing conditions are determined, and refining is performed. Adjustment of L / L O is basically carried out by the adjustment of the top-blown lance gap. In addition, when the molten steel temperature is lower than the target temperature, it is possible to adjust by operating with a large amount of top-blown oxygen.

【0025】また、[C]濃度0.2wt%未満の領域
では従来法と同じ吹錬方法で行う。この場合、上吹きす
る[C]濃度範囲は脱炭酸素効率との関係で定める必要
があるが、クロムの酸化を極力抑えるために[C]濃度
0.2wt%以上が好ましい。
In the region where the concentration of [C] is less than 0.2 wt%, the blowing method is the same as the conventional method. In this case, the [C] concentration range to be sprayed upward must be determined in relation to the decarboxylation efficiency, but the [C] concentration is preferably 0.2 wt% or more in order to suppress the oxidation of chromium as much as possible.

【0026】[0026]

【作用】含クロム溶鋼の脱炭精錬では、吹き込んだ酸素
が溶鋼中に一旦、固溶した後、下記式で示される脱炭反
応と同時に(8) 式で示される溶鋼中[Cr]の酸化反応
も進行する。
[Function] In the decarburization refining of molten chromium-containing steel, the injected oxygen once forms a solid solution in the molten steel, and then the decarburization reaction shown by the following formula is simultaneously performed with the oxidation of [Cr] in the molten steel shown by the formula (8). The reaction also proceeds.

【0027】 [C]+[O] →CO(g) ……(7) 2[Cr]+3[O] →(Cr23 ) ……(8) これらの反応の平衡定数K7 ,K8 はそれぞれ(9) ,(1
0)式で表わされる。
[C] + [O] → CO (g) (7) 2 [Cr] +3 [O] → (Cr 2 O 3 ) (8) Equilibrium constants K 7 , K of these reactions 8 is (9), (1
It is expressed by equation (0).

【0028】 K7 =PCO/aCO ……(9) K8 =aCr2O3 /aCr2O3 ……(10) ここで、PCOは雰囲気中のCOガスの分圧、aC ,a
O ,aCrは溶鋼中[C],[O],[Cr]の活量を示
し、aCr2O3 はスラグ中(Cr23 )の活量を示す。
一般に、aCr2O3 は1とされ、かつ、aC ,aO ,aCr
の制御は難しいことから、式の脱炭反応を優先的に進行
させるには、希釈ガス量を増加させ、PCOを低下させる
ことが有効とされている。
[0028] K 7 = P CO / a C a O ...... (9) K 8 = a Cr2O3 / a Cr2 a O3 ...... (10) where the partial pressure of CO gas in P CO atmosphere, a C , A
O, a Cr is in the molten steel [C], shows the activity of [O], [Cr], a Cr2O3 shows the activity of the slag (Cr 2 O 3).
Generally, a Cr2O3 is set to 1, and a C , a O , and a Cr
Is difficult to control, it is said that in order to preferentially advance the decarburization reaction of the formula, it is effective to increase the dilution gas amount and decrease PCO .

【0029】しかし、過剰の希釈ガスの使用はコストの
増加につながり、かつ、酸素量を低下させるために好ま
しくない。本発明では、(9) 式および(10)式の定量的な
関係を導き、(2) 式に示す適正な希釈ガス比率を導出し
た。
However, use of an excessive amount of diluent gas is not preferable because it leads to an increase in cost and lowers the amount of oxygen. In the present invention, the quantitative relationship between the equations (9) and (10) was derived, and the proper dilution gas ratio shown in the equation (2) was derived.

【0030】また、上吹きにより酸素を吹込む場合に
は、上記の反応以外に(11)式で示される二次燃焼反応が
進行する。
Further, when oxygen is blown by the upper blowing, the secondary combustion reaction represented by the equation (11) proceeds in addition to the above reaction.

【0031】 CO+1/2O2 →CO2 (g) ……(11) この二次燃焼反応は発熱反応であり、適度に制御するこ
とにより、図1の上吹き酸素の火点部5の温度が上昇
し、脱炭反応を有利に進めることが可能である。しか
し、過剰な二次燃焼反応の進行は上吹きにより供給され
る酸素が脱炭反応に使用されなくなって、不利となる。
従って、(3) 式および(4) 式で示した条件によって、二
次燃焼反応を制御することによって、脱炭反応を効率よ
く進めることが可能である。
CO + 1 / 2O 2 → CO 2 (g) (11) This secondary combustion reaction is an exothermic reaction, and the temperature of the hot-spot portion 5 of the upper-blown oxygen in FIG. It is possible to raise the temperature and advantageously advance the decarburization reaction. However, the excessive progress of the secondary combustion reaction is disadvantageous because the oxygen supplied by the upper blowing is not used for the decarburization reaction.
Therefore, by controlling the secondary combustion reaction under the conditions shown in the equations (3) and (4), the decarburization reaction can be efficiently advanced.

【0032】脱炭反応は[C]濃度によって律速過程が
変化する。低[C]濃度側では律速過程は[C]の移動
であり、鋼浴の撹拌を強化することによって[C]の移
動が促進されて、脱炭速度が増大する。この状態で、上
吹きガス条件を制御しても、脱炭速度の向上にはつなが
らない。
In the decarburization reaction, the rate-determining process changes depending on the [C] concentration. On the low [C] concentration side, the rate-determining process is the transfer of [C], and by strengthening the stirring of the steel bath, the transfer of [C] is promoted and the decarburization rate is increased. Controlling the top blowing gas condition in this state does not lead to an improvement in the decarburization rate.

【0033】また、高[C]濃度側では鋼浴への酸素の
供給が律速過程であり、希釈ガスの効果は小さく、酸素
のみの供給で十分である。また、鋼浴への酸素の供給条
件を好適な範囲に維持することで脱炭速度が向上する。
On the high [C] concentration side, the supply of oxygen to the steel bath is a rate-determining process, the effect of the diluent gas is small, and the supply of oxygen alone is sufficient. Further, the decarburization rate is improved by maintaining the oxygen supply condition to the steel bath within a suitable range.

【0034】[C]濃度0.2wt%以上0.7wt%
以下の領域はこれらの律速過程が、温度およびガス吹込
み条件で変化する領域であり、一定の撹拌力が必要とな
り、(1) 式の関係が導出される。また、上底吹き条件を
同時に制御することが好ましく、前述の(2) 式、(3) 式
および(4) 式を同時に満足することによって、効果的な
脱炭が達成される。
[C] concentration 0.2 wt% or more 0.7 wt%
The following region is a region where these rate-determining processes change depending on the temperature and gas injection conditions, a constant stirring force is required, and the relationship of equation (1) is derived. Further, it is preferable to control the upper and lower blowing conditions at the same time, and effective decarburization can be achieved by simultaneously satisfying the above expressions (2), (3) and (4).

【0035】[0035]

【実施例】SUS304ステンレス鋼(8wt%Ni−
18wt%Cr)60ton処理において、図1(b)
に示す実施態様で、図2(b)に示す酸素ガスとArガ
スの供給パターンで実施した。なお、脱炭開始時の
[C]濃度は1.5wt%とし、上吹きは酸素ガスのみ
とし、[C]濃度0.2wt%以下では上吹きを中止
し、底吹きのみでの精錬を行った表1に溶鋼中[C]濃
度0.2wt%以上0.7wt%以下の領域での脱炭精
錬条件の実施例を示す。
Example: SUS304 stainless steel (8 wt% Ni-
18 wt% Cr) 60 ton processing, FIG.
In the embodiment shown in FIG. 2, the oxygen gas and Ar gas supply pattern shown in FIG. At the start of decarburization, the [C] concentration was set to 1.5 wt% and the upper blowing was performed only with oxygen gas. When the [C] concentration was 0.2 wt% or less, the upper blowing was stopped and the refining was performed only by bottom blowing. Table 1 shows examples of decarburizing and refining conditions in the region where the [C] concentration in molten steel is 0.2 wt% or more and 0.7 wt% or less.

【0036】なお、本発明の実施例は先に示した(1)
式、(2) 式、(3) 式および(4) 式を満足するように精錬
を実施した。比較例のNo.6は底吹きのみで吹錬を行
う方法、また、比較例のNo.7は従来法として一般に
実施されている方法と認められる特開昭55−1521
3号の方法(図2(a))に従った。また、比較例のN
o.8は底吹きガス流量および上吹き酸素量比率が本発
明外の例、No.9は上吹き酸素量比率が本発明外の
例、No.10は底吹き酸素流量、L/LO および上吹
き酸素量比率が本発明外の例、No.11は底吹きO2
/Ar比が本発明外の例である。
The embodiment of the present invention is shown in (1) above.
Refining was carried out so as to satisfy the expressions (2), (3), and (4). No. of the comparative example. No. 6 of the comparative example is a method of blowing only by bottom blowing. No. 7 is recognized as a method generally practiced as a conventional method.
The method of No. 3 (FIG. 2 (a)) was followed. In addition, N of the comparative example
o. No. 8 is an example in which the bottom blown gas flow rate and the top blown oxygen amount ratio are outside the present invention, No. 9 is an example in which the top-blown oxygen content ratio is outside the scope of the present invention, and No. No. 10 is an example in which the bottom blown oxygen flow rate, L / L O and the top blown oxygen amount ratio are outside the scope of the present invention. 11 is bottom blowing O 2
The / Ar ratio is an example outside the present invention.

【0037】なお、[C]濃度0.2wt%未満の領域
はNo.6以外は[C]濃度0.05wt%まで上吹き
を行った。
The area where the [C] concentration is less than 0.2 wt% is No. Other than 6, the upper blowing was performed to a [C] concentration of 0.05 wt%.

【0038】[0038]

【表1】 [Table 1]

【0039】実施結果を表2に示す、表中の平均脱炭酸
素効率は[C]濃度0.2wt%以上0.7wt%以下
の領域での値、脱炭速度指数および精錬時間はNo.8
の例を100とし、かつ供給酸素ガス流量で比例換算し
た値、また、Arガス使用量はNo.7の例を100と
して換算した値である。
The results of implementation are shown in Table 2. In the table, the average decarboxylation efficiency is a value in the range of [C] concentration of 0.2 wt% or more and 0.7 wt% or less, decarburization rate index and refining time. 8
Is 100, and is proportionally converted by the supply oxygen gas flow rate, and the Ar gas usage is No. It is a value converted from the example of 7 as 100.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【発明の効果】本発明法によると、含クロム溶鋼の脱炭
精錬において、脱炭酸素効率が向上し、かつ同一供給酸
素ガス量で脱炭速度の向上がはかられる。また、高価な
Arガス使用量が低減すると共に、精錬時間が短縮され
る。これにより、精錬コストの大幅な低減ができると共
に、生産性の向上がはかられる。
According to the method of the present invention, in the decarburization refining of molten chromium-containing steel, the efficiency of decarbonation can be improved, and the decarburization rate can be improved with the same amount of oxygen gas supplied. Further, the amount of expensive Ar gas used is reduced and the refining time is shortened. As a result, the refining cost can be significantly reduced and the productivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施態様例の説明図で、(a)は静止
浴状態、(b)はガス吹込み状態を示す図。
FIG. 1 is an explanatory view of an embodiment of the present invention, in which (a) is a static bath state and (b) is a gas blowing state.

【図2】従来法および本発明法におけるガス供給パター
ンの例を示す図。
FIG. 2 is a diagram showing an example of a gas supply pattern in the conventional method and the method of the present invention.

【図3】本発明法における炭素濃度および底吹きガスの
2 /Ar比の限定理由を示す図。
FIG. 3 is a diagram showing the reasons for limiting the carbon concentration and the O 2 / Ar ratio of the bottom-blown gas in the method of the present invention.

【図4】本発明法における底吹きガス流量の限定理由を
示す図。
FIG. 4 is a diagram showing the reason for limiting the bottom blown gas flow rate in the method of the present invention.

【図5】本発明における底吹きガスのO2 /Ar比の限
定理由を示す図。
FIG. 5 is a diagram showing the reason for limiting the O 2 / Ar ratio of the bottom-blown gas in the present invention.

【図6】本発明法における上吹き酸素量の比率の限定理
由を示す図。
FIG. 6 is a diagram showing the reason for limiting the ratio of the amount of top-blown oxygen in the method of the present invention.

【図7】本発明法における上吹きによるL/LO の限定
理由を示す図。
FIG. 7 is a diagram showing the reason for limiting L / L O by top blowing in the method of the present invention.

【符号の説明】[Explanation of symbols]

1…上吹きランス 2…底吹き羽口 3…溶鋼 4…スラグ 5…上吹き火点部 1 ... Top blow lance 2 ... Bottom blow tuyere 3 ... Molten steel 4 ... Slag 5 ... Top blow fire point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高野博範 光市大字島田3434番地 新日本製鐵株式 会社光製鐵所内 (72)発明者 小菅俊洋 光市大字島田3434番地 新日本製鐵株式 会社光製鐵所内 (72)発明者 平田 浩 富津市新富20−1 新日本製鐵株式会社 技術開発本部内 (56)参考文献 特開 平2−221318(JP,A) 特開 昭55−158213(JP,A) 特開 昭59−166617(JP,A) 特開 平3−281720(JP,A) 特開 平2−133510(JP,A) 特開 昭60−131908(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hironori Takano 3434 Shimada, Hikari-shi, Nippon Steel Works, Nippon Steel Corporation (72) Inventor Toshihiro Kosuge 3434, Shimada, Hikari-shi Nippon Steel, Ltd. Hikari Steel Works (72) Inventor Hiroshi Hirata 20-1 Shintomi, Futtsu-shi Shin Nippon Steel Co., Ltd. Technology Development Headquarters (56) Reference JP-A-2-221318 (JP, A) JP-A-55-158213 (JP , A) JP 59-166617 (JP, A) JP 3-281720 (JP, A) JP 2-133510 (JP, A) JP 60-131908 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 含クロム溶鋼の浴面下および浴面上に、
酸素ガスまたは酸素ガスおよび希釈ガスを吹込む脱炭精
錬法において、前記溶鋼中の[C]濃度が0.2wt%
以上0.7wt%以下の領域において、浴面下に酸素ガ
スおよび希釈ガスを、浴面上に酸素ガスのみを(1)
式、(2)式、(3)式および(4)式を満足する条件
下で、吹込むことを特徴とする含クロム溶鋼の脱炭精錬
法 0.5≦A+B≦1.5 ……(1) 1≦A/B≦5 ……(2) 0.20≦C/(A+B)≦0.50 ……(3) 0.05≦L/LO ≦0.2 ……(4) A;浴面下に吹込む単位溶鋼重量当りの酸素ガス流量
[Nm3 /minT] B;浴面下に吹込む単位溶鋼重量当りの希釈ガス流量
[Nm3 /minT] C;浴面上に吹込む単位溶鋼重量当りの酸素ガス流量
[Nm3 /minT] L;浴面に吹込んだガスによる浴面の凹み深さ[mm] LO ;静止浴状態での溶鋼深さ[mm]
1. Below and above the bath surface of the molten chromium-containing steel,
In the decarburizing refining method in which oxygen gas or oxygen gas and diluent gas are blown, the [C] concentration in the molten steel is 0.2 wt%
In the region of 0.7 wt% or less, oxygen gas and dilution gas are provided below the bath surface, and only oxygen gas is provided above the bath surface (1).
Method for decarburizing and refining molten chromium-containing steel, characterized by blowing under conditions satisfying equations (2), (3) and (4) 0.5 ≦ A + B ≦ 1.5 ( 1) 1 ≦ A / B ≦ 5 (2) 0.20 ≦ C / (A + B) ≦ 0.50 (3) 0.05 ≦ L / L O ≦ 0.2 (4) A An oxygen gas flow rate per unit molten steel weight [Nm 3 / minT] B blown below the bath surface; a dilution gas flow rate per unit molten steel weight [Nm 3 / minT] C below the bath surface C; blow above the bath surface Oxygen gas flow rate per unit molten steel weight [Nm 3 / minT] L; Depth of bath surface recessed by gas blown into the bath surface [mm] L O ; Molten steel depth in stationary bath state [mm]
JP4077730A 1992-03-31 1992-03-31 Decarburization refining method for molten steel containing chromium Expired - Fee Related JP2563721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4077730A JP2563721B2 (en) 1992-03-31 1992-03-31 Decarburization refining method for molten steel containing chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4077730A JP2563721B2 (en) 1992-03-31 1992-03-31 Decarburization refining method for molten steel containing chromium

Publications (2)

Publication Number Publication Date
JPH05279725A JPH05279725A (en) 1993-10-26
JP2563721B2 true JP2563721B2 (en) 1996-12-18

Family

ID=13642023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4077730A Expired - Fee Related JP2563721B2 (en) 1992-03-31 1992-03-31 Decarburization refining method for molten steel containing chromium

Country Status (1)

Country Link
JP (1) JP2563721B2 (en)

Also Published As

Publication number Publication date
JPH05279725A (en) 1993-10-26

Similar Documents

Publication Publication Date Title
US5769923A (en) Decarburization refining process for chromium-containing molten metal and associated top blowing lance
JP3345677B2 (en) Hot metal dephosphorization method
JP3410553B2 (en) Decarburization refining method of chromium-containing molten steel
JP2563721B2 (en) Decarburization refining method for molten steel containing chromium
JP6726777B1 (en) Method for producing low carbon ferromanganese
JP4022266B2 (en) Stainless steel melting method
JP3044642B2 (en) Decarburization refining method of chromium-containing molten steel
JP2515059B2 (en) Decarburization refining method for molten steel containing chromium
JP2627103B2 (en) Decarburization refining method of chromium-containing molten steel
JP3441523B2 (en) Refining method of chromium-containing molten steel
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JPH04276009A (en) Decarbonized refining method for chromium-containing molten steel
JP2795597B2 (en) Vacuum degassing and decarburization of molten stainless steel
JPH05230517A (en) Decarburization refining method for chromium-containing molten steel
JPH07173515A (en) Decarburization refining method of stainless steel
JPH089730B2 (en) Decarburization refining method for molten steel containing chromium
JP2578046B2 (en) Decarburization refining method of chromium-containing molten steel
JP2615728B2 (en) Decarburization method for Cr-containing pig iron
JPH06287629A (en) Method for decarburize-refining chromium-containing molten steel
JPH059548A (en) Method for decarburizing and refining chromium-containing molten steel
JPS6124452B2 (en)
JPH10219332A (en) Decarburize-refining method into stainless steel
JP3167901B2 (en) Decarburization refining method for Cr-containing molten steel
JP3861618B2 (en) Dephosphorization method of hot metal using converter.
JPH0673426A (en) Method for decarburizing molten chromium-containing iron

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960723

LAPS Cancellation because of no payment of annual fees