JP2006279020A - Semiconductor device and method of manufacturing same - Google Patents

Semiconductor device and method of manufacturing same Download PDF

Info

Publication number
JP2006279020A
JP2006279020A JP2006019774A JP2006019774A JP2006279020A JP 2006279020 A JP2006279020 A JP 2006279020A JP 2006019774 A JP2006019774 A JP 2006019774A JP 2006019774 A JP2006019774 A JP 2006019774A JP 2006279020 A JP2006279020 A JP 2006279020A
Authority
JP
Japan
Prior art keywords
drain region
region
oxide film
semiconductor device
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006019774A
Other languages
Japanese (ja)
Other versions
JP4454587B2 (en
Inventor
Naohiro Ueda
尚宏 上田
Masato Kijima
正人 貴島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006019774A priority Critical patent/JP4454587B2/en
Publication of JP2006279020A publication Critical patent/JP2006279020A/en
Application granted granted Critical
Publication of JP4454587B2 publication Critical patent/JP4454587B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Abstract

<P>PROBLEM TO BE SOLVED: To improve driving capability and breakdown voltage of a high-breakdown-voltage MOSFET. <P>SOLUTION: A P-type second drain region 6 is formed in an N-type well region 4 formed in a P-type semiconductor substrate 2. A LOCOS oxide film 8 is formed on the second drain region 6, and a P-type third drain region 10 having a P-type impurity concentration higher than that of the P-type second drain region 6 is formed in a region underneath the LOCOS oxide film 8a. A gate oxide film 12 is formed on the surface of the N-type well region 4, extending continuously to the LOCOS oxide film 8a. A gate electrode 14 is formed on the gate oxide film 12, extending over the LOCOS oxide film 8a. A P-type first drain region 16 is formed in the surface vicinity of the P-type second drain region 6 keeping a space from the gate electrode 14. The P-type first drain region 16 has a P-type impurity concentration higher than those of the P-type second drain region 6 and the P-type third drain region 10. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体装置及びその製造方法に関し、特に高耐圧MOSFET(Metal Oxide Semiconductor Field Effect Transistor)を備えた半導体装置及びその製造方法に関するものである。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device including a high voltage MOSFET (Metal Oxide Semiconductor Field Effect Transistor) and a manufacturing method thereof.

例えば、携帯電話の充電制御機能をもつ半導体集積回路は、通常5〜6V(ボルト)の電圧で駆動し、定格は約8Vに設定されている。ところが、不良品の充電アダプターに接続されることで、内部回路に通常の定格以上の電圧、例えば12V〜18Vが印可される場合がある。半導体集積回路としては、上記のような問題が発生した場合であっても、発熱や故障などの不良を発生することなく、内部回路が正常に動作することが望ましい。
また、液晶などの表示系デバイスにおいても15V程度の高い電圧帯で、しかも大電流駆動能で動作することが要求されている。つまり、トランジスタの高耐圧化及び大電流化は近年の携帯電話やデジタル通信機器の発展を支えている。
For example, a semiconductor integrated circuit having a charge control function for a mobile phone is normally driven at a voltage of 5 to 6 V (volt), and the rating is set to about 8 V. However, a voltage exceeding the normal rating, for example, 12V to 18V may be applied to the internal circuit by being connected to a defective charging adapter. As a semiconductor integrated circuit, it is desirable that the internal circuit operates normally without causing defects such as heat generation or failure even when the above-described problems occur.
Also, display devices such as liquid crystals are required to operate at a high voltage band of about 15 V and with a large current drive capability. That is, the higher breakdown voltage and higher current of transistors support the recent development of mobile phones and digital communication devices.

MOSFETの定格を上げる手段は様々であるが、その一つとして、ドレイン側のゲート酸化膜下に厚い酸化膜を形成し、その厚い酸化膜の下に第2ドレイン領域を形成する方法が知られている。厚い酸化膜を素子分離用のLOCOS(local oxidation of silicon)酸化膜で形成したMOSFETはLOCOSオフセットトランジスタと呼ばれている。   There are various means for raising the rating of the MOSFET, and one of them is a method of forming a thick oxide film under the gate oxide film on the drain side and forming a second drain region under the thick oxide film. ing. A MOSFET in which a thick oxide film is formed of a local oxidation of silicon (LOCOS) oxide film for element isolation is called a LOCOS offset transistor.

LOCOSオフセットトランジスタを形成する場合、定格を上げることと駆動能力を上げることは相反する関係になっている。その理由としては、第2ドレイン領域の濃度を高くすると、ゲート絶縁膜付近で電界の集中が著しくなり、ドレイン、半導体基板間の耐圧が低下する。また、第2ドレイン領域と半導体基板間の空乏層の延びが抑制されるので、半導体基板間の耐圧が低下する。逆に、第2ドレイン領域の濃度を低くすると、ドレインの寄生抵抗が高くなり駆動能力が低下する。したがって、両者をより高いレベルで実現するには第2ドレイン領域の構造が鍵を握っている。   When forming a LOCOS offset transistor, increasing the rating and increasing the driving capability are in a conflicting relationship. The reason for this is that when the concentration of the second drain region is increased, the concentration of the electric field becomes remarkable in the vicinity of the gate insulating film, and the breakdown voltage between the drain and the semiconductor substrate decreases. In addition, since the extension of the depletion layer between the second drain region and the semiconductor substrate is suppressed, the breakdown voltage between the semiconductor substrates is reduced. On the contrary, when the concentration of the second drain region is lowered, the parasitic resistance of the drain is increased and the driving capability is lowered. Therefore, the structure of the second drain region is the key to realizing both at a higher level.

第1の従来例として、図15に示す構造をもつMOSFETがある(例えば、特許文献1参照。)。このMOSFETでは、N型半導体基板80の表面側に設けられた高濃度のP++ドレイン領域82とゲート酸化膜84の間に中濃度のP+ドレイン領域86と低濃度のP−ドレイン領域88が形成されている。P+ドレイン領域86は厚いLOCOS酸化膜90下に形成され、P−ドレイン領域88はゲート酸化膜84下に配置されている。   As a first conventional example, there is a MOSFET having a structure shown in FIG. 15 (see, for example, Patent Document 1). In this MOSFET, a medium concentration P + drain region 86 and a low concentration P− drain region 88 are formed between a high concentration P ++ drain region 82 and a gate oxide film 84 provided on the surface side of the N-type semiconductor substrate 80. ing. The P + drain region 86 is formed under the thick LOCOS oxide film 90, and the P− drain region 88 is disposed under the gate oxide film 84.

しかし、図15に示した構造では、高濃度のP++ドレイン領域82がN型半導体基板80と直接接しているので空乏層の延びが抑制され、低い電圧で接合破壊が起こってしまうという問題があった。また、特許文献1には、P++ドレイン領域82の下に別途P−ドレイン領域を配置した構造が開示されているが、この場合でも中濃度のP+ドレイン領域86がN型半導体基板80と直接接しているので、同様の理由から十分な高耐圧化は達成できない。
また、特許文献1では、LOCOS酸化膜90を形成した後でP−ドレイン領域88をゲート酸化膜84と接触する位置に形成しているので、P−ドレイン領域88とゲート酸化膜84が接触している領域近傍での電界緩和が抑制され、空乏層の延びが制限されてしまい、低いドレイン電圧でゲート変調接合破壊が起こるという問題があった。
However, the structure shown in FIG. 15 has a problem that since the high-concentration P ++ drain region 82 is in direct contact with the N-type semiconductor substrate 80, the extension of the depletion layer is suppressed and junction breakdown occurs at a low voltage. It was. Further, Patent Document 1 discloses a structure in which a P− drain region is separately provided under the P ++ drain region 82, but even in this case, the medium concentration P + drain region 86 is in direct contact with the N-type semiconductor substrate 80. Therefore, a sufficiently high breakdown voltage cannot be achieved for the same reason.
In Patent Document 1, since the P-drain region 88 is formed at a position in contact with the gate oxide film 84 after the LOCOS oxide film 90 is formed, the P-drain region 88 and the gate oxide film 84 are in contact with each other. There is a problem that the electric field relaxation in the vicinity of the region is suppressed, the extension of the depletion layer is restricted, and gate modulation junction breakdown occurs at a low drain voltage.

また、第2の従来例として、図16に示す構造をもつMOSFETがある(例えば、特許文献1参照。)。このMOSFETでは、高濃度で第1ドレイン領域92のチャネル領域側に厚いLOCOS酸化膜90が形成され、LOCOS酸化膜90の真下に高濃度で浅い第2ドレイン領域94が形成されている。さらに、第2ドレイン領域94を囲う様に低濃度で深い第3ドレイン領域96が形成されている。   Further, as a second conventional example, there is a MOSFET having a structure shown in FIG. 16 (see, for example, Patent Document 1). In this MOSFET, a high-concentration thick LOCOS oxide film 90 is formed on the channel region side of the first drain region 92, and a high-concentration shallow second drain region 94 is formed immediately below the LOCOS oxide film 90. Further, a deep third drain region 96 having a low concentration is formed so as to surround the second drain region 94.

しかし、LOCOS酸化膜90を形成する前に高濃度で浅い第2ドレイン領域94用の不純物をLOCOS酸化膜90の直下に導入しているため、LOCOS酸化膜90中へのイオンの吸出しや、酸化膜−半導体基板界面へのイオンの偏析などの影響を受けやすく、駆動能力がプロセス変動の影響を受け易いという問題があった。
また、高濃度で浅い第2ドレイン領域94がゲート酸化膜84近くに形成されるので、ゲート−ドレイン間の電界が強くなり、ゲート酸化膜84の耐圧低下を招くという問題があった。
さらに、高濃度で第1ドレイン領域90がP型半導体基板と直接接する構造であるので、空乏層の延びが抑制され、低いドレイン電圧で接合破壊が起こってしまうという問題があった。
However, since impurities for the second drain region 94 having a high concentration and shallowness are introduced immediately below the LOCOS oxide film 90 before the LOCOS oxide film 90 is formed, ions can be sucked into the LOCOS oxide film 90, or oxidized. There is a problem in that the driving ability is easily affected by process fluctuations because the film is easily influenced by segregation of ions to the film-semiconductor substrate interface.
Further, since the high-concentration and shallow second drain region 94 is formed in the vicinity of the gate oxide film 84, the electric field between the gate and the drain is strengthened, and the breakdown voltage of the gate oxide film 84 is lowered.
Furthermore, since the first drain region 90 is in direct contact with the P-type semiconductor substrate at a high concentration, there is a problem in that the extension of the depletion layer is suppressed and junction breakdown occurs at a low drain voltage.

特開平6−21445号公報JP-A-6-21445 特許第2668713号公報Japanese Patent No. 2668713

本発明は、高耐圧MOSFETの駆動能力及び耐圧を向上させることができる半導体装置及びその製造方法を提供することを目的とするものである。   An object of the present invention is to provide a semiconductor device capable of improving the driving capability and the breakdown voltage of a high breakdown voltage MOSFET and a method for manufacturing the same.

本発明にかかる半導体装置は、第1導電型のウェル領域に互いに間隔をもって形成された第2導電型のソース領域及びドレイン領域と、上記ソース領域と上記ドレイン領域の間に形成されたチャネル領域と、上記チャネル領域上に形成されたゲート絶縁膜と、上記ゲート絶縁膜に隣接して上記ドレイン領域上に形成された、上記ゲート絶縁膜よりも厚い膜厚をもつ厚膜酸化膜と、上記ゲート絶縁膜上から上記厚膜酸化膜上にわたって形成されたゲート電極とをもつ高耐圧MOSFETを備え、上記ドレイン領域は、上記ゲート電極とは間隔をもって形成された第1ドレイン領域と、上記第1ドレイン領域を覆い、かつ少なくとも上記厚膜酸化膜下を含む領域に形成された第2ドレイン領域と、少なくとも下部部分が上記第2ドレイン領域で覆われており、かつ少なくとも上記厚膜酸化膜下を含む領域に形成された第3ドレイン領域を備え、上記第1ドレイン領域は上記第3ドレイン領域よりも濃い第2導電型不純物濃度をもち、上記第3ドレイン領域は上記第2ドレイン領域よりも濃い第2導電型不純物濃度をもっている。
ここで第1導電型とはP型又はN型を意味し、第2導電型とは第1導電型とは反対導電型のN型又はP型を意味する。
A semiconductor device according to the present invention includes a source region and a drain region of a second conductivity type that are formed in a well region of a first conductivity type with a space between each other, a channel region formed between the source region and the drain region, A gate insulating film formed on the channel region, a thick oxide film formed on the drain region adjacent to the gate insulating film and having a thickness greater than the gate insulating film, and the gate A high breakdown voltage MOSFET having a gate electrode formed over the insulating film and the thick oxide film, wherein the drain region includes a first drain region formed at a distance from the gate electrode, and the first drain A second drain region formed in a region covering at least the region under the thick oxide film and at least a lower portion covered with the second drain region. And a third drain region formed in a region including at least under the thick oxide film, wherein the first drain region has a second conductivity type impurity concentration higher than that of the third drain region, and The third drain region has a second conductivity type impurity concentration higher than that of the second drain region.
Here, the first conductivity type means P type or N type, and the second conductivity type means N type or P type opposite to the first conductivity type.

本発明の半導体装置において、上記第3ドレイン領域は上記第2ドレイン領域に完全に覆われている例を挙げることができる。
また、上記第3ドレイン領域は上記チャネル領域側の側面が上記第2ドレイン領域には覆われていないようにしてもよい。
また、上記第3ドレイン領域は上記厚膜酸化膜下の領域のみに形成されている例を挙げることができる。ただし、第3ドレイン領域の形成領域は厚膜酸化膜下の領域のみに限定されるものではなく、第3ドレイン領域は厚膜酸化膜下の領域以外の領域、例えば第2ドレイン領域の形成領域であって第1ドレイン領域下の領域に延伸して形成されていてもよい。
In the semiconductor device of the present invention, an example in which the third drain region is completely covered with the second drain region can be given.
The third drain region may be configured such that the side surface on the channel region side is not covered with the second drain region.
An example in which the third drain region is formed only in the region under the thick oxide film can be given. However, the formation region of the third drain region is not limited to the region under the thick oxide film, and the third drain region is a region other than the region under the thick oxide film, for example, the formation region of the second drain region. In this case, it may be formed extending in a region below the first drain region.

また、上記第2ドレイン領域及び上記第3ドレイン領域は上記ゲート絶縁膜とは間隔をもって形成されていることが好ましい。ただし、本発明はこれに限定されるものではなく、第2ドレイン領域又は第3ドレイン領域がゲート絶縁膜と接触していてもよい。   The second drain region and the third drain region are preferably formed with a gap from the gate insulating film. However, the present invention is not limited to this, and the second drain region or the third drain region may be in contact with the gate insulating film.

また、上記ドレイン領域の上記ソース領域側の端部の平面位置は、上記ゲート絶縁膜と上記厚膜酸化膜の境界位置と略一致していることが好ましい。ここで、ドレイン領域のソース領域側の端部は、第2ドレイン領域によって形成されていてもよいし、第2ドレイン領域によって形成されていてもよい。ただし、本発明はこれに限定されるものではなく、ドレイン領域のソース領域側の端部の平面位置は、ゲート絶縁膜と厚膜酸化膜の境界位置とは略一致していなくてもよい。   Further, it is preferable that the planar position of the end of the drain region on the source region side substantially coincides with the boundary position between the gate insulating film and the thick oxide film. Here, the end of the drain region on the source region side may be formed by the second drain region, or may be formed by the second drain region. However, the present invention is not limited to this, and the planar position of the end of the drain region on the source region side may not substantially coincide with the boundary position between the gate insulating film and the thick oxide film.

本発明の半導体装置において、上記第1導電型がP型で上記第2導電型がN型であってもよいし、上記第1導電型がN型で上記第2導電型がP型であってもよい。
また、上記厚膜酸化膜として、LOCOS酸化膜及びSTI膜(Shallow Trench Isolation法により形成した酸化膜)を挙げることができる。
In the semiconductor device of the present invention, the first conductivity type may be P type and the second conductivity type may be N type, or the first conductivity type may be N type and the second conductivity type may be P type. May be.
Examples of the thick oxide film include a LOCOS oxide film and an STI film (an oxide film formed by a shallow trench isolation method).

本発明の半導体装置は、例えば入力電圧の出力を制御する出力ドライバと、出力電圧を分割して分割電圧を供給するための分割抵抗回路と、基準電圧を供給するための基準電圧発生回路と、上記分割抵抗回路からの分割電圧と上記基準電圧発生回路からの基準電圧を比較し、比較結果に応じて上記出力ドライバの動作を制御するための比較回路をもつ定電圧発生回路を備えた半導体装置に適用することができ、出力ドライバとして本発明を構成する高耐圧MOSFETを適用することができる。   The semiconductor device of the present invention includes, for example, an output driver that controls output of an input voltage, a divided resistor circuit that divides the output voltage and supplies a divided voltage, a reference voltage generation circuit that supplies a reference voltage, A semiconductor device comprising a constant voltage generation circuit having a comparison circuit for comparing a divided voltage from the division resistance circuit with a reference voltage from the reference voltage generation circuit and controlling the operation of the output driver according to the comparison result The high voltage MOSFET which constitutes the present invention can be applied as an output driver.

本発明にかかる半導体装置の製造方法は、本発明の半導体装置を形成するための製造方法であって、以下の工程(A)から(G)を含む。
(A)半導体基板に第1導電型のウェル領域を形成する工程、
(B)イオン注入法により、上記ウェル領域の所定の領域に第2導電型不純物を注入して第2ドレイン領域を形成する工程、
(C)少なくとも上記第2ドレイン領域表面の所定の領域に厚膜酸化膜を形成する工程、
(D)イオン注入法により、上記厚膜酸化膜下を含む領域に第2導電型不純物を注入して、少なくとも下部部分が上記第2ドレイン領域で覆われるように第3ドレイン領域を形成する工程、
(E)上記ウェル領域表面に上記厚膜酸化膜に隣接してゲート絶縁膜を形成する工程、
(F)上記ゲート絶縁膜上から上記厚膜酸化膜上にわたってゲート電極を形成する工程、
(G)イオン注入法により、上記ゲート電極及び上記厚膜酸化膜をマスクにして第2導電型不純物の注入を行なって、上記ウェル領域にソース領域を形成し、上記第2ドレイン領域に第1ドレイン領域を形成する工程。
The manufacturing method of the semiconductor device concerning this invention is a manufacturing method for forming the semiconductor device of this invention, Comprising: The following processes (A) to (G) are included.
(A) forming a first conductivity type well region in a semiconductor substrate;
(B) forming a second drain region by implanting a second conductivity type impurity into a predetermined region of the well region by an ion implantation method;
(C) forming a thick oxide film at least in a predetermined region on the surface of the second drain region;
(D) A step of implanting a second conductivity type impurity into a region including the region under the thick oxide film by an ion implantation method to form a third drain region so that at least a lower portion is covered with the second drain region. ,
(E) forming a gate insulating film adjacent to the thick oxide film on the surface of the well region;
(F) forming a gate electrode from above the gate insulating film to the thick oxide film;
(G) A second conductivity type impurity is implanted by ion implantation using the gate electrode and the thick oxide film as a mask to form a source region in the well region, and a first region in the second drain region. Forming a drain region;

本発明の半導体装置の製造方法において、上記工程(B)における上記第2ドレイン領域のソース領域側の端部の形成を画定するための第2ドレイン領域用レジストパターンの辺の平面位置と、上記工程(C)における上記厚膜酸化膜のソース領域側の端部の形成を画定するための厚膜酸化膜用レジストパターンの辺の平面位置が一致していることが好ましい。これにより、ドレイン領域のソース領域側の端部の平面位置は、上記ゲート絶縁膜と上記厚膜酸化膜の境界位置と略一致する。   In the method for manufacturing a semiconductor device of the present invention, the planar position of the side of the second drain region resist pattern for defining the formation of the end portion on the source region side of the second drain region in the step (B), It is preferable that the planar positions of the sides of the thick oxide film resist pattern for defining the end of the thick oxide film on the source region side in the step (C) coincide. As a result, the planar position of the end of the drain region on the source region side substantially coincides with the boundary position between the gate insulating film and the thick oxide film.

さらに、上記工程(B)において、イオン注入は100KeV以上の加速エネルギーで行なうことが好ましい。
上記工程(C)で形成する上記厚膜酸化膜としてLOCOS酸化膜及びSTI膜を挙げることができる。
Further, in the step (B), ion implantation is preferably performed with acceleration energy of 100 KeV or more.
Examples of the thick oxide film formed in the step (C) include a LOCOS oxide film and an STI film.

本発明の半導体装置では、高耐圧MOSFETのドレイン領域は、ゲート電極とは間隔をもって形成された第1ドレイン領域と、第1ドレイン領域を覆い、かつ少なくとも厚膜酸化膜下を含む領域に形成された第2ドレイン領域と、少なくとも下部部分が第2ドレイン領域で覆われており、かつ少なくとも厚膜酸化膜下を含む領域に形成された第3ドレイン領域を備え、第1ドレイン領域は第3ドレイン領域よりも濃い第2導電型不純物濃度をもち、第3ドレイン領域は第2ドレイン領域よりも濃い第2導電型不純物濃度をもっているようにしたので、高濃度の第1ドレイン領域を低濃度の第2ドレイン領域で覆うことにより高耐圧化を実現することができる。さらに、厚膜酸化膜下に第2ドレイン領域よりも高濃度の第3ドレイン領域が配置されているのでドレイン領域の抵抗値を下げることができ、ドレイン電流の増大を達成することができる。このように、高耐圧MOSFETの駆動能力及び耐圧を向上させることができる。   In the semiconductor device of the present invention, the drain region of the high breakdown voltage MOSFET is formed in the first drain region formed at a distance from the gate electrode, and the region covering the first drain region and including at least under the thick oxide film. And a third drain region formed in a region including at least a lower portion covered with the second drain region and at least under the thick oxide film, wherein the first drain region is a third drain region. Since the second conductivity type impurity concentration is higher than that of the region and the third drain region is higher than that of the second drain region, the high concentration first drain region is changed to the low concentration first drain region. High breakdown voltage can be realized by covering with two drain regions. Further, since the third drain region having a higher concentration than the second drain region is disposed under the thick oxide film, the resistance value of the drain region can be lowered, and an increase in drain current can be achieved. Thus, the driving capability and breakdown voltage of the high breakdown voltage MOSFET can be improved.

発明の半導体装置において、第3ドレイン領域は第2ドレイン領域に完全に覆われているようにすれば、第2ドレイン領域よりも濃い第2導電型不純物濃度をもつ第3ドレイン領域と第1導電型ウェル領域との接触面をなくすことができるので、ドレイン接合耐圧を向上させることができる。   In the semiconductor device of the invention, if the third drain region is completely covered by the second drain region, the third drain region having the second conductivity type impurity concentration higher than that of the second drain region and the first conductivity are obtained. Since the contact surface with the mold well region can be eliminated, the drain junction breakdown voltage can be improved.

発明の半導体装置において、第2ドレイン領域及び第3ドレイン領域はゲート絶縁膜とは間隔をもって形成されているようにすれば、ゲート絶縁膜近傍での電界集中を緩和することができるので、ドレイン変調接合耐圧を向上させることができる。   In the semiconductor device of the invention, if the second drain region and the third drain region are formed with a gap from the gate insulating film, the electric field concentration in the vicinity of the gate insulating film can be reduced, so that the drain modulation is performed. The junction breakdown voltage can be improved.

また、ドレイン領域のソース領域側の端部の平面位置は、ゲート絶縁膜と厚膜酸化膜の境界位置と略一致しているようにすれば、本発明を構成する高耐圧MOSFETのドレイン飽和電流を最大にすることができ、駆動能力を最大限に引き出し、かつ高耐圧化を達成できる。   In addition, if the planar position of the end of the drain region on the source region side substantially coincides with the boundary position between the gate insulating film and the thick oxide film, the drain saturation current of the high breakdown voltage MOSFET constituting the present invention Can be maximized, drive capability can be maximized, and high withstand voltage can be achieved.

本発明の半導体装置の製造方法では、半導体基板に第1導電型のウェル領域を形成する工程(A)、イオン注入法によりウェル領域の所定の領域に第2ドレイン領域を形成する工程(B)、第2ドレイン領域表面の所定の領域に厚膜酸化膜を形成する工程(C)、イオン注入法により厚膜酸化膜下を含む領域に少なくとも下部部分が第2ドレイン領域で覆われるように第3ドレイン領域を形成する工程(D)、ゲート絶縁膜を形成する工程(E)、ゲート電極を形成する工程(F)、ならびに、ソース領域及び第1ドレイン領域を形成する工程(G)を含むようにしたので、本発明の半導体装置を構成する高耐圧MOSFETを形成することができる。   In the method for manufacturing a semiconductor device of the present invention, a step (A) of forming a first conductivity type well region in a semiconductor substrate, and a step (B) of forming a second drain region in a predetermined region of the well region by ion implantation. A step (C) of forming a thick oxide film in a predetermined region on the surface of the second drain region, and a second drain region so that at least a lower part is covered with the second drain region in a region including the region under the thick oxide film by ion implantation. 3 includes a step (D) of forming a drain region, a step (E) of forming a gate insulating film, a step (F) of forming a gate electrode, and a step (G) of forming a source region and a first drain region. Since it did in this way, the high voltage | pressure-resistant MOSFET which comprises the semiconductor device of this invention can be formed.

本発明の半導体装置の製造方法において、工程(B)における第2ドレイン領域のソース領域側の端部の形成を画定するための第2ドレイン領域用レジストパターンの辺の平面位置と、工程(C)における厚膜酸化膜のソース領域側の端部の形成を画定するための厚膜酸化膜用レジストパターンの辺の平面位置が一致しているようにすれば、ドレイン領域のソース領域側の端部の平面位置が上記ゲート絶縁膜と上記厚膜酸化膜の境界位置と略一致している構造を形成することができ、高耐圧MOSFETのドレイン飽和電流を最大にして、駆動能力を最大限に引き出し、かつ高耐圧化を達成できる。   In the method for manufacturing a semiconductor device of the present invention, the planar position of the side of the resist pattern for the second drain region for defining the formation of the end of the second drain region on the source region side in the step (B), and the step (C If the planar positions of the sides of the thick oxide film resist pattern for defining the formation of the end of the thick oxide film on the source region in FIG. Can be formed so that the planar position of the portion substantially coincides with the boundary position between the gate insulating film and the thick oxide film, and the drain saturation current of the high voltage MOSFET is maximized to maximize the driving capability. Pull-out and high breakdown voltage can be achieved.

また、工程(B)において、イオン注入は100KeV以上の加速エネルギーで行なうようにすれば、第2ドレイン領域をゲート絶縁膜とは間隔をもって形成することができ、ゲート絶縁膜近傍での電界集中を緩和することができるので、ドレイン変調接合耐圧を向上させることができる。   Further, in the step (B), if the ion implantation is performed with acceleration energy of 100 KeV or more, the second drain region can be formed at a distance from the gate insulating film, and electric field concentration in the vicinity of the gate insulating film can be achieved. Since it can be relaxed, the drain modulation junction breakdown voltage can be improved.

図1は半導体装置の一実施例の概略構成を示す断面図である。図2はこの実施例の不純物濃度分布のシミュレーション結果を示す断面図である。図3は図2のA−A’位置での深さ方向の不純物濃度プロファイルを示す図である。図1から図3を参照してこの実施例を説明する。   FIG. 1 is a sectional view showing a schematic configuration of an embodiment of a semiconductor device. FIG. 2 is a cross-sectional view showing the simulation result of the impurity concentration distribution of this embodiment. FIG. 3 is a diagram showing an impurity concentration profile in the depth direction at the position A-A ′ in FIG. 2. This embodiment will be described with reference to FIGS.

P型半導体基板2にN型ウェル領域4が形成されている。N型ウェル領域4にP型第2ドレイン領域6が形成されている。
N型ウェル領域4形成領域の周縁部近傍及びP型第2ドレイン領域6形成領域の周縁部近傍のP型半導体基板2表面にLOCOS酸化膜(厚膜酸化膜)8,8aが形成されている。P型第2ドレイン領域6の一端部近傍に形成されたLOCOS酸化膜を符号8aとする。
P型第2ドレイン領域6内のLOCOS酸化膜8a下の領域にP型第2ドレイン領域6よりも濃いP型不純物濃度をもつP型第3ドレイン領域10が形成されている。
An N-type well region 4 is formed in the P-type semiconductor substrate 2. A P-type second drain region 6 is formed in the N-type well region 4.
LOCOS oxide films (thick film oxide films) 8 and 8a are formed on the surface of the P-type semiconductor substrate 2 near the periphery of the N-type well region 4 formation region and the periphery of the P-type second drain region 6 formation region. . A LOCOS oxide film formed in the vicinity of one end of the P-type second drain region 6 is denoted by reference numeral 8a.
A P-type third drain region 10 having a P-type impurity concentration higher than that of the P-type second drain region 6 is formed in a region under the LOCOS oxide film 8 a in the P-type second drain region 6.

N型ウェル領域4の表面に、LOCOS酸化膜8aに連続してゲート酸化膜(ゲート絶縁膜)12が形成されている。ゲート酸化膜12上からLOCOS酸化膜8a上にわたってゲート電極14が形成されている。
ここで、P型第2ドレイン領域6はゲート酸化膜12とは間隔をもって配置されている。また、P型第2ドレイン領域6のソース領域側の端部の平面位置は、ゲート酸化膜12とLOCOS酸化膜8aの境界位置と略一致している。
A gate oxide film (gate insulating film) 12 is formed on the surface of the N-type well region 4 continuously to the LOCOS oxide film 8a. A gate electrode 14 is formed from the gate oxide film 12 to the LOCOS oxide film 8a.
Here, the P-type second drain region 6 is arranged at a distance from the gate oxide film 12. Further, the planar position of the end portion of the P-type second drain region 6 on the source region side substantially coincides with the boundary position between the gate oxide film 12 and the LOCOS oxide film 8a.

P型第2ドレイン領域6の表面近傍にゲート電極14とは間隔をもってP型第1ドレイン領域16が形成されている。P型第1ドレイン領域16はP型第2ドレイン領域6及びP型第3ドレイン領域10よりも濃いP型不純物濃度をもっている。
この実施例において高耐圧MOSFETのドレイン領域はP型第1ドレイン領域16、P型第2ドレイン領域6及びP型第3ドレイン領域10によって構成されている。
A P-type first drain region 16 is formed in the vicinity of the surface of the P-type second drain region 6 with a gap from the gate electrode 14. The P-type first drain region 16 has a higher P-type impurity concentration than the P-type second drain region 6 and the P-type third drain region 10.
In this embodiment, the drain region of the high breakdown voltage MOSFET is constituted by a P-type first drain region 16, a P-type second drain region 6, and a P-type third drain region 10.

N型ウェル領域4の表面近傍にゲート電極14のP型第1ドレイン領域16側とは反対側の側面に隣接又は重複してP型ソース領域18が形成されている。P型ソース領域18とP型第2ドレイン領域6は間隔をもって配置されており、両領域6,18間のN型ウェル領域4の表面近傍領域はチャネル領域20を構成する。   Near the surface of the N-type well region 4, a P-type source region 18 is formed adjacent to or overlapping with the side surface of the gate electrode 14 opposite to the P-type first drain region 16 side. The P-type source region 18 and the P-type second drain region 6 are arranged with a space therebetween, and the region near the surface of the N-type well region 4 between the regions 6 and 18 constitutes a channel region 20.

この実施例では、高濃度のP型第1ドレイン領域16は低濃度のP型第2ドレイン領域6で覆われているので高耐圧化を実現することができる。さらに、LOCOS酸化膜8a下にP型第2ドレイン領域6よりも高濃度のP型第3ドレイン領域10が配置されているのでドレイン領域の抵抗値を下げることができ、ドレイン電流の増大を達成することができる。   In this embodiment, since the high-concentration P-type first drain region 16 is covered with the low-concentration P-type second drain region 6, a high breakdown voltage can be realized. Further, since the P-type third drain region 10 having a higher concentration than the P-type second drain region 6 is disposed under the LOCOS oxide film 8a, the resistance value of the drain region can be lowered and the drain current can be increased. can do.

さらに、P型第3ドレイン領域10はP型第2ドレイン領域6に完全に覆われているので、P型第2ドレイン領域6よりも濃いP型不純物濃度をもつP型第3ドレイン領域10とN型ウェル領域4との接触面をなくすことができ、ドレイン接合耐圧を向上させることができる。   Further, since the P-type third drain region 10 is completely covered with the P-type second drain region 6, the P-type third drain region 10 having a higher P-type impurity concentration than the P-type second drain region 6 The contact surface with the N-type well region 4 can be eliminated, and the drain junction breakdown voltage can be improved.

さらに、P型第2ドレイン領域6はゲート絶縁膜12とは間隔をもって配置されているので、ゲート絶縁膜12近傍での電界集中を緩和することができ、ドレイン接合耐圧を向上させることができる。   Furthermore, since the P-type second drain region 6 is disposed with a gap from the gate insulating film 12, electric field concentration in the vicinity of the gate insulating film 12 can be relaxed, and the drain junction breakdown voltage can be improved.

図4及び図5は製造方法の一実施例を説明するための工程断面図である。図6はこの実施例で用いるレジストマスクの開口部領域を説明するための平面図である。図1及び図4から図6を参照してこの実施例を説明する。   4 and 5 are process cross-sectional views for explaining an embodiment of the manufacturing method. FIG. 6 is a plan view for explaining the opening region of the resist mask used in this embodiment. This embodiment will be described with reference to FIGS. 1 and 4 to 6.

(1)P型半導体基板2上にN型ウェル領域の形成領域を画定するために写真製版技術によりレジストパターン22を形成する。イオン注入法により、レジストパターン22をマスクにして、例えば、N型不純物であるリン24を加速エネルギーは160KeV、注入量は1×1013cm-2の条件でイオン注入する(図4(a)及び図6参照。)。 (1) A resist pattern 22 is formed on the P-type semiconductor substrate 2 by a photoengraving technique in order to define an N-type well region formation region. For example, phosphorus 24, which is an N-type impurity, is ion-implanted by ion implantation under the conditions of an acceleration energy of 160 KeV and an implantation amount of 1 × 10 13 cm −2 (FIG. 4A). And FIG. 6).

(2)レジストパターン22を除去した後、例えば、温度1150℃、窒素雰囲気下の条件で2時間熱処理を行ない、注入したリン24を拡散及び活性化させてN型ウェル領域4を形成する(図4(b)参照。)。 (2) After removing the resist pattern 22, for example, heat treatment is performed for 2 hours under conditions of a temperature of 1150 ° C. and a nitrogen atmosphere, and the implanted phosphorus 24 is diffused and activated to form the N-type well region 4 (FIG. 4 (b).)

(3)第2ドレイン領域の形成領域を画定するために、写真製版技術により第2ドレイン領域用レジストパターン26をP型半導体基板2上に形成する。イオン注入法により、第2ドレイン領域用レジストパターン26をマスクにして、例えば、P型不純物であるボロン28を加速エネルギーは160KeV、注入量は1×1013cm-2の条件でイオン注入する(図4(c)及び図6参照。)。 (3) A second drain region resist pattern 26 is formed on the P-type semiconductor substrate 2 by a photoengraving technique in order to define the formation region of the second drain region. By ion implantation, using the second drain region resist pattern 26 as a mask, for example, boron 28 which is a P-type impurity is ion-implanted under the conditions of an acceleration energy of 160 KeV and an implantation amount of 1 × 10 13 cm −2 ( (Refer FIG.4 (c) and FIG. 6.).

(4)第2ドレイン領域用レジストパターン26を除去した後、P型半導体基板2上全面に窒化シリコン膜30を形成する。LOCOS酸化膜の形成領域を画定するために、写真製版技術によりLOCOS酸化膜用レジストパターン32a,32bを形成する(図4(d)及び図6参照。)。LOCOS酸化膜のソース領域側の端部の形成を画定するLOCOS酸化膜用レジストパターン32aの辺の平面位置と、上記工程(3)で用いた、第2ドレイン領域のソース領域側の端部の形成を画定するための第2ドレイン領域用レジストパターン26の辺の平面位置は一致している(図6のX−X’位置を参照。)。 (4) After removing the resist pattern 26 for the second drain region, a silicon nitride film 30 is formed on the entire surface of the P-type semiconductor substrate 2. In order to demarcate the formation region of the LOCOS oxide film, LOCOS oxide film resist patterns 32a and 32b are formed by photolithography (see FIGS. 4D and 6). The planar position of the side of the LOCOS oxide film resist pattern 32a that defines the formation of the end portion on the source region side of the LOCOS oxide film, and the end portion on the source region side of the second drain region used in the step (3). The planar positions of the sides of the second drain region resist pattern 26 for defining the formation coincide with each other (see the position XX ′ in FIG. 6).

(5)エッチング技術により、LOCOS酸化膜用レジストパターン32a,32bをマスクにして窒化シリコン膜30をパターニングした後、LOCOS酸化膜用レジストパターン32a,32bを除去する。例えば、温度1000℃、酸化雰囲気中の条件で1時間熱処理を施し、LOCOS酸化膜8,8aを形成する。この熱処理により、上記工程(3)で注入したボロン28が拡散及び活性化してP型第2ドレイン領域6が形成される。(図5(e)参照。)。
その後、窒化シリコン膜30を除去する。
ここではボロン28が拡散及び活性化をLOCOS酸化膜8,8aの形成と同時に行なっているが、本発明はこれに限定されるものではなく、ボロン28を拡散及び活性化させるための専用の熱処理工程を設けてもよい。
(5) After the silicon nitride film 30 is patterned by the etching technique using the LOCOS oxide film resist patterns 32a and 32b as a mask, the LOCOS oxide film resist patterns 32a and 32b are removed. For example, heat treatment is performed for 1 hour under conditions of a temperature of 1000 ° C. and an oxidizing atmosphere to form the LOCOS oxide films 8 and 8a. By this heat treatment, the boron 28 implanted in the step (3) is diffused and activated to form the P-type second drain region 6. (See FIG. 5 (e)).
Thereafter, the silicon nitride film 30 is removed.
Here, the boron 28 is diffused and activated simultaneously with the formation of the LOCOS oxide films 8 and 8a. However, the present invention is not limited to this, and a dedicated heat treatment for diffusing and activating the boron 28 is performed. A process may be provided.

(6)第3ドレイン領域の形成領域を画定するために、写真製版技術によりレジストパターン34を形成する。イオン注入法により、レジストパターン34をマスクにして、例えば、P型不純物であるボロン36を加速エネルギーは180KeV、注入量は1×1013cm-2の条件でイオン注入する(図5(f)及び図6参照。)。 (6) In order to define the formation region of the third drain region, a resist pattern 34 is formed by photolithography. With the resist pattern 34 as a mask, for example, boron 36, which is a P-type impurity, is ion-implanted by ion implantation under the conditions of an acceleration energy of 180 KeV and an implantation amount of 1 × 10 13 cm −2 (FIG. 5F). And FIG. 6).

(7)レジストパターン34を除去し、さらにLOCOS酸化膜8,8aの形成領域以外のP型半導体基板2表面の酸化膜を除去した後、酸素雰囲気中で熱処理を施してゲート酸化膜12を形成する。この熱処理により、上記工程(6)で注入したボロン36が拡散及び活性化してP型第3ドレイン領域10が形成される。P型第2ドレイン領域6のソース領域側の端部の平面位置と、ゲート酸化膜12とLOCOS酸化膜8aの境界位置は略一致している。
P型半導体基板2上全面にポリシリコン膜38を形成した後、写真製版技術によりポリシリコン膜38上にゲート電極の形成領域を確定するためのレジストパターン40を形成する(図5(g)及び図6参照。)。
(7) After removing the resist pattern 34 and further removing the oxide film on the surface of the P-type semiconductor substrate 2 other than the region where the LOCOS oxide films 8 and 8a are formed, a heat treatment is performed in an oxygen atmosphere to form the gate oxide film 12. To do. By this heat treatment, the boron 36 implanted in the step (6) is diffused and activated to form the P-type third drain region 10. The planar position of the end portion of the P-type second drain region 6 on the source region side substantially coincides with the boundary position between the gate oxide film 12 and the LOCOS oxide film 8a.
After the polysilicon film 38 is formed on the entire surface of the P-type semiconductor substrate 2, a resist pattern 40 for defining a gate electrode formation region is formed on the polysilicon film 38 by photolithography (FIG. 5G and FIG. 5). (See FIG. 6.)

(8)エッチング技術により、レジストパターン40をマスクにしてポリシリコン膜38をパターニングしてゲート電極14を形成する。その後、レジストパターン40を除去する。イオン注入法により、LOCOS酸化膜8,8a及びゲート電極14をマスクにして、例えば、BF2(二フッ化ボロン)42を加速エネルギーが30KeV、注入量が3×1015cm-2の条件で注入する(図5(h)参照。)。 (8) The polysilicon film 38 is patterned by the etching technique using the resist pattern 40 as a mask to form the gate electrode 14. Thereafter, the resist pattern 40 is removed. By ion implantation, using LOCOS oxide films 8 and 8a and gate electrode 14 as a mask, for example, BF 2 (boron difluoride) 42 is accelerating energy of 30 KeV and implantation amount of 3 × 10 15 cm −2 . Inject (see FIG. 5 (h)).

(9)注入したBF242を拡散及び活性化させるために、例えば、温度850℃、窒素雰囲気下の条件で30分熱処理を施し、P型第2ドレイン領域6にゲート電極14とは間隔をもってP型第1ドレイン領域16を形成し、N型ウェル領域4にゲート電極14に隣接又は重複してP型ソース領域18を形成する(図1参照。) (9) In order to diffuse and activate the implanted BF 2 42, for example, heat treatment is performed for 30 minutes under conditions of a temperature of 850 ° C. and a nitrogen atmosphere, and the P-type second drain region 6 is spaced apart from the gate electrode 14. A P-type first drain region 16 is formed, and a P-type source region 18 is formed in the N-type well region 4 adjacent to or overlapping the gate electrode 14 (see FIG. 1).

この実施例では、第2ドレイン領域用レジストパターン26の開口部は、P型第1ドレイン領域16の形成領域に対応しているLOCOS酸化膜用レジストパターン32bの形成領域を囲って形成されているので、高濃度のP型第1ドレイン領域16を低濃度のP型第2ドレイン領域6で覆って形成することができ、高耐圧MOSFETの高耐圧化を実現することができる。   In this embodiment, the opening of the second drain region resist pattern 26 is formed so as to surround the formation region of the LOCOS oxide film resist pattern 32 b corresponding to the formation region of the P-type first drain region 16. Therefore, the high-concentration P-type first drain region 16 can be formed so as to be covered with the low-concentration P-type second drain region 6, and the high breakdown voltage of the high breakdown voltage MOSFET can be increased.

さらに、上記工程(3)で用いた、第2ドレイン領域のソース領域側の端部の形成を画定するための第2ドレイン領域用レジストパターン26の辺の平面位置と、上記工程(4)で用いた、LOCOS酸化膜のソース領域側の端部の形成を画定するLOCOS酸化膜用レジストパターン32aの辺の平面位置は一致しているようにしたので(図6のX−X’位置を参照。)、第2ドレイン領域10のソース領域側の端部の平面位置がゲート絶縁膜12とLOCOS酸化膜8aの境界位置と略一致している構造を形成することができ、高耐圧MOSFETのドレイン飽和電流を最大にして、駆動能力を最大限に引き出し、かつ高耐圧化を達成できる。   Further, the planar position of the side of the second drain region resist pattern 26 used in the step (3) for defining the end of the second drain region on the source region side, and the step (4). The planar positions of the sides of the LOCOS oxide film resist pattern 32a that define the formation of the end portion of the LOCOS oxide film on the source region side are made to coincide with each other (see the position XX ′ in FIG. 6). .), A structure in which the planar position of the end portion of the second drain region 10 on the source region side substantially coincides with the boundary position between the gate insulating film 12 and the LOCOS oxide film 8a can be formed. The saturation current can be maximized to maximize the driving capability and achieve a high breakdown voltage.

図7に、第2ドレイン領域用レジストパターン端とLOCOS酸化膜用レジストパターン端のマスク位置ズレ距離に対するドレイン飽和電流の評価結果を示す。縦軸はドレイン飽和電流(A(アンペア))を示し、横軸はマスク位置ズレ距離(μm)を示す。サンプルとして、第2ドレイン領域用のイオン注入条件を、加速エネルギーが160KeV、注入量が1×1013cm-2にしたサンプル1、加速エネルギーが100KeV、注入量が1×1013cm-2にしたサンプル2、加速エネルギーが50KeV、注入量が1.6×1013cm-2にしたサンプル3を用いた。これらのサンプルのその他の製造工程は上記製造方法の実施例と同じ条件である。図8、図9、図10に、サンプル1、サンプル2、サンプル3の不純物濃度分布のシミュレーション結果を示す。 FIG. 7 shows the evaluation result of the drain saturation current with respect to the mask positional deviation distance between the second drain region resist pattern edge and the LOCOS oxide film resist pattern edge. The vertical axis represents the drain saturation current (A (ampere)), and the horizontal axis represents the mask misalignment distance (μm). As a sample, the ion implantation conditions for the second drain region are the sample 1 in which the acceleration energy is 160 KeV and the implantation amount is 1 × 10 13 cm −2 , the acceleration energy is 100 KeV and the implantation amount is 1 × 10 13 cm −2 . Sample 2 was used, and Sample 3 having an acceleration energy of 50 KeV and an injection amount of 1.6 × 10 13 cm −2 was used. The other manufacturing steps of these samples are the same conditions as in the embodiment of the manufacturing method. 8, 9, and 10 show simulation results of impurity concentration distributions of Sample 1, Sample 2, and Sample 3. FIG.

図7から、サンプル2及び3について、マスク位置ズレ距離が0、すなわち第2ドレイン領域用レジストパターン端とLOCOS酸化膜用レジストパターン端が一致しているときに、ドレイン飽和電流が最大になるのがわかる。サンプル1についても、マスク位置ズレ距離が0に、ドレイン飽和電流が最大に近い値になっていることがわかる。   From FIG. 7, the drain saturation current becomes maximum for Samples 2 and 3 when the mask misalignment distance is 0, that is, when the edge of the second drain region resist pattern coincides with the edge of the LOCOS oxide film resist pattern. I understand. Also for sample 1, it can be seen that the mask misalignment distance is 0 and the drain saturation current is close to the maximum value.

また、図10に示すように、第2ドレイン領域用のイオン注入時の加速エネルギーが50KeVの場合はP型第2ドレイン領域6のソース側端がゲート酸化膜12の近傍に形成されているのがわかる。これに対し、図9に示しように、第2ドレイン領域用のイオン注入時の加速エネルギーが100KeVの場合はP型第2ドレイン領域6のソース側端がゲート酸化膜12とは十分に間隔をもって形成されているのがわかる。したがって、第2ドレイン領域用のイオン注入時の加速エネルギーは100KeV以上に設定することが好ましい。これにより、ゲート電極近くの電界の集中によるドレイン耐圧の低下を防止することができる。   Also, as shown in FIG. 10, when the acceleration energy at the time of ion implantation for the second drain region is 50 KeV, the source side end of the P-type second drain region 6 is formed in the vicinity of the gate oxide film 12. I understand. On the other hand, as shown in FIG. 9, when the acceleration energy at the time of ion implantation for the second drain region is 100 KeV, the source side end of the P-type second drain region 6 is sufficiently spaced from the gate oxide film 12. You can see that it is formed. Therefore, the acceleration energy at the time of ion implantation for the second drain region is preferably set to 100 KeV or more. Thereby, it is possible to prevent the drain breakdown voltage from being lowered due to the concentration of the electric field near the gate electrode.

図11は半導体装置のさらに他の実施例の概略構成を示す断面図である。図1と同じ部分には同じ符号を付し、それらの部分の説明は省略する。
この実施例が図1に示した実施例と異なる点は、P型第3ドレイン領域10がLOCOS酸化膜8a下の領域からP型第1ドレイン領域16下の領域に延伸して形成されている点である。この構造は図5(f)で用いたレジストパターン34の開口部の形成領域を変更することにより形成することができる。この構造でも、図1に示した実施例と同じ作用効果を得ることができる。
FIG. 11 is a sectional view showing a schematic configuration of still another embodiment of the semiconductor device. The same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
This embodiment is different from the embodiment shown in FIG. 1 in that the P-type third drain region 10 is formed to extend from the region under the LOCOS oxide film 8a to the region under the P-type first drain region 16. Is a point. This structure can be formed by changing the formation region of the opening of the resist pattern 34 used in FIG. Even with this structure, the same effects as the embodiment shown in FIG. 1 can be obtained.

ただし、P型第3ドレイン領域10はLOCOS酸化膜8,8aを注入マスクにして形成されているので、P型第1ドレイン領域16下の領域においてP型第3ドレイン領域10が深く形成され、P型第3ドレイン領域10、P型半導体基板2間のパンチスルー耐圧が低下する。したがって、P型第3ドレイン領域10は図1に示した実施例のように、LOCOS酸化膜8a下のみに形成することが好ましい。   However, since the P-type third drain region 10 is formed using the LOCOS oxide films 8 and 8a as an implantation mask, the P-type third drain region 10 is formed deeply in a region under the P-type first drain region 16, The punch-through breakdown voltage between the P-type third drain region 10 and the P-type semiconductor substrate 2 is lowered. Therefore, the P-type third drain region 10 is preferably formed only under the LOCOS oxide film 8a as in the embodiment shown in FIG.

図12は半導体装置のさらに他の実施例の概略構成を示す断面図である。図1と同じ部分には同じ符号を付し、それらの部分の説明は省略する。
この実施例が図1に示した実施例と異なる点は、P型第3ドレイン領域10のチャネル領域20側の側面がP型第2ドレイン領域6には覆われていない点である。この構造も図5(f)で用いたレジストパターン34の開口部の形成領域を変更することにより形成することができる。この構造でも、図1に示した実施例と同じ作用効果を得ることができる。
FIG. 12 is a sectional view showing a schematic configuration of still another embodiment of the semiconductor device. The same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
This embodiment is different from the embodiment shown in FIG. 1 in that the side surface of the P-type third drain region 10 on the channel region 20 side is not covered with the P-type second drain region 6. This structure can also be formed by changing the formation region of the opening of the resist pattern 34 used in FIG. Even with this structure, the same effects as the embodiment shown in FIG. 1 can be obtained.

上記で実施例では高耐圧MOSFETの形成領域のみを図示して説明したが、本発明はこれに限定されるものではなく、図13に示すように、高耐圧MOSFETの形成領域とは異なる領域に低電圧で高速動作が可能なロジック回路向けのトランジスタを備えていてもよい。
図13は半導体装置のさらに他の実施例の概略構成を示す断面図である。図1と同じ部分には同じ符号を付す。高耐圧MOSFETの構造は図1と同じなので説明は省略する。
In the above embodiment, only the formation region of the high breakdown voltage MOSFET has been illustrated and described. However, the present invention is not limited to this, and as shown in FIG. 13, the formation region is different from the formation region of the high breakdown voltage MOSFET. A transistor for a logic circuit capable of high-speed operation with a low voltage may be provided.
FIG. 13 is a cross-sectional view showing a schematic configuration of still another embodiment of the semiconductor device. The same parts as those in FIG. Since the structure of the high voltage MOSFET is the same as that in FIG.

P型半導体基板2の高耐圧MOSFET形成領域とは異なる領域に、PチャネルMOSFET用のN型ウェル領域44とNチャネルMOSFET用のP型ウェル46がそれぞれ異なる領域に形成されている。
N型ウェル領域44の形成領域にゲート酸化膜48、ゲート電極50、P型ドレイン領域52及びP型ソース領域54が形成されてPチャネルMOSFETが形成されている。
P型ウェル領域46の形成領域にゲート酸化膜56、ゲート電極58、N型ドレイン領域60及びN型ソース領域62が形成されてNチャネルMOSFETが形成されている。
このように、低電圧で高速動作が可能なロジック回路向けのMOSFETと高耐圧MOSFETを低コストで1チップに集積化することができる。
An N-type well region 44 for the P-channel MOSFET and a P-type well 46 for the N-channel MOSFET are formed in different regions in the region different from the high-breakdown-voltage MOSFET formation region of the P-type semiconductor substrate 2.
A gate oxide film 48, a gate electrode 50, a P-type drain region 52, and a P-type source region 54 are formed in the formation region of the N-type well region 44 to form a P-channel MOSFET.
A gate oxide film 56, a gate electrode 58, an N-type drain region 60, and an N-type source region 62 are formed in the formation region of the P-type well region 46 to form an N-channel MOSFET.
As described above, a MOSFET for a logic circuit capable of high-speed operation at a low voltage and a high breakdown voltage MOSFET can be integrated on a single chip at a low cost.

以上、本発明の実施例を説明したが、上記実施例で示した半導体基板、ウェル領域、ドレイン領域、ソース領域の導電型は一例であって、本発明はこれに限定されるものではなく、これらを逆導電型に変更してもよい。
また、上記実施例のイオン注入における注入イオン種、イオン注入量及び注入エネルギーなどの注入条件は本発明の好ましい実施形態の一例を示したにすぎず、本発明はこれに限定されるものではない。
As described above, the embodiments of the present invention have been described. However, the conductivity types of the semiconductor substrate, the well region, the drain region, and the source region shown in the above embodiments are merely examples, and the present invention is not limited thereto. These may be changed to the reverse conductivity type.
Further, the implantation conditions such as the implanted ion species, ion implantation amount, and implantation energy in the ion implantation of the above-described examples are merely examples of preferred embodiments of the present invention, and the present invention is not limited thereto. .

本発明の半導体装置を構成するMOSFETは、例えばアナログ回路を備えた半導体装置に適用することができる。
図14はアナログ回路である定電圧発生回路を備えた半導体装置の一実施例を示す回路図である。
直流電源64からの電源を負荷66に安定して供給すべく、定電圧発生回路68が設けられている。定電圧発生回路68は、直流電源64が接続される入力端子(Vbat)70、基準電圧発生回路(Vref)72、演算増幅器(比較回路)74、低オン抵抗で高耐圧のMOSFETからなる出力ドライバ76、分割抵抗素子R1,R2及び出力端子(Vout)78を備えている。出力ドライバ76は本発明の半導体装置を構成する高耐圧MOSFETにより構成される。
The MOSFET constituting the semiconductor device of the present invention can be applied to a semiconductor device provided with an analog circuit, for example.
FIG. 14 is a circuit diagram showing an embodiment of a semiconductor device provided with a constant voltage generation circuit which is an analog circuit.
A constant voltage generation circuit 68 is provided in order to stably supply power from the DC power supply 64 to the load 66. The constant voltage generation circuit 68 includes an input terminal (Vbat) 70 to which a DC power supply 64 is connected, a reference voltage generation circuit (Vref) 72, an operational amplifier (comparison circuit) 74, and an output driver comprising a low on-resistance and high breakdown voltage MOSFET. 76, division resistance elements R1 and R2, and an output terminal (Vout) 78 are provided. The output driver 76 is composed of a high voltage MOSFET that constitutes the semiconductor device of the present invention.

定電圧発生回路68の演算増幅器74では、出力端子が出力ドライバ76のゲート電極に接続され、反転入力端子(−)に基準電圧発生回路72から基準電圧Vrefが印加され、非反転入力端子(+)に出力電圧Voutを抵抗素子R1とR2で分割した電圧が印加され、抵抗素子R1,R2の分割電圧が基準電圧Vrefに等しくなるように制御される。   In the operational amplifier 74 of the constant voltage generation circuit 68, the output terminal is connected to the gate electrode of the output driver 76, the reference voltage Vref is applied from the reference voltage generation circuit 72 to the inverting input terminal (−), and the non-inverting input terminal (+ ), A voltage obtained by dividing the output voltage Vout by the resistance elements R1 and R2 is applied, and the division voltage of the resistance elements R1 and R2 is controlled to be equal to the reference voltage Vref.

本発明を構成する高耐圧MOSFETを適用した半導体装置は、定電圧発生回路を備えた半導体装置に限定されるものではなく、高耐圧MOSFETを備えた半導体装置であれば、本発明を適用することができる。   The semiconductor device to which the high voltage MOSFET constituting the present invention is applied is not limited to a semiconductor device having a constant voltage generation circuit, and the present invention is applied to any semiconductor device having a high voltage MOSFET. Can do.

以上、本発明の実施例を説明したが、本発明はこれらに限定されるものではなく、寸法、形状、材料、配置などは一例であり、特許請求の範囲に記載された本発明の範囲内で種々の変更が可能である。
例えば、上記実施例では厚膜酸化膜としてLOCOS膜を用いているが、本発明はこれに限定されるものではなく、LOCOS酸化膜に代えて厚膜酸化膜として埋め込み型のSTI膜を本発明に適用することもできる。
The embodiments of the present invention have been described above. However, the present invention is not limited to these, and the dimensions, shapes, materials, arrangements, and the like are examples, and are within the scope of the present invention described in the claims. Various changes can be made.
For example, although the LOCOS film is used as the thick oxide film in the above embodiment, the present invention is not limited to this, and a buried STI film is used as the thick oxide film instead of the LOCOS oxide film. It can also be applied to.

本発明は、ゲート電極の少なくともドレイン側の側面の下に厚膜酸化膜を備えた高耐圧MOSFETを備えた半導体装置及びその製造方法に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a semiconductor device including a high breakdown voltage MOSFET having a thick oxide film under a side surface on at least the drain side of the gate electrode and a method for manufacturing the same.

半導体装置の一実施例の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of one Example of a semiconductor device. 同実施例の不純物濃度分布のシミュレーション結果を示す断面図である。It is sectional drawing which shows the simulation result of the impurity concentration distribution of the Example. 図2のA−A’位置での深さ方向の不純物濃度プロファイルを示す図である。It is a figure which shows the impurity concentration profile of the depth direction in the A-A 'position of FIG. 製造方法の一実施例の前半を説明するための工程断面図である。It is process sectional drawing for demonstrating the first half of one Example of a manufacturing method. 同実施例の後半を説明するための工程断面図である。It is process sectional drawing for demonstrating the second half of the Example. 同実施例で用いるレジストマスクの開口部領域を説明するための平面図である。It is a top view for demonstrating the opening part area | region of the resist mask used in the Example. 第2ドレイン領域用レジストパターン端とLOCOS酸化膜用レジストパターン端のマスク位置ズレ距離に対するドレイン飽和電流の評価結果を示す図である。It is a figure which shows the evaluation result of the drain saturation current with respect to the mask position shift distance of the resist pattern edge for 2nd drain regions, and the resist pattern edge for LOCOS oxide films. 図7の評価で用いたサンプル1であり、かつ実施例であるMOSFETの不純物濃度分布のシミュレーション結果を示す断面図である。FIG. 8 is a cross-sectional view showing the simulation result of the impurity concentration distribution of the MOSFET which is the sample 1 used in the evaluation of FIG. 7 and is an example. 図7の評価で用いたサンプル2であり、かつ実施例であるMOSFETの不純物濃度分布のシミュレーション結果を示す断面図である。FIG. 8 is a cross-sectional view showing the simulation result of the impurity concentration distribution of the MOSFET which is Sample 2 used in the evaluation of FIG. 7 and is an example. 図7の評価で用いたサンプル3であり、かつ実施例であるMOSFETの不純物濃度分布のシミュレーション結果を示す断面図である。FIG. 8 is a cross-sectional view showing a simulation result of impurity concentration distribution of the MOSFET which is the sample 3 used in the evaluation of FIG. 7 and which is an example. 半導体装置のさらに他の実施例の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the further another Example of a semiconductor device. 半導体装置のさらに他の概略構成を示す断面図である。It is sectional drawing which shows other schematic structure of a semiconductor device. 半導体装置のさらに他の概略構成を示す断面図である。It is sectional drawing which shows other schematic structure of a semiconductor device. アナログ回路である定電圧発生回路を備えた半導体装置の一実施例を示す回路図である。1 is a circuit diagram showing an embodiment of a semiconductor device including a constant voltage generation circuit which is an analog circuit. 従来の半導体装置の一例を説明するための断面図である。It is sectional drawing for demonstrating an example of the conventional semiconductor device. 従来の半導体装置の他の例を説明するための断面図である。It is sectional drawing for demonstrating the other example of the conventional semiconductor device.

符号の説明Explanation of symbols

2 P型半導体基板
4 N型ウェル領域
6 P型第2ドレイン領域
8,8a LOCOS酸化膜
10 P型第3ドレイン領域
12 ゲート酸化膜
14 ゲート電極
16 第1ドレイン領域
18 P型ソース領域
20 チャネル領域
2 P-type semiconductor substrate 4 N-type well region 6 P-type second drain region 8, 8a LOCOS oxide film 10 P-type third drain region 12 Gate oxide film 14 Gate electrode 16 First drain region 18 P-type source region 20 Channel region

Claims (14)

第1導電型のウェル領域に互いに間隔をもって形成された第2導電型のソース領域及びドレイン領域と、前記ソース領域と前記ドレイン領域の間に形成されたチャネル領域と、前記チャネル領域上に形成されたゲート絶縁膜と、前記ゲート絶縁膜に隣接して前記ドレイン領域上に形成された、前記ゲート絶縁膜よりも厚い膜厚をもつ厚膜酸化膜と、前記ゲート絶縁膜上から前記厚膜酸化膜上にわたって形成されたゲート電極とをもつ高耐圧MOSFETを備え、
前記ドレイン領域は、前記ゲート電極とは間隔をもって形成された第1ドレイン領域と、前記第1ドレイン領域を覆い、かつ少なくとも前記厚膜酸化膜下を含む領域に形成された第2ドレイン領域と、少なくとも下部部分が前記第2ドレイン領域で覆われており、かつ少なくとも前記厚膜酸化膜下を含む領域に形成された第3ドレイン領域を備え、前記第1ドレイン領域は前記第3ドレイン領域よりも濃い第2導電型不純物濃度をもち、前記第3ドレイン領域は前記第2ドレイン領域よりも濃い第2導電型不純物濃度をもっていることを特徴とする半導体装置。
A source region and a drain region of a second conductivity type formed in the well region of the first conductivity type with a space therebetween, a channel region formed between the source region and the drain region, and a channel region formed on the channel region. A gate oxide film, a thick oxide film formed on the drain region adjacent to the gate insulating film and having a thickness greater than the gate insulating film, and the thick film oxide film from above the gate insulating film. Comprising a high voltage MOSFET having a gate electrode formed over the film,
The drain region includes a first drain region formed at a distance from the gate electrode, a second drain region that covers the first drain region and is formed in a region including at least under the thick oxide film, At least a lower portion is covered with the second drain region, and at least a third drain region is formed in a region including under the thick oxide film, and the first drain region is more than the third drain region. A semiconductor device having a high second conductivity type impurity concentration, wherein the third drain region has a second conductivity type impurity concentration higher than that of the second drain region.
前記第3ドレイン領域は前記第2ドレイン領域に完全に覆われている請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the third drain region is completely covered with the second drain region. 前記第3ドレイン領域は前記チャネル領域側の側面が前記第2ドレイン領域には覆われていない請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein a side surface of the third drain region on the channel region side is not covered with the second drain region. 前記第3ドレイン領域は前記厚膜酸化膜下の領域のみに形成されている請求項1、2又は3に記載の半導体装置。   The semiconductor device according to claim 1, wherein the third drain region is formed only in a region under the thick oxide film. 前記第2ドレイン領域及び前記第3ドレイン領域は前記ゲート絶縁膜とは間隔をもって形成されている請求項1から4のいずれかに記載の半導体装置。   5. The semiconductor device according to claim 1, wherein the second drain region and the third drain region are formed apart from the gate insulating film. 前記ドレイン領域の前記ソース領域側の端部の平面位置は、前記ゲート絶縁膜と前記厚膜酸化膜の境界位置と略一致している請求項1から5のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein a planar position of an end portion of the drain region on the source region side substantially coincides with a boundary position between the gate insulating film and the thick oxide film. 前記第1導電型はP型であり、前記第2導電型はN型である請求項1から6のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the first conductivity type is a P-type, and the second conductivity type is an N-type. 前記第1導電型はN型であり、前記第2導電型はP型である請求項1から6のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the first conductivity type is an N type, and the second conductivity type is a P type. 前記厚膜酸化膜はLOCOS酸化膜又はSTI膜である請求項1から9いずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the thick oxide film is a LOCOS oxide film or an STI film. 入力電圧の出力を制御する出力ドライバと、出力電圧を分割して分割電圧を供給するための分割抵抗回路と、基準電圧を供給するための基準電圧発生回路と、前記分割抵抗回路からの分割電圧と前記基準電圧発生回路からの基準電圧を比較し、比較結果に応じて前記出力ドライバの動作を制御するための比較回路をもつ定電圧発生回路を備えた半導体装置において、
前記出力ドライバとして請求項1から9のいずれかに記載の高耐圧MOSFETを備えていることを特徴とする半導体装置。
An output driver for controlling the output of the input voltage, a divided resistor circuit for dividing the output voltage and supplying a divided voltage, a reference voltage generating circuit for supplying a reference voltage, and a divided voltage from the divided resistor circuit In a semiconductor device including a constant voltage generation circuit having a comparison circuit for comparing the reference voltage from the reference voltage generation circuit and controlling the operation of the output driver according to the comparison result,
A semiconductor device comprising the high breakdown voltage MOSFET according to claim 1 as the output driver.
請求項1から6のいずれかに記載の半導体装置を形成するための半導体装置の製造方法であって、以下の工程(A)から(G)を含むことを特徴とする半導体装置の製造方法。
(A)半導体基板に第1導電型のウェル領域を形成する工程、
(B)イオン注入法により、前記ウェル領域の所定の領域に第2導電型不純物を注入して第2ドレイン領域を形成する工程、
(C)少なくとも前記第2ドレイン領域表面の所定の領域に厚膜酸化膜を形成する工程、
(D)イオン注入法により、前記厚膜酸化膜下を含む領域に第2導電型不純物を注入して、少なくとも下部部分が前記第2ドレイン領域で覆われるように第3ドレイン領域を形成する工程、
(E)前記ウェル領域表面に前記厚膜酸化膜に隣接してゲート絶縁膜を形成する工程、
(F)前記ゲート絶縁膜上から前記厚膜酸化膜上にわたってゲート電極を形成する工程、
(G)イオン注入法により、前記ゲート電極及び前記厚膜酸化膜をマスクにして第2導電型不純物の注入を行なって、前記ウェル領域にソース領域を形成し、前記第2ドレイン領域に第1ドレイン領域を形成する工程。
A method for manufacturing a semiconductor device for forming a semiconductor device according to claim 1, comprising the following steps (A) to (G).
(A) forming a first conductivity type well region in a semiconductor substrate;
(B) forming a second drain region by implanting a second conductivity type impurity into a predetermined region of the well region by an ion implantation method;
(C) forming a thick oxide film at least in a predetermined region on the surface of the second drain region;
(D) A step of implanting a second conductivity type impurity into the region including under the thick oxide film by ion implantation to form a third drain region so that at least the lower part is covered with the second drain region. ,
(E) forming a gate insulating film adjacent to the thick oxide film on the surface of the well region;
(F) forming a gate electrode from above the gate insulating film to the thick oxide film;
(G) A second conductivity type impurity is implanted by ion implantation using the gate electrode and the thick oxide film as a mask to form a source region in the well region, and a first region in the second drain region. Forming a drain region;
前記工程(B)において前記第2ドレイン領域のソース領域側の端部の形成を画定するための第2ドレイン領域用レジストパターンの辺の平面位置と、前記工程(C)において前記厚膜酸化膜のソース領域側の端部の形成を画定するための厚膜酸化膜用レジストパターンの辺の平面位置が一致している請求項10に記載の半導体装置の製造方法。   The planar position of the side of the second drain region resist pattern for defining the source region side end of the second drain region in the step (B), and the thick oxide film in the step (C) The method of manufacturing a semiconductor device according to claim 10, wherein the planar positions of the sides of the resist pattern for a thick film oxide film for defining the formation of the end portion on the source region side of each other match. 前記工程(B)において、イオン注入は100KeV以上の加速エネルギーで行なう請求項10又は11に記載の半導体装置の製造方法。   12. The method of manufacturing a semiconductor device according to claim 10, wherein in the step (B), ion implantation is performed with an acceleration energy of 100 KeV or more. 前記厚膜酸化膜はLOCOS酸化膜又はSTI膜である請求項11、12又は13に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 11, wherein the thick oxide film is a LOCOS oxide film or an STI film.
JP2006019774A 2005-03-02 2006-01-27 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4454587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006019774A JP4454587B2 (en) 2005-03-02 2006-01-27 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005056850 2005-03-02
JP2006019774A JP4454587B2 (en) 2005-03-02 2006-01-27 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006279020A true JP2006279020A (en) 2006-10-12
JP4454587B2 JP4454587B2 (en) 2010-04-21

Family

ID=37213384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006019774A Expired - Fee Related JP4454587B2 (en) 2005-03-02 2006-01-27 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4454587B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253334A (en) * 2005-03-09 2006-09-21 Ricoh Co Ltd Semiconductor device and its fabrication process
JP2011049457A (en) * 2009-08-28 2011-03-10 Tokai Rika Co Ltd High breakdown-voltage semiconductor device and method of manufacturing the same
JP2011204998A (en) * 2010-03-26 2011-10-13 Asahi Kasei Electronics Co Ltd Semiconductor device and method for manufacturing the same
JP2013069777A (en) * 2011-09-21 2013-04-18 Lapis Semiconductor Co Ltd Semiconductor device and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253334A (en) * 2005-03-09 2006-09-21 Ricoh Co Ltd Semiconductor device and its fabrication process
JP2011049457A (en) * 2009-08-28 2011-03-10 Tokai Rika Co Ltd High breakdown-voltage semiconductor device and method of manufacturing the same
JP2011204998A (en) * 2010-03-26 2011-10-13 Asahi Kasei Electronics Co Ltd Semiconductor device and method for manufacturing the same
JP2013069777A (en) * 2011-09-21 2013-04-18 Lapis Semiconductor Co Ltd Semiconductor device and manufacturing method of the same

Also Published As

Publication number Publication date
JP4454587B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
KR100584711B1 (en) Semiconductor device, method for manufacturing the semiconductor device
KR100361602B1 (en) Semiconductor device and method of manufacturing the same
KR101145558B1 (en) Asymmetric hetero?doped high?voltage mosfet?ah2mos
US6306700B1 (en) Method for forming high voltage devices compatible with low voltages devices on semiconductor substrate
US6946705B2 (en) Lateral short-channel DMOS, method of manufacturing the same, and semiconductor device
KR100962233B1 (en) High Voltage Junction Field Effect Transistor
JP2000260987A (en) Semiconductor device and its manufacture
US7262471B2 (en) Drain extended PMOS transistor with increased breakdown voltage
US7871867B2 (en) Semiconductor device and method of manufacturing the same
US7173308B2 (en) Lateral short-channel DMOS, method for manufacturing same and semiconductor device
US7196375B2 (en) High-voltage MOS transistor
KR20100081628A (en) Lateral double diffused metal oxide semiconductor
JP4454587B2 (en) Semiconductor device and manufacturing method thereof
US7161198B2 (en) Semiconductor integrated circuit device having MOS transistor
JP2006253334A (en) Semiconductor device and its fabrication process
KR100374280B1 (en) Semiconductor device and method of manufacturing the same
US6853038B2 (en) Semiconductor device and method for manufacturing the same
US6929994B2 (en) Method for manufacturing semiconductor device that includes well formation
US6887750B2 (en) Method for manufacturing semiconductor device including implanting a first impurity through an anti-oxidation mask
JP2005236142A (en) Horizontal short channel dmos and its manufacturing method and semiconductor device
CN112802902B (en) Semiconductor device and method for manufacturing the same
KR20050108201A (en) Method for manufacturing high voltage transistor
JP2013187521A (en) Semiconductor device and manufacturing method of the same
KR100975971B1 (en) High Voltage Device and Method for the Same
JP2002134738A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees