JP2578046B2 - Decarburization refining method of chromium-containing molten steel - Google Patents

Decarburization refining method of chromium-containing molten steel

Info

Publication number
JP2578046B2
JP2578046B2 JP13403592A JP13403592A JP2578046B2 JP 2578046 B2 JP2578046 B2 JP 2578046B2 JP 13403592 A JP13403592 A JP 13403592A JP 13403592 A JP13403592 A JP 13403592A JP 2578046 B2 JP2578046 B2 JP 2578046B2
Authority
JP
Japan
Prior art keywords
molten steel
oxygen
chromium
blowing
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13403592A
Other languages
Japanese (ja)
Other versions
JPH05320736A (en
Inventor
博範 高野
博明 森重
俊洋 小菅
隆二 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13403592A priority Critical patent/JP2578046B2/en
Publication of JPH05320736A publication Critical patent/JPH05320736A/en
Application granted granted Critical
Publication of JP2578046B2 publication Critical patent/JP2578046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、含クロム溶鋼の脱炭精
錬法において、脱炭速度の向上を図り、かつ溶鋼中の
[Cr]の酸化を抑えて効率良く脱炭を行う方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decarburizing and refining chromium-containing molten steel, in which the decarburization rate is improved, and the [Cr] in the molten steel is suppressed from being oxidized to efficiently decarburize. It is.

【0002】[0002]

【従来の技術】従来、ステンレス鋼のような含クロム溶
鋼の浴面下及び浴面上より酸素ガスあるいは酸素含有ガ
ス(以下、単に酸素という)または酸素及び不活性ガス
を吹き込む複合吹錬法において効率良く脱炭を行う方法
として、例えば特開昭55−158213号公報には、
浴面下に酸素及び不活性ガスを吹き込んで脱炭を行うと
同時に、該酸素量の少なくとも0.2倍に相当する量の
酸素を浴面上より供給することによって、浴面より発生
するCOのCO2 への二次燃焼反応を積極的に行わせ、
その反応熱によって溶鋼を昇熱せしめ、クロム酸化物の
生成を抑制して、スラグ中のクロム酸化物還元のための
Si量の低減を図ることが記載されている。
2. Description of the Related Art Conventionally, in a compound blowing method in which oxygen gas or an oxygen-containing gas (hereinafter simply referred to as oxygen) or oxygen and an inert gas are blown from below and above a bath of chromium-containing molten steel such as stainless steel. As a method of efficiently decarburizing, for example, Japanese Patent Application Laid-Open No. 55-158213
Degassing is performed by blowing oxygen and an inert gas under the bath surface, and at the same time, supplying an amount of oxygen equivalent to at least 0.2 times the amount of oxygen from the bath surface to thereby reduce CO generated from the bath surface. Positively performs the secondary combustion reaction to CO 2 ,
It describes that the molten steel is heated by the heat of reaction to suppress the generation of chromium oxide and to reduce the amount of Si for reducing chromium oxide in slag.

【0003】また、特開昭61−266516号公報に
は、上吹き酸素のうち溶鋼と反応する割合(P)とラン
ス高さ(L)及びランスから吹き込まれる酸素の速度
(V)の関係式式を提示し、上吹き酸素を150ft
/s(45.7m/s)〜音速の範囲で吹き込み、溶鋼
と反応する上吹き酸素の所望の割合を得ることが記載さ
れている。
Japanese Patent Application Laid-Open No. 61-266516 discloses a relational expression between a ratio (P) of top-blown oxygen reacting with molten steel, a lance height (L), and a velocity (V) of oxygen blown from the lance. The formula is presented and the top blowing oxygen is 150 ft.
No./s (45.7 m / s) to the speed of sound, it describes that a desired ratio of the top blown oxygen reacting with molten steel is obtained.

【0004】 P=K−1629(L/V) ・・・[2]式 P:溶鋼と反応する上吹き酸素の所望の割合(%) K:56〜72の値を有する定数 L:溶鋼表面上方のランス開口の高さ(ft) V:ランスから吹き込まれる酸素の速度(ft/秒) 一般に上吹き酸素による二次燃焼反応は酸素の速度が音
速以下の領域(自由噴流域)で起こるとされていること
を考慮すると、特開昭61−266516号公報は上吹
き酸素による二次燃焼反応を積極的に行わせることを目
的としたものである。
[0004] P = K-1629 (L / V) [2] Equation P: Desired ratio (%) of top-blown oxygen that reacts with molten steel K: Constant having a value of 56 to 72 L: Surface of molten steel Height of upper lance opening (ft) V: Velocity of oxygen blown from lance (ft / sec) In general, the secondary combustion reaction by top-blown oxygen occurs in a region where the speed of oxygen is lower than the sonic speed (free jet region). In view of the above, Japanese Patent Application Laid-Open No. 61-266516 aims at positively performing a secondary combustion reaction by top-blown oxygen.

【0005】[0005]

【発明が解決しようとする課題】前記従来技術は何れも
含クロム溶鋼の脱炭精錬法において脱炭効率の向上を図
るために上吹き酸素による二次燃焼反応を積極的に生じ
させ、その熱により溶鋼温度を上昇させて脱炭効率の向
上を図るものである。しかし二次燃焼熱により溶鋼温度
を上昇させるためには、必要な二次燃焼用酸素量を確保
する必要がある。このため同一酸素供給量の条件での複
合吹錬と底吹き吹錬とを比べると、複合吹錬の方が二次
燃焼に消費する酸素量が多いため、溶鋼中炭素と直接反
応する酸素量が減少することから、脱炭精錬時間が長く
なるという欠点を有していた。
In each of the above-mentioned prior arts, a secondary combustion reaction by upward blowing oxygen is positively generated in order to improve the decarburization efficiency in the decarburization and refining method of chromium-containing molten steel, and the heat of the secondary combustion is increased. Thus, the temperature of the molten steel is raised to improve the decarburization efficiency. However, in order to raise the temperature of molten steel by the heat of secondary combustion, it is necessary to secure a necessary amount of oxygen for secondary combustion. For this reason, comparing the combined blowing with the bottom blowing with the same oxygen supply amount, the combined blowing consumes more oxygen for the secondary combustion, so the amount of oxygen directly reacting with the carbon in the molten steel , The decarburization and refining time is prolonged.

【0006】本発明が解決しようとする課題は含クロム
溶鋼の複合吹錬法による脱炭精錬において、底吹き条件
及び上吹き条件を好適な範囲に維持することにより、脱
炭効率を向上させるとともに溶鋼中クロムの酸化を抑え
て精錬時間の短縮及び酸化クロム還元用Si量の低減を
図ることである。
The problem to be solved by the present invention is to improve the decarburization efficiency by maintaining the bottom-blowing and top-blowing conditions in a suitable range in the decarburization refining of chromium-containing molten steel by the combined blowing method. An object of the present invention is to suppress the oxidation of chromium in molten steel to shorten the refining time and reduce the amount of Si for reducing chromium oxide.

【0007】[0007]

【課題を解決するための手段】本発明は前述の課題を有
利に解決したものであり、その要旨とするところ下記の
とおりである。 (1) 含クロム溶鋼の浴面下に酸素又は酸素及び不活
性ガスを吹き込んで前記溶鋼を脱炭するに際して、前記
溶鋼中の[C]濃度が0.4%以上の領域において、上
吹きランスを用いて前記溶鋼の浴面上に酸素又は酸素及
び不活性ガスを下記(1)、(2)の条件で吹き込むこと
を特徴とする含クロム溶鋼の脱炭精錬方法。 (1)上吹きランスのノズルからのガス噴出速度が音速
以上 (2)上吹きランスのノズルから噴出されたガスの速度
が音速以下となっている領域の長さhと上吹きノズルの
最小孔径dO の比h/dO が40〜80 (2) 上吹きランスを用いたガス吹込み開始時におけ
る溶鋼温度が[1]式で決定される平衡溶鋼温度Tより
高いことを特徴とする前項1に記載の含クロム溶鋼の脱
炭精錬方法。
SUMMARY OF THE INVENTION The present invention has advantageously solved the above-mentioned problems, and the gist thereof is as follows. (1) When decarburizing the molten steel by blowing oxygen or oxygen and an inert gas under the bath surface of the chromium-containing molten steel, in the region where the [C] concentration in the molten steel is 0.4% or more, the top blowing lance is used. A method for decarburizing and refining chromium-containing molten steel, wherein oxygen or oxygen and an inert gas are blown into the bath surface of the molten steel using the following conditions. (1) The gas ejection speed from the nozzle of the upper blowing lance is equal to or higher than the sound speed. (2) The length h of the region where the speed of the gas ejected from the nozzle of the upper blowing lance is equal to or lower than the sound speed, and the minimum hole diameter of the upper blowing nozzle. preceding the ratio h / d O of d O 40 to 80 (2) top-blown molten steel temperature when the gas blowing start with lance may be higher than the equilibrium temperature of molten steel T which is determined by formula [1] 2. The method for decarburizing and refining chromium-containing molten steel according to 1.

【0008】 T=13800/{8.76−Log([%Cr]*PCO/[%C])} ・・・[1]式 T :平衡溶鋼温度(K) [%Cr]:溶鋼中クロム濃度(重量%) PCO :COガス分圧(atm) [%C] :溶鋼中炭素濃度(重量%) (3) 浴面下及び浴面上に吹き込む総酸素量に対して
浴面上に吹き込む酸素量の割合が20〜70%であるこ
とを特徴とする前項1に記載の含クロム溶鋼の脱炭精錬
方法。
T = 13800 / {8.76−Log ([% Cr] * PCO / [% C])} [1] Formula T: Equilibrium molten steel temperature (K) [% Cr]: In molten steel Chromium concentration (% by weight) P CO : CO gas partial pressure (atm) [% C]: Carbon concentration in molten steel (% by weight) (3) On the bath surface relative to the total oxygen amount blown below and above the bath surface 2. The method for decarburizing and refining chromium-containing molten steel according to the above item 1, wherein the ratio of the amount of oxygen blown into the steel is 20 to 70%.

【0009】(4) 浴面凹み深さLが70〜500m
mであることを特徴とする前項1に記載の含クロム溶鋼
の脱炭精錬方法。 (5) 上吹きランスのノズル孔形状が先広がりの形状
であることを特徴とする前項1に記載の含クロム溶鋼の
脱炭精錬方法。以下本発明について詳細に説明する。
(4) Depth L of bath surface is 70-500 m
m. The method for decarburizing and refining chromium-containing molten steel according to item 1 above, wherein (5) The method for decarburizing and refining chromium-containing molten steel as described in (1) above, wherein the shape of the nozzle hole of the upper blowing lance is a shape that widens forward. Hereinafter, the present invention will be described in detail.

【0010】本発明の含クロム溶鋼の脱炭精錬方法は図
1に例示するような複合吹錬による脱炭精錬法であり、
(a)は静止浴状態、(b)はガス吹き込み状態を示
し、図中の1は上吹きランス、2は底吹き二重管羽口、
3は溶鋼、4はスラグを示し、上吹きランス1から酸素
又は酸素及び不活性ガスを、底吹き二重管羽口2の内管
から酸素又は酸素及び不活性ガスを吹き込み、外管から
は羽口冷却用の保護ガス(Arガスなど)を吹き込む。
図中5は上吹きランス1からの酸素吹き込みによる高温
火点部を示す。
The decarburizing and refining method of the chromium-containing molten steel of the present invention is a decarburizing and refining method by combined blowing as exemplified in FIG.
(A) shows a stationary bath state, (b) shows a gas blowing state, 1 in the figure is a top blowing lance, 2 is a bottom blown double tube tuyere,
Reference numeral 3 denotes molten steel, 4 denotes slag, and oxygen or oxygen and an inert gas are blown from the top blow lance 1 and oxygen or oxygen and an inert gas are blown from the inner tube of the bottom blown double tube tuyere 2 and from the outer tube. A protective gas for cooling the tuyere (such as Ar gas) is blown.
In the drawing, reference numeral 5 denotes a high-temperature spot caused by oxygen blowing from the upper blowing lance 1.

【0011】一般に、含クロム溶鋼の脱炭精錬操業は
[3]、[4]式で示される脱炭反応によって溶鋼中の
[C]を酸化除去する工程(酸化期)と、酸化期に生じ
た酸化クロムを還元するために炉内に還元材(例えばF
e−Si、Al)と造滓材(例えばCaO、CaF2
を投入して[5]、[6]式で示される反応によって還
元回収する工程(還元期)から成る。
In general, the decarburization and refining operation of chromium-containing molten steel is carried out in the step of oxidizing and removing [C] in the molten steel by the decarburization reaction represented by the formulas [3] and [4] (oxidation stage) and in the oxidation stage. A reducing agent (eg, F
e-Si, Al) and slag-making material (for example, CaO, CaF 2 )
And the step of reducing and recovering by the reaction represented by the equations [5] and [6] (reduction phase).

【0012】<酸化期> 2Cr +3/2O2 =(Cr2 3 ) ・・・[3]式 (Cr2 3 )+3=2Cr+3CO ・・・[4]式 <還元期>Fe−Si使用時 2(Cr2 3 )+3Si=4Cr+3(SiO2 )・・・[5]式 Al使用時 2(Cr2 3 )+4Al=4Cr+2(Al2 3 )・・[6]式 酸化期では酸化クロムを多く残存させないように[4]
式の反応を促進させるため、溶鋼温度を高くし(160
0℃以上)、かつ溶鋼中の炭素濃度(以下[C%]とい
う)が下がるに従ってCOガス分圧(PCO)を低下させ
るべく、上吹きランス又は底吹き二重管羽口から吹き込
まれる酸素及び不活性ガスに対する不活性ガスの比率
(希釈比率)を増加させることが一般的に行われてい
る。一方、含クロム溶鋼の脱炭精錬コストの主要諸元は
Arガス等の不活性ガス、Fe−Si等の還元剤、耐火
物であることから、酸化期の酸化クロム発生量を極力抑
えること、及び脱炭精錬時間に比例して増加するArな
どの不活性ガス量及び耐火物溶損量を抑えるため、短時
間で脱炭精錬を完了することが重要である。
[0012] <oxide-life> 2 Cr + 3 / 2O 2 = (Cr 2 O 3) ··· [3] formula (Cr 2 O 3) +3 C = 2 Cr + 3CO ··· [4] formula <-reduction phase> Fe-Si-use 2 (Cr 2 O 3) + 3Si = 4 Cr +3 (SiO 2) ··· [5] formula Al used at 2 (Cr 2 O 3) + 4Al = 4 Cr +2 (Al 2 O 3) ·・ [6] formula [4] so that a large amount of chromium oxide does not remain in the oxidation stage.
In order to accelerate the reaction of the equation, the molten steel temperature is increased (160
0 ° C. or higher), and oxygen blown from the top blow lance or the bottom blown double tube tuyere to lower the CO gas partial pressure (P CO ) as the carbon concentration (hereinafter referred to as [C%]) in the molten steel decreases. It is common practice to increase the ratio of inert gas to inert gas (dilution ratio). On the other hand, the main parameters of the decarburization and refining cost of chromium-containing molten steel are inert gases such as Ar gas, reducing agents such as Fe-Si, and refractories, so that the amount of chromium oxide generated during the oxidation period should be minimized. In order to suppress the amount of inert gas such as Ar and the amount of refractory erosion that increase in proportion to the decarburization refining time, it is important to complete the decarburization refining in a short time.

【0013】本発明は以上のような特徴を有する含クロ
ム溶鋼の複合吹錬法による脱炭精錬法において、溶鋼中
炭素濃度が0.4%以上の領域において、浴面下の二重
管羽口の外管からは羽口溶損防止用の保護ガスを、内管
からは酸素又は酸素及び不活性ガスを吹き込むことによ
って、溶鋼を積極的に攪拌して浴面の流動を活発にしつ
つ、上吹きランスから浴面上に酸素又は酸素及び不活性
ガスを高速で吹き込むことにより浴面上に高温火点部を
生成させ、上吹き酸素ガス中の酸素が溶鋼中炭素と反応
する割合を増大させることによって、脱炭効率をより一
層向上させて脱炭精錬時間の短縮及び還元用Si原単位
(又はAl原単位)の低減を達成するものである。
The present invention provides a decarburization refining method for a chromium-containing molten steel having the above-mentioned characteristics by a combined blowing method, wherein a double pipe blade under a bath surface is provided in a region where the carbon concentration in the molten steel is 0.4% or more. By blowing a protective gas for preventing tuyere erosion from the outer tube of the mouth and oxygen or oxygen and an inert gas from the inner tube, the molten steel is actively stirred to activate the flow of the bath surface, By blowing oxygen or oxygen and inert gas onto the bath surface at high speed from the top blow lance, a high temperature fire point is generated on the bath surface, increasing the rate at which oxygen in the top blow oxygen gas reacts with carbon in the molten steel. By doing so, the decarburization efficiency is further improved, and the decarburization refining time is shortened and the reduction of the Si unit consumption (or Al unit consumption) for reduction is achieved.

【0014】複合吹錬法では溶鋼表面に有効に酸素を吹
き付けて火点高温部を生成すると、鋼浴表面での脱炭反
応は火点高温下での反応となり、脱炭反応が著しく促進
される。すなわち、二次燃焼に消費される酸素量を抑制
し、溶鋼と直接反応する酸素量を増大させて高温火点部
の生成を促進させるように酸素を上吹きすることによっ
て、脱炭効率を向上させることが可能である。さらに高
温火点部での脱炭反応を促進するためには、溶鋼を攪拌
し、溶鋼中のCを効果的に高温火点部へ供給する適切な
底吹きガス条件で底吹きを行うことが必要である。
In the combined blowing method, when oxygen is effectively blown onto the surface of molten steel to generate a high-fired portion, the decarburization reaction on the steel bath surface is a reaction at a high-fired temperature, and the decarburization reaction is remarkably accelerated. You. That is, the decarburization efficiency is improved by suppressing the amount of oxygen consumed in the secondary combustion and increasing the amount of oxygen that directly reacts with the molten steel to blow up oxygen so as to promote the formation of a hot spot. It is possible to do. In order to further promote the decarburization reaction at the hot spot, it is necessary to stir the molten steel and perform bottom-blowing under appropriate bottom-blowing gas conditions to effectively supply C in the molten steel to the hot spot. is necessary.

【0015】従来、上吹き酸素による二次燃焼反応は、
上吹き酸素の速度が330m/secの音速以下の領域
(自由噴流域)に、周囲のCOガスが巻き込まれること
によって起こるとされていることから、二次燃焼を抑制
するためには自由噴流域を制御する必要がある。上吹き
ランスから吹き込まれた酸素流量が同一の条件では、ラ
ンス高さが低い程、また吹き込まれた酸素速度が超音速
の領域(ジェットコア域)が長い程自由噴流域が短くな
り、上吹き酸素中のCOの二次燃焼に消費される割合は
小さくなる。
Conventionally, the secondary combustion reaction by top blowing oxygen is as follows:
Since it is said that this occurs when the surrounding CO gas is entrained in a region (free jet region) in which the velocity of the top-blown oxygen is lower than the sound speed of 330 m / sec, the free jet region is required to suppress the secondary combustion. Need to be controlled. When the flow rate of oxygen blown from the top blowing lance is the same, the free jet area becomes shorter as the lance height is lower and the area of the injected oxygen velocity is supersonic (jet core area). The proportion consumed in the secondary combustion of CO in oxygen decreases.

【0016】図2は総送酸流量を4000Nm3 /Hr
一定とした複合吹錬を溶鋼中[%C]≧0.5%の範囲
で実施し、h/dO に対するdC/dO2 の変化を示し
ている。h/dO =40〜80の範囲でdC/dO2
大幅に改善されており、しかもh/dO が小さい方がd
C/dO2 が向上している。尚、h/dO の下限を40
とする理由は、h/dO が小さくなると後述する溶鋼表
面の凹が大きくなり、スプラッシュが多くなって操業に
支障をきたすためである。
FIG. 2 shows a total acid flow rate of 4000 Nm 3 / Hr
The constant compound blowing was performed in the range of [% C] ≧ 0.5% in molten steel, and shows the change of dC / dO 2 with respect to h / d O. In the range of h / d O = 40 to 80, dC / dO 2 is greatly improved, and the smaller h / d O is, the smaller d / d O 2 is.
C / dO 2 is improved. Note that the lower limit of h / d O is 40
The reason for this is that when h / d O is small, the depression on the surface of the molten steel, which will be described later, becomes large, and the splash increases, which hinders the operation.

【0017】ここで、h/dO は図3に示すように自由
噴流域の長さを表す指標であり[7]式、[8]式で与
えられる。 h/dO =H/dO −HC /dO ・・・[7]式 HC /dO =4.12Pa−1.86 ・・・[8]式 h :自由噴流長 [mm] H :ランスギャップ [mm] HC :ジェットコア長(超音速域長)[mm] Pa:上吹きガス吹錬圧力 [kg/cm2 ] d0 :上吹きランスノズル孔径 [mm] また、dC/dO2 は上吹きあるいは底吹きした酸素1
Nm3 当たりの脱炭量を表しており、この指標が大きい
程脱炭効率が高い。図4は同一の上吹きノズルを用いて
種々の上吹き条件で複合吹錬を行った場合の、上吹き酸
素中の二次燃焼反応に消費された酸素量とh/d0 との
関係を示したものである。h/d0 が小さくなる程、二
次燃焼に消費される酸素量が抑制されている。以上の結
果より、h/d0 を40〜80に制御して二次燃焼を抑
制することによってdC/dO2は向上し、脱炭精錬時
間の短縮及び還元用Si原単位の向上が達成される。
Here, h / d O is an index indicating the length of the free jet area as shown in FIG. 3 and is given by the equations [7] and [8]. h / d O = H / d O −H C / d O Formula [7] H C / d O = 4.12 Pa-1.86 Formula [8] h: Free jet length [mm] H: Lance gap [mm] H C : Jet core length (supersonic range length) [mm] Pa: Top blowing gas blowing pressure [kg / cm 2 ] d 0 : Top blowing lance nozzle hole diameter [mm] dC / DO 2 is top blown or bottom blown oxygen 1
It indicates the amount of decarburization per Nm 3. The larger this index is, the higher the decarburization efficiency is. FIG. 4 shows the relationship between the amount of oxygen consumed in the secondary combustion reaction in top-blown oxygen and h / d 0 in the case of performing combined blowing with various top-blown conditions using the same top-blown nozzle. It is shown. The smaller the value of h / d 0, the more the amount of oxygen consumed for the secondary combustion is suppressed. From the above results, by controlling h / d 0 to 40 to 80 to suppress secondary combustion, dC / dO 2 is improved, and the decarburization refining time is shortened and the reduction of Si unit consumption for reduction is achieved. You.

【0018】図5は総送酸流量を4000Nm3 /H
r、上吹きノズルの酸素噴出速度を音速以上、h/d0
=75、複合吹錬適用域[%C]≧0.5%一定条件で
の、[9]式で与えられる浴面下及び浴面上に吹き込ん
だ総送酸量に対する浴面上に吹き込んだ酸素量の割合
(以下上吹き比率という)とdC/dO2 との関係を示
している。
FIG. 5 shows a total acid flow rate of 4000 Nm 3 / H.
r, the oxygen blowing speed of the upper blowing nozzle is higher than the sound speed, h / d 0
= 75, combined blowing application area [% C] ≧ 0.5% Under constant conditions, blown onto the bath surface relative to the total acid supply blown under and above the bath surface given by equation [9] The relationship between the ratio of the oxygen amount (hereinafter referred to as the upper blowing ratio) and dC / dO 2 is shown.

【0019】上吹き酸素流量×100/(上吹き酸素流
量+底吹き酸素流量)・・[9]式 上吹き比率が20〜70%でdC/dO2 が増大してい
ること、40〜60%にピークがあることから上吹き酸
素による高温火点部での脱炭反応効率が高いこと、及び
高温火点部での脱炭反応を促進するためには溶鋼を攪拌
し、溶鋼中の炭素を高温火点部へ効果的に供給する底吹
き条件が有効であることがわかる。
[0019] It dC / dO 2 at a ratio blown top blowing oxygen flow × 100 / (the top-blown oxygen flow rate + bottom-blown oxygen flow rate) · [9] on expression 20% to 70% is increased, 40-60 %, The decarburization reaction efficiency at the hot spot is high due to the top blowing oxygen, and the molten steel is agitated to promote the decarburization reaction at the hot spot. It can be understood that the bottom blowing conditions for effectively supplying the gas to the high temperature fire point are effective.

【0020】また、図6はh/d0 =75、上吹き比率
=30%(上吹き酸素流量1200Nm3 /Hr)一定
条件で複合吹錬適用域を種々変化させた場合の複合吹錬
中の脱炭効率を示している。[%C]≧0.4%の範囲
では高い脱炭効率を維持できることから複合吹錬適用域
を[%C]≧0.4%とするとよいことがわかる。また
前述のジェットコア域の長さHC は、酸素ガスが噴出す
るノズル形状によっても影響をうけ、ノズル形状をガス
の体積膨張を考慮した形状にした場合にはジェットコア
域の長さは長くなり、二次燃焼酸素量は減少する。図7
は本発明に使用したランスのノズル形状を示す。ノズル
形状がガスの体積膨張を考慮した先広がりの形状(所謂
ラバールノズル)をしており、ガス噴出孔径9がノズル
の最小孔径(d0 )8より大きくなっている。ノズル径
22.5mmφ、1孔、酸素流量2000Nm3 /H
r、ランス高さ2000mm時のラバールノズルとスト
レートノズルのジェットコア域の長さ(HC )及び自由
噴流域の長さ(h)の比較を表1に示す。ラバールノズ
ルの方が自由噴流域長さが短くなっており二次燃焼酸素
量が減少することがわかる。
FIG. 6 shows that during the combined blowing, where the application range of the combined blowing is variously changed under the constant conditions of h / d 0 = 75 and the top blowing ratio = 30% (top blowing oxygen flow rate 1200 Nm 3 / Hr). Shows the decarburization efficiency. Since high decarburization efficiency can be maintained in the range of [% C] ≧ 0.4%, it is clear that the combined blowing area should be set to [% C] ≧ 0.4%. In addition, the length H C of the jet core region is also affected by the shape of the nozzle from which the oxygen gas is ejected. If the nozzle shape is formed in consideration of the volume expansion of the gas, the length of the jet core region becomes longer. And the amount of secondary combustion oxygen decreases. FIG.
Indicates the nozzle shape of the lance used in the present invention. The nozzle shape is a widening shape (a so-called Laval nozzle) considering the volume expansion of the gas, and the gas ejection hole diameter 9 is larger than the minimum hole diameter (d 0 ) 8 of the nozzle. Nozzle diameter 22.5mmφ, 1 hole, oxygen flow rate 2000Nm 3 / H
Table 1 shows the comparison between the length of the jet core area (H C ) and the length of the free jet area (h) of the Laval nozzle and the straight nozzle when the lance height is 2000 mm. It can be seen that the Laval nozzle has a shorter free jet region length and a smaller amount of secondary combustion oxygen.

【0021】[0021]

【表1】 [Table 1]

【0022】以上に記載した上吹き条件で吹錬を行う場
合、操業上の制約条件として上吹きによって発生するス
プラッシュ高さを考慮しなければならない。一般に上吹
き条件によるスプラッシュ発生高さは溶鋼凹み深さLで
表される。即ち、図1(b)に示すLは上吹きガスジェ
ットの溶鋼表面への衝突エネルギーを表す指標であり、
Lが大きくなる程スプラッシュ高さは高くなるため、炉
口部へのスプラッシュの付着によって操業に支障を生じ
ない範囲で上吹きを行うための重要な指標である。本発
明者は種々の吹錬条件で操業を行った結果、h/d0
40〜80の範囲を満足し、かつ炉口部へのスプラッシ
ュの付着が問題とならないLの範囲は70〜500mm
であることを見出した。
When the blowing is performed under the above-described upper blowing conditions, the splash height generated by the upper blowing must be considered as an operational constraint. In general, the splash generation height under the upper blowing condition is represented by the molten steel dent depth L. That is, L shown in FIG. 1 (b) is an index representing the collision energy of the top-blown gas jet against the molten steel surface,
Since the splash height increases as L increases, it is an important index for performing upward blowing within a range that does not hinder operation due to the attachment of splash to the furnace opening. The inventor performed the operation under various blowing conditions. As a result, h / d 0 satisfies the range of 40 to 80, and the range of L at which the adhesion of splash to the furnace port is not a problem is 70 to 500 mm.
Was found.

【0023】ここで、Lは上吹きガスによる溶鋼表面の
凹み深さを表す指標であり[10]式、[11]式によ
って導かれる。 L=Lh *exp(−0.78H/Lh ) ・・・[10]式 Lh =63.0*(QT /nd0 )2/3 ・・・[11]式 L :上吹きガスによる溶鋼表面の凹み深さ [mm] H :ランスギャップ(ランス〜溶鋼表面間距離)[mm] QT :上吹きガス流量 [Nm3 /Hr] n :上吹きランスノズル孔数 d0 :上吹きランスノズル孔径 [mm] また、含クロム溶鋼の脱炭反応は[1]式で示されるよ
うに溶鋼中[C]、[Cr]濃度、溶鋼温度、PCO(溶
鋼表面下に吹き込まれる酸素量及び不活性ガス混合比率
に関係する)の諸条件によって影響を受けるため、複合
吹錬においても上記諸条件に応じて上吹き条件を適切に
設定する必要がある。本発明者は、複合吹錬時の脱炭開
始前の溶鋼温度を種々変化させて調査した結果、脱炭開
始前の溶鋼温度が[1]式で決まる平衡溶鋼温度より高
い場合には、さらに複合吹錬による脱炭効率の向上が得
られることを見出した。
Here, L is an index representing the depth of depression of the molten steel surface due to the top blown gas, and is derived by the equations [10] and [11]. L = L h * exp (−0.78H / L h ) Expression [10] L h = 63.0 * (Q T / nd 0 ) 2/3 Expression [11] L: Top blowing Depth depth of molten steel surface by gas [mm] H: Lance gap (distance between lance and molten steel surface) [mm] Q T : Top blowing gas flow rate [Nm 3 / Hr] n: Number of top blowing lance nozzle holes d 0 : Upper blowing lance nozzle hole diameter [mm] In addition, the decarburization reaction of chromium-containing molten steel is performed as shown in equation [1], where [C] and [Cr] concentrations in molten steel, molten steel temperature, and P CO (blow under the molten steel surface) (Related to the oxygen content and the inert gas mixture ratio), it is necessary to appropriately set the upper blowing conditions in accordance with the above conditions also in the combined blowing. The inventor of the present invention has conducted various investigations on the molten steel temperature before the start of decarburization during combined blowing, and as a result, when the molten steel temperature before the start of decarburization is higher than the equilibrium molten steel temperature determined by the formula [1], furthermore, It has been found that the decarburization efficiency can be improved by combined blowing.

【0024】表2は脱炭開始前の溶鋼温度が[1]式に
よって決まる平衡溶鋼温度以上の場合(A)とそれ未満
の場合(B)で、上吹きランスノズルを22.5mm
φ、1孔、ラバールノズルとし、h/d0 =75、L=
160、上吹き比率=30%、複合吹錬適用域[%C]
≧0.5%とした場合のdC/dO2 及び還元用Si原
単位を示す。
Table 2 shows that when the molten steel temperature before the start of decarburization is equal to or higher than the equilibrium molten steel temperature determined by the equation (1) (A) and below (B), the upper blowing lance nozzle is 22.5 mm.
φ, 1 hole, Laval nozzle, h / d 0 = 75, L =
160, top blowing ratio = 30%, combined blowing area [% C]
The dC / dO 2 and the reduction Si basic unit when ≧ 0.5% are shown.

【0025】脱炭開始前の溶鋼温度が平衡溶鋼温度以上
の場合はdC/dO2 及び還元用Si原単位ともに向上
している。
When the temperature of the molten steel before the start of decarburization is equal to or higher than the equilibrium molten steel temperature, both dC / dO 2 and the basic unit of reduction Si are improved.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【実施例】SUS304ステンレス鋼(18wt%Cr
−8wt%Ni)60Tの脱炭精錬を、図1(b)に示
す複合吹錬炉を用いて、図8(a)に示す吹錬パターン
で実施した。なお、脱炭開始前の溶鋼中炭素濃度は1.
7%、溶鋼温度は1525℃、上吹きランスはノズル孔
径22.5mmφ、1孔ノズルを使用し、総酸素流量は
1.1Nm3 /T/min一定とした。複合吹錬は溶鋼
中[C]≧0.5%まで実施し、それ以降は底吹き吹錬
と同様の吹錬パターンで精錬を行った。
[Example] SUS304 stainless steel (18wt% Cr)
The decarburization refining of (−8 wt% Ni) 60T was carried out using the combined blowing furnace shown in FIG. 1 (b) with the blowing pattern shown in FIG. 8 (a). The carbon concentration in molten steel before the start of decarburization was 1.
7%, the molten steel temperature is 1525 ° C., the top-blown lance using a nozzle hole diameter 22.5Mmfai, the first hole nozzle, the total oxygen flow rate was 1.1Nm 3 / T / min constant. Combined blowing was performed up to [C] ≧ 0.5% in molten steel, and thereafter refining was performed in the same blowing pattern as bottom blowing.

【0028】表3に、本発明例及び比較例を示す。本発
明例は比較例と比べて脱炭効率(dC/dO2 )及び還
元用Si原単位が向上していることがわかる。
Table 3 shows examples of the present invention and comparative examples. It can be seen that the decarburization efficiency (dC / dO 2 ) and the reduction Si basic unit of the present invention example are improved as compared with the comparative example.

【0029】[0029]

【表3】 [Table 3]

【0030】また底吹き吹錬と本発明例の複合吹錬を実
施例Aと同様の条件で行った時の[12]式で定義され
る二次燃焼率と溶鋼昇温速度を併せて比較した。溶鋼昇
温速度は比較例と変わらず、二次燃焼率は8%以下と非
常に低い値となっている。 二次燃焼率(炉内ガス中)=100CO2 %/(CO2
%+CO%)・・・[12]式 従来技術では、特開昭55−158213号公報に記載
されているように、複合吹錬において酸素含有ガスを鋼
浴表面上方より吹き込み、浴表面から発生するCOガス
を積極的に二次燃焼させ[13]式の反応熱により溶鋼
温度を上昇させて脱炭酸素効率を向上させるものであっ
た。
When the bottom blowing and the combined blowing of the present invention were performed under the same conditions as in Example A, the secondary combustion rate defined by the equation [12] and the rate of temperature rise of the molten steel were also compared. did. The molten steel heating rate was the same as that of the comparative example, and the secondary combustion rate was a very low value of 8% or less. Post combustion ratio (furnace gas) = 100CO 2% / (CO 2
% + CO%) ... [12] In the prior art, as described in JP-A-55-158213, an oxygen-containing gas is blown from above the steel bath surface in combined blowing to generate from the bath surface. The CO gas is positively secondary-combusted and the temperature of molten steel is raised by the reaction heat of the formula [13] to improve the decarbonation efficiency.

【0031】 CO+1/2O2 =CO2 ΔH=−67.7kcal/mol ・・・[13]式 これは、本発明の複合吹錬条件で酸素を上吹きした場
合、二次燃焼は生じるものの非常に少なく、二次燃焼反
応熱による溶鋼温度上昇は認められないにも関わらず、
還元用Si原単位が向上していることから、従来技術と
異なることを表している。また、本発明の複合吹錬条件
で上吹き酸素によって浴表面に生成する火点温度を二色
法で測定したところ2400〜2500℃の高温となっ
ていることが判明した。このことは、本発明の複合吹錬
条件では浴表面上に高温火点部が生成しており、その高
温部で上吹き酸素及び底吹き酸素によって生じた酸化ク
ロムと溶鋼中[C]との[4]式の反応が促進されてい
るとものと考えられ、その促進効果は溶鋼の脱炭前温度
が優先脱炭域に属している時にさらに強く表れていると
言える。
CO + 1 / 2O 2 = CO 2 ΔH = −67.7 kcal / mol Formula [13] This is because, when oxygen is blown upward under the combined blowing conditions of the present invention, secondary combustion occurs, but In spite of the fact that the temperature rise of molten steel due to the heat of secondary combustion reaction is not observed,
The improvement in the basic unit of Si for reduction indicates a difference from the prior art. In addition, when the flash point temperature generated on the bath surface by the upper blowing oxygen under the combined blowing conditions of the present invention was measured by a two-color method, it was found that the temperature was as high as 2400 to 2500 ° C. This means that under the combined blowing conditions of the present invention, a high-temperature fire spot was formed on the bath surface, and the chromium oxide generated by the top-blown oxygen and the bottom-blown oxygen in the high-temperature portion and [C] in the molten steel. It is considered that the reaction of the formula [4] is promoted, and it can be said that the promoting effect is stronger when the temperature before decarburization of the molten steel belongs to the preferential decarburization region.

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【発明の効果】本発明によると、含クロム溶鋼の脱炭精
錬において、脱炭効率及び同一供給酸素ガス量で脱炭速
度の向上が図られる。従って、酸化クロム還元用Si量
の低減及び酸素ガス、及び希釈ガスの原単位が向上する
と共に脱炭精錬時間が短縮され、精錬炉の寿命延長等の
精錬コスト低減及び生産性の向上がもたらされる。
According to the present invention, in the decarburization and refining of chromium-containing molten steel, the decarburization efficiency and the decarburization rate can be improved with the same amount of supplied oxygen gas. Therefore, the reduction of the amount of Si for reducing chromium oxide, the improvement in the basic unit of the oxygen gas and the dilution gas, and the shortening of the decarburization smelting time, the reduction of the smelting cost such as the extension of the life of the smelting furnace and the improvement in productivity are brought about. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための複合吹錬炉の例を示す
図である。
FIG. 1 is a diagram showing an example of a combined blowing furnace for carrying out the present invention.

【図2】h/d0 とdC/dO2 の関係を示す図であ
る。
FIG. 2 is a diagram showing a relationship between h / d 0 and dC / dO 2 .

【図3】上吹きランスから噴出するガスの広がり状況を
示す図である。
FIG. 3 is a diagram illustrating a spread state of gas ejected from an upper blowing lance.

【図4】h/d0 と二次燃焼酸素量の関係を示す図であ
る。
FIG. 4 is a diagram showing the relationship between h / d 0 and the amount of secondary combustion oxygen.

【図5】上吹き比率とdC/dO2 の関係を示す図であ
る。
FIG. 5 is a diagram showing a relationship between an upper blowing ratio and dC / dO 2 .

【図6】複合吹錬適用末期[C]と脱炭効率の関係を示
す図である。
FIG. 6 is a diagram showing the relationship between the end stage [C] of combined blowing and the decarburization efficiency.

【図7】上吹きランスのノズル形状を示す断面図であ
る。
FIG. 7 is a cross-sectional view showing a nozzle shape of an upper blowing lance.

【図8】底吹き吹錬及び複合吹錬の吹錬パターンの例を
示す図である。
FIG. 8 is a diagram showing examples of blowing patterns of bottom blowing and compound blowing.

【符号の説明】[Explanation of symbols]

1 上吹きランス 2 底吹き二重管羽口 3 溶鋼 4 スラグ 5 高温火点部 6 ジェットコア域 7 自由噴流域 8 ノズルの最小孔径 9 ガス噴出孔径 DESCRIPTION OF SYMBOLS 1 Top blowing lance 2 Bottom blowing double tube tuyere 3 Molten steel 4 Slag 5 Hot spot 6 Jet core area 7 Free jet area 8 Minimum nozzle diameter of nozzle 9 Gas injection hole diameter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中尾 隆二 山口県光市大字島田3434番地 新日本製 鐵株式会社光製鐵所内 (56)参考文献 特開 平2−221318(JP,A) 特開 昭55−158213(JP,A) 特開 昭59−182909(JP,A) 特開 昭60−131908(JP,A) 特公 昭61−57886(JP,B2) 特公 昭53−24008(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Ryuji Nakao 3434 Shimada, Hikari-shi, Yamaguchi Prefecture Inside Nippon Steel Corporation Hikari Works (56) References JP-A-2-221318 (JP, A) JP JP-A-55-158213 (JP, A) JP-A-59-182909 (JP, A) JP-A-60-131908 (JP, A) JP-B-61-57886 (JP, B2) JP-B-53-24008 (JP, A) , B2)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 含クロム溶鋼の浴面下に酸素又は酸素及
び不活性ガスを吹き込んで前記溶鋼を脱炭するに際し
て、前記溶鋼中の[C]濃度が0.4%以上の領域にお
いて、上吹きランスを用いて前記溶鋼の浴面上に酸素又
は酸素及び不活性ガスを下記(1)、(2)の条件で吹き
込むことを特徴とする含クロム溶鋼の脱炭精錬方法。 (1)上吹きランスのノズルからのガス噴出速度が音速
以上 (2)上吹きランスのノズルから噴出されたガスの速度
が音速以下となっている領域の長さhと上吹きノズルの
最小孔径dO の比h/dO が40〜80
1. When oxygen or oxygen and an inert gas are blown under a bath surface of a chromium-containing molten steel to decarburize the molten steel, the concentration of [C] in the molten steel is set to 0.4% or more. A method for decarburizing and refining chromium-containing molten steel, wherein oxygen or oxygen and an inert gas are blown into the bath surface of the molten steel using a blowing lance under the following conditions (1) and (2). (1) The gas ejection speed from the nozzle of the upper blowing lance is equal to or higher than the sound speed. (2) The length h of the region where the speed of the gas ejected from the nozzle of the upper blowing lance is equal to or lower than the sound speed, and the minimum hole diameter of the upper blowing nozzle. the ratio h / d O of d O 40 to 80
【請求項2】 上吹きランスを用いたガス吹込み開始時
における溶鋼温度が[1]式で決定される平衡溶鋼温度
Tより高いことを特徴とする請求項1に記載の含クロム
溶鋼の脱炭精錬方法。 T=13800/{8.76−Log([%Cr]*PCO/[%C])} ・・・[1]式 T :平衡溶鋼温度(K) [%Cr]:溶鋼中クロム濃度(重量%) PCO :COガス分圧(atm) [%C] :溶鋼中炭素濃度(重量%)
2. The chromium-containing molten steel according to claim 1, wherein the molten steel temperature at the start of gas injection using an upper blowing lance is higher than an equilibrium molten steel temperature T determined by the equation [1]. Charcoal refining method. T = 13800 / {8.76-Log ([% Cr] * PCO / [% C])} Formula [1] T: Equilibrium molten steel temperature (K) [% Cr]: Chromium concentration in molten steel ( PCO : CO gas partial pressure (atm) [% C]: Carbon concentration in molten steel (% by weight)
【請求項3】 浴面下及び浴面上に吹き込む総酸素量に
対して浴面上に吹き込む酸素量の割合が20〜70%で
あることを特徴とする請求項1に記載の含クロム溶鋼の
脱炭精錬方法。
3. The chromium-containing molten steel according to claim 1, wherein the ratio of the amount of oxygen blown onto the bath surface to the total amount of oxygen blown below and above the bath surface is 20 to 70%. Decarburization refining method.
【請求項4】 浴面凹み深さLが70〜500mmであ
ることを特徴とする請求項1に記載の含クロム溶鋼の脱
炭精錬方法。
4. The method for decarburizing and refining chromium-containing molten steel according to claim 1, wherein the depth L of the bath surface dent is 70 to 500 mm.
【請求項5】 上吹きランスのノズル孔形状が先広がり
の形状であることを特徴とする請求項1に記載の含クロ
ム溶鋼の脱炭精錬方法。
5. The method for decarburizing and refining chromium-containing molten steel according to claim 1, wherein the shape of the nozzle hole of the upper blowing lance is a shape that widens forward.
JP13403592A 1992-05-26 1992-05-26 Decarburization refining method of chromium-containing molten steel Expired - Lifetime JP2578046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13403592A JP2578046B2 (en) 1992-05-26 1992-05-26 Decarburization refining method of chromium-containing molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13403592A JP2578046B2 (en) 1992-05-26 1992-05-26 Decarburization refining method of chromium-containing molten steel

Publications (2)

Publication Number Publication Date
JPH05320736A JPH05320736A (en) 1993-12-03
JP2578046B2 true JP2578046B2 (en) 1997-02-05

Family

ID=15118849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13403592A Expired - Lifetime JP2578046B2 (en) 1992-05-26 1992-05-26 Decarburization refining method of chromium-containing molten steel

Country Status (1)

Country Link
JP (1) JP2578046B2 (en)

Also Published As

Publication number Publication date
JPH05320736A (en) 1993-12-03

Similar Documents

Publication Publication Date Title
JP3410553B2 (en) Decarburization refining method of chromium-containing molten steel
JP3167888B2 (en) Decarburization refining method of chromium-containing molten steel and upper blowing lance for refining gas
JP2578046B2 (en) Decarburization refining method of chromium-containing molten steel
JPS5921367B2 (en) Refining method for chromium-containing steel
JP6726777B1 (en) Method for producing low carbon ferromanganese
US6309443B1 (en) Simple ladle refining method
JP3044642B2 (en) Decarburization refining method of chromium-containing molten steel
JP4980175B2 (en) Lance for molten iron refining and molten iron refining method
JPH1030110A (en) Method for blowing oxygen in top-bottom combination-blown converter
JPS61284512A (en) Production of high-chromium steel using chromium ore
JP3167902B2 (en) Decarburization refining method for Cr-containing molten steel
JP2024054574A (en) Converter operation method
JP3861618B2 (en) Dephosphorization method of hot metal using converter.
JPH05247517A (en) Method for decarburizing-refining chromium-containing molten steel
JPH10219332A (en) Decarburize-refining method into stainless steel
JPH07331315A (en) Refining method for extra-low carbon steel in converter
JP2627103B2 (en) Decarburization refining method of chromium-containing molten steel
JPH06145765A (en) Efficient oxygen blowing decarburization refining method of molten steel using plasma
JPH04276009A (en) Decarbonized refining method for chromium-containing molten steel
KR20040029693A (en) Method for Making Molten Steel by Converter
JPH06306435A (en) Method for executing decarburize-refining molten cr-containing steel by using plasma energy
JPS59177314A (en) Refining method of molten chromium-containing steel
JPS60194009A (en) Method for refining stainless steel
JPH1030108A (en) Decarburizing method in top-bottom combination-blown converter
JPH0860220A (en) Efficient converter refining method for low carbon steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960723

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 16