JP2006274284A - Flow rate control device for evaporation material, and vapor deposition apparatus - Google Patents

Flow rate control device for evaporation material, and vapor deposition apparatus Download PDF

Info

Publication number
JP2006274284A
JP2006274284A JP2005090340A JP2005090340A JP2006274284A JP 2006274284 A JP2006274284 A JP 2006274284A JP 2005090340 A JP2005090340 A JP 2005090340A JP 2005090340 A JP2005090340 A JP 2005090340A JP 2006274284 A JP2006274284 A JP 2006274284A
Authority
JP
Japan
Prior art keywords
vapor deposition
evaporation
valve body
needle valve
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005090340A
Other languages
Japanese (ja)
Other versions
JP4535917B2 (en
Inventor
Tetsuya Inoue
鉄也 井上
Hiroyuki Daiku
博之 大工
Yuji Matsumoto
祐司 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2005090340A priority Critical patent/JP4535917B2/en
Publication of JP2006274284A publication Critical patent/JP2006274284A/en
Application granted granted Critical
Publication of JP4535917B2 publication Critical patent/JP4535917B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Flow Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow rate control device for an evaporation material capable of realizing a smooth flow in a transfer pipe of the evaporation material, and suppressing a change in concentration of the evaporation material even when opening/closing a valve. <P>SOLUTION: The flow rate control device comprises: a partition member 11 which is arranged in the middle inside an evaporation material transfer pipe 6 and has a middle stage vertical portion 11b with a through hole 12 for communication formed therein; a needle valve body 15 which is provided movably in the horizontal direction with respect to the through hole for communication of the middle stage vertical portion and has a conical portion 15b capable of opening/closing the through hole for communication, formed on a tip; a opening/closing means for opening and closing the through hole for communication by the conical portion by moving the needle valve body to the through hole for communication; a gas discharge pipe 16 which is arranged so that the needle valve body is inserted therein and the tip is protruded outward of a center of the conical part and has a gas discharge hole 16a formed in the tip; and a sealing bellows 21 provided between the needle valve body side and the evaporation material transfer pipe side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、蒸発源で蒸発された蒸発材料を蒸着室に移送する蒸発材料移送管に設けられる蒸発材料の流量制御装置および蒸着装置に関するものである。   The present invention relates to an evaporation material flow rate control device and an evaporation apparatus provided in an evaporation material transfer pipe for transferring an evaporation material evaporated by an evaporation source to an evaporation chamber.

例えば、有機EL材料を用いたパネルディスプレイは、有機材料などの蒸着材料がガラス基板などの被蒸着部材に蒸着されることにより形成されている。
通常、蒸着材料は坩堝で加熱され、この蒸発した蒸発材料は真空容器内に導かれるとともに当該真空容器内に配置された被蒸着部材の表面に放出されて蒸着(所謂、成膜)が行われている。
For example, a panel display using an organic EL material is formed by evaporating an evaporation material such as an organic material on an evaporation target member such as a glass substrate.
Usually, the vapor deposition material is heated in a crucible, and the evaporated vaporized material is introduced into the vacuum vessel and discharged onto the surface of a vapor deposition member disposed in the vacuum vessel to perform vapor deposition (so-called film formation). ing.

そして、通常、蒸着膜の厚さを均一にするために、坩堝から蒸着室内への蒸発材料の移送管の途中に、流量制御バルブが介装されて、蒸発材料の供給量が制御されている。
また、蒸着材料の種類を交換する際にも、すなわち蒸着開始時および蒸着終了時に、蒸発材料の供給量を制御する必要がある。
Usually, in order to make the thickness of the vapor deposition film uniform, a flow rate control valve is interposed in the middle of a transfer pipe for the vaporization material from the crucible to the vapor deposition chamber to control the supply amount of the vaporization material. .
In addition, when changing the type of vapor deposition material, that is, at the start of vapor deposition and at the end of vapor deposition, it is necessary to control the supply amount of the vaporized material.

このため、このような場合、坩堝と蒸着室との間の蒸発材料の移送管の途中に、流量制御バルブが介装されている(例えば、特許文献1参照)。
特開平5−249868号公報
For this reason, in such a case, a flow rate control valve is interposed in the middle of the evaporation material transfer pipe between the crucible and the vapor deposition chamber (see, for example, Patent Document 1).
JP-A-5-249868

ところで、流量制御バルブとしては、通常の仕切弁が用いられており、蒸発材料の移送管内を流れる蒸発材料は、粘性流となるため、スムースに流れない場合があり、また蒸着材料を交換する際に、仕切弁が開閉されることになるが、このとき、弁体の近傍に蒸発材料が溜まったりし、蒸発材料の供給再開時に、その濃度が変化してしまい、膜厚が不均一になるという惧れが生じる。   By the way, a normal gate valve is used as the flow control valve, and the evaporating material flowing in the evaporating material transfer pipe becomes a viscous flow, so it may not flow smoothly. In addition, the gate valve is opened and closed. At this time, evaporating material accumulates in the vicinity of the valve body, and when the supply of evaporating material is resumed, the concentration changes and the film thickness becomes non-uniform. There is a fear.

そこで、本発明は、蒸発材料の移送管において、管内の流れをスムースにするとともに、弁開閉時においても、蒸発材料の濃度が変化するのを抑制し得る蒸発材料の流量制御装置およびこの流量制御装置を用いた蒸着装置を提供することを目的とする。   Therefore, the present invention provides a flow control device for an evaporative material that can smooth the flow in the evaporative material transfer pipe and can also prevent the concentration of the evaporative material from changing even when the valve is opened and closed. It aims at providing the vapor deposition apparatus using an apparatus.

上記課題を解決するため、本発明の請求項1に係る蒸発材料の流量制御装置は、蒸発源で蒸発された蒸発材料を蒸着室に移送する蒸発材料移送管に設けられる蒸発材料の流量制御装置であって、
蒸発材料移送管内の途中に配置されて且つ連通用開口穴が形成された仕切部材と、
上記連通用開口穴に対して移動自在に設けられて当該連通用開口穴を開閉し得る円錐状部が先端に形成されたニードル弁体と、
このニードル弁体を上記連通用開口穴に対して移動させてその円錐状部により当該連通用開口穴を開閉させる開閉手段と、
上記ニードル弁体を挿通されて先端部が円錐状部の中心から外方に突出するように設けられるとともに先端部に不活性ガスを放出するガス放出穴が形成されたガス放出管と、
上記ニードル弁体側と蒸発材料移送管側との間に設けられた密封手段とから構成したものである。
In order to solve the above-described problem, the evaporative material flow rate control device according to claim 1 of the present invention is an evaporative material flow rate control device provided in an evaporative material transfer pipe for transferring the evaporative material evaporated by the evaporation source to the vapor deposition chamber. Because
A partition member disposed in the middle of the evaporating material transfer pipe and having a communication opening hole;
A needle valve body which is provided movably with respect to the communication opening hole and has a conical portion formed at the tip thereof capable of opening and closing the communication opening hole;
Opening and closing means for moving the needle valve body with respect to the communication opening hole and opening and closing the communication opening hole by the conical portion;
A gas discharge pipe which is inserted through the needle valve body and provided with a distal end projecting outward from the center of the conical section and having a gas ejection hole for discharging an inert gas at the distal end; and
It comprises sealing means provided between the needle valve body side and the evaporating material transfer pipe side.

また、本発明の請求項2に係る蒸発材料の流量制御装置は、請求項1に記載の流量制御装置におけるニードル弁体の先端寄り内部にヒータを配置したものである。
さらに、本発明の請求項3に係る蒸着装置は、一つの蒸着室と複数の蒸発源を具備するとともに、各蒸発源にて蒸発された蒸発材料を上記蒸着室に導く蒸発材料移送管を、蒸発源側の分岐管部と、蒸着室側の合流管部とから構成し、
且つ上記蒸発材料移送管の各分岐管部に、請求項1または2に記載の流量制御装置を配置したものである。
According to a second aspect of the present invention, there is provided a flow rate control device for an evaporating material, in which a heater is disposed inside the tip of the needle valve body in the flow control device according to the first aspect.
Furthermore, the vapor deposition apparatus according to claim 3 of the present invention includes one vapor deposition chamber and a plurality of evaporation sources, and an evaporation material transfer pipe that guides the evaporation material evaporated in each evaporation source to the vapor deposition chamber. Consists of a branch pipe part on the evaporation source side and a merging pipe part on the deposition chamber side
The flow rate control device according to claim 1 or 2 is arranged in each branch pipe portion of the evaporating material transfer pipe.

また、本発明の請求項4に係る蒸着装置は、請求項3に記載の蒸着装置における使用中の蒸発源からの蒸発材料流量を制御している流量制御装置のニードル弁体の開度量に基づき、次に使用される蒸発源の予備加熱開始時期を求めるとともに当該蒸発源の予備加熱を開始させる制御手段を備えたものである。   Moreover, the vapor deposition apparatus which concerns on Claim 4 of this invention is based on the opening amount of the needle valve body of the flow control apparatus which controls the evaporation material flow volume from the evaporation source in use in the vapor deposition apparatus of Claim 3. In addition, a control means for obtaining the preheating start timing of the evaporation source to be used next and starting the preheating of the evaporation source is provided.

さらに、本発明の請求項5に係る蒸着装置は、請求項4に記載の蒸着装置において、被蒸着面での蒸着レートを検出する蒸着レート検出手段が備えられるとともに、
制御手段に、蒸発源を切り替える際に、上記蒸着レート検出手段にて検出される検出蒸着レートが設定値となるように、切り替えに係る両蒸発源に対応する各流量制御装置をそれぞれ制御する機能を具備させたものである。
Furthermore, the vapor deposition apparatus according to claim 5 of the present invention is the vapor deposition apparatus according to claim 4, further comprising a vapor deposition rate detecting means for detecting the vapor deposition rate on the deposition surface,
The function of controlling each flow rate control device corresponding to both evaporation sources related to the switching so that the detected vapor deposition rate detected by the vapor deposition rate detection means becomes a set value when the evaporation source is switched to the control means. Is provided.

請求項1または請求項2に記載の流量制御装置の構成によると、蒸発材料移送管の途中に設けられた仕切部材に形成された連通用開口穴を開閉して流量制御を行うニードル弁体内に、その先端から不活性ガスを放出し得るガス放出管を挿通させたので、蒸発材料移送管内では粘性流の様相を呈して流れる蒸発材料を、拡散用容器内の希薄流のようにスムースに流すことができ、したがって蒸着膜の膜厚の均一化をより向上させることができるとともに、ニードル弁体の開閉時においても、その周囲に滞留する蒸発材料を誘引することができるため、膜厚の均一化に一層貢献することができる。   According to the configuration of the flow rate control device according to claim 1 or 2, the needle valve body that performs flow rate control by opening and closing a communication opening formed in a partition member provided in the middle of the evaporating material transfer pipe is provided. Since the gas discharge pipe that can discharge the inert gas from the tip is inserted, the evaporation material flowing in a viscous flow manner in the evaporation material transfer pipe flows smoothly like a lean flow in the diffusion container. Therefore, it is possible to further improve the uniformity of the film thickness of the deposited film, and to attract the evaporation material staying around the needle valve body even when the needle valve body is opened and closed. Can further contribute to the development.

また、請求項3に記載の蒸着装置の構成によると、複数の蒸発源を設けたので、これらを切り替えることにより連続的に蒸着作業を行うことができ、したがって作業効率の向上を図ることができる。   Moreover, according to the structure of the vapor deposition apparatus of Claim 3, since the several evaporation source was provided, vapor deposition operation | work can be performed continuously by switching these, Therefore Improvement of work efficiency can be aimed at. .

また、請求項4に記載の蒸着装置の構成によると、現在、使用中の蒸発源の蒸着材料の残料を把握することができ、それに応じて、次に使用する蒸発源の蒸着材料の予備加熱を開始することができる。これにより、有機EL材料などを長時間加熱することにより劣化する有機EL材料などの高価な蒸着材料を、不要に長時間加熱することを防止することができる。   Moreover, according to the structure of the vapor deposition apparatus of Claim 4, the remainder of the vapor deposition material of the evaporation source currently in use can be grasped, and according to this, the reserve of the vapor deposition material of the evaporation source to be used next is reserved. Heating can begin. Accordingly, it is possible to prevent an expensive vapor deposition material such as an organic EL material that deteriorates by heating the organic EL material or the like for a long time from being unnecessarily heated for a long time.

さらに、請求項5に記載の蒸着装置の構成によると、1つの蒸発源における蒸着材料を使い切る際に、蒸着レートが低下するのを防止することができる。すなわち、蒸着作業効率を下げることなく、蒸着材料を使い切ることができる。   Furthermore, according to the structure of the vapor deposition apparatus of Claim 5, when the vapor deposition material in one evaporation source is used up, it can prevent that a vapor deposition rate falls. That is, the vapor deposition material can be used up without reducing the vapor deposition work efficiency.

[実施の形態1]
以下、本発明の実施の形態1に係る蒸発材料の流量制御装置を、図1〜図6に基づき説明する。
[Embodiment 1]
Hereinafter, the evaporative material flow rate control apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS.

本実施の形態1においては、有機ELディスプレイの表示部を製造する場合、すなわち有機材料をガラス基板の表面に蒸着させるための蒸着装置に設けられる場合について説明する。   In this Embodiment 1, the case where the display part of an organic electroluminescent display is manufactured, ie, the case where it provides in the vapor deposition apparatus for vapor-depositing an organic material on the surface of a glass substrate is demonstrated.

まず、蒸着装置の概略構成について、図1に基づき説明する。
この蒸着装置1には、被蒸着部材であるガラス基板2が、その蒸着面が下方となるように配置される蒸着用容器(蒸着室)3と、この蒸着用容器3の下方位置に配置されて有機材料の蒸発(以下、有機材料を蒸着材料といい、蒸発した有機材料を蒸発材料という)を行う坩堝を備えた蒸発源4と、上記蒸着用容器3内で且つ坩堝4の上部に配置されて蒸発材料をガラス基板2の被蒸着面(図面上では下面である)全体に亘ってほぼ均一に放出するための拡散用容器(拡散室または拡散用空間ともいう)5と、上記蒸発源4とこの拡散用容器5との間に上下方向で設けられて蒸発源4からの蒸発材料を当該拡散用容器5に移送するための蒸発材料移送管(以下、単に、移送管と称す)6と、この移送管6の途中に具備された蒸発材料の流量制御装置7と、途中に開閉弁(図示せず)を有する配管8aを介して上記蒸着用容器3に接続されて当該容器内の空気を排出して真空下(所定の真空度下)にするための排気装置8とが具備されている。なお、蒸発源4にも、途中に開閉弁(図示せず)を有する接続配管9aを介して、その内部の空気を排出して真空下(所定の真空度下)にするための排気装置9が接続されている。勿論、図示しないが、蒸着用容器3には、ガラス基板2を交換するための開口部および開閉蓋が設けられるとともに、蒸発源4には、坩堝を交換するための開口部および開閉蓋が設けられており、また蒸着用容器3および蒸発源4の内部を、排気装置8,9により真空にする際には、各接続配管8a,9aに設けられた開閉弁が開かれる。
First, a schematic configuration of the vapor deposition apparatus will be described with reference to FIG.
In this vapor deposition apparatus 1, a glass substrate 2 which is a member to be vapor deposited is disposed in a vapor deposition container (deposition chamber) 3 disposed so that the vapor deposition surface is downward, and a position below the vapor deposition container 3. And an evaporation source 4 having a crucible for evaporating the organic material (hereinafter, the organic material is referred to as an evaporation material, and the evaporated organic material is referred to as an evaporation material), and disposed in the evaporation vessel 3 and above the crucible 4 A diffusion container (also referred to as a diffusion chamber or a diffusion space) 5 for discharging the evaporation material substantially uniformly over the entire deposition surface (the lower surface in the drawing) of the glass substrate 2, and the evaporation source 4 and an evaporation material transfer pipe (hereinafter simply referred to as a transfer pipe) 6 provided between the diffusion container 5 and the diffusion container 5 for transferring the evaporation material from the evaporation source 4 to the diffusion container 5. And the flow control of the evaporation material provided in the middle of the transfer pipe 6 In order to discharge the air in the vessel 3 to a vacuum (predetermined degree of vacuum) by being connected to the vapor deposition vessel 3 through a device 7 and a pipe 8a having an on-off valve (not shown) in the middle. The exhaust device 8 is provided. In addition, the exhaust apparatus 9 for exhausting the air inside the evaporation source 4 through a connection pipe 9a having an on-off valve (not shown) in the middle to bring it into a vacuum (under a predetermined degree of vacuum). Is connected. Of course, although not shown, the deposition container 3 is provided with an opening and an opening / closing lid for exchanging the glass substrate 2, and the evaporation source 4 is provided with an opening and an opening / closing lid for exchanging the crucible. In addition, when the inside of the vapor deposition container 3 and the evaporation source 4 is evacuated by the exhaust devices 8 and 9, the on-off valves provided in the connection pipes 8a and 9a are opened.

次に、上記流量制御装置7を、図2〜図4に基づき説明する。
この流量制御装置7は、図2および図3に示すように、移送管6内に配置されて当該管内流路を遮るように配置されるとともに、側面視が階段形状に、すなわち上段水平部11a、円錐形状の連通用開口穴(以下、単に、開口穴と称す)12が形成された中段鉛直部(鉛直壁部)11bおよび下段水平部11cからなる仕切部材11と、この仕切部材11に対応する位置、言い換えれば上記開口穴12に対応する位置で移送管6の側壁部を貫通するように水平方向で取り付けられた流量制御弁13とから構成されている。
Next, the said flow control apparatus 7 is demonstrated based on FIGS.
As shown in FIGS. 2 and 3, the flow control device 7 is arranged in the transfer pipe 6 so as to block the flow path in the pipe, and the side view has a stepped shape, that is, the upper horizontal portion 11a. A partition member 11 composed of a middle vertical portion (vertical wall portion) 11b and a lower horizontal portion 11c in which a conical communication opening hole (hereinafter simply referred to as an opening hole) 12 is formed, and corresponds to the partition member 11 And a flow rate control valve 13 mounted in the horizontal direction so as to penetrate the side wall of the transfer pipe 6 at a position corresponding to the opening hole 12.

この流量制御弁13は、上記開口穴12に対応する位置の移送管6の側壁部に形成された開口部6aの外周に水平方向で取り付けられた筒状ガイド体14と、この筒状ガイド体14内に、後端部に設けられた環状フランジ部15aを介して水平方向で移動自在に案内されるとともに先端に上記開口穴12を開閉自在な円錐状部15bが形成された筒状のニードル弁体15と、このニードル弁体15の内部に且つ先端から突出するように挿通されるとともに先端上面側に移送管6の下流側に不活性ガスを放出し得るガス放出穴16aが形成されたガス供給管16と、このガス供給管16の途中に設けられて不活性ガスの流量を制御し得るガス用開閉弁17と、上記ニードル弁体15を水平方向(開口穴12に直交する方向でもある)で往復移動(接近離間)させてその円錐状部15bにより開口穴12を開閉させる開閉手段(移動手段でもある)18と、上記ガス用開閉弁17および開閉手段18を制御する開閉制御手段19と、上記ニードル弁体15を移送管6の開口部6aに配置した際の密封を行うために当該開口部6aとニードル弁体15の後部に形成された筒状ガイド体14との摺動部である環状フランジ部15aとの間に亘って設けられた密封手段であるベローズ21と、上記ニードル弁体15の先端側の内部に配置された弁体用ヒータ(例えば、ニクロム線が用いられる)22と、同じくニードル弁体15の外周および当該ニードル弁体15の取り付け近傍における移送管6の周囲に巻き付けられた管用ヒータ(例えば、ニクロム線が用いられる)23と、少なくとも上記弁体用ヒータ22を制御するヒータ制御手段24とから構成されている。   The flow rate control valve 13 includes a cylindrical guide body 14 attached in a horizontal direction to the outer periphery of an opening 6a formed on the side wall of the transfer pipe 6 at a position corresponding to the opening hole 12, and the cylindrical guide body. 14 is a cylindrical needle having a conical portion 15b that is guided in a horizontally movable manner through an annular flange portion 15a provided in the rear end portion and that can open and close the opening hole 12 at the front end. A valve body 15 and a gas discharge hole 16a that is inserted into the needle valve body 15 so as to protrude from the tip and discharge the inert gas downstream of the transfer pipe 6 are formed on the top surface of the tip. The gas supply pipe 16, the gas on-off valve 17 provided in the middle of the gas supply pipe 16 and capable of controlling the flow rate of the inert gas, and the needle valve body 15 in the horizontal direction (even in the direction orthogonal to the opening hole 12) Reciprocating An opening / closing means (also a moving means) 18 that opens and closes the opening hole 12 by the conical portion 15b, an opening / closing control means 19 for controlling the gas opening / closing valve 17 and the opening / closing means 18, and the needle valve An annular flange portion which is a sliding portion between the opening portion 6a and the cylindrical guide body 14 formed at the rear portion of the needle valve body 15 in order to perform sealing when the body 15 is disposed in the opening portion 6a of the transfer pipe 6. A bellows 21 which is a sealing means provided between 15a and 15a, a valve element heater (for example, a nichrome wire is used) 22 disposed inside the tip end side of the needle valve element 15, and a needle A pipe heater (for example, nichrome wire is used) 23 wound around the outer periphery of the valve body 15 and around the transfer pipe 6 in the vicinity of the attachment of the needle valve body 15; And a heater control unit 24 for controlling the valve body for a heater 22.

上記開閉手段18は、ニードル弁体15の環状フランジ部15aの後端面に取り付けられるとともに中央にねじ穴25aが形成された係合板体25と、この係合板体25のねじ穴25aに螺挿された棒状おねじ体26と、この棒状おねじ体26を正逆回転させる電動機27とから構成されている。   The opening / closing means 18 is attached to the rear end face of the annular flange portion 15a of the needle valve body 15 and screwed into the engagement plate body 25 having a screw hole 25a formed in the center and the screw hole 25a of the engagement plate body 25. The rod-shaped male screw body 26 and an electric motor 27 that rotates the rod-shaped male screw body 26 in the forward and reverse directions.

そして、上記開閉制御手段19は、図4に示すように、蒸着用容器3内のガラス基板2の被蒸着面での蒸着レートが設定値(以下、設定レートという)となるように、ニードル弁体15およびガス用開閉弁17を制御するもので、設定レートを設定する蒸着レート設定部31と、ガラス基板2の被蒸着面での蒸着レートを検出する蒸着レート検出器(例えば、被蒸着面近傍に配置された膜厚検出器および当該膜厚検出器にて検出された膜厚を入力して蒸着レートを演算する蒸着レート演算部から構成されている)32と、この蒸着レート検出器32にて検出された検出蒸着レートおよび蒸着レート設定部31からの設定レートを入力して両レートの偏差がなくなるように、ニードル弁体15を移動させる電動機27およびガス供給管16に設けられたガス用開閉弁17を制御する演算制御部33とから構成されている。   Then, as shown in FIG. 4, the opening / closing control means 19 is configured so that the deposition rate on the deposition surface of the glass substrate 2 in the deposition container 3 becomes a set value (hereinafter referred to as a set rate). The body 15 and the gas on-off valve 17 are controlled, and a deposition rate setting unit 31 for setting a set rate and a deposition rate detector for detecting a deposition rate on the deposition surface of the glass substrate 2 (for example, a deposition surface) A vapor deposition rate detector 32 that includes a film thickness detector disposed in the vicinity and a vapor deposition rate calculation unit that calculates the vapor deposition rate by inputting the film thickness detected by the film thickness detector. The detected vapor deposition rate detected in step 1 and the set rate from the vapor deposition rate setting unit 31 are input, and the motor 27 for moving the needle valve body 15 and the gas supply pipe 16 are arranged so that there is no deviation between the two rates. And a calculation control unit 33 for controlling the gas on-off valve 17 which is.

すなわち、この演算制御部33により、検出蒸着レートが少ない場合には、ニードル弁体15を後退させて円錐状部15bを開口穴12に対して離間させることにより開口穴12を開き、移送管6内における上流側流路Aから下流側流路Bに移動する蒸発材料Cの流量が増やされ、また、検出蒸着レートが多い場合には、ニードル弁体15を前進させて、移送管6内における上流側流路Aから下流側流路Bに移動する蒸発材料Cの流量が減らされる。   That is, when the detected vapor deposition rate is low, the calculation control unit 33 opens the opening hole 12 by retracting the needle valve body 15 and separating the conical portion 15b from the opening hole 12, and the transfer pipe 6 When the flow rate of the evaporation material C moving from the upstream flow path A to the downstream flow path B is increased, and when the detected vapor deposition rate is high, the needle valve body 15 is advanced to move the flow rate in the transfer pipe 6. The flow rate of the evaporating material C moving from the upstream channel A to the downstream channel B is reduced.

このとき、不活性ガスの供給量についても、演算制御部33により、蒸発材料Cの流量に応じて制御(増減)が行われている。この不活性ガスの供給量の制御については、例えば蒸発材料Cの流量(ニードル弁体の開度でもある)を段階的に区分するとともに、この区分と使用する蒸着材料に応じて、その供給量が予め決定されている。   At this time, the supply amount of the inert gas is also controlled (increased / decreased) according to the flow rate of the evaporation material C by the arithmetic control unit 33. Regarding the control of the supply amount of the inert gas, for example, the flow rate of the evaporation material C (which is also the opening degree of the needle valve body) is divided in stages, and the supply amount according to this division and the vapor deposition material used. Is determined in advance.

また、上記ヒータ制御手段24は、図2に示すように、少なくともニードル弁体15の先端部の温度を所定温度に維持するためのもので、ニードル弁体15の先端部の内側に配置された温度検出器(例えば、熱電対が用いられる)35と、この温度検出器35からの検出温度を入力するとともに設定温度との温度偏差を求め、この温度偏差がなくなるように弁体用ヒータ22に供給する電力を制御する電力制御部36とから構成されている。   Further, as shown in FIG. 2, the heater control means 24 is for maintaining at least the temperature of the tip of the needle valve body 15 at a predetermined temperature, and is disposed inside the tip of the needle valve body 15. A temperature detector (for example, a thermocouple is used) 35 and a detected temperature from the temperature detector 35 are input and a temperature deviation from a set temperature is obtained, and the valve element heater 22 is set so that this temperature deviation is eliminated. It is comprised from the electric power control part 36 which controls the electric power to supply.

なお、管用ヒータ23についても、一定の電力が供給されるように構成されているが、上記電力制御部36により、当該管用ヒータ23の電力を制御するようにしてもよい。
また、上記開口穴12の内面形状については、上述したように、ニードル弁体15の円錐状部15bの外面形状に合致する円錐状にされており、さらにニードル弁体15の先端平面部15cには仕切部材11の中段鉛直部11bの表面に当接する環状突出部15dが形成されて、開口穴12を閉鎖した際のリークが防止されている。なお、この環状突出部15dの替わりに、金属製のO−リングを装着してもよい。
The tube heater 23 is also configured to be supplied with constant power, but the power control unit 36 may control the power of the tube heater 23.
Further, as described above, the inner surface shape of the opening hole 12 is a conical shape that matches the outer surface shape of the conical portion 15b of the needle valve body 15, and is further formed on the tip flat portion 15c of the needle valve body 15. An annular projecting portion 15d that contacts the surface of the middle vertical portion 11b of the partition member 11 is formed to prevent leakage when the opening hole 12 is closed. Instead of the annular projecting portion 15d, a metal O-ring may be attached.

上記蒸着装置1において、蒸着用容器3内でガラス基板2への有機材料の蒸着(成膜)を行う場合について説明する。
この蒸着装置1全体が所定の真空下にされている状態において、蒸着材料が充填された蒸発源4が所定温度に加熱されると、蒸着材料が蒸発し、この蒸発した蒸発材料は移送管6内を上昇する。
The case where the vapor deposition apparatus 1 performs vapor deposition (film formation) of an organic material on the glass substrate 2 in the vapor deposition container 3 will be described.
When the evaporation source 4 filled with the vapor deposition material is heated to a predetermined temperature in a state where the entire vapor deposition apparatus 1 is under a predetermined vacuum, the vapor deposition material evaporates, and the vaporized evaporation material is transferred to the transfer pipe 6. Rise inside.

そして、図5に示すように、開閉手段18によりニードル弁体15が後退されて開口穴12が開かれると、その開口面積に応じた流量でもって蒸発材料(蒸発フラックスともいう)Cが拡散用容器5内に移動される。   As shown in FIG. 5, when the needle valve body 15 is retracted by the opening / closing means 18 and the opening hole 12 is opened, the evaporation material (also referred to as evaporation flux) C is diffused with a flow rate corresponding to the opening area. It is moved into the container 5.

この移動時においては、ガス供給管16の先端のガス放出穴16aからアルゴンガスなどの不活性ガスが上方(下流側)に向かって噴出され、この噴出された不活性ガスの上昇流により蒸発材料が拡散用容器5内に誘引されるため、移送管6内では粘性流となる蒸発材料がスムースに移動する。すなわち、移送管6内での蒸発材料の粘性による滞留が改善されることになる。   During this movement, an inert gas such as argon gas is jetted upward (downstream) from the gas discharge hole 16a at the tip of the gas supply pipe 16, and the evaporating material is generated by the upward flow of the jetted inert gas. Is attracted into the diffusion container 5, the vaporized material that becomes a viscous flow moves smoothly in the transfer pipe 6. That is, retention due to the viscosity of the evaporation material in the transfer pipe 6 is improved.

そして、蒸着時におけるニードル弁体15の開度および不活性ガスの放出量については、上述したように、演算制御部33にて、被蒸着面での蒸着レートが設定レートとなるように制御されている。勿論、フィードバック制御が用いられている。   As described above, the opening degree of the needle valve body 15 and the amount of inert gas released during vapor deposition are controlled by the calculation control unit 33 so that the vapor deposition rate on the vapor deposition surface becomes a set rate. ing. Of course, feedback control is used.

また、蒸着が終了する場合、若しくは蒸着材料を交換する場合には、ニードル弁体15が閉じられるが、閉じられた直後においても、ガス供給管16のガス放出穴16aから不活性ガスが放出されているため、仕切部材11の付近、特に隅部に滞留している蒸発材料についても、不活性ガスの上昇流により、拡散用容器5まで確実に移動される。   When the vapor deposition is completed or when the vapor deposition material is exchanged, the needle valve body 15 is closed. Even immediately after the needle valve body 15 is closed, the inert gas is released from the gas discharge hole 16a of the gas supply pipe 16. Therefore, the evaporation material staying in the vicinity of the partition member 11, particularly in the corner, is also reliably moved to the diffusion container 5 by the upward flow of the inert gas.

すなわち、蒸発材料は、移送管6内では粘性流の様相を呈しているが、不活性ガスの放出により流れがスムースとなり、したがってニードル弁体15の開閉時における流量をグラフで示すと、図6のようになる。なお、図6において、不活性ガスを放出させている場合を実線で示し、不活性ガスを用いない場合を破線にて示す。   That is, the evaporating material is in the form of a viscous flow in the transfer pipe 6, but the flow becomes smooth due to the release of the inert gas. Therefore, when the flow rate when the needle valve body 15 is opened and closed is shown in a graph, FIG. become that way. In FIG. 6, the case where the inert gas is released is indicated by a solid line, and the case where the inert gas is not used is indicated by a broken line.

図6の実線で示すように、ニードル弁体15の開時および閉時における蒸発材料の蒸着レートの変化を見ると、破線で示す従来の場合に比べて、時間遅れが殆ど発生しておらず、制御性能が向上していることがよく分かる。   As shown by the solid line in FIG. 6, when the change in the evaporation rate of the evaporation material when the needle valve body 15 is opened and closed, there is almost no time delay compared to the conventional case indicated by the broken line. It can be seen that the control performance is improved.

言い換えると、粘性に起因するニードル弁体15の開時の放出遅れおよびニードル弁体15の閉時における下流側での残留分のだらだらとした放出(移動)が改善されるため、ガラス基板2の交換時間および蒸着時間の短縮を図ることができ、また時間遅れが発生しないため、別途、シャッターを備える必要がなくなるとともに、検出蒸着レートに基づく制御性が向上するため、膜厚が不均一になるのを防止することができる。   In other words, since the release delay when the needle valve body 15 is opened due to the viscosity and the loose release (movement) of the residue on the downstream side when the needle valve body 15 is closed are improved, the glass substrate 2 The replacement time and vapor deposition time can be shortened, and since no time delay occurs, it is not necessary to provide a separate shutter, and controllability based on the detected vapor deposition rate is improved, resulting in non-uniform film thickness. Can be prevented.

このように、蒸発材料の移送管6の途中に設けられた仕切部材11に形成された開口穴12を開閉して流量制御を行うニードル弁体15内に、その先端から不活性ガスを放出し得るガス放出管16を挿通させたので、移送管6内では粘性流の様相を呈して流れる蒸発材料を、拡散用容器5内での希薄流のようにスムースに流すことができ、したがって蒸着膜の膜厚の均一化をより向上させることができるとともに、ニードル弁体15の開閉時においても、その周囲(例えば隅部)に滞留する蒸発材料を誘引することができるため、ガラス基板交換や蒸着などの作業時間の改善および膜厚の均一化に一層貢献することができる。   In this manner, the inert gas is released from the tip of the needle valve body 15 that controls the flow rate by opening and closing the opening hole 12 formed in the partition member 11 provided in the middle of the transfer pipe 6 for the evaporation material. Since the gas discharge pipe 16 to be obtained is inserted, the evaporating material that flows in the form of a viscous flow in the transfer pipe 6 can flow smoothly like a dilute flow in the diffusion container 5, and thus the deposited film The film thickness can be made more uniform, and the evaporation material staying around (for example, the corner) can be attracted even when the needle valve body 15 is opened and closed. It is possible to further contribute to the improvement of the working time and the uniformity of the film thickness.

より具体的に説明すれば、蒸発材料が有機EL用の材料である場合、材料の分子量が大きく且つ蒸発後の状態(フラックス状態)では粘性抵抗が高くなるため、移送管6内および開口穴12とニードル弁体15との間を通過する際のコンダクタンスによりニードル弁体15の開閉時における流量制御の応答速度(制御精度)が遅くなって所定膜厚に対する誤差が大きくなるのを、防止することができる。   More specifically, when the evaporation material is a material for organic EL, the molecular weight of the material is large and the viscosity resistance becomes high in the state after evaporation (flux state). To prevent the flow rate control response speed (control accuracy) when the needle valve body 15 is opened / closed from slowing down due to conductance when passing between the needle valve body 15 and the needle valve body 15, thereby increasing an error with respect to a predetermined film thickness. Can do.

また、不活性ガスの放出による蒸発材料の流れをスムースに行わせる他に、少なくともニードル弁体15自体に弁体用ヒータ22を設けたので、弁体部を外部から加熱する場合に比べて、蒸発材料の温度制御を精度良く行うことができ、したがって有機ELなどの熱分解し易い材料を用いる場合に適している。   Moreover, in addition to making the flow of the evaporation material due to the release of the inert gas smooth, at least the needle valve body 15 itself is provided with the valve body heater 22, so that compared with the case where the valve body portion is heated from the outside, The temperature of the evaporating material can be controlled with high accuracy, and is therefore suitable when using a material that is easily thermally decomposed, such as an organic EL.

さらに、上述の実施の形態で説明したように、管用ヒータ23を用いて、ニードル弁体15自体である内側と移送管6自体である外側とから加熱することにより、温度制御を一層精度良く行うことができる。
[実施の形態2]
以下、本発明の実施の形態2に係る蒸着装置について、図7〜図9に基づき説明する。
Further, as described in the above-described embodiment, the temperature is controlled with higher accuracy by heating from the inner side which is the needle valve body 15 itself and the outer side which is the transfer pipe 6 itself using the pipe heater 23. be able to.
[Embodiment 2]
Hereinafter, the vapor deposition apparatus which concerns on Embodiment 2 of this invention is demonstrated based on FIGS.

上記実施の形態1においては、蒸発材料の流量制御装置について説明したが、本実施の形態2においては、実施の形態1で説明した流量制御装置および蒸発源を複数組配置した蒸着装置について説明する。   In the first embodiment, the flow control device for the evaporation material has been described. In the second embodiment, the flow control device described in the first embodiment and a vapor deposition apparatus in which a plurality of evaporation sources are arranged will be described. .

この蒸着装置は、蒸発源と流量制御装置とを複数組配置することにより、複数の蒸発源を用いて蒸着時間を長く維持し得るとともに、次に使用する蒸発源での蒸発開始の準備を行うことにより、蒸発源を切り替える作業(坩堝の交換作業)の短縮化を図るようにしたものである。   In this vapor deposition apparatus, by arranging a plurality of sets of evaporation sources and flow rate control devices, it is possible to maintain a long vapor deposition time by using a plurality of evaporation sources, and prepare for the start of evaporation at the next evaporation source to be used. Thus, the work of switching the evaporation source (replacement work of the crucible) is shortened.

本実施の形態2に係る蒸着装置は、上記実施の形態1にて説明した流量制御装置と蒸発源の構成をそのまま用いたものであるため、本実施の形態2においては、異なる部分に着目して説明するとともに、実施の形態1にて説明したものと同一の構成部材については、同一の部品番号を付してその詳細な説明を省略する。   The vapor deposition apparatus according to the second embodiment uses the configuration of the flow rate control device and the evaporation source described in the first embodiment as they are, and therefore, in the second embodiment, pay attention to different parts. In addition, the same components as those described in the first embodiment are denoted by the same component numbers, and detailed description thereof is omitted.

図7に示すように、この蒸着装置51は、1つの蒸着用容器(蒸着室)3に対して坩堝を有する蒸発源(蒸発室)4が2つ具備されるとともに、これら両蒸発源4(4A,4B)からの蒸発材料を蒸着用容器3に導くための蒸発材料移送管6については二股状に形成されている。   As shown in FIG. 7, the vapor deposition apparatus 51 includes two evaporation sources (evaporation chambers) 4 each having a crucible for one vapor deposition container (deposition chamber) 3, and both the evaporation sources 4 ( The evaporating material transfer pipe 6 for guiding the evaporating material from 4A, 4B) to the vapor deposition vessel 3 is formed in a bifurcated shape.

すなわち、この蒸発材料移送管6は、各蒸発源4A,4Bに接続される分岐管部61A,61Bと、蒸着用容器3側に接続される合流管部61Cとから構成されており、上記各分岐管部61A,61Bに、流量制御装置7(7A,7B)が設けられている。   That is, the evaporating material transfer pipe 6 is composed of branch pipe parts 61A and 61B connected to the respective evaporation sources 4A and 4B and a joining pipe part 61C connected to the vapor deposition container 3 side. The branch pipe portions 61A and 61B are provided with flow rate control devices 7 (7A and 7B).

勿論、これら各流量制御装置7(7A,7B)については、図8に示すように、下流側の分岐管部分が合流部に向くように水平方向で配置されている点およびガス放出穴16aの向きが合流部(下流部である)に向くようにその先端面に形成されている点、並びに開閉制御手段71に、蒸発源4A,4Bを切り替える際に、蒸着レートを設定値(以下、設定レートという)にするための機能が設けられている点で、上記実施の形態1で説明したものと異なっており、その他の構成については同一である。   Of course, for each of these flow control devices 7 (7A, 7B), as shown in FIG. 8, the downstream side branch pipe portion is arranged in the horizontal direction so as to face the merge portion, and the gas discharge hole 16a. When the evaporation sources 4A and 4B are switched to the point formed on the front end surface so that the direction is directed to the joining portion (downstream portion) and the opening / closing control means 71, the deposition rate is set to a set value (hereinafter, set) It is different from that described in the first embodiment in that a function for providing a rate is provided, and the other configurations are the same.

この開閉制御手段71においては、蒸発源4における坩堝の加熱温度(例えば、昇温スピード)の設定、各流量制御装置7におけるニードル弁体15の開度の制御、蒸発源4を切り替える際のガラス基板2における蒸着レートを設定レートにするための制御機能(後述する)が具備されており、またこの開閉制御手段71には、各流量制御装置7におけるニードル弁体15の開度量が入力(把握)されている。   In this open / close control means 71, the temperature of the crucible at the evaporation source 4 (for example, the temperature rise speed) is set, the opening of the needle valve body 15 at each flow rate control device 7 is controlled, and the glass when the evaporation source 4 is switched. A control function (to be described later) for setting the vapor deposition rate on the substrate 2 to a set rate is provided, and the opening / closing control means 71 inputs (understands) the opening amount of the needle valve body 15 in each flow control device 7. )

以下、蒸着装置51における蒸着作業について説明する。
なお、一方の蒸発源4の坩堝を加熱して得られた蒸発材料を、蒸発材料移送管6を介して蒸着用容器3内に導き、ガラス基板2の蒸着面に蒸着させるまで、すなわち坩堝内の蒸着材料が減るまでの作業については、上述した実施の形態1と同一であるため省略するとともに、異なる部分である蒸発源4の切替作業について説明する。
Hereinafter, the vapor deposition operation in the vapor deposition apparatus 51 will be described.
The evaporation material obtained by heating the crucible of one evaporation source 4 is introduced into the evaporation vessel 3 through the evaporation material transfer pipe 6 and evaporated on the evaporation surface of the glass substrate 2, that is, in the crucible. Since the operation until the evaporation material is reduced is the same as that in the first embodiment, the operation for switching the evaporation source 4 which is a different part will be described.

すなわち、一方の蒸発源(現在使用中の蒸発源である)4Aの坩堝が加熱されて蒸発材料を放出している間に、他方の蒸発源(次に使用される蒸発源である)4Bでは、所定の真空下で且つ所定温度(蒸発直前の温度)に予備加熱されて、蒸発開始の準備がなされる。勿論、蒸発源4を所定の真空下にする際には、排気装置9が作動される。   That is, while the crucible of one evaporation source (currently used evaporation source) 4A is heated to release the evaporation material, the other evaporation source (which is the next used evaporation source) 4B The sample is preheated to a predetermined temperature (a temperature just before evaporation) under a predetermined vacuum to prepare for the start of evaporation. Of course, when the evaporation source 4 is under a predetermined vacuum, the exhaust device 9 is operated.

また、坩堝は所定温度である蒸発直前の温度までゆっくりと加熱されるが、現在、使用(蒸発)されている蒸発源4Aの蒸発材料の放出量の減少状態を考慮しながら行われる。
この放出量の減少状態は、その流量制御装置7(7A)におけるニードル弁体15の開度量(%)により把握される。例えば、予め、どの程度、ニードル弁体15を後退(閉止状態を基準とする)させたら開度量がどの程度になるのかを把握しておき、ニードル弁体15の後退量(電動機をどれだけ動かしたか)から開度量を読み取るものとし、また予備加熱にて蒸発直前の温度まで、どの程度の時間(昇温時間)を要するのかを事前に調べておくことにより、逆算にて、昇温開始時期となる開度量を予め求めておき、この開度量になったら予備加熱を開始することになる。
Further, the crucible is slowly heated to a temperature just before the evaporation which is a predetermined temperature, and is performed while taking into consideration a reduction in the amount of evaporation material released from the evaporation source 4A currently used (evaporation).
This reduced state of the discharge amount is grasped by the opening amount (%) of the needle valve body 15 in the flow rate control device 7 (7A). For example, it is necessary to know in advance how much the opening amount of the needle valve body 15 is retreated (based on the closed state), and how much the retraction amount of the needle valve body 15 (how much the motor is moved) The amount of opening is to be read from the head), and the temperature rise start time is calculated in a reverse calculation by examining in advance how much time (temperature rise time) it takes to reach the temperature just before evaporation in preheating. The amount of opening is determined in advance, and preheating is started when the amount of opening is reached.

また、加熱温度(昇温スピード)毎に蒸発直前の温度までに要する時間(昇温時間)と、現在の開度量と交換が必要となる開度量までの時間(交換残時間)を把握しておき、各加熱温度の昇温時間と交換残時間の適切な組み合わせにより、加熱温度と開度量との関係を設定しておけば、開度量に応じて適切な加熱温度で、予備加熱が開始するように自動化することもできる。   In addition, for each heating temperature (temperature increase speed), grasp the time required until the temperature immediately before evaporation (temperature increase time) and the time until the current opening amount and the opening amount that needs to be replaced (replacement remaining time). If the relationship between the heating temperature and the amount of opening is set by an appropriate combination of the heating time of each heating temperature and the remaining exchange time, preheating starts at an appropriate heating temperature according to the amount of opening. It can also be automated.

勿論、これらの各制御は上記開閉制御手段71にて行われ、そのための各制御機能が備えられている。
図9に、蒸発源4を切り替える際の開閉制御手段71によるニードル弁体15の制御状態を示しておく。
Of course, each of these controls is performed by the opening / closing control means 71, and each control function is provided.
FIG. 9 shows a control state of the needle valve body 15 by the opening / closing control means 71 when the evaporation source 4 is switched.

すなわち、図9の(a)は蒸着レートを示し、(b)はニードル弁体15の開度を示し、またこれら各グラフにおける山状の部分は蒸着作業中を示し、谷状の部分はガラス基板の交換作業中を示している。   9A shows the vapor deposition rate, FIG. 9B shows the opening degree of the needle valve body 15, and the mountain-shaped portions in these graphs indicate that the vapor deposition operation is being performed, and the valley-shaped portions are glass. It shows that the substrate is being replaced.

なお、図9においては、先に(現在)、使用されている蒸発源4での流量制御装置7Aによるニードル弁体15が制御されて、蒸着レートが設定レートとなるように運転が行われており、その後、次の蒸発源4での流量制御装置7Bによるニードル弁体15の制御に移行する状態を示している。   In FIG. 9, first (currently), the needle valve body 15 is controlled by the flow rate control device 7A in the evaporation source 4 being used, and the operation is performed so that the deposition rate becomes the set rate. After that, a state is shown in which the transition to the control of the needle valve body 15 by the flow rate control device 7B at the next evaporation source 4 is shown.

図9(a)の蒸着レートについては、これが安定するように制御されるが、蒸発源4の蒸着材料は時間とともに減少し、当然に、破線で示すようにその蒸発量も低下してくる。
図9(b)のニードル弁体15の開度については、山の部分が右(時間経過)に行くほど高くなっているのは、開度を段々大きくしないと蒸着レートを設定レートに維持できないことを示している。
The vapor deposition rate in FIG. 9A is controlled so as to be stable, but the vapor deposition material of the evaporation source 4 decreases with time, and naturally the evaporation amount also decreases as shown by the broken line.
About the opening degree of the needle valve body 15 of FIG.9 (b), it is so high that the peak part goes to the right (time progress), and if the opening degree is not enlarged gradually, a vapor deposition rate cannot be maintained at a set rate. It is shown that.

最終的には、ニードル弁体15の開度が100%に近づくが、所定の開度になった時点で、予備加熱により蒸発温度直前に維持された他方の流量制御装置7Bにおけるニードル弁体15を少しずつ開放(破線で示す)することで、先の蒸発源4Aによる蒸発量と、次の蒸発源4Bによる蒸発量との合計で、蒸着レートが維持される。   Eventually, the opening degree of the needle valve element 15 approaches 100%, but when the predetermined opening degree is reached, the needle valve element 15 in the other flow rate control device 7B maintained immediately before the evaporation temperature by preheating. Is gradually released (indicated by a broken line), the vapor deposition rate is maintained by the sum of the evaporation amount from the previous evaporation source 4A and the evaporation amount from the next evaporation source 4B.

そして、現在、使用されている蒸発源4Aにおける坩堝が交換時期であると判断されると、次の蒸発源4B側の流量制御装置7Bのニードル弁体15が順次全開状態にされるとともに、現在の蒸発源4A側の流量制御装置7Aのニードル弁体15が順次閉止状態に移行される。なお、使用が停止された蒸発源4A側の坩堝は、図示しない冷却手段により冷却されて蒸発源4A内が徐々に大気に戻され、そしてその坩堝に蒸着材料が補充される。   When it is determined that the crucible in the currently used evaporation source 4A is in the replacement period, the needle valve body 15 of the flow rate control device 7B on the next evaporation source 4B side is sequentially fully opened, The needle valve body 15 of the flow rate control device 7A on the evaporation source 4A side is sequentially shifted to the closed state. The crucible on the evaporation source 4A side that has been stopped is cooled by a cooling means (not shown), the inside of the evaporation source 4A is gradually returned to the atmosphere, and the evaporation material is replenished to the crucible.

このように、蒸発源4および流量制御装置7を、少なくとも二組配置することにより、装置のメンテナンス周期(例えば一週間)の間、ずっと蒸着作業を続けることができ、作業効率の向上を図ることができる。   Thus, by arranging at least two sets of the evaporation source 4 and the flow rate control device 7, the vapor deposition operation can be continued throughout the maintenance cycle (for example, one week) of the device, thereby improving the work efficiency. Can do.

例えば、有機ELの蒸着材料は非常に高価であるとともに長い時間加熱されると劣化するため、一度に大量の蒸着材料を坩堝に入れて加熱することができず、したがって実施の形態1で示された一組の蒸発源と流量制御装置だけでは頻繁に材料補充のための作業(蒸着作業の停止)が発生して作業効率が低下するが、実施の形態2のような構成とすることにより、そのような問題が解消され、また二組の蒸発源および流量制御装置を互いに連携させることにより、蒸発源の切替時においても、蒸着レートを設定レートに維持することができ、したがって蒸着膜厚のばらつきを抑制することができる。   For example, since an organic EL vapor deposition material is very expensive and deteriorates when heated for a long time, a large amount of the vapor deposition material cannot be put into a crucible at a time and heated. In addition, a work for replenishing materials frequently (stopping the vapor deposition work) occurs frequently with only one set of evaporation source and flow rate control device, and the work efficiency is lowered. Such problems are solved, and the two evaporation sources and the flow rate control device are linked to each other, so that the evaporation rate can be maintained at the set rate even when the evaporation source is switched. Variations can be suppressed.

ところで、上記各実施の形態においては、ニードル弁体15をねじ機構を介して電動機27により開閉させるようにしたが、ベローズ21などの密封手段にて、内部の密封性が保たれている限り、筒状ガイド体14内にエアーの給排出を行うことにより、ニードル弁体15を移動させるようにしてもよい。   By the way, in each said embodiment, although the needle valve body 15 was opened and closed with the electric motor 27 via the screw mechanism, as long as the internal sealing performance is maintained with sealing means, such as the bellows 21, The needle valve body 15 may be moved by supplying and discharging air into the cylindrical guide body 14.

また、上記各実施の形態においては、蒸発源と流量制御装置とをフランジ部材を介して接続した構成を図示したが、蒸発源と流量制御装置とは、ほぼ同じ温度に加熱されるため、蒸発材料移送管の上流側部分が蒸発源側の空間部の一部となるように、蒸発源と流量制御装置とを一体化した構成にしてもよい。このような構成とすることにより、ヒータの設置および保守点検などの作業が容易となる。   In each of the above embodiments, the configuration in which the evaporation source and the flow rate control device are connected via the flange member is illustrated. However, the evaporation source and the flow rate control device are heated to substantially the same temperature, The evaporation source and the flow rate control device may be integrated so that the upstream portion of the material transfer pipe becomes a part of the space on the evaporation source side. With such a configuration, operations such as heater installation and maintenance inspection are facilitated.

本発明の実施の形態1に係る蒸着装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the vapor deposition apparatus which concerns on Embodiment 1 of this invention. 同蒸着装置における蒸発材料の流量制御装置の要部断面図である。It is principal part sectional drawing of the flow control apparatus of the evaporation material in the vapor deposition apparatus. 図2のD−D矢視図である。FIG. 3 is a DD arrow view of FIG. 2. 同流量制御装置の制御系統を示すブロック図である。It is a block diagram which shows the control system of the same flow control apparatus. 同流量制御装置における作動状態を説明する要部断面図である。It is principal part sectional drawing explaining the operation state in the flow control apparatus. 同流量制御装置を用いた場合の蒸着レートを示すグラフである。It is a graph which shows the vapor deposition rate at the time of using the same flow control apparatus. 本発明の実施の形態2に係る蒸着装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the vapor deposition apparatus which concerns on Embodiment 2 of this invention. 同蒸着装置における蒸発材料の流量制御装置の要部断面図である。It is principal part sectional drawing of the flow control apparatus of the evaporation material in the vapor deposition apparatus. 同流量制御装置により蒸発源の切替時の制御状態を示すグラフで、(a)は蒸着レートを示し、(b)はニードル弁体の開度を示す。It is a graph which shows the control state at the time of switching of an evaporation source by the same flow control apparatus, (a) shows a vapor deposition rate, (b) shows the opening degree of a needle valve body.

符号の説明Explanation of symbols

1 蒸着装置
2 ガラス基板
3 蒸着用容器
4 蒸発源
5 拡散用容器
6 蒸発材料移送管
6a 開口部
7 流量制御装置
11 仕切部材
11b 中段鉛直部
12 連通用開口穴
13 流量制御弁
14 筒状ガイド体
15 ニードル弁体
15b 円錐状部
16 ガス供給管
16a ガス放出穴
17 ガス用開閉弁
18 開閉手段
19 開閉制御手段
21 ベローズ
22 弁体用ヒータ
23 管用ヒータ
24 ヒータ制御手段
31 蒸着レート設定部
32 蒸着レート検出部
33 演算制御部
35 温度検出器
36 電力制御部
51 蒸着装置
61A 分岐管部
61B 分岐管部
61C 合流管部
71 開閉制御手段
DESCRIPTION OF SYMBOLS 1 Vapor deposition apparatus 2 Glass substrate 3 Vapor deposition container 4 Evaporation source 5 Diffusion container 6 Evaporating material transfer pipe 6a Opening 7 Flow control device 11 Partition member 11b Middle vertical part 12 Opening hole 13 Flow control valve 14 Cylindrical guide body 15 needle valve body 15b conical section 16 gas supply pipe 16a gas discharge hole 17 gas on-off valve 18 opening / closing means 19 opening / closing control means 21 bellows 22 valve body heater 23 pipe heater 24 heater control means 31 vapor deposition rate setting section 32 vapor deposition rate Detection unit 33 Calculation control unit 35 Temperature detector 36 Power control unit 51 Deposition apparatus 61A Branch pipe part 61B Branch pipe part 61C Junction pipe part 71 Opening / closing control means

Claims (5)

蒸発源で蒸発された蒸発材料を蒸着室に移送する蒸発材料移送管に設けられる蒸発材料の流量制御装置であって、
蒸発材料移送管内の途中に配置されて且つ連通用開口穴が形成された仕切部材と、
上記連通用開口穴に対して移動自在に設けられて当該連通用開口穴を開閉し得る円錐状部が先端に形成されたニードル弁体と、
このニードル弁体を上記連通用開口穴に対して移動させてその円錐状部により当該連通用開口穴を開閉させる開閉手段と、
上記ニードル弁体を挿通されて先端部が円錐状部の中心から外方に突出するように設けられるとともに先端部に不活性ガスを放出するガス放出穴が形成されたガス放出管と、
上記ニードル弁体側と蒸発材料移送管側との間に設けられた密封手段とから構成したことを特徴とする蒸発材料の流量制御装置。
An evaporation material flow rate control device provided in an evaporation material transfer pipe for transferring evaporation material evaporated by an evaporation source to a vapor deposition chamber,
A partition member disposed in the middle of the evaporating material transfer pipe and having a communication opening hole;
A needle valve body which is provided movably with respect to the communication opening hole and has a conical portion formed at the tip thereof capable of opening and closing the communication opening hole;
Opening and closing means for moving the needle valve body with respect to the communication opening hole and opening and closing the communication opening hole by the conical portion;
A gas discharge pipe which is inserted through the needle valve body and provided with a distal end projecting outward from the center of the conical section and having a gas ejection hole for discharging an inert gas at the distal end; and
An evaporative material flow rate control device comprising: sealing means provided between the needle valve body side and the evaporative material transfer pipe side.
ニードル弁体の先端寄り内部にヒータを配置したことを特徴とする請求項1に記載の蒸発材料の流量制御装置。   The evaporative material flow rate control device according to claim 1, wherein a heater is arranged inside the tip of the needle valve body. 一つの蒸着室と複数の蒸発源を具備するとともに、各蒸発源にて蒸発された蒸発材料を上記蒸着室に導く蒸発材料移送管を、蒸発源側の分岐管部と、蒸着室側の合流管部とから構成し、
且つ上記蒸発材料移送管の各分岐管部に、請求項1または2に記載の蒸発材料の流量制御装置を配置したことを特徴とする蒸着装置。
Evaporation material transfer pipe that has one vapor deposition chamber and a plurality of evaporation sources and leads the vaporized material evaporated in each evaporation source to the vapor deposition chamber, a branch pipe section on the evaporation source side, and a confluence on the vapor deposition chamber side It consists of a pipe part,
An evaporating material flow rate control device according to claim 1 or 2 is disposed in each branch pipe portion of the evaporating material transfer pipe.
使用中の蒸発源からの蒸発材料流量を制御している流量制御装置のニードル弁体の開度量に基づき、次に使用される蒸発源の予備加熱開始時期を求めるとともに当該蒸発源の予備加熱を開始させる制御手段を備えたことを特徴とする請求項3に記載の蒸着装置。   Based on the opening amount of the needle valve body of the flow rate control device that controls the flow rate of the evaporation material from the evaporation source in use, the preheating start timing of the evaporation source to be used next is obtained and the evaporation source is preheated. The vapor deposition apparatus according to claim 3, further comprising a control unit for starting. 被蒸着面での蒸着膜厚を検出する蒸着レート検出手段が備えられるとともに、
制御手段に、蒸発源を切り替える際に、上記蒸着レート検出手段にて検出される検出蒸着レートが設定値となるように、切り替えに係る両蒸発源に対応する各流量制御装置をそれぞれ制御する機能を具備させたことを特徴とする請求項4に記載の蒸着装置。
While equipped with a deposition rate detecting means for detecting the deposition film thickness on the deposition surface,
The function of controlling each flow rate control device corresponding to both evaporation sources related to the switching so that the detected vapor deposition rate detected by the vapor deposition rate detection means becomes a set value when the evaporation source is switched to the control means. The vapor deposition apparatus according to claim 4, further comprising:
JP2005090340A 2005-03-28 2005-03-28 Evaporating material flow control device and vapor deposition device Expired - Fee Related JP4535917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005090340A JP4535917B2 (en) 2005-03-28 2005-03-28 Evaporating material flow control device and vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005090340A JP4535917B2 (en) 2005-03-28 2005-03-28 Evaporating material flow control device and vapor deposition device

Publications (2)

Publication Number Publication Date
JP2006274284A true JP2006274284A (en) 2006-10-12
JP4535917B2 JP4535917B2 (en) 2010-09-01

Family

ID=37209318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005090340A Expired - Fee Related JP4535917B2 (en) 2005-03-28 2005-03-28 Evaporating material flow control device and vapor deposition device

Country Status (1)

Country Link
JP (1) JP4535917B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102011096A (en) * 2010-12-29 2011-04-13 上海大学 Vacuum evaporation system capable of controlling evaporating airflow distribution and components
WO2012124593A1 (en) * 2011-03-15 2012-09-20 シャープ株式会社 Vapor deposition particle projection device and vapor deposition device
WO2013005781A1 (en) * 2011-07-05 2013-01-10 東京エレクトロン株式会社 Film formation device
WO2015136859A1 (en) * 2014-03-11 2015-09-17 株式会社Joled Vapor deposition apparatus, vapor deposition method using vapor deposition apparatus, and device production method
WO2023216313A1 (en) * 2022-05-13 2023-11-16 武汉华星光电半导体显示技术有限公司 Evaporation source apparatus and evaporation source system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030418A (en) * 2000-07-13 2002-01-31 Denso Corp Vapor deposition system
JP2003095787A (en) * 2001-09-25 2003-04-03 Nippon Biitec:Kk Molecular beam source cell for depositing thin film
JP2005048244A (en) * 2003-07-30 2005-02-24 Nippon Biitec:Kk Molecular beam source for depositing organic thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030418A (en) * 2000-07-13 2002-01-31 Denso Corp Vapor deposition system
JP2003095787A (en) * 2001-09-25 2003-04-03 Nippon Biitec:Kk Molecular beam source cell for depositing thin film
JP2005048244A (en) * 2003-07-30 2005-02-24 Nippon Biitec:Kk Molecular beam source for depositing organic thin film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102011096A (en) * 2010-12-29 2011-04-13 上海大学 Vacuum evaporation system capable of controlling evaporating airflow distribution and components
WO2012124593A1 (en) * 2011-03-15 2012-09-20 シャープ株式会社 Vapor deposition particle projection device and vapor deposition device
JP5384770B2 (en) * 2011-03-15 2014-01-08 シャープ株式会社 Vapor deposition particle injection apparatus and vapor deposition apparatus
WO2013005781A1 (en) * 2011-07-05 2013-01-10 東京エレクトロン株式会社 Film formation device
WO2015136859A1 (en) * 2014-03-11 2015-09-17 株式会社Joled Vapor deposition apparatus, vapor deposition method using vapor deposition apparatus, and device production method
US9909205B2 (en) 2014-03-11 2018-03-06 Joled Inc. Vapor deposition apparatus, vapor deposition method using vapor deposition apparatus, and device production method
WO2023216313A1 (en) * 2022-05-13 2023-11-16 武汉华星光电半导体显示技术有限公司 Evaporation source apparatus and evaporation source system

Also Published As

Publication number Publication date
JP4535917B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4535917B2 (en) Evaporating material flow control device and vapor deposition device
JP2010159448A (en) Film deposition apparatus and film deposition method
US9699876B2 (en) Method of and apparatus for supply and recovery of target material
TWI609979B (en) Evaporator, deposition arrangement, deposition apparatus and methods of operation thereof
US20080193636A1 (en) Vaporizing Device and Method for Vaporizing Coating Material
CN109477200B (en) Effusion cell and deposition system containing same and related methods
KR102137181B1 (en) Depositing arrangement, deposition apparatus and methods of operation thereof
JP2009097044A (en) Film deposition apparatus and film deposition method
KR101284394B1 (en) A molecular beam source for use of thin-film accumulation and a method for controlling volume of molecular beam
JP5270165B2 (en) Control of adhesion of vaporized organic materials
JP5144268B2 (en) Method and apparatus for controlling vaporization of organic materials
KR101456252B1 (en) A Thin Film Deposition Apparatus
KR101936308B1 (en) thin film deposition apparatus
JP2015063724A (en) Vacuum deposition apparatus
KR101134951B1 (en) Evaporation source of a deposition system and control method thereof
JP2018529014A (en) Measuring assembly and method for measuring deposition rate
JP5193487B2 (en) Vapor deposition apparatus and vapor deposition method
JP2010242202A (en) Vapor deposition apparatus
JP2015209559A (en) Vapor deposition apparatus
JP2012504703A (en) Source gas supply device
KR101094001B1 (en) A molecular beam source for use in accumulation of organic thin-films
JP2013108106A (en) Vapor deposition apparatus and method for operating vapor deposition apparatus
US20100154905A1 (en) Arrangement for the regulation of a gas stream
EP2202435A1 (en) Arrangement for the regulation of a gas stream
JP2000282224A (en) Device and method for film formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees