JPH06145765A - Efficient oxygen blowing decarburization refining method of molten steel using plasma - Google Patents

Efficient oxygen blowing decarburization refining method of molten steel using plasma

Info

Publication number
JPH06145765A
JPH06145765A JP29543092A JP29543092A JPH06145765A JP H06145765 A JPH06145765 A JP H06145765A JP 29543092 A JP29543092 A JP 29543092A JP 29543092 A JP29543092 A JP 29543092A JP H06145765 A JPH06145765 A JP H06145765A
Authority
JP
Japan
Prior art keywords
blowing
oxygen
molten steel
plasma
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29543092A
Other languages
Japanese (ja)
Inventor
Kenichiro Miyamoto
健一郎 宮本
Ryoji Tsujino
良二 辻野
Kimihisa Kishigami
公久 岸上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29543092A priority Critical patent/JPH06145765A/en
Publication of JPH06145765A publication Critical patent/JPH06145765A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To execute the refining without lowering the decarburization oxygen efficiency to low carbon range at the time of executing the top-blowing decarburization blowing in a refining furnace such as converter. CONSTITUTION:At the time of executing top-oxygen-blowing decarburization refining in the refining furnce 1 such as the converter, VOD, etc., by supplying bottom-blowing gas 11 in the range of 0.01-0.5Nm<3>/min.ton, the molten steel 7 is stirred, and by supplying 1-50% of the energy generated at a firing point part 9 by irradiating plasma energy 6 to the oxygen blowing firing point part 9 formed on the molten steel by the top-blowing oxygen 5, the temp. at the firing point part is made to be an ultrahigh temp. and the firing point range is activated. By this method, the decarburization oxygen efficiency can be kept at a high degree till the low carbon range without lowering the oxygen speed and causing problems, such as the wearing of a nozzle 10 for blowing bottom- blowing gas and the erosion of the refractory in the furnace.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は転炉やVOD等の精錬炉
において、吹酸脱炭精錬を行う際に、低炭素領域まで脱
炭酸素効率を低下させることなく溶鋼を溶製する精錬方
法に関する。
FIELD OF THE INVENTION The present invention relates to a refining method for producing molten steel without lowering the efficiency of decarbonation to a low carbon region when carrying out decarburization of blown acid in a refining furnace such as a converter or VOD. Regarding

【0002】[0002]

【従来の技術】従来、転炉等の精錬炉において脱炭酸素
効率を向上させ、低炭素領域まで効率的に脱炭精錬を行
う方法としては転炉に底吹き機能を付加し、鋼浴の攪拌
を激しく行い、最も活性な反応領域である吹酸火点部へ
の溶鋼中炭素の供給を促進し(特公昭62−14602
号公報)、脱炭酸素効率を高位に維持している酸素供給
律速領域から脱炭酸素効率の低下する炭素拡散律速領域
へ移行する臨界炭素濃度(〔%C* 〕)を低炭側へ移行
させることや脱炭末期の炭素拡散律速領域において吹酸
速度を低下させるなどの吹酸速度コントロールなどを行
い、脱炭酸素効率の低下の防止を図っていた(鉄と鋼、
第68年(1982)、p1946)。
2. Description of the Related Art Conventionally, as a method of improving decarbonation efficiency in a refining furnace such as a converter and efficiently performing decarburization refining to a low carbon region, a bottom blowing function is added to the converter to remove a steel bath. Agitation is performed vigorously to accelerate the supply of carbon in molten steel to the hot spot of the acid spray, which is the most active reaction area (Japanese Patent Publication No. 62-14602).
Gazette), the critical carbon concentration ([% C * ]) that shifts from the oxygen supply rate controlling region that maintains the decarboxylation efficiency to a high level to the carbon diffusion rate controlling region that reduces the decarboxylation efficiency shifts to the low coal side. In order to prevent the decrease of decarboxylation efficiency (iron and steel, by controlling the blowing acid rate such as lowering the blowing acid rate in the carbon diffusion controlled region at the final stage of decarburization)
68th year (1982), p1946).

【0003】また、転炉吹錬において、溶鋼に対して熱
補償を行う方法として、特開昭62−60807号公報
に見られるように転炉内の鋼浴に対して超音速の酸素を
噴射して精錬する際に、これとは別にプラズマを含む亜
音速の酸素を鋼浴に対して噴射させて、この酸素と炉内
COガスとを反応させ、その高温反応生成ガスを鋼浴に
衝突させてその熱を鋼浴に伝達する転炉操業方法が提案
されている。
Further, as a method of performing thermal compensation for molten steel in converter blowing, as shown in Japanese Patent Laid-Open No. 62-60807, supersonic oxygen is injected into a steel bath in the converter. During refining, subsonic oxygen containing plasma is separately injected into the steel bath to react the oxygen with CO gas in the furnace, and the high temperature reaction product gas collides with the steel bath. A converter operating method has been proposed in which the heat is transferred to the steel bath.

【0004】[0004]

【発明が解決しようとする課題】以上で示したように、
転炉等の精錬炉にて吹酸脱炭精錬を行う際に、脱炭酸素
効率を向上させる方法としては、特公昭62−1460
2号公報に示された方法や鉄と鋼、第68年(198
2)、p1946に示された方法などがある。しかしな
がら、これらの方法では底吹きガス流量を増大しても
〔%C* 〕の低炭側への移行には限界があり、底吹きガ
ス流量を過剰に増大するとガス吹込みノズルの損耗が激
しくなるなどの難点があった。さらに、炭素拡散律速領
域での吹酸速度コントロールでは脱炭酸素効率の向上も
不十分であり、吹酸速度を低下させすぎると吹錬時間が
増大し、転炉耐火物の溶損も激しくなるといった問題が
あった。また、転炉での吹酸脱炭精錬を行う際に、プラ
ズマエネルギーを用いる方法として、特開昭62−60
807号公報に示されている方法があるが、この方法で
は鋼浴への熱伝達が促進され、着熱効率は向上するもの
の、噴射された酸素プラズマは炉内のCOガスとの反応
に消費されてしまい、吹酸火点部での反応には殆ど寄与
しないため、脱炭酸素効率を向上させるには不十分であ
った上に、プラズマを含有した酸素とCOガスとの反応
が過剰に起こると炉内温度が上昇してしまい、転炉耐火
物の寿命を著しく損ねることや、またプラズマ化するガ
ス体としては酸素ガスを用いるため、プラズマ発生器
(トーチ)の寿命にも問題があった。
[Problems to be Solved by the Invention] As shown above,
As a method for improving the efficiency of decarboxylation in carrying out decarburization of blown acid in a refining furnace such as a converter, Japanese Patent Publication No. Sho 62-1460
No. 2, the method and iron and steel, 68th year (198)
2) and p1946. However, in these methods, even if the bottom blowing gas flow rate is increased, there is a limit to the shift of [% C * ] to the low coal side, and if the bottom blowing gas flow rate is excessively increased, the gas blowing nozzle is greatly worn. There was a difficulty such as becoming. Furthermore, the improvement of decarboxylation efficiency is insufficient by controlling the blowing acid rate in the carbon diffusion controlled region. If the blowing acid rate is reduced too much, the blowing time increases and the melting loss of the refractory of the converter becomes severe. There was such a problem. In addition, as a method of using plasma energy when carrying out the decarburization of blown acid in a converter, there is disclosed in JP-A-62-60.
Although there is a method disclosed in Japanese Patent Publication No. 807, this method promotes heat transfer to a steel bath and improves heat deposition efficiency, but the injected oxygen plasma is consumed for reaction with CO gas in the furnace. Since it hardly contributes to the reaction at the blowing acid hot spot, it was not sufficient to improve the efficiency of decarboxylation, and the reaction between oxygen containing plasma and CO gas occurs excessively. And the temperature inside the furnace rises, and the life of the converter refractory is significantly impaired. Also, since oxygen gas is used as a gas body for plasma generation, there is also a problem with the life of the plasma generator (torch). .

【0005】従って、本発明の目的とするところは、過
剰な底吹きガスを使用することなく、また吹錬時間の延
長さらには吹錬用酸素ガスとCOガスとの過剰な反応に
起因した精錬容器の耐火物寿命を損ねるといった問題を
起こすことなく、低炭素領域まで脱炭酸素効率を低下さ
せずに効率的に脱炭精錬を行うことを可能とすることに
ある。
Therefore, it is an object of the present invention to use an excessive amount of bottom-blown gas, to extend the blowing time, and to further refine the refining resulting from the excessive reaction between the blowing oxygen gas and the CO gas. An object of the present invention is to enable efficient decarburization refining without lowering the efficiency of decarbonation to the low carbon region without causing a problem of impairing the refractory life of the container.

【0006】[0006]

【課題を解決するための手段】本発明者らは溶鋼の吹酸
脱炭精錬について、低炭素領域(炭素拡散律速域)まで
脱炭酸素効率を高位に維持できる方法として鋭意研究を
行った結果、吹酸脱炭精錬を行う際に形成される吹酸火
点部をより高温化することによってその効果が顕著であ
ることを見出した。本発明はこの知見に基づきなされた
ものである。
[Means for Solving the Problems] As a result of the inventors of the present invention, as a method of maintaining the decarboxylation efficiency at a high level even in the low carbon region (carbon diffusion rate-controlling region), the results of the dilute decarburization refining of molten steel It was found that the effect is remarkable by increasing the temperature of the hot spot of the acid spray formed during the decarburization of the acid spray. The present invention is based on this finding.

【0007】本発明の要旨とするところは、精錬炉にお
いて吹酸脱炭精錬を行うに際し、溶鋼上に形成された吹
酸火点部に、火点部で発生するエネルギーの1〜50%
を、プラズマエネルギーを照射することで供給すること
を特徴とするプラズマを用いた溶鋼の効率的な吹酸脱炭
精錬方法にある。
[0007] The gist of the present invention is that, when performing blown acid decarburization refining in a refining furnace, 1 to 50% of the energy generated at the blown point on the blown acid formed on the molten steel.
Is supplied by irradiating plasma energy, which is an efficient method for decarburizing and refining molten steel using plasma.

【0008】[0008]

【作用】本発明は以下に記載するように溶鋼の吹酸火点
部を高温化し、火点部での脱炭反応を促進させることに
立脚している。図1は転炉内を示す概略図である。1は
転炉、2はランス、3はプラズマ発生トーチ、4はプラ
ズマ化するガス体(Arなど)の供給通路、5は吹錬用
酸素ガスジェット、6はランス2内のプラズマトーチ3
により発生したArなどのプラズマジェット、7は溶
鋼、8はスラグ、9は吹酸火点部、10はガス吹込みノ
ズル、11は攪拌用底吹きガス(Ar、N2 、O2 等)
である。今、溶鋼7上にランス2から酸素ジェット5を
吹付け、脱炭精錬を行うと、吹酸火点部9が形成され
る。この吹酸火点部の温度は通常の吹錬では約2300
〜2500℃と溶鋼温度に比べてかなり高温であり、脱
炭反応の大部分はこの吹酸火点部およびその近傍にて行
われる。すなわち普通鋼、ステンレス鋼に関わらず、吹
酸脱炭による溶鋼の脱炭機構としては以下の(1)式に
より、一旦浴面で生成した金属酸化物(FeO、Cr2
3 など)が火点部および巻き込まれた浴内で溶鋼中の
炭素と反応して起こり((2)式)、脱炭に寄与できな
かった酸化物が溶鋼上のスラグにトラップされることに
よりスラグ中のFeOやCr2 3 濃度の増大を引き起
こすことになる。ここで、(1)、(2)式におけるM
はFeやCrなどの金属原子を示す。
The present invention is based on increasing the temperature of the blown acid hot spot of molten steel to accelerate the decarburization reaction at the hot spot as described below. FIG. 1 is a schematic view showing the inside of a converter. Reference numeral 1 is a converter, 2 is a lance, 3 is a plasma generation torch, 4 is a supply passage for a gas body (Ar or the like) to be turned into plasma, 5 is an oxygen gas jet for blowing, and 6 is a plasma torch 3 in the lance 2.
Plasma jets such as Ar generated by, 7 is molten steel, 8 is slag, 9 is a sprayed acid fire point, 10 is a gas injection nozzle, and 11 is a bottom blowing gas for stirring (Ar, N 2 , O 2, etc.)
Is. When the oxygen jet 5 is sprayed from the lance 2 onto the molten steel 7 to carry out decarburization refining, a sprayed acid fire spot 9 is formed. The temperature of this flame spray point is about 2300 in normal blowing.
The temperature is up to 2,500 ° C., which is considerably higher than the temperature of molten steel, and most of the decarburization reaction is carried out at or near the blowing acid hot spot. That is, regardless of ordinary steel or stainless steel, the decarburization mechanism of molten steel by blown acid decarburization is expressed by the following equation (1) by the metal oxide (FeO, Cr 2
O 3 ) reacts with the carbon in the molten steel in the hot spot and in the entrained bath (equation (2)), and the oxides that could not contribute to decarburization are trapped in the slag on the molten steel. This causes an increase in the FeO or Cr 2 O 3 concentration in the slag. Here, M in the equations (1) and (2)
Indicates a metal atom such as Fe or Cr.

【0009】 M+1/2O2 →MO (1) MO+→M+CO↑ (2) +1/2O2 →CO↑ (3) また、温度と各種酸化物の生成自由エネルギー変化の関
係においては、FeやCrなどの金属酸化物は高温にな
るほど生成自由エネルギー変化が高位側に推移する、つ
まり不安定になるのに対し、(3)式で表されるCOガ
ス発生反応は高温になればなるほど低位側へ推移する、
つまり安定化することが知られている。よって、この火
点部およびその近傍での金属酸化物の還元反応((2)
式)や酸素ジェットと溶鋼中炭素との直接反応((3)
式)は火点部の温度が高温であればあるほど有利である
ことになるが、溶鋼上に酸素ジェットを吹付けて形成さ
れる吹酸火点部の温度は上記の如く2300〜2500
℃程度であり、吹酸用の酸素ガスジェットと炉内COガ
スとの反応(二次燃焼)を促進させ、二次燃焼率を増大
させることなどによって火点部温度を上昇させることな
どが考えられるが、過剰に二次燃焼を促進させると炉内
の温度が上昇し、炉内耐火物の溶損が激しくなるなどの
問題があり、現状設備では2600℃以上に火点部温度
を上昇させることは不可能である。
M + 1 / 2O 2 → MO (1) MO + C → M + CO ↑ (2) C + 1 / 2O 2 → CO ↑ (3) Further, in the relation between temperature and free energy of formation of various oxides, Fe and In the case of metal oxides such as Cr, the change in free energy of generation shifts to the higher side, that is, becomes unstable as the temperature becomes higher, whereas the CO gas generation reaction represented by the formula (3) becomes lower as the temperature becomes higher. Transition to
In other words, it is known to stabilize. Therefore, the reduction reaction of the metal oxides at and around this hot spot ((2)
Formula) or oxygen jet and direct reaction of carbon in molten steel ((3)
(Equation) is more advantageous as the temperature of the hot spot is higher, but the temperature of the propellant acid hot spot formed by spraying an oxygen jet on the molten steel is 2300 to 2500 as described above.
It is about ℃, and it is thought to increase the temperature of the hot spot by promoting the reaction (secondary combustion) between the oxygen gas jet for blowing acid and the CO gas in the furnace, and increasing the secondary combustion rate. However, if secondary combustion is promoted excessively, the temperature inside the furnace will rise, and there will be problems such as severe melting loss of the refractory in the furnace. With the current equipment, the hot spot temperature will be raised above 2600 ° C. Is impossible.

【0010】そこで、本発明者らは吹酸火点部のみをよ
り高温化し、効率的に脱炭を促進させる方法として、プ
ラズマエネルギーを吹酸火点部に照射することにより、
過剰な二次燃焼を抑制しつつ、火点部温度を著しく向上
させる方法を発明した。この方法によれば、図1におけ
るランス2内に内蔵されたプラズマ発生トーチ3によっ
てArをベースとしたガス体をプラズマ化して照射する
ことにより、効率的に火点部温度のみを高温化し、火点
域を活性化できることになる。よって、攪拌用の底吹き
ガス流量として、0.01〜0.5Nm3 /(min・
ton)の範囲の適度な攪拌力を与えてやれば、火点部
分を超高温化することにより、(2)式、(3)式の反
応を向上させるのに有利であることは温度と各種酸化物
の生成自由エネルギーの関係からも明らかである。ここ
で、底吹きガス流量が0.01Nm3 /(min・to
n)未満であると火点部への炭素供給が不足し、脱炭酸
素効率が低下してしまう。さらに、底吹きガス流量が
0.5Nm3 /(min・ton)超であるとガス吹込
みノズルを損耗してしまうことになる。
Therefore, the inventors of the present invention irradiate plasma energy to the blowing acid hot spot as a method of further increasing the temperature of only the blowing acid hot spot and efficiently promoting decarburization.
The inventors have invented a method of significantly improving the temperature of the hot spot while suppressing excessive secondary combustion. According to this method, the Ar-based gas body is turned into plasma by the plasma generation torch 3 built in the lance 2 in FIG. The point area can be activated. Therefore, the flow rate of the bottom blowing gas for stirring is 0.01 to 0.5 Nm 3 / (min ·
It is advantageous to improve the reactions of formulas (2) and (3) by increasing the temperature of the flash point to an extremely high temperature by giving an appropriate stirring force in the range of It is also clear from the relation of the free energy of formation of oxides. Here, the bottom blowing gas flow rate is 0.01 Nm 3 / (min · to
If it is less than n), the carbon supply to the hot spot will be insufficient and the efficiency of decarboxylation will be reduced. Further, if the bottom blowing gas flow rate exceeds 0.5 Nm 3 / (min · ton), the gas blowing nozzle will be worn.

【0011】また、プラズマ化するガス体についてはA
rをベースとしてO2 などのガス体も考えられ、脱炭酸
素効率向上効果の点ではいずれのガス体でもほぼ同程度
の効果が得られるものの、プラズマ発生トーチの寿命を
考慮するとArガスが最も望ましい。さらにここで、プ
ラズマの照射エネルギーが酸素供給により火点で発生す
るエネルギーの1%未満であると、火点部が十分に高温
化つまり活性化されないため、脱炭酸素効率の向上が不
十分となってしまう。また、50%超のエネルギーを与
えてもそれ以上の脱炭酸素効率の向上効果は小さく(図
3)、火点部温度が過剰に上昇することに起因して、F
eやCrなどの金属の蒸発現象が生じるため、溶鋼歩留
りの悪化を招くことになる。
Further, regarding the gas body to be turned into plasma, A
A gas such as O 2 can be considered based on r, and almost the same effect can be obtained with any gas in terms of the effect of improving the efficiency of decarbonation, but Ar gas is the most effective when considering the life of the plasma generation torch. desirable. Furthermore, if the irradiation energy of the plasma is less than 1% of the energy generated at the fire point due to the oxygen supply, the hot point portion will not be sufficiently heated, that is, will not be activated, so that the improvement of decarboxylation efficiency will be insufficient. turn into. Further, even if an energy of more than 50% is given, the effect of further improving the decarbonation efficiency is small (Fig. 3), and the temperature of the hot spot is excessively increased.
Since the evaporation of metals such as e and Cr occurs, the yield of molten steel deteriorates.

【0012】また、プラズマ照射を行うことにより、火
点部のみならず火点部近傍においても通常の吹錬に比べ
て高温化していることから、この火点部近傍での還元反
応((2)式)も促進されることになる。さらに、プラ
ズマ発生トーチより照射された直後のプラズマジェット
は非常に高温状態(≧5000℃)であり、この熱が同
時に噴射する吹錬用の酸素ジェットに伝播することによ
り、活性化されることから、(3)式の反応も著しく促
進されることになる。よって、総括として図2に示す如
く低炭素領域(炭素拡散律速領域)においても脱炭酸素
効率を向上させることが可能、すなわち攪拌用ガス流量
を増大させることなく、つまり底吹きガス用ノズルの損
耗といった問題を起こすことなく、低炭素領域まで脱炭
酸素効率の高位維持が可能であることになる。また、本
発明では、従来行っていた吹酸速度を低下させるといっ
た操作を行わずに低炭素領域(炭素拡散律速領域)での
脱炭酸素効率の高位維持が可能であることから、吹錬時
間を延長させずに低炭素濃度まで脱炭精錬が可能とな
る。さらに、本発明では吹錬用酸素ジェットはすべての
噴出孔から超音波で噴射されるため、炉内COガスと吹
錬用酸素との反応を過剰に引き起こすこともなく、ほぼ
全プラズマエネルギーが火点部温度の高温化あるいは反
応に消費されるため、反応の高効率化が可能になり、炉
内耐火物を損耗してしまうといった問題も解消されるこ
とになる。
Further, since the plasma irradiation raises the temperature not only in the hot spot but also in the vicinity of the hot spot as compared with normal blowing, the reduction reaction ((2 Formula) will also be promoted. Further, the plasma jet immediately after being irradiated by the plasma generation torch is in a very high temperature state (≧ 5000 ° C.), and this heat is activated by propagating to the oxygen jet for blowing at the same time. , The reaction of formula (3) is also significantly promoted. Therefore, as a whole, as shown in FIG. 2, it is possible to improve the efficiency of decarbonation even in the low carbon region (carbon diffusion control region), that is, without increasing the flow rate of the stirring gas, that is, the wear of the nozzle for the bottom blowing gas. Without causing such a problem, it is possible to maintain a high decarboxylation efficiency in a low carbon region. Further, in the present invention, it is possible to maintain a high decarboxylation efficiency in a low carbon region (carbon diffusion rate controlling region) without performing a conventional operation such as lowering the blowing acid rate. It is possible to decarburize and refine to a low carbon concentration without extending. Further, in the present invention, the blowing oxygen jet is ultrasonically jetted from all the ejection holes, so that the reaction between the CO gas in the furnace and the blowing oxygen is not excessively caused, and almost all plasma energy is burnt. Since the point temperature is increased or consumed for the reaction, the efficiency of the reaction can be increased, and the problem that the refractory material in the furnace is worn away can be solved.

【0013】[0013]

【実施例】図1に示した如く、転炉1、ランス2、プラ
ズマ発生トーチ3、プラズマ化用ガス供給通路4、吹錬
用酸素ガスジェット5、プラズマジェット6、溶鋼7、
スラグ8、吹酸火点部9、ガス吹込みノズル10、攪拌
用底吹き酸素11において、175ton規模の転炉を
用いて一般の低炭Al−K鋼にて脱炭吹錬を行った場合
の実施例を表1に示す。この場合、ランス孔数は4孔と
し、上吹き酸素量としては一律、2.7Nm3 /(mi
n・ton)、底吹きガス流量としては一律、0.2N
3 /(min・ton)として行った。また、プラズ
マ化用のガス体としてはいずれの場合もArを使用し、
ガス流量としては0.7Nm3 /(min・ton)、
プラズマ照射は〔C〕≦0.1%の領域で行った。
EXAMPLE As shown in FIG. 1, a converter 1, a lance 2, a plasma generation torch 3, a gas supply passage 4 for plasmaization, an oxygen gas jet 5 for blowing, a plasma jet 6, a molten steel 7,
When decarburization blowing is performed on general low-carbon Al-K steel using a 175 ton scale converter with slag 8, blowing acid hot spot 9, gas blowing nozzle 10, and bottom blowing oxygen for stirring 11. Examples of are shown in Table 1. In this case, the number of lance holes is 4, and the amount of top-blown oxygen is uniformly 2.7 Nm 3 / (mi
n ・ ton), the bottom flow gas flow rate is uniformly 0.2 N
It was performed as m 3 / (min · ton). Further, Ar is used as a gas body for plasma generation in any case,
The gas flow rate is 0.7 Nm 3 / (min · ton),
Plasma irradiation was performed in the region of [C] ≦ 0.1%.

【0014】表1から明らかなように本発明により低炭
素領域まで脱炭酸素効率を低下させることなく、効率的
に吹酸脱炭精錬を行うことが可能であることがわかる。
As is clear from Table 1, it is possible to efficiently carry out the decarburization and refining of blown acid by the present invention without lowering the efficiency of decarboxylation in the low carbon region.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】本発明を用いることにより、吹錬時間を
延長することなく、しかも、精錬容器の耐火物や底吹き
ガス吹込みノズルを損ねることなく、低炭素領域まで脱
炭酸素効率を低下させずに効率的に吹酸脱炭精錬を行う
ことが可能となった。
EFFECTS OF THE INVENTION By using the present invention, the decarboxylation efficiency is reduced to a low carbon region without extending the blowing time, and without damaging the refractory of the refining vessel or the bottom blowing gas injection nozzle. It has become possible to efficiently carry out the decarburizing and refining of blown acid without doing so.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による吹酸脱炭精錬法の態様の一例を示
す図である。
FIG. 1 is a diagram showing an example of an embodiment of a blowing acid decarburization refining method according to the present invention.

【図2】溶鋼中炭素濃度と脱炭酸素効率を示す図であ
る。
FIG. 2 is a diagram showing carbon concentration in molten steel and decarbonation efficiency.

【図3】火点部のエネルギーに対するプラズマによる付
加エネルギー量と脱炭酸素効率の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the amount of additional energy by plasma and the decarbonation efficiency with respect to the energy of the fire point.

【符号の説明】[Explanation of symbols]

1 転炉 2 ランス 3 プラズマ発生トーチ 4 プラズマ化用ガスの供給通路 5 吹錬用酸素ガスジェット 6 ランス2内のプラズマトーチ3により発生したA
r、酸素などのプラズマジェット 7 溶鋼 8 スラグ 9 吹酸火点部 10 ガス吹込みノズル 11 攪拌用底吹きガス(Ar、N2 、O2 等)
1 Converter 2 Lance 3 Plasma Generation Torch 4 Plasmaization Gas Supply Passage 5 Blowing Oxygen Gas Jet 6 A Generated by Plasma Torch 3 in Lance 2
Plasma jet of r, oxygen, etc. 7 Molten steel 8 Slag 9 Bleaching acid fire point 10 Gas injection nozzle 11 Bottom blowing gas for stirring (Ar, N 2 , O 2 etc.)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 精錬炉において吹酸脱炭精錬を行うに際
し、溶鋼上に形成された吹酸火点部に、火点部で発生す
るエネルギーの1〜50%を、プラズマエネルギーを照
射することで供給することを特徴とするプラズマを用い
た溶鋼の効率的な吹酸脱炭精錬方法。
1. When performing blown acid decarburization refining in a refining furnace, plasma energy is applied to the blown acid hot spot formed on molten steel at 1 to 50% of the energy generated at the hot spot. An efficient method of decarburizing and decarburizing molten steel using plasma, which is characterized in that
JP29543092A 1992-11-04 1992-11-04 Efficient oxygen blowing decarburization refining method of molten steel using plasma Withdrawn JPH06145765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29543092A JPH06145765A (en) 1992-11-04 1992-11-04 Efficient oxygen blowing decarburization refining method of molten steel using plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29543092A JPH06145765A (en) 1992-11-04 1992-11-04 Efficient oxygen blowing decarburization refining method of molten steel using plasma

Publications (1)

Publication Number Publication Date
JPH06145765A true JPH06145765A (en) 1994-05-27

Family

ID=17820505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29543092A Withdrawn JPH06145765A (en) 1992-11-04 1992-11-04 Efficient oxygen blowing decarburization refining method of molten steel using plasma

Country Status (1)

Country Link
JP (1) JPH06145765A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014223A (en) * 2012-12-25 2013-04-03 四川西南不锈钢有限责任公司 Method for prolonging service life of GOR converter bottom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014223A (en) * 2012-12-25 2013-04-03 四川西南不锈钢有限责任公司 Method for prolonging service life of GOR converter bottom

Similar Documents

Publication Publication Date Title
JPH02221336A (en) Smelting reduction method of ni ore
US5902374A (en) Vacuum refining method for molten steel
EP0756012B1 (en) Decarburization refining process for chromium-containing molten metal.
JP3410553B2 (en) Decarburization refining method of chromium-containing molten steel
JPH06145765A (en) Efficient oxygen blowing decarburization refining method of molten steel using plasma
JP6726777B1 (en) Method for producing low carbon ferromanganese
JPH06240335A (en) Method for effectively decarburization-refining molten steel by blowing oxygen and using plasma energy
JPH1030110A (en) Method for blowing oxygen in top-bottom combination-blown converter
JPH06306435A (en) Method for executing decarburize-refining molten cr-containing steel by using plasma energy
JP3044642B2 (en) Decarburization refining method of chromium-containing molten steel
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JP2746630B2 (en) Melting method of ultra low carbon steel by vacuum degassing
JP2578046B2 (en) Decarburization refining method of chromium-containing molten steel
JPH07173515A (en) Decarburization refining method of stainless steel
JP2615728B2 (en) Decarburization method for Cr-containing pig iron
JPS62247014A (en) Carburizing, melting and refining method
JP2795597B2 (en) Vacuum degassing and decarburization of molten stainless steel
JP2713795B2 (en) Stainless steel smelting method
JP2563721B2 (en) Decarburization refining method for molten steel containing chromium
JPH024938A (en) Manufacture of medium-carbon and low-carbon ferromanganese
JPH1192814A (en) Converter blowing for restraining generation of dust
JP3861618B2 (en) Dephosphorization method of hot metal using converter.
JPH1192815A (en) Converter blowing for restraining generation of dust
JPH04214812A (en) Method for smelting stainless steel
JPH07316626A (en) Production of low-carbon molten steel using plasma energy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104