JP2006278021A - Inspection method and structure of organic function element sealing film - Google Patents

Inspection method and structure of organic function element sealing film Download PDF

Info

Publication number
JP2006278021A
JP2006278021A JP2005092220A JP2005092220A JP2006278021A JP 2006278021 A JP2006278021 A JP 2006278021A JP 2005092220 A JP2005092220 A JP 2005092220A JP 2005092220 A JP2005092220 A JP 2005092220A JP 2006278021 A JP2006278021 A JP 2006278021A
Authority
JP
Japan
Prior art keywords
film
sealing film
organic functional
organic
functional element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005092220A
Other languages
Japanese (ja)
Inventor
Hirofumi Kubota
広文 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2005092220A priority Critical patent/JP2006278021A/en
Publication of JP2006278021A publication Critical patent/JP2006278021A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection method of a sealing film of an organic function element with a high shielding property against oxygen and moisture and with characteristics hardly degraded. <P>SOLUTION: The inspection method of the sealing film covering the organic function element includes a metal film-forming process of forming a metal film over a sealing film after a sealing process of forming a sealing film on the organic function element to cover it, a positive electrode oxidizing process of forming a positive electrode oxidizing metal film by carrying out positive electrode oxidization by having a metal film in contact with a forming liquid with the metal film as a positive electrode, and an inspection process of inspecting electric characteristics of the sealing film and the organic function element covered with the positive electrode oxidizing metal film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機化合物材料における電荷の発生、移動、光伝導、或いは電荷の再結合による電界発光などの現象を利用した有機機能素子の封止膜の検査方法及び構造に関する。   The present invention relates to a method and a structure for inspecting a sealing film of an organic functional element using phenomena such as charge generation, movement, photoconduction, or electroluminescence due to charge recombination in an organic compound material.

有機電界発光(エレクトロルミネッセンス:EL)表示素子などの有機機能素子が実用化され、有機トランジスタ、有機FET、有機太陽電池など有機エレクトロニクス−フォトニクスの分野が拡大しつつある。有機半導体および導電性高分子など有機高分子材料又は有機低分子材料を用いた有機機能素子は、無機半導体素子では困難な大面積で軽量性でフレキシブルな低消費電力装置が実現可能であり、その製造における低温プロセス、省エネルギーおよび低コスト化も期待されている。   Organic functional elements such as organic electroluminescence (EL) display elements have been put into practical use, and the field of organic electronics-photonics such as organic transistors, organic FETs, and organic solar cells is expanding. Organic functional elements using organic high-molecular materials or organic low-molecular materials such as organic semiconductors and conductive polymers can realize a large area, lightweight and flexible low power consumption device, which is difficult with inorganic semiconductor elements. Low-temperature processes in manufacturing, energy saving and cost reduction are also expected.

例えば、有機EL素子は、基本的には有機機能層(電流の注入によって発光するエレクトロルミネッセンスを呈する有機化合物材料からなる発光層を含む1以上の薄膜)を陽極及び陰極で挟んだ形態で、両電極から注入された電子と正孔が再結合時に形成される励起子が励起状態から基底状態に戻り光を生じさせる。例えば、透明基板上に、陽極の透明電極と、有機機能層と、陰極の金属電極とが順次積層して有機EL素子は構成され、透明基板側から発光を得る。有機機能層は、発光層の単一層、あるいは有機正孔輸送層、発光層及び有機電子輸送層の3層構造、又は有機正孔輸送層及び発光層の2層構造、さらにこれらの適切な層間に電子或いは正孔の注入層やキャリアブロック層を挿入した積層体である。   For example, an organic EL element basically has an organic functional layer (one or more thin films including a light emitting layer made of an organic compound material exhibiting electroluminescence that emits light by current injection) sandwiched between an anode and a cathode. The excitons formed when electrons and holes injected from the electrode are recombined return from the excited state to the ground state to generate light. For example, an organic EL element is configured by sequentially laminating a transparent electrode of an anode, an organic functional layer, and a metal electrode of a cathode on a transparent substrate, and obtains light emission from the transparent substrate side. The organic functional layer is a single layer of a light emitting layer, or a three-layer structure of an organic hole transport layer, a light emitting layer and an organic electron transport layer, or a two layer structure of an organic hole transport layer and a light emitting layer, and appropriate layers between them. Is a laminate in which an electron or hole injection layer or a carrier block layer is inserted.

有機EL表示パネル(有機EL素子の1以上が基板上に形成された表示パネル)として、例えばマトリクス表示タイプのものや、所定発光パターンを有するものが知られている。   As an organic EL display panel (a display panel in which one or more organic EL elements are formed on a substrate), for example, a matrix display type or a panel having a predetermined light emission pattern is known.

この有機EL素子は、大気に晒されると、水分、酸素などのガス、その他の使用環境中のある種の分子の影響を受けて劣化し易い、特に有機EL素子の電極と有機機能層の界面では特性劣化が顕著であり、輝度、色彩などの発光特性が低下する問題がある。これを防止するために、有機EL表示パネルにおいて、酸化シリコンなどの無機物単一層の保護膜で有機EL素子を封止してその劣化を抑制する方法が考えられるが、それでも十分でなく、保護膜にピンホールがあるとその部分から水分、酸素などが侵入し、有機EL素子の発光しない部分いわゆるダークスポットが拡大してしまう。   When this organic EL element is exposed to the atmosphere, it tends to deteriorate due to the influence of gases such as moisture and oxygen, and other molecules in the environment of use. In particular, the interface between the electrode of the organic EL element and the organic functional layer However, the characteristic deterioration is remarkable, and there is a problem that the light emission characteristics such as luminance and color are lowered. In order to prevent this, a method of sealing the organic EL element with an inorganic single layer protective film such as silicon oxide in an organic EL display panel to suppress the deterioration can be considered. If there is a pinhole, moisture, oxygen, or the like enters from the portion, and a portion where the organic EL element does not emit light, a so-called dark spot, is enlarged.

そこで、現在、有機EL素子薄膜封止として窒化シリコンなど窒化物による封止が検討されている。しかしスパッタ法やプラズマ(CVD)化学気相成長で成膜された保護膜には必ずピンホールが発生し易い。そこで有機ELパネルにおいて高分子膜及び無機膜の多層保護膜が考えられている(特許文献1参照)。   Therefore, sealing with nitrides such as silicon nitride is currently under study as organic EL element thin film sealing. However, pinholes are always easily generated in a protective film formed by sputtering or plasma (CVD) chemical vapor deposition. Therefore, a multilayer protective film of a polymer film and an inorganic film is considered in the organic EL panel (see Patent Document 1).

いずれにしても、薄膜で封止した有機機能素子で一番問題になるのが初期にはピンホールが小さくて発見できず、製品を出荷してから徐々にピンホールから水分や酸素が浸入して有機機能素子にダメージを与え機能しない部分が拡大してしまうことである。   In any case, the biggest problem with organic functional elements sealed with thin films is that pinholes are small and cannot be found at the beginning, and moisture and oxygen gradually enter the pinholes after shipment. This damages the organic functional element and enlarges the part that does not function.

すなわち、有機機能素子の良否を検査するためにその電気的特性の測定を行って、電気的特性としては正常となり良品と判断されるが、製品出荷後の熱ストレスなどにより良否検査から時間が経過した後にピンホール拡大などにより素子不良になってしまうという問題があった。例えば有機EL表示パネルなどの量産を実施した場合、その複数の有機機能素子の小さいピンホールの存在を全て検査することは極めて困難である。
特開2003−282241号公報。
In other words, in order to check the quality of organic functional elements, the electrical characteristics are measured, and the electrical characteristics are normal and judged to be non-defective, but time has passed since the quality test due to thermal stress after product shipment. After that, there is a problem that the device becomes defective due to pinhole expansion or the like. For example, when mass production of an organic EL display panel or the like is performed, it is very difficult to inspect all the small pinholes of the plurality of organic functional elements.
JP2003-282241A.

そこで本発明は、有機機能素子に対する酸素及び水分などに対する遮蔽性が高く有機機能素子の特性が劣化しにくい有機機能素子の封止膜の検査方法及び構造を提供することが一例として挙げられる。   Therefore, the present invention provides an example of a method and a structure for inspecting a sealing film of an organic functional element that has a high shielding property against oxygen and moisture with respect to the organic functional element and that hardly deteriorates the characteristics of the organic functional element.

請求項1記載の有機機能素子封止膜検査方法は、有機機能素子を覆う封止膜の検査方法であって、
有機機能素子上にこれを覆う封止膜を形成する封止工程後の前記封止膜上に亘って金属膜を形成する金属成膜工程と、
化成液に前記金属膜を接触させて前記金属膜を陽極として陽極酸化を行い陽極酸化金属膜を形成する陽極酸化工程と、
前記封止膜及び前記陽極酸化金属膜に覆われた前記有機機能素子の電気的特性の検査を行う検査工程と、を含むことを特徴とする。
The organic functional element sealing film inspection method according to claim 1 is an inspection method of a sealing film covering the organic functional element,
A metal film forming step of forming a metal film over the sealing film after the sealing step of forming a sealing film covering the organic functional element;
An anodic oxidation step in which the metal film is brought into contact with a chemical conversion solution and anodized using the metal film as an anode to form an anodized metal film;
An inspection step of inspecting electrical characteristics of the organic functional element covered with the sealing film and the anodized metal film.

請求項6記載の有機機能素子封止膜構造は、有機機能素子を覆う封止膜の構造であって、
有機機能素子を覆う封止膜と、前記封止膜上に積層された金属膜を陽極として陽極酸化されて形成された陽極酸化金属膜と、を含むことを特徴とする。
The organic functional element sealing film structure according to claim 6 is a structure of a sealing film covering the organic functional element,
A sealing film covering the organic functional element, and an anodized metal film formed by anodizing the metal film laminated on the sealing film as an anode are included.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下に本発明の実施の形態の一例として有機EL表示パネルを図面を参照しつつ説明する。   An organic EL display panel will be described below with reference to the drawings as an example of an embodiment of the present invention.

有機機能素子封止膜構造は、図1に示すように、有機EL表示パネルの基板10上の複数の有機EL素子Dを覆う窒化シリコンなど無機膜を含む封止膜16上に、AlやTiやTaなどの金属膜MFを成膜して、その後に、図2に示すように、金属膜MFを陽極酸化し酸化膜Oxを含む陽極酸化金属膜OMを生成して得られる。   As shown in FIG. 1, the organic functional element sealing film structure is formed on a sealing film 16 including an inorganic film such as silicon nitride covering a plurality of organic EL elements D on the substrate 10 of the organic EL display panel. As shown in FIG. 2, a metal film MF such as Ta or Ta is formed, and thereafter, the metal film MF is anodized to produce an anodized metal film OM including an oxide film Ox.

陽極酸化のプロセスはウエット工程なので、有機EL表示パネルの封止膜16にピンホールがあれば、陽極酸化工程後にパネルを点灯させたときに黒点拡大の有無が分かり、これによりパネルの良否を判別できる。   Since the anodizing process is a wet process, if there is a pinhole in the sealing film 16 of the organic EL display panel, the presence or absence of black spots can be determined when the panel is turned on after the anodizing process. it can.

有機機能素子封止膜検査方法の手順としては、図3に示すように、基板上に複数の有機EL素子を作製する工程S1と、窒化シリコンなどで基板上有機機能素子を覆う封止膜を形成する封止工程S2と、かかる封止膜上に亘ってAl、Ta、Tiなどの金属膜を蒸着法やスパッタ法などの成膜方法で成膜を行う金属成膜工程S3と、金属膜で被覆された基板を所定の化成液に漬け込み対向電極(陰極)と金属膜(陽極)間に電源から電流を流し陽極化成処理を行い陽極酸化金属膜を形成する陽極酸化工程S4と、陽極酸化金属膜で被覆された基板を水洗いする洗浄工程S5と、封止膜及び陽極酸化金属膜に覆われた有機機能素子に通電してそれらの電気的特性(発光状態)の検査を行う検査工程S6と、を逐次実行する。   As a procedure of the organic functional element sealing film inspection method, as shown in FIG. 3, a step S1 for producing a plurality of organic EL elements on a substrate and a sealing film covering the organic functional elements on the substrate with silicon nitride or the like are provided. A sealing step S2 to be formed, a metal film forming step S3 for forming a metal film such as Al, Ta, Ti or the like on the sealing film by a film forming method such as a vapor deposition method or a sputtering method, and a metal film Anodizing step S4 in which a substrate coated with is immersed in a predetermined chemical conversion solution and a current is supplied from a power source between a counter electrode (cathode) and a metal film (anode) to form an anodized metal film, and anodization is performed. A cleaning step S5 for washing the substrate coated with the metal film, and an inspection step S6 for inspecting their electrical characteristics (light emission state) by energizing the organic functional elements covered with the sealing film and the anodized metal film. And are executed sequentially.

有機EL表示パネルの具体な清掃及び検査を説明する。   Specific cleaning and inspection of the organic EL display panel will be described.

<有機EL素子>
まず、図4に示すように、基板10上に例えばインジウム錫酸化物(ITO)からなる第1表示電極13を蒸着又はスパッタ法にて成膜する。その後、フォトリソグラフィー工程によりストライプなどの所定のパターンを形成する。透明電極材料としてはインジウム亜鉛酸化物(Indium Zinc Oxide)、ZnO、SnOも用いられる。
<Organic EL device>
First, as shown in FIG. 4, a first display electrode 13 made of, for example, indium tin oxide (ITO) is formed on the substrate 10 by vapor deposition or sputtering. Thereafter, a predetermined pattern such as a stripe is formed by a photolithography process. As the transparent electrode material, indium zinc oxide, ZnO, and SnO are also used.

第1表示電極13の上に、例えば銅フタロシアニンからなる正孔注入層、TPD(トリフェニルアミン誘導体)からなる正孔輸送層、Alq3(アルミキレート錯体)からなる発光層、Li2O(酸化リチウム)からなる電子注入層を順次、蒸着して有機機能層14を形成する。このほか、有機機能層の材料を選択して適宜積層して各々が赤R、緑G及び青Bの発光部を構成することもできる。 On the first display electrode 13, for example, a hole injection layer made of copper phthalocyanine, a hole transport layer made of TPD (triphenylamine derivative), a light emitting layer made of Alq3 (aluminum chelate complex), Li 2 O (lithium oxide) ) Are sequentially deposited to form the organic functional layer 14. In addition, the material of the organic functional layer can be selected and appropriately stacked to form red R, green G, and blue B light emitting portions.

さらに、有機機能層14の上に蒸着又はスパッタ法によって、例えばAlからなる第2表示電極15を透明電極13の電極パターンと有機機能層14を介して直交対向するようにストライプなどの所定のパターンで成膜する。   Further, a predetermined pattern such as a stripe is formed on the organic functional layer 14 by vapor deposition or sputtering so that the second display electrode 15 made of, for example, Al is orthogonally opposed to the electrode pattern of the transparent electrode 13 via the organic functional layer 14. The film is formed.

このように、パネルの有機EL素子の各々は、基板10の上に順に積層された、第1表示電極13(透明電極の陽極)、有機化合物からなる発光層を含む1以上の有機機能層14、及び第2表示電極15(金属電極の陰極)を備える。基板10の材料はガラスなどの無機物の他、高分子化合物などの有機物も利用できる。   As described above, each of the organic EL elements of the panel is sequentially laminated on the substrate 10 and includes one or more organic functional layers 14 including the first display electrode 13 (anode of the transparent electrode) and the light emitting layer made of an organic compound. And a second display electrode 15 (a cathode of a metal electrode). As a material for the substrate 10, an organic material such as a polymer compound can be used in addition to an inorganic material such as glass.

基板10を合成樹脂とした場合、その表面を窒化シリコン又は窒化酸化シリコンなど無機物からなる基板側無機膜で被覆しものを用いることもできる。プラスチック基板としては、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリカーボネート、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリフェノキシエーテル、ポリアリレート、フッ素樹脂、ポリプロピレンなどのフィルムが適用できる。   In the case where the substrate 10 is made of synthetic resin, it is also possible to use a substrate whose surface is covered with a substrate-side inorganic film made of an inorganic material such as silicon nitride or silicon nitride oxide. As the plastic substrate, films of polyethylene terephthalate, polyethylene-2,6-naphthalate, polycarbonate, polysulfone, polyethersulfone, polyetheretherketone, polyphenoxyether, polyarylate, fluororesin, polypropylene and the like can be applied.

<封止膜>
次に、図5に示すように、有機EL素子は、その第2表示電極15の背面を覆うように、絶縁性の封止膜16例えば窒化シリコン膜の単層を成膜する。封止膜は無機膜を含むものであって、無機膜は、窒化シリコンなどの窒化物、窒化酸化シリコンなどの窒化酸化物、酸化シリコンや酸化アルミニウムなどの酸化物、炭化シリコンなどの炭化物からなる。
<Sealing film>
Next, as shown in FIG. 5, the organic EL element is formed with a single layer of an insulating sealing film 16 such as a silicon nitride film so as to cover the back surface of the second display electrode 15. The sealing film includes an inorganic film, and the inorganic film is made of a nitride such as silicon nitride, a nitrided oxide such as silicon nitride oxide, an oxide such as silicon oxide or aluminum oxide, or a carbide such as silicon carbide. .

無機物の封止膜16を成膜するために、プラズマCVDの他に、例えば触媒化学気相成長法を用い得る。触媒化学気相成長法は、高温の触媒を用いて原材料から薄膜の分子を生成し、基板に堆積させる方法である。触媒自体は1000℃以上であるが、冷却ホルダに担持された薄膜は100℃以下に抑えられるので有機EL素子を損傷させることはない。   In addition to plasma CVD, for example, a catalytic chemical vapor deposition method can be used to form the inorganic sealing film 16. The catalytic chemical vapor deposition method is a method in which a thin film molecule is generated from a raw material using a high-temperature catalyst and deposited on a substrate. Although the catalyst itself is 1000 ° C. or higher, the thin film carried on the cooling holder can be suppressed to 100 ° C. or lower, so that the organic EL element is not damaged.

封止膜16は無機膜のみの単層封止の他に、高分子及び無機膜の多層封止でもよい。例えば、封止膜16は図6に示すように、蒸着重合によるポリ尿素又はポリイミド膜の高分子膜16Pと、窒化シリコン膜の無機膜16Sとの2層としてもよい。高分子膜16Pの縁部は漸次膜厚が減少するように形成されることが好ましい。無機膜16Sの滑らかな堆積を確保するためである。無機膜16Sは高分子膜16Pのエッジを被覆するように成膜することが好ましい。   The sealing film 16 may be a multi-layer sealing of a polymer and an inorganic film in addition to a single-layer sealing only of an inorganic film. For example, as shown in FIG. 6, the sealing film 16 may be formed of two layers of a polymer film 16P of polyurea or polyimide film by vapor deposition polymerization and an inorganic film 16S of silicon nitride film. The edge of the polymer film 16P is preferably formed so that the film thickness gradually decreases. This is to ensure smooth deposition of the inorganic film 16S. The inorganic film 16S is preferably formed so as to cover the edge of the polymer film 16P.

高分子膜16Pを成膜する蒸着重合法は、真空チャンバ内部で、2種類以上の有機分子を蒸発、気化せしめ、発生したガスを、所定塗布面に接触、反応し堆積させ、有機分子を重合させる、すなわち、モノマーを真空中で重合反応させて高分子薄膜を作製させる成膜方法である。蒸着重合によれば、モノマー又はオリゴマーは蒸気圧を持っていれば、高分子化学物膜を得ることができる。ポリイミドは、主鎖中に熱的化学的に安定なイミド環(複素環)や芳香環などの分子構造を有する高分子であり、耐熱性や機械強度、電気絶縁性、耐薬品性に優れている。高分子膜としてはポリ尿素又はポリイミドが好ましい。ポリイミド膜はピロメリット酸二無水物とジアミンのモノマーを縮合重合することによって成膜される。ポリ尿素膜の原料には、例えば、MDI(4,4′ジフェニルメタンジイソシアネート)とODA(4,4′ジアミンフェニルエーテル)などがある。   In the vapor deposition polymerization method for forming the polymer film 16P, two or more kinds of organic molecules are evaporated and vaporized inside the vacuum chamber, and the generated gas is contacted with, reacted with, and deposited on a predetermined coating surface to polymerize the organic molecules. That is, a film forming method in which a polymer thin film is produced by polymerizing a monomer in a vacuum. According to vapor deposition polymerization, a polymer chemical film can be obtained if the monomer or oligomer has a vapor pressure. Polyimide is a polymer having a molecular structure such as a thermally and chemically stable imide ring (heterocycle) or aromatic ring in the main chain, and has excellent heat resistance, mechanical strength, electrical insulation, and chemical resistance. Yes. As the polymer film, polyurea or polyimide is preferable. The polyimide film is formed by condensation polymerization of pyromellitic dianhydride and a diamine monomer. Examples of the raw material for the polyurea film include MDI (4,4 ′ diphenylmethane diisocyanate) and ODA (4,4 ′ diamine phenyl ether).

図7に示すように、他の実施形態では、有機EL素子Dをさらに多層封止膜16mで保護した構造としてもよい。有機EL素子Dは、その第2表示電極15の背面を覆うように、順に、第1の無機膜16S1、第1の高分子膜16P1、第2の無機膜16S2、第2の高分子膜16P2、第3の無機膜16S3、及び第3の高分子膜16P3を有する。このように、高分子膜及び無機膜の交互に積層する更なる多層封止膜16m構造とする場合に高分子膜及び無機膜の成膜工程を繰り返して各層を成膜する。このように、いずれの実施形態でも、内部の高分子膜はその縁部も含めて1対の無機膜に被覆、包埋されている。また、多層封止膜16mの金属膜に接触する側は第3の高分子膜16P3としても、第4の無機膜16S4(図7に破線で示す)を成膜しても、よい。   As shown in FIG. 7, in another embodiment, the organic EL element D may be further protected by a multilayer sealing film 16m. The organic EL element D sequentially covers a first inorganic film 16S1, a first polymer film 16P1, a second inorganic film 16S2, and a second polymer film 16P2 so as to cover the back surface of the second display electrode 15. , A third inorganic film 16S3, and a third polymer film 16P3. In this way, in the case of a further multilayer sealing film 16m structure in which a polymer film and an inorganic film are alternately laminated, each layer is formed by repeating the film formation process of the polymer film and the inorganic film. As described above, in any of the embodiments, the inner polymer film is covered and embedded in a pair of inorganic films including the edge thereof. Further, the side of the multilayer sealing film 16m that contacts the metal film may be the third polymer film 16P3 or the fourth inorganic film 16S4 (shown by a broken line in FIG. 7).

<金属膜>
次に、図8に示すように、スパッタリング法、蒸着法を用いて基板10の封止膜16表面上に、AlやTiやTaなどの陽極酸化可能な金属を所定膜厚で金属膜MFを堆積させる。この際、第1及び第2表示電極の各端部など短絡してはならない部分には金属膜を付着させない。
<Metal film>
Next, as shown in FIG. 8, a metal film MF having a predetermined thickness is deposited on the surface of the sealing film 16 of the substrate 10 with a predetermined film thickness, such as Al, Ti, or Ta, by using a sputtering method or a vapor deposition method. Deposit. At this time, the metal film is not attached to portions that should not be short-circuited, such as the end portions of the first and second display electrodes.

<陽極酸化>
次に、図9に示すように、例えばAlの金属膜MFを堆積させた基板10を、電解槽21中の化成液22に、対向電極23と向い合わせに浸漬し、対向電極23に対して金属膜MFに正電圧を印加することにより金属膜MFの陽極酸化を実行する。この際、第1及び第2表示電極の各端部など基板10に陽極酸化処理してはならない部分はマスクを成膜しておく。
<Anodic oxidation>
Next, as shown in FIG. 9, for example, the substrate 10 on which an Al metal film MF is deposited is immersed in the chemical conversion liquid 22 in the electrolytic cell 21 so as to face the counter electrode 23. Anodization of the metal film MF is performed by applying a positive voltage to the metal film MF. At this time, a mask is formed on a portion where the substrate 10 should not be anodized, such as the end portions of the first and second display electrodes.

基板10上の金属膜MFは陽極酸化により、その表面がAl23の酸化膜Oxに変成され、下部の金属膜MFと上部の酸化膜Oxとからなる陽極酸化金属膜OMが形成される。このようにして、陽極酸化金属膜OMにより封止膜16表面が被覆された基板が得られる。 The surface of the metal film MF on the substrate 10 is converted into an Al 2 O 3 oxide film Ox by anodization, and an anodized metal film OM composed of a lower metal film MF and an upper oxide film Ox is formed. . In this way, a substrate whose surface of the sealing film 16 is covered with the anodized metal film OM is obtained.

なお、陽極酸化金属膜OM上に第2封止膜として傷防止の高分子ハードコート層を設けることができる。   A scratch-preventing polymer hard coat layer can be provided as a second sealing film on the anodized metal film OM.

アルミニウムの陽極酸化用の化成液としてはPH7.0±0.5の酒石酸及びエチレングリコール電解液がある。アルミニウムの化成処理としては特開平2―85826号公報が詳しく参考になる。陽極酸化金属膜OMの酸化膜Oxが緻密になるように多孔度が小さくなるように、化成液と電圧、電流及び処理時間などを決める。   As an anodizing solution for anodizing aluminum, there are tartaric acid and ethylene glycol electrolytes having a pH of 7.0 ± 0.5. Japanese Patent Laid-Open No. 2-85826 provides a detailed reference for the chemical conversion treatment of aluminum. The chemical conversion liquid, voltage, current, processing time, and the like are determined so that the porosity becomes small so that the oxide film Ox of the anodized metal film OM becomes dense.

酸化膜Oxの細孔を形成する膜厚の制御は化成時間にて行う。上記の方法を用いても、細孔の大きさを化成液濃度、電流密度などを制御することによって所望の膜厚に制御することができる。なお、多孔度とは、基板表層部全体の体積のうち、細孔による空洞が形成された部分の体積の割合で表され、全細孔体積をV1として細孔を含めて酸化膜Oxの全体積をV2としたとき、V1/V2で表される。   The film thickness for forming the pores of the oxide film Ox is controlled by the formation time. Even if the above method is used, the size of the pores can be controlled to a desired film thickness by controlling the chemical conversion liquid concentration, the current density, and the like. The porosity is expressed as a ratio of the volume of the portion where the voids by the pores are formed in the entire volume of the substrate surface layer portion, and the entire oxide film Ox including the pores with the total pore volume as V1. When the product is V2, it is expressed by V1 / V2.

アルミニウムを陽極(アノード)にして特定溶液中で電気分解すると、アルミニウム上に酸化皮膜が形成される。銅や亜鉛など大半の金属を陽極酸化すると、これらの金属は溶解するだけで、厚い酸化皮膜はできない。   When electrolysis is performed in a specific solution using aluminum as an anode (anode), an oxide film is formed on the aluminum. When most metals, such as copper and zinc, are anodized, these metals only dissolve and a thick oxide film cannot be formed.

アルミニウム陽極酸化の電解浴の種類の違いにより、バリヤー型酸化皮膜と多孔質型酸化皮膜ができる。アルミニウムを中性水溶液であるホウ酸−ホウ酸ナトリウム混合水溶液(pH5〜7)や酒石酸アンモニウム、クエン酸、マレイン酸、グリコール酸などの水溶液中で陽極酸化するとバリヤー型皮膜ができる。これらの水溶液はアルミニウム酸化物を溶解する力が弱いので、アルミニウム上には陽極酸化によって緻密な薄い酸化皮膜ができる。バリヤー型酸化皮膜の厚さは陽極酸化する時の電圧に依存する。高電圧で陽極酸化すれば厚いバリヤー型皮膜ができることになるが、絶縁破壊を起こすので、500V〜700V程度が限界電圧である。ここではバリヤー型皮膜が好ましく用いられる。   Depending on the type of electrolytic bath for aluminum anodization, a barrier type oxide film and a porous type oxide film can be formed. When aluminum is anodized in a neutral aqueous solution of boric acid-sodium borate (pH 5-7) or an aqueous solution of ammonium tartrate, citric acid, maleic acid, glycolic acid or the like, a barrier type film is formed. Since these aqueous solutions have a weak ability to dissolve aluminum oxide, a dense thin oxide film can be formed on aluminum by anodic oxidation. The thickness of the barrier type oxide film depends on the voltage at the time of anodizing. If anodization is performed at a high voltage, a thick barrier type film can be formed. However, since dielectric breakdown occurs, the limit voltage is about 500V to 700V. Here, a barrier-type film is preferably used.

電解浴の浴温が低いと酸化皮膜の成長率がよく、かつ硬い酸化皮膜が形成される。0℃前後の硫酸浴で陽極酸化した酸化皮膜は硬質酸化皮膜として実用に供されている。電解浴の浴温が60〜75℃のような高温の場合は、酸化皮膜は薄くて、軟質であり、電解研摩された表面状態になることもある。   When the bath temperature of the electrolytic bath is low, the growth rate of the oxide film is good and a hard oxide film is formed. An oxide film anodized in a sulfuric acid bath at around 0 ° C. is put into practical use as a hard oxide film. When the bath temperature of the electrolytic bath is a high temperature such as 60 to 75 ° C., the oxide film is thin and soft, and may be in an electropolished surface state.

図10は、陽極酸化処理後の複数の有機EL素子を備えた有機EL表示パネルの部分拡大背面図である。有機EL表示パネルは、基板10上にマトリクス状に配置された複数の有機EL素子を備えている。透明電極層を含む行電極13(陽極の第1表示電極)と、有機機能層と、該行電極に交差する金属電極層を含む列電極15(第2表示電極)と、が基板10上に順次積層されて構成されている。行電極は、各々が帯状に形成されるとともに、所定の間隔をおいて互いに平行となるように配列されており、列電極も同様である。このように、マトリクス表示タイプの表示パネルは、複数の行と列の電極の交差点に形成された複数の有機EL素子の発光画素からなる画像表示配列を有している。複数の有機EL素子を覆うように、封止膜16が形成され、その上に陽極酸化金属膜OMが形成されている。   FIG. 10 is a partially enlarged rear view of an organic EL display panel including a plurality of organic EL elements after anodization. The organic EL display panel includes a plurality of organic EL elements arranged in a matrix on the substrate 10. A row electrode 13 (anode first display electrode) including a transparent electrode layer, an organic functional layer, and a column electrode 15 (second display electrode) including a metal electrode layer intersecting the row electrode are formed on the substrate 10. It is constructed by sequentially laminating. The row electrodes are each formed in a strip shape and are arranged so as to be parallel to each other at a predetermined interval, and the same applies to the column electrodes. Thus, the matrix display type display panel has an image display array composed of light emitting pixels of a plurality of organic EL elements formed at intersections of a plurality of row and column electrodes. A sealing film 16 is formed so as to cover the plurality of organic EL elements, and an anodized metal film OM is formed thereon.

<検査>
有機機能素子の良否検査は、有機EL表示パネルの行電極13及び列電極15間に所定電圧を印加して、その発光画素及び電気的特性の測定を行う。陽極酸化のプロセスはウエット工程なので、有機EL表示パネルの封止膜16にピンホールがあれば、素子の通電検査で黒点拡大が分かり、その有機機能素子を不良と判定することができる。これによりパネルの良否を判別できる。
<Inspection>
In the inspection of the organic functional element, a predetermined voltage is applied between the row electrode 13 and the column electrode 15 of the organic EL display panel, and the light emitting pixel and the electrical characteristics are measured. Since the anodic oxidation process is a wet process, if there is a pinhole in the sealing film 16 of the organic EL display panel, the energization inspection of the element indicates black spot expansion, and the organic functional element can be determined to be defective. Thereby, the quality of the panel can be determined.

このように、本実施形態によれば、陽極酸化処理がウェットプロセスであるため窒化シリコンなどによる封止膜に有機EL素子まで到達するピンホールが有る場合は発光状態に異常(黒点拡大)が現れ不良品と判断できる。   As described above, according to the present embodiment, since the anodizing process is a wet process, when there is a pinhole reaching the organic EL element in the sealing film made of silicon nitride or the like, an abnormality (black dot expansion) appears in the light emission state. It can be judged as a defective product.

上記では有機機能素子として有機EL素子の実施形態を説明したが、有機機能素子封止膜構造及び検査方法は、有機機能素子として有機トランジスタ、有機FET、有機太陽電池などの有機半導体装置にも適用できる。   Although the embodiment of the organic EL element has been described above as the organic functional element, the organic functional element sealing film structure and the inspection method are also applied to an organic semiconductor device such as an organic transistor, an organic FET, and an organic solar cell as the organic functional element. it can.

さらに、有機機能素子封止膜構造によると、陽極酸化されると酸化物となるため水分、酸素に対するバリア能力が向上する。よって窒化シリコン及び陽極酸化した金属膜による封止となりバリア性が更に向上する。このとき金属膜を膜厚方向に上部が酸化膜、下部が金属膜として構成する他に、膜厚方向すべてに亘り酸化させた酸化膜のみの構成の封止構造としてもよい。   Furthermore, according to the organic functional element sealing film structure, an anodized oxide becomes an oxide, so that the barrier ability against moisture and oxygen is improved. Therefore, the barrier property is further improved by sealing with silicon nitride and an anodized metal film. At this time, the metal film may be configured as a sealing structure including only an oxide film oxidized in the entire film thickness direction, in addition to an oxide film in the upper part in the film thickness direction and a metal film in the lower part.

陽極酸化は酸化反応なので金属膜膜厚よりも酸化により膜厚が厚くなる。この作用は膜厚方向と横方向にも見られるため窒化シリコン膜上に成膜した金属膜にピンホールが有っても陽極酸化処理による膜太りによりピンホールが埋め込まれピンホールフリーの封止検査膜となる。   Since anodic oxidation is an oxidation reaction, the film thickness becomes thicker due to oxidation than the metal film thickness. This effect can be seen both in the film thickness direction and in the lateral direction. Even if there is a pinhole in the metal film formed on the silicon nitride film, the pinhole is buried by the thickening of the film due to the anodizing treatment, and pinhole-free sealing is achieved. It becomes a test film.

陽極酸化処理において、有機EL素子まで到達するピンホールが有ったとしても有機EL素子の陰極がアルミニウムであって陰極にも電界をかけてやれば、陰極まで到達した化成液と陰極のアルミニウムが反応して酸化されバリア性の高い酸化アルミニウムとなって封止能力が向上し黒点の拡大が防げる。   In the anodizing treatment, even if there is a pinhole reaching the organic EL element, if the cathode of the organic EL element is aluminum and an electric field is also applied to the cathode, the chemical solution reaching the cathode and the aluminum of the cathode It reacts and is oxidized to form aluminum oxide having a high barrier property, improving the sealing ability and preventing the expansion of black spots.

さらに、封止膜として無機膜及び高分子膜の交互に積層した多層構造とするので、水分、酸素に対するバリア性能の低い高分子膜ではあるが、無機膜に存在し得るピンホールを該高分子膜で埋め込み平坦化し、さらに無機膜を積層するので、欠陥のない封止膜が構成できる。   Furthermore, since the sealing film has a multilayer structure in which an inorganic film and a polymer film are alternately laminated, the polymer film has a low barrier performance against moisture and oxygen, but pinholes that may exist in the inorganic film are removed from the polymer film. Since the film is embedded and flattened and an inorganic film is laminated, a sealing film having no defect can be formed.

上述した実施例においては、ポリ尿素類などの高分子膜の製法として、蒸着重合法を用いたが、これに限られることはなく、UV硬化樹脂の塗布、化学気相成長法(プラズマ重合法など)や、真空中噴霧法いわゆるスプレイ法も適用可能である。   In the above-described embodiments, the vapor deposition polymerization method was used as a method for producing a polymer film such as polyureas, but the present invention is not limited to this, and UV curing resin coating, chemical vapor deposition (plasma polymerization method) Or a spraying method in a vacuum, so-called spraying method, can also be applied.

さらに上述した実施例においては、単純マトリクス表示タイプの有機EL表示パネルを説明したが、本発明はTFTなどを用いたアクティブマトリクス表示タイプのパネルの基板にも応用できる。   Further, in the above-described embodiments, the simple matrix display type organic EL display panel has been described. However, the present invention can also be applied to an active matrix display type panel substrate using TFTs or the like.

本発明による有機EL表示パネル製造工程における基板の部分切断斜視図。The partial cutaway perspective view of the board | substrate in the organic EL display panel manufacturing process by this invention. 本発明による有機EL表示パネル製造工程における基板の部分切断斜視図。The partial cutaway perspective view of the board | substrate in the organic EL display panel manufacturing process by this invention. 本発明による有機機能素子封止膜検査方法を説明するフローチャート。The flowchart explaining the organic functional element sealing film test | inspection method by this invention. 本発明による有機EL表示パネル製造工程における基板の部分断面図。The fragmentary sectional view of the board | substrate in the organic EL display panel manufacturing process by this invention. 本発明による有機EL表示パネル製造工程における基板の部分断面図。The fragmentary sectional view of the board | substrate in the organic EL display panel manufacturing process by this invention. 本発明による他の実施形態の有機EL表示パネル製造工程における基板の部分断面図。The fragmentary sectional view of the board | substrate in the organic electroluminescent display panel manufacturing process of other embodiment by this invention. 本発明による他の実施形態の有機EL表示パネル製造工程における基板の部分断面図。The fragmentary sectional view of the board | substrate in the organic electroluminescent display panel manufacturing process of other embodiment by this invention. 本発明による有機EL表示パネル製造工程における基板の部分断面図。The fragmentary sectional view of the board | substrate in the organic EL display panel manufacturing process by this invention. 本発明による陽極酸化処理を説明する電解槽の断面図。Sectional drawing of the electrolytic cell explaining the anodizing process by this invention. 本発明による他の実施形態の有機EL表示パネルの部分拡大背面図。The partial expanded rear view of the organic electroluminescence display panel of other embodiment by this invention.

符号の説明Explanation of symbols

10 基板
13 第1表示電極(透明電極の陽極)
14 有機機能層(発光層)
15 第2表示電極(金属電極の陰極)
16 封止膜
16P 高分子膜
16S 無機膜
MF 金属膜
Ox 酸化膜
OM 陽極酸化金属膜
21 電解槽
22 化成液
23 対向電極
10 Substrate 13 First display electrode (anode of transparent electrode)
14 Organic functional layer (light emitting layer)
15 Second display electrode (cathode of metal electrode)
16 Sealing film 16P Polymer film 16S Inorganic film MF Metal film Ox Oxide film OM Anodized metal film 21 Electrolyzer 22 Chemical conversion liquid 23 Counter electrode

Claims (12)

有機機能素子を覆う封止膜の検査方法であって、
有機機能素子上に前記有機機能素子を覆う封止膜を形成する封止工程後の前記封止膜上に亘って金属膜を形成する金属成膜工程と、
化成液に前記金属膜を接触させて前記金属膜を陽極として陽極酸化を行い陽極酸化金属膜を形成する陽極酸化工程と、
前記封止膜及び前記陽極酸化金属膜に覆われた前記有機機能素子の電気的特性の検査を行う検査工程と、を含むことを特徴とする有機機能素子封止膜検査方法。
A method for inspecting a sealing film covering an organic functional element,
A metal film forming step of forming a metal film over the sealing film after the sealing step of forming a sealing film covering the organic functional element on the organic functional element;
An anodic oxidation step in which the metal film is brought into contact with a chemical conversion solution and anodized using the metal film as an anode to form an anodized metal film;
An inspection step of inspecting electrical characteristics of the organic functional element covered with the sealing film and the anodized metal film, and an organic functional element sealing film inspection method.
前記封止膜は無機膜を含むことを特徴とする請求項1記載の有機機能素子封止膜検査方法。   The organic functional element sealing film inspection method according to claim 1, wherein the sealing film includes an inorganic film. 前記封止膜は、交互に積層された無機膜及び高分子膜の多層膜からなることを特徴とする請求項1記載の有機機能素子封止膜検査方法。   2. The organic functional element sealing film inspection method according to claim 1, wherein the sealing film is composed of a multilayer film of an inorganic film and a polymer film alternately stacked. 前記無機膜は窒化物、窒化酸化物、酸化物及び炭化物の少なくとも1種類を含むことを特徴とする請求項2又は3記載の有機機能素子封止膜検査方法。   4. The organic functional element sealing film inspection method according to claim 2, wherein the inorganic film contains at least one of nitride, nitride oxide, oxide, and carbide. 前記金属膜はAl、Ta又はTiを含むことを特徴とする請求項1〜4のいずれかに記載の有機機能素子封止膜検査方法。   The organic functional element sealing film inspection method according to claim 1, wherein the metal film contains Al, Ta, or Ti. 有機機能素子を覆う封止膜の構造であって、
有機機能素子を覆う封止膜と、前記封止膜上に積層された金属膜を陽極として陽極酸化されて形成された陽極酸化金属膜と、を含むことを特徴とする有機機能素子封止膜構造。
A structure of a sealing film covering the organic functional element,
An organic functional element sealing film comprising: a sealing film covering the organic functional element; and an anodized metal film formed by anodizing a metal film laminated on the sealing film as an anode Construction.
前記封止膜は無機膜を含むことを特徴とする請求項6記載の有機機能素子封止膜構造。   The organic functional element sealing film structure according to claim 6, wherein the sealing film includes an inorganic film. 前記封止膜は、交互に積層された無機膜及び高分子膜の多層膜からなることを特徴とする請求項6記載の有機機能素子封止膜構造。   The organic functional element sealing film structure according to claim 6, wherein the sealing film is composed of a multilayer film of an inorganic film and a polymer film alternately stacked. 前記無機膜は窒化物、窒化酸化物、酸化物及び炭化物の少なくとも1種類を含むことを特徴とする請求項7又は8記載の有機機能素子封止膜構造。   9. The organic functional element sealing film structure according to claim 7, wherein the inorganic film includes at least one of nitride, nitride oxide, oxide, and carbide. 前記金属膜はAl、Ta又はTiを含むことを特徴とする請求項6〜9のいずれかに記載の有機機能素子封止膜構造。   The organic functional element sealing film structure according to claim 6, wherein the metal film contains Al, Ta, or Ti. 前記陽極酸化金属膜上に第2封止膜を設けることを特徴とする請求項6〜10のいずれかに記載の有機機能素子封止膜構造。   The organic functional element sealing film structure according to claim 6, wherein a second sealing film is provided on the anodized metal film. 前記有機機能素子は有機EL素子であることを特徴とする請求項6〜11のいずれかに記載の有機機能素子封止膜構造。   The organic functional element sealing film structure according to claim 6, wherein the organic functional element is an organic EL element.
JP2005092220A 2005-03-28 2005-03-28 Inspection method and structure of organic function element sealing film Pending JP2006278021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005092220A JP2006278021A (en) 2005-03-28 2005-03-28 Inspection method and structure of organic function element sealing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092220A JP2006278021A (en) 2005-03-28 2005-03-28 Inspection method and structure of organic function element sealing film

Publications (1)

Publication Number Publication Date
JP2006278021A true JP2006278021A (en) 2006-10-12

Family

ID=37212590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092220A Pending JP2006278021A (en) 2005-03-28 2005-03-28 Inspection method and structure of organic function element sealing film

Country Status (1)

Country Link
JP (1) JP2006278021A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153191A (en) * 2006-12-13 2008-07-03 Samsung Sdi Co Ltd Organic light-emitting display device
WO2008120313A1 (en) * 2007-03-28 2008-10-09 Pioneer Corporation Display device, display panel, display panel inspection method, and display panel manufacturing method
WO2008120314A1 (en) * 2007-03-28 2008-10-09 Pioneer Corporation Display, display panel, method for inspecting display panel and method for manufacturing display panel
WO2008126293A1 (en) * 2007-03-30 2008-10-23 Pioneer Corporation Light emitting device and process for manufacturing the same
WO2008139788A1 (en) * 2007-05-16 2008-11-20 Silver Seiko Ltd. Method and device for manufacturing organic electroluminescence element
WO2009017029A1 (en) * 2007-07-31 2009-02-05 Sumitomo Chemical Company, Limited Light emitting element, light emitting element manufacturing method and illuminating device
JP2010525161A (en) * 2007-04-17 2010-07-22 ネーデルランドセ オルガニサティエ フォール トエゲパストナトールヴェテンシャッペリク オンデルゾエク ティエヌオー Barrier layer and manufacturing method thereof
KR101001552B1 (en) 2009-01-20 2010-12-17 삼성모바일디스플레이주식회사 Organic light emitting display apparatus
US20110140164A1 (en) * 2009-12-14 2011-06-16 Samsung Mobile Display Co., Ltd. Organic light emitting apparatus and method of manufacturing organic light emitting apparatus
JP2015144058A (en) * 2014-01-31 2015-08-06 パイオニアOledライティングデバイス株式会社 light-emitting device
WO2019167270A1 (en) * 2018-03-02 2019-09-06 シャープ株式会社 Display device and production method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126156A (en) * 1997-06-30 1999-01-29 Idemitsu Kosan Co Ltd Organic el multicolor light emitting display device
JP2003086357A (en) * 2001-09-07 2003-03-20 Matsushita Electric Ind Co Ltd Light emitting element and manufacturing method of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126156A (en) * 1997-06-30 1999-01-29 Idemitsu Kosan Co Ltd Organic el multicolor light emitting display device
JP2003086357A (en) * 2001-09-07 2003-03-20 Matsushita Electric Ind Co Ltd Light emitting element and manufacturing method of the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153191A (en) * 2006-12-13 2008-07-03 Samsung Sdi Co Ltd Organic light-emitting display device
US7928431B2 (en) 2006-12-13 2011-04-19 Samsung Mobile Display Co., Ltd. Organic light emitting display apparatus
WO2008120313A1 (en) * 2007-03-28 2008-10-09 Pioneer Corporation Display device, display panel, display panel inspection method, and display panel manufacturing method
WO2008120314A1 (en) * 2007-03-28 2008-10-09 Pioneer Corporation Display, display panel, method for inspecting display panel and method for manufacturing display panel
JP4859074B2 (en) * 2007-03-28 2012-01-18 パイオニア株式会社 Display device, display panel, display panel inspection method, and display panel manufacturing method
JP4859075B2 (en) * 2007-03-28 2012-01-18 パイオニア株式会社 Display device, display panel, display panel inspection method, and display panel manufacturing method
WO2008126293A1 (en) * 2007-03-30 2008-10-23 Pioneer Corporation Light emitting device and process for manufacturing the same
JP2010525161A (en) * 2007-04-17 2010-07-22 ネーデルランドセ オルガニサティエ フォール トエゲパストナトールヴェテンシャッペリク オンデルゾエク ティエヌオー Barrier layer and manufacturing method thereof
JP2008287996A (en) * 2007-05-16 2008-11-27 Soken:Kk Manufacturing method of organic electroluminescent element, and manufacturing device of the organic electroluminescent element
WO2008139788A1 (en) * 2007-05-16 2008-11-20 Silver Seiko Ltd. Method and device for manufacturing organic electroluminescence element
JP2009037801A (en) * 2007-07-31 2009-02-19 Sumitomo Chemical Co Ltd Light-emitting element, its manufacturing method, and illuminating device
WO2009017029A1 (en) * 2007-07-31 2009-02-05 Sumitomo Chemical Company, Limited Light emitting element, light emitting element manufacturing method and illuminating device
US8552634B2 (en) 2009-01-20 2013-10-08 Samsung Display Co., Ltd. Organic light-emitting display apparatus
KR101001552B1 (en) 2009-01-20 2010-12-17 삼성모바일디스플레이주식회사 Organic light emitting display apparatus
US8389983B2 (en) 2009-12-14 2013-03-05 Samsung Display Co., Ltd. Organic light emitting apparatus and method of manufacturing organic light emitting apparatus
JP2011124228A (en) * 2009-12-14 2011-06-23 Samsung Mobile Display Co Ltd Manufacturing method of organic light-emitting device, and organic light-emitting device
JP2013101984A (en) * 2009-12-14 2013-05-23 Samsung Display Co Ltd Manufacturing method for organic light-emitting device, and organic light-emitting device
US20110140164A1 (en) * 2009-12-14 2011-06-16 Samsung Mobile Display Co., Ltd. Organic light emitting apparatus and method of manufacturing organic light emitting apparatus
JP2015144058A (en) * 2014-01-31 2015-08-06 パイオニアOledライティングデバイス株式会社 light-emitting device
WO2019167270A1 (en) * 2018-03-02 2019-09-06 シャープ株式会社 Display device and production method therefor
CN111837458A (en) * 2018-03-02 2020-10-27 夏普株式会社 Display device and method for manufacturing the same
US11417862B2 (en) 2018-03-02 2022-08-16 Sharp Kabushiki Kaisha Display device including lead wiring lines covered by first and second organic films, and production method therefor
CN111837458B (en) * 2018-03-02 2023-06-13 夏普株式会社 Display device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2006278021A (en) Inspection method and structure of organic function element sealing film
KR100645685B1 (en) Color organic el display and method for manufacturing the same
US7208872B2 (en) Multilayer barrier film structure and organic electroluminescent display panel and manufacturing method thereof
US7102176B2 (en) Organic electroluminescent display panel and manufacturing method therefor
JP2004281247A (en) Organic electroluminescent display panel and its manufacturing method
KR20080028775A (en) Electronic device, organic electroluminescence device, and organic thin film semiconductor device
KR100683463B1 (en) Organic electroluminescence display panel and method for manufacturing the same
JP2005123012A (en) Organic electroluminescent display panel, and method of manufacturing the same
JP2006093123A (en) Substrate for light emitting element, its manufacturing method, electrode for light emitting element and light emitting element with the same
KR100845683B1 (en) Organic el element and manufacturing method of same
KR100714428B1 (en) Organic el element
JP4671201B2 (en) Protective film manufacturing method, inorganic film manufacturing method
JPWO2006046676A1 (en) Electronic circuit board and manufacturing method thereof
JP2003282238A (en) Organic electroluminescence display panel and its manufacturing method
US8129903B2 (en) Organic electroluminescent display device
US20190386249A1 (en) Encapsulation method, encapsulating structure of organic electroluminescent device, and display apparatus
JP5035255B2 (en) Electrophoretic display device
JP2006244901A (en) Manufacturing method and manufacturing device of spontaneous light emitting element
Akedo et al. Flexible OLEDs for automobiles using SiNX/CNX: H multi-layer barrier films and epoxy substrates
JP6663142B2 (en) Organic electroluminescent device
Metzdorf et al. OLED matrix-displays
KR20080087623A (en) Method of manufacturing polymer electroluminescent diode
JP2009021061A (en) Manufacturing method and manufacturing device of organic electroluminescent element
KR20070065645A (en) Flat panel display and method for fabricating the same
JP2011181257A (en) Method of manufacturing organic el light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207