JP2006274306A - 希土類焼結磁石の製造方法 - Google Patents

希土類焼結磁石の製造方法 Download PDF

Info

Publication number
JP2006274306A
JP2006274306A JP2005091788A JP2005091788A JP2006274306A JP 2006274306 A JP2006274306 A JP 2006274306A JP 2005091788 A JP2005091788 A JP 2005091788A JP 2005091788 A JP2005091788 A JP 2005091788A JP 2006274306 A JP2006274306 A JP 2006274306A
Authority
JP
Japan
Prior art keywords
rare earth
sintered magnet
thermal conductivity
inert gas
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005091788A
Other languages
English (en)
Inventor
Makoto Iwasaki
信 岩崎
Takeshi Masuda
健 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005091788A priority Critical patent/JP2006274306A/ja
Publication of JP2006274306A publication Critical patent/JP2006274306A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

【課題】 R−T−B系希土類焼結磁石の磁気特性を劣化させることなく、焼結時の変形を抑制する技術を提供する。
【解決手段】 R214B相(Rは希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素)を含む焼結体からなる希土類焼結磁石の製造方法であって、所定組成の合金粉末と潤滑剤とを含む混合物を磁場中で成形して成形体を作製する。次いで、熱処理する温度での熱伝導率が20mW/mK以上の不活性ガス雰囲気中で、成形体を熱処理し、熱処理された成形体を焼結するのである。この熱処理により、潤滑剤が除去されるが、熱伝導率が高い、つまり熱が伝わりやすいガス雰囲気で脱潤滑剤処理を行うことにより、焼結時の変形を抑制することができる。
【選択図】図3

Description

本発明は、R(Rは希土類元素の1種又は2種以上)、T(TはFe又はFe及びCoを必須とする少なくとも1種以上の遷移金属元素)及びB(ホウ素)を主成分とするR−T−B系の希土類焼結磁石の製造方法に関するものである。
希土類焼結磁石の中でもR−T−B系希土類焼結磁石は、磁気特性に優れていること、主成分であるNdが資源的に豊富で比較的安価であることから、各種電気機器に使用されている。優れた磁気特性を有するR−T−B系希土類焼結磁石にもいくつかの解消すべき技術的な課題がある。その一つが焼結時に変形しやすいということである(例えば特許文献1[0002]〜[0017]参照)。このような変形を防止するため、例えば、特許文献1では、焼結に供される複数の成形体の配置方法を工夫することを提案している。具体的には、特許文献1には、成形体を焼結容器に配置する際、焼結容器の成形体受容面に対して成形体の投射面積が最大とならない方向に複数の成形体を配置することを提案している。
ところで、希土類焼結磁石は、合金を粉砕する粉砕工程と、得られた合金粉末を磁場中で所定形状に成形する成形工程と、成形体を焼結する焼結工程を経て作製される。粉砕性向上ならびに配向性向上を主たる目的として、ステアリン酸亜鉛等の有機化合物(以下、潤滑剤という)を粉砕工程前、粉砕工程時、粉砕工程後の少なくともいずれかのタイミングで添加することが一般的である。
成形体に含まれる潤滑剤が十分に除去されないまま焼結されると、得られる焼結磁石の磁気特性、特に保磁力が低下してしまう。このため、焼結工程に先立ち、潤滑剤を除去するための脱潤滑剤処理が行われる。希土類元素は酸化されやすく、希土類焼結磁石は酸化により磁気特性が劣化するため、加熱を伴う脱潤滑剤処理は通常、真空または減圧雰囲気中で行われている。例えば特許文献1には、雰囲気圧力が2Pa程度になるまで真空引きして脱潤滑剤処理を行うことが開示されている。また、特許文献2には、水素雰囲気中で脱潤滑剤処理を行うことが開示されている。
特開2003−86445号公報 特公平4−571号公報
真空雰囲気中での脱潤滑剤処理は、他の雰囲気を採用した場合に比べて、昇温速度を早くすることが困難であり、生産性に問題がある。しかも、真空中での加熱は、熱伝導が基本的に輻射に依存するため炉内の不均熱を起こしやすく、成形体中に含まれる潤滑剤が十分に除去されず、また潤滑剤が炭素として成形体中に不均一に残留する場合がある。また、炉内に存在していた炭素が脱潤滑剤処理時に成形体表面に不均一に付着する場合がある。残留炭素は焼結時に希土類元素と反応し、焼結磁石の磁気特性劣化や変形を引き起こす。変形の生じた成形体(焼結体)は、変形の程度が大きいと製品として扱うことができず、歩留まりを低下させる。また、変形の程度が小さい場合には表面を加工することにより製品として扱うことができるが、加工能力の低下や加工工数の増加によって製品コストを上昇させる。
また、特許文献2には、水素雰囲気中で脱潤滑剤処理を行うことが開示されているが、特許文献2はSm−Co系希土類焼結磁石を対象としたものであり、R−T−B系希土類焼結磁石に適用すると、成形体が水素を吸蔵して膨張し、この成形体を焼結するとクラックが発生しやすくなる。
本発明は、このような技術的課題に基づいてなされたもので、R−T−B系焼結磁石の磁気特性を劣化させることなく、焼結時の変形を抑制する技術を提供することを目的とする。
本発明者等は、焼結時の変形と脱潤滑剤処理条件との関係を種々検討した。その結果、熱伝導率が高い、つまり熱が伝わりやすいガス雰囲気で脱潤滑剤処理を行うことにより、焼結時の変形を抑制することができることを知見した。すなわち、本発明は、R214B相(Rは希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素)を含む焼結体からなる希土類焼結磁石の製造方法であって、所定組成の合金粉末と潤滑剤とを含む混合物を磁場中で成形して成形体を作製する。次いで、熱処理する温度での熱伝導率が20mW/mK以上の不活性ガス雰囲気中で、成形体を熱処理し、熱処理された成形体を焼結するのである。この熱処理により、潤滑剤の一部が除去される。なお、熱処理温度が変動する場合には、熱処理温度範囲内の少なくともいずれかの温度で不活性ガスの熱伝導率が20mW/mK以上であればよい。
不活性ガスとしてはHeおよび/またはArが好適である。
不活性ガスの熱伝導率は雰囲気圧力と温度によって変わるが、一定の温度条件では雰囲気圧力を上昇させることにより熱伝導率を上昇させることができる。不活性ガスとしてHeを選択し、427℃で熱処理する場合には、雰囲気圧力が1.0kPaでは20mW/mK以上の熱伝導率を得ることができないが、雰囲気圧力を7.3kPa以上とすることにより、20mW/mK以上の熱伝導率を得ることができる。また、不活性ガスとしてArを選択し、427℃で熱処理する場合には、不活性ガス雰囲気の圧力を60.0kPa以上とすることにより、20mW/mK以上の熱伝導率を得ることができる。不活性ガス雰囲気中で脱潤滑剤処理または脱油処理を実施することは従来より行われていたが、その際、雰囲気圧力は比較的低く制御されていた。例えば、特開平8−88134号公報では、雰囲気圧力1.2Torr(160Pa)下、熱処理温度500℃までHeガス雰囲気で脱油処理を行っているが、後述する実施例にて示すように、このような低い雰囲気圧力では20mW/mK以上の熱伝導率を得ることができず、成形体(焼結体)の変形を十分に抑制することはできない。
本発明において、熱伝導率が100mW/mK以上の不活性ガス雰囲気中で熱処理を行うことが好ましい。
本発明が適用されるR−T−B系希土類焼結磁石の形状は、用途に応じて適宜設定することができるが、例えば、平面視矩形状であり、X方向の長さが、X方向と直交するY方向の長さよりも短い平板状の形態を有するものとすることができる。
特許文献1にて提案されているように、生産性ならびに焼結工程の効率化を図るために、成形体の断面形状によっては成形体を縦置きにした状態で焼結を行うことがある。ところが、成形体を縦置きにした状態で焼結を行うと、成形体の上端が垂れる形態の変形を生じることがある。縦置きにした状態で焼結を行った場合の変形を図5、図6を用いて説明する。
図5及び図6は、焼結容器20内に成形体Gを置いた状態を示す図で、図5はその平面図、図6は図5のB−B矢視断面図である。焼結容器20は、底床21aと底床21aから立設する側壁21bとを備えたトレー21と蓋22とから構成されている。図5は蓋22を取り除いた状態を示している。
なお、縦置きか否かは重心の位置によって判断することができる。同一物について、重心が相対的に高い状態で置かれている場合を縦置きといい、逆に重心が相対的に低い状態で置かれている場合を横置きということができる。
成形体Gを縦置きにした状態で焼結を行うと、図6に示すように、焼結後に成形体(焼結体)Gの上端部が垂れる変形を起すことがあるが、熱伝導率が20mW/mK以上の不活性ガス雰囲気中で成形体を熱処理することを特徴とする本発明の製法を用いることにより、R−T−B系希土類焼結磁石の変形を従来よりも大幅に抑制することができる。
本発明によれば、磁気特性を劣化させることなく、R−T−B系希土類焼結磁石の焼結時の変形を抑制することができる。
以下、実施の形態に基づいてこの発明を詳細に説明する。
<組織>
本発明が適用されるR−T−B系希土類焼結磁石は、よく知られているように、R214B結晶粒(Rは希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする遷移金属元素の1種又は2種以上)からなる主相と、粒界相とを少なくとも含む焼結体から構成される。
<化学組成>
本発明が適用されるR−T−B系希土類焼結磁石の組成は、目的に応じ適宜設定すればよいが、磁気特性に優れた磁石を得るためには、焼結後の磁石組成においてR:20〜40wt%、B:0.5〜4.5wt%、T:残部、となるような配合組成とすることが望ましい。ここで、本発明におけるRはYを含む概念を有しており、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu及びYの1種又は2種以上から選択される。Rの量が20wt%未満であると、R−TM−B系希土類焼結磁石の主相となるR2Fe14B相の生成が十分ではなく軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rが40wt%を超えると主相であるR2Fe14B相の体積比率が低下し、残留磁束密度が低下する。またRが酸素と反応し、含有する酸素量が増え、これに伴い保磁力発生に有効なR−リッチ相が減少し、保磁力の低下を招くため、Rの量は20〜40wt%とする。Ndは資源的に豊富で比較的安価であることから、希土類元素Rとしての主成分をNdとすることが好ましい。
また、ホウ素Bが0.5wt%未満の場合には高い保磁力を得ることができない。ただし、ホウ素Bが4.5wt%を超えると残留磁束密度が低下する傾向がある。したがって、上限を4.5wt%とする。望ましいホウ素Bの量は0.5〜1.5wt%である。
本発明のR−T−B系希土類焼結磁石は、Coを2.0wt%以下(0を含まず)、望ましくは0.1〜1.0wt%、さらに望ましくは、0.3〜0.7wt%含有することができる。CoはFeと同様の相を形成するが、キュリー温度の向上、粒界相の耐食性向上に効果がある。
また、本発明のR−T−B系希土類焼結磁石は、Al及びCuの1種又は2種を0.02〜0.5wt%の範囲で含有することができる。この範囲でAl及びCuの1種又は2種を含有させることにより、得られる焼結磁石の高保磁力化、高耐食性化、温度特性の改善が可能となる。Alを添加する場合において、望ましいAlの量は0.03〜0.3wt%、さらに望ましいAlの量は、0.05〜0.25wt%である。また、Cuを添加する場合において、望ましいCuの量は0.15wt%以下(0を含まず)、さらに望ましいCuの量は0.03〜0.12wt%である。
本発明のR−T−B系希土類焼結磁石は、他の元素の含有を許容する。例えば、Zr、Ti、Bi、Sn、Ga、Nb、Ta、Si、V、Ag、Ge等の元素を適宜含有させることができる。一方で、酸素、窒素、炭素等の不純物元素を極力低減することが望ましい。特に磁気特性を害する酸素は、その量を5000ppm以下、さらには3000ppmと以下とすることが望ましい。酸素量が多いと非磁性成分である希土類酸化物相が増大して、磁気特性を低下させるからである。
<製造方法>
以下本発明による希土類焼結磁石の製造方法について説明する。本発明は、成形工程後、かつ焼結工程前に、熱伝導率が20mW/mK以上の不活性ガス雰囲気中で成形体を熱処理する点に特徴があるが、以下では時系列で各工程について説明する。
R−T−B系希土類焼結磁石を得るための原料合金は、例えば、ストリップキャスト法により得ることができる。ストリップキャスト法は、原料金属をArガス雰囲気などの非酸化性雰囲気中で溶解して得た溶湯を回転するロールの表面に噴出させる。ロールで急冷された溶湯は、薄板または薄片(鱗片)状に急冷凝固される。この急冷凝固された合金は、平均結晶粒径が1〜50μmの均質な組織を有している。また、急冷凝固された合金は、後の粉砕粉末の粒度分布をシャープにし磁気特性を向上させるために、厚さが0.05〜3mm、Rリッチ相が5μm以下に微細分散した金属組織とすることが望ましい。
粉砕し難い金属間化合物(R2Fe14B)を含む原料合金は、水素吸蔵・脱水素処理を施して解砕を容易にする。
水素吸蔵は、原料合金を常温下で水素含有雰囲気に曝すことにより行うことができる。水素吸蔵反応は発熱反応であるため、温度上昇に伴って吸蔵水素量が低下することを防止するために、反応容器を冷却する等の手段を適用してもよい。
水素吸蔵が終了した後に、水素吸蔵が行われた原料合金を加熱保持する脱水素処理が施される。この処理は、R−T−B系希土類焼結磁石において不純物となる水素を減少させることを目的として行われる。加熱保持の温度は、200℃以上、望ましくは350℃以上とする。保持時間は、保持温度との関係、SC合金の厚さ等によって変わるが、少なくとも30分以上、望ましくは1時間以上とする。脱水素処理は、真空中又はArガスフローにて行う。なお、脱水素処理は必須の処理ではない。
水素吸蔵処理(さらには脱水素処理)された原料合金は、気流式粉砕機を用いて平均粒径1〜10μm程度まで微粉砕処理される。この微粉砕処理過程での酸素量増加を抑制するため、気流式粉砕機に用いる非酸化性ガス中に含まれる酸素量を5000ppm以下、望ましくは3000ppm以下とする。
本発明では、粉砕性の向上や成形時の潤滑及び配向性の向上を目的として、微粉砕工程の前、微粉砕工程時、微粉砕工程後の少なくともいずれかのタイミングで潤滑剤を添加する。潤滑剤の種類およびその添加量は特に限定されるものではないが、脂肪酸又は脂肪酸の誘導体、例えばステアリン酸系やオレイン酸系であるステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アミド、オレイン酸アミド等を上述したいずれかのタイミングで0.01〜0.3wt%程度添加することができる。
続く成形工程では、微粉末と潤滑剤とを含む混合物は磁場中成形に供される。
磁場中成形における成形圧力は0.3〜3ton/cm2(30〜300MPa)の範囲とすればよい。成形圧力は成形開始から終了まで一定であってもよく、漸増または漸減してもよく、あるいは不規則変化してもよい。成形圧力が低いほど配向性は良好となるが、成形圧力が低すぎると成形体の強度が不足してハンドリングに問題が生じるので、この点を考慮して上記範囲から成形圧力を選択する。磁場中成形で得られる成形体の最終的な相対密度は、通常、50〜60%である。
また、印加する磁場は、12〜20kOe(960〜1600kA/m)程度とすればよい。また、印加する磁場は静磁場に限定されず、パルス状の磁場とすることもできる。また、静磁場とパルス状磁場を併用することもできる。
磁場中成形後の脱潤滑剤工程では、その成形体を、熱伝導率が20mW/mK以上の不活性ガス雰囲気中で熱処理する。脱潤滑剤工程で、成形体に含まれる潤滑剤は分解、除去されるが、熱伝導率が20mW/mK以上の不活性ガス雰囲気中で熱処理を行うことにより、最終的に得られる焼結磁石の変形を抑制することができる。熱伝導率が比較的高い不活性ガスを用いることにより、炉内の不均熱が軽減されて潤滑剤が不均一に成形体中に残留する現象が緩和される。また、脱潤滑剤工程において熱伝導率が20mW/mK以上の不活性ガス雰囲気を用いることにより、炉内に存在していた炭素が成形体表面に不均一に付着したり、成形体内部に進入し残留する現象が緩和される。
本発明で使用する不活性ガスとしては、He、Ne、Ar、Kr、Xe、Rnが挙げられるが、なかでも常温常圧での熱伝導率が高いHeが特に好ましい。これらの不活性ガスは単独で使用できることはもちろん、2種以上を併用してもよい。
熱伝導率は、不活性ガスが単一組成、常圧の場合は文献値に基づく。Heの常圧での熱伝導率は、278mW/mK(427℃)である。Arの常圧での熱伝導率は、33.6mW/mK(427℃)である。
ある温度で不活性ガスが常圧でない場合には、雰囲気が単一のガスで構成されている場合の圧力P1における熱伝導率は、以下の式(1)により求めることができる。
k=k1×(P1/P)・・・式(1)
k:ガス種1の熱伝導率
k1:ガス種1の熱処理温度での常圧の熱伝導率
P1:ガス種1の圧力
P:常圧(101.325kPaとする)
つまり、一定温度の条件では不活性ガスが導入された雰囲気の圧力を変動させることで、熱伝導率を所望の値とすることができる。例えばHeの場合には、427℃で熱処理する場合には圧力を7.3kPa以上とすることにより、20mW/mK以上の熱伝導率を得ることができる。Arの場合には、圧力を60.0kPa以上とすることにより、20mW/mK以上の熱伝導率を得ることができる。
不活性ガスが複数のガスの混合である場合には、そのガスの分圧により混合ガスの熱伝導率を以下の式(2)により求めることができる。
km=Σ(kipi/P)・・・式(2)
km:混合ガスの熱伝導率
ki:ガス種の熱処理温度での常圧の熱伝導率
pi:ガス種の分圧
P:常圧(101.325kPaとする)
i:1からn(nはガス種の総数)
熱処理温度は、添加した潤滑剤の種類および量により異なるが、少なくとも潤滑剤が分解または蒸発する温度より高く設定する。熱処理温度の上限は、潤滑剤の分解(または蒸発)温度プラス300℃程度とすることができる。例えば潤滑剤としてオレイン酸アミドを選択した場合には、熱処理温度は、150〜450℃とすればよい。
昇温速度は、例えば60〜1200℃/時間とすることができる。
熱処理時間は添加した潤滑剤の種類およびその添加量、ならびに熱処理温度に応じて適宜設定すればよいが、例えば0.1〜5時間とすることができる。
焼結工程では、熱処理された成形体を不活性ガス雰囲気中又は真空で焼結する。上記した熱処理は、焼結工程の昇温過程で行うことができる。つまり、脱潤滑剤処理のための熱処理と焼結は連続して行なうことができる。焼結工程を真空中で行う場合には、熱処理終了後に真空引きすればよい。焼結工程を不活性ガス雰囲気中で行う場合には、熱処理時の雰囲気を維持することができる。
焼結温度は、組成、粉砕方法、平均粒径と粒度分布の違い等、諸条件により調整する必要があるが、1000〜1200℃で1〜10時間程度焼結すればよい。
焼結後、得られた焼結体に時効処理を施すことができる。この工程は、保磁力を増大させる重要な工程である。時効処理を2段に分けて行なう場合には、900℃近傍、600℃近傍での所定時間の保持が有効である。時効処理を1段で行なう場合には、600℃近傍の時効処理を施すとよい。
焼結体を得た後に、保護膜を形成することができる。保護膜の形成は、保護膜の種類に応じて公知の手法に従って行なえばよい。例えば、電解メッキの場合には、常法に従い以下の手順で行えばよい。
焼結体加工→バレル研磨→脱脂→水洗→酸エッチング(例えば硝酸)→水洗→電解メッキによる成膜→水洗→乾燥
[実施例1(実施例1−1〜実施例1−4)]
30.9Nd−0.2Al−1.1B−残部Fe(wt%)からなる合金(A合金)と22.0Nd−22.0Dy−0.2Al−8.0Co−0.1Cu−残部Fe(wt%)からなる合金(B合金)とをそれぞれストリップキャスト法により作製した。A合金とB合金とを重量比で9:1の割合で混合し、室温で水素を吸蔵させた後に、550℃の温度下で脱水素させる水素粉砕を行った。水素粉砕された粉末に潤滑剤としてオレイン酸アミドを0.1wt%添加、混合した後、ジェットミルにより微粉砕を行って平均粒径4.5μmの粒径の微粉末を得た。
次いでこの微粉末を、1200kA/meの磁場を印加しつつ100MPaの圧力で磁場中成形した。成形体の寸法は70mm×30mm×10mmである。磁場印加方向は、加圧方向に対して垂直方向とした。
図1のように15個の成形体1をMo製の焼結容器2中に縦置きし、Heガスフロー中で427℃まで昇温し2時間保持して脱潤滑剤処理を行った。なお、雰囲気圧力は表1に示すように変動させた。
その後、引き続き焼結および時効処理を行って焼結磁石を得た。焼結は1050℃で3時間保持し、時効処理は900℃で1時間保持、および530℃で1時間保持の2段時効処理とした。
[実施例2(実施例2−1〜実施例2−4)]
脱潤滑剤処理をArガスフローで行い、雰囲気圧力を表1に示すように変動させた点を除けば、実施例1と同様の条件で焼結磁石を作製した。
[実施例3(実施例3−1〜実施例3−4)]
脱潤滑剤処理をHeとArとの混合ガスフローで行い、雰囲気圧力を表1に示すように変動させた点を除けば、実施例1と同様の条件で焼結磁石を作製した。なお、HeとArとの割合は体積比で50:50である。
[比較例1]
脱潤滑剤処理をArガスフロー(圧力:50.6kPa)で行った点を除けば、実施例1と同様の条件で焼結磁石を作製した。
[比較例2]
脱潤滑剤処理をHeガスフロー(圧力:160Pa)で行った点を除けば、実施例1と同様の条件で焼結磁石を作製した。
[比較例3]
脱潤滑剤処理を真空で行った点を除けば、実施例1と同様の条件で焼結磁石を作製した。
実施例1〜3、比較例1〜3にて得られた磁石の磁気特性と変形量を測定した結果を表1に示す。また図2に示すように、長さ40mmについて変形量を求めた。なお、15個の成形体1のうち最も変形量が大きいものの値を最大変形量として表1に示した。そして、この最大変形量の磁石の残留磁束密度(Br)及び保磁力(HcJ)の測定をB−Hトレーサーを用いて行った。また、ガスの熱伝導率と最大変形量との関係を図3に示す。ガスの熱伝導率と保磁力(HcJ)との関係を図4に示す。なお、図3、図4には、実施例1〜3、比較例1、2のデータをプロットとした。
Figure 2006274306
実施例1と比較例2、実施例2と比較例1との比較により、脱潤滑剤処理の雰囲気が同じであっても、雰囲気圧力が異なれば得られた焼結磁石の変形量および磁気特性が相違する。
図3に示すように、ガスの熱伝導率が高くなるにつれて最大変形量が小さくなる。熱伝導率が20mW/mK以上の不活性ガスを用いた実施例1〜3については、真空中で脱潤滑剤を行った場合と比較して最大変形量が1/2以下、さらには1/3以下となっている。
また、表1に示すように、ガスの熱伝導率が高いほど、高い磁気特性を得ている。特に図4に示すように保磁力(HcJ)についてはその傾向が顕著である。
以上の通りであり、熱伝導率が20mW/mK以上の不活性ガス雰囲気中で脱潤滑剤処理を行うことにより、変形量を小さくしつつ磁気特性を向上させることができることが確認できた。
焼結容器内に成形体を縦置きした状態を示す平面図である。 変形量の測定方法を説明するための図である。 ガスの熱伝導率と最大変形量との関係を示すグラフである。 ガスの熱伝導率と保磁力(HcJ)との関係を示すグラフである。 焼結容器内に成形体を置いた状態を示す平面図である。 図6は図5のB−B矢視断面図である。
符号の説明
1…成形体、2…焼結容器

Claims (5)

  1. 214B相(Rは希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素)を含む焼結体からなる希土類焼結磁石の製造方法であって、
    所定組成の合金粉末と潤滑剤とを含む混合物を磁場中で成形して成形体を作製するステップと、
    熱処理する温度での熱伝導率が20mW/mK以上の不活性ガス雰囲気中で、前記成形体を熱処理するステップと、
    熱処理された前記成形体を焼結することを特徴とする希土類焼結磁石の製造方法。
  2. 前記不活性ガスはHeおよび/またはArであることを特徴とする請求項1に記載の希土類焼結磁石の製造方法。
  3. 前記不活性ガスはHeであり、不活性ガス雰囲気の圧力は7.3kPa以上であることを特徴とする請求項2に記載の希土類焼結磁石の製造方法。
  4. 前記不活性ガスはArであり、不活性ガス雰囲気の圧力は60.0kPa以上であることを特徴とする請求項2に記載の希土類焼結磁石の製造方法。
  5. 熱伝導率が100mW/mK以上の不活性ガス雰囲気中で、前記成形体を熱処理することを特徴とする請求項1〜4のいずれかに記載の希土類焼結磁石の製造方法。
JP2005091788A 2005-03-28 2005-03-28 希土類焼結磁石の製造方法 Pending JP2006274306A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091788A JP2006274306A (ja) 2005-03-28 2005-03-28 希土類焼結磁石の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091788A JP2006274306A (ja) 2005-03-28 2005-03-28 希土類焼結磁石の製造方法

Publications (1)

Publication Number Publication Date
JP2006274306A true JP2006274306A (ja) 2006-10-12

Family

ID=37209339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091788A Pending JP2006274306A (ja) 2005-03-28 2005-03-28 希土類焼結磁石の製造方法

Country Status (1)

Country Link
JP (1) JP2006274306A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123079A1 (ja) * 2013-02-05 2014-08-14 インターメタリックス株式会社 焼結磁石製造方法
US20150125336A1 (en) * 2012-07-24 2015-05-07 Intermetallics Co., Ltd. METHOD FOR PRODUCING NdFeB SYSTEM SINTERED MAGNET
US10066135B2 (en) 2012-12-28 2018-09-04 Dai Nippon Printing Co., Ltd. Adhesive composition and adhesive sheet using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150125336A1 (en) * 2012-07-24 2015-05-07 Intermetallics Co., Ltd. METHOD FOR PRODUCING NdFeB SYSTEM SINTERED MAGNET
US9837207B2 (en) * 2012-07-24 2017-12-05 Intermetallics Co., Ltd. Method for producing NdFeB system sintered magnet
US10066135B2 (en) 2012-12-28 2018-09-04 Dai Nippon Printing Co., Ltd. Adhesive composition and adhesive sheet using the same
WO2014123079A1 (ja) * 2013-02-05 2014-08-14 インターメタリックス株式会社 焼結磁石製造方法
KR20150103265A (ko) * 2013-02-05 2015-09-09 인터메탈릭스 가부시키가이샤 소결 자석 제조 방법
CN104969316A (zh) * 2013-02-05 2015-10-07 因太金属株式会社 烧结磁体制造方法
US20150364251A1 (en) * 2013-02-05 2015-12-17 Intermetallics Co., Ltd. Sintered magnet production method
JPWO2014123079A1 (ja) * 2013-02-05 2017-02-02 インターメタリックス株式会社 焼結磁石製造方法
KR101707362B1 (ko) * 2013-02-05 2017-02-15 인터메탈릭스 가부시키가이샤 소결 자석 제조 방법

Similar Documents

Publication Publication Date Title
US10978226B2 (en) Sintered Nd—Fe—B magnet composition and a production method for the sintered Nd—Fe—B magnet
WO2007102391A1 (ja) R-Fe-B系希土類焼結磁石およびその製造方法
CN109935432B (zh) R-t-b系永久磁铁
JP6476640B2 (ja) R−t−b系焼結磁石
JP4788690B2 (ja) R−Fe−B系希土類焼結磁石およびその製造方法
US20150262740A1 (en) Rare earth-cobalt permanent magnet
JP5348124B2 (ja) R−Fe−B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石
JP2000223306A (ja) 角形比を向上したr―t―b系希土類焼結磁石およびその製造方法
CN108154988B (zh) R-t-b系永久磁铁
JP4543940B2 (ja) R−t−b系焼結磁石の製造方法
US20160284452A1 (en) R-t-b-based rare earth sintered magnet and method of manufacturing same
JP2012079726A (ja) R−t−b−m系焼結磁石用合金の製造方法およびr−t−b−m系焼結磁石の製造方法
JP4179973B2 (ja) 焼結磁石の製造方法
JP7424126B2 (ja) R-t-b系永久磁石
JP4730550B2 (ja) 潤滑剤の除去方法
US20140311288A1 (en) R-t-b based sintered magnet
JP2006274306A (ja) 希土類焼結磁石の製造方法
CN111724955A (zh) R-t-b系永久磁铁
JP5328369B2 (ja) 永久磁石及び永久磁石の製造方法
JP4702522B2 (ja) R−t−b系焼結磁石及びその製造方法
JP4305927B2 (ja) 潤滑剤の除去方法
JP2007266026A (ja) 希土類焼結磁石の製造方法
JP2021182623A (ja) 希土類焼結磁石及びその製造方法
JP4753024B2 (ja) R−t−b系焼結磁石用原料合金、r−t−b系焼結磁石及びその製造方法
JP4618437B2 (ja) 希土類永久磁石の製造方法およびその原料合金

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071121

A521 Written amendment

Effective date: 20080107

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081029