JP2006272626A - Method for manufacturing flexible laminated substrate - Google Patents

Method for manufacturing flexible laminated substrate Download PDF

Info

Publication number
JP2006272626A
JP2006272626A JP2005092252A JP2005092252A JP2006272626A JP 2006272626 A JP2006272626 A JP 2006272626A JP 2005092252 A JP2005092252 A JP 2005092252A JP 2005092252 A JP2005092252 A JP 2005092252A JP 2006272626 A JP2006272626 A JP 2006272626A
Authority
JP
Japan
Prior art keywords
laminated substrate
polyimide
flexible laminated
polyimide precursor
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005092252A
Other languages
Japanese (ja)
Other versions
JP4577833B2 (en
Inventor
Naoko Osawa
直子 大澤
Koen O
宏遠 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2005092252A priority Critical patent/JP4577833B2/en
Publication of JP2006272626A publication Critical patent/JP2006272626A/en
Application granted granted Critical
Publication of JP4577833B2 publication Critical patent/JP4577833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a flexible laminated substrate which can inhibit a qualitative dispersion and has excellent dimensional stability. <P>SOLUTION: This method manufactures the flexible laminated substrate comprising a conductor layer and a polyimide resin layer by applying a polyimide precursor resin solution directly to the surface of a conductor, then drying the solution, and after that, curing the dried solution thermally. The polyimide precursor resin can be obtained by adjusting the (A)/(B) molar ratio of (A) a tetracarboxylic acid or its acid anhydride to (B) a diamino compound to the range of 0.98±0.01 and setting the coefficient of linear expansion of the polyimide resin layer to not more than 10×10<SP>-6</SP>/K. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フレキシブル積層基板の製造方法に係り、詳しくはポリイミド前駆体樹脂溶液を導体上に直接塗布してフレキシブル積層基板を製造する方法に関する。   The present invention relates to a method for producing a flexible laminated substrate, and more particularly to a method for producing a flexible laminated substrate by directly applying a polyimide precursor resin solution onto a conductor.

フレキシブル積層基板は、可とう性を有するフレキシブル回路基板に用いられるが、中でも、絶縁樹脂層にポリイミド樹脂層を有するフレキシブル積層基板は、優れた耐熱性を有することから広く使用されている。
絶縁樹脂層にポリイミド樹脂層を設ける手段としては、銅箔等の導体にポリイミド樹脂層を接着層を介して加熱圧着により積層する方法が知られている。
しかし、接着層の存在は、ポリイミド樹脂を用いたフレキシブル積層基板の種々の特性を低下させる要因になっていた。例えば、従来のフレキシブル積層基板は、エポキシ樹脂やウレタン樹脂等の接着剤を用いてポリイミドフィルムを導体上に貼り合わせていたが、接着剤の耐熱性が劣り、ハンダで高温に加熱した際にふくれや剥がれを生じたり、あるいは、回路の難燃性を低下させるという問題があった。また、高温に加熱する際に寸法が変化したり、回路に加工する際に使用される種々の薬品により接着剤が侵されてその接着力が低下したりするというような問題もあった。
The flexible laminated substrate is used for a flexible circuit substrate having flexibility, and among them, a flexible laminated substrate having a polyimide resin layer as an insulating resin layer is widely used because it has excellent heat resistance.
As a means for providing a polyimide resin layer on an insulating resin layer, a method is known in which a polyimide resin layer is laminated on a conductor such as copper foil by thermocompression bonding via an adhesive layer.
However, the presence of the adhesive layer has been a factor that deteriorates various characteristics of the flexible laminated substrate using the polyimide resin. For example, a conventional flexible laminated board has a polyimide film bonded onto a conductor using an adhesive such as an epoxy resin or a urethane resin, but the heat resistance of the adhesive is inferior, and when heated to high temperature with solder There has been a problem that peeling occurs or the flame retardancy of the circuit is lowered. In addition, there is a problem that the dimensions change when heated to a high temperature, or the adhesive is affected by various chemicals used when processing into a circuit and the adhesive strength is reduced.

そこで、ポリイミド前駆体樹脂溶液を銅箔等の導体上に直接塗布してフレキシブル積層基板を製造する方法が考案された。
その際、ポリイミド前駆体樹脂溶液を塗布して硬化させた後に導体と樹脂の線膨張係数の差により生じるカールを矯正する方法としては、低線膨張樹脂を塗布し導体と絶縁層との線膨張係数の差を小さくする方法(特許文献1参照。)、硬化反応を進める前にある範囲の温度で一定量以上の溶剤を乾燥することにより、カールを防止する方法(特許文献2参照。)、複数のポリイミド前駆体樹脂溶液を順次塗布して、前駆体樹脂層を熱処理により硬化してフレキシブル積層基板を製造する方法(特許文献3参照。)などが提案された。
Therefore, a method has been devised in which a flexible laminated substrate is manufactured by directly applying a polyimide precursor resin solution onto a conductor such as a copper foil.
At that time, after applying and curing the polyimide precursor resin solution, as a method of correcting the curl caused by the difference between the linear expansion coefficients of the conductor and the resin, a low linear expansion resin is applied and the linear expansion between the conductor and the insulating layer is performed. A method of reducing the difference in coefficients (see Patent Document 1), a method of preventing curling by drying a certain amount of solvent at a certain temperature range before proceeding with the curing reaction (see Patent Document 2), A method of applying a plurality of polyimide precursor resin solutions sequentially and curing the precursor resin layer by heat treatment to produce a flexible laminated substrate (see Patent Document 3) has been proposed.

しかし、近年、益々、電子機器の高性能化、特に半導体素子の高集積化、高機能化が進み、プリント配線板においては配線の高密度化が求められるようになり、上記のような従来の方法だけでは、要求されるような寸法安定性に優れたフレキシブル積層基板を製造することは難しくなってきた。
一方、絶縁層に使用されるポリイミド樹脂層は、酸二無水物とジアミンを、通常、仕込みモル比1で重合して得られたポリイミド前駆体樹脂溶液を加熱処理することにより得られ、その際、分子量制御のために多少モル比を調整することもある。しかし、その分子量制御は、積層基板への絶縁層の形成やポリイミドフィルム製造の際の樹脂粘度を調整し、それらの製造を容易にするためになされることがほとんどであり、そのモル比をごく限られた範囲とすることで、ポリイミドの寸法安定性に寄与する特性を制御することは知られていなかった。また、上記モル比を変更することは品質のばらつきにつながるため好ましくない一面も有していた。
特開昭60-243120号公報 特開平1-245587号公報 特開平8-250860号公報
However, in recent years, electronic devices have become more and more sophisticated, in particular, higher integration and higher functionality of semiconductor elements, and printed wiring boards have been required to have higher wiring density. With the method alone, it has become difficult to produce a flexible laminated substrate with excellent dimensional stability as required.
On the other hand, the polyimide resin layer used for the insulating layer is obtained by heat-treating a polyimide precursor resin solution obtained by polymerizing acid dianhydride and diamine at a charged molar ratio of 1, usually. In some cases, the molar ratio may be slightly adjusted to control the molecular weight. However, molecular weight control is mostly done to adjust the resin viscosity during the formation of an insulating layer on a laminated substrate and the production of a polyimide film, and to facilitate their production. It has not been known to control characteristics that contribute to the dimensional stability of polyimide by limiting the range. Moreover, since changing the molar ratio leads to variations in quality, it has an undesirable aspect.
Japanese Unexamined Patent Publication No. 60-243120 Japanese Unexamined Patent Publication No. 1-245587 JP-A-8-250860

上記のように、従来の技術では、フレキシブル積層基板の品質のばらつきが大きく、かつ寸法安定性の制御が十分でないという課題がある。   As described above, the conventional techniques have the problems that the quality of the flexible laminated substrate varies greatly and the dimensional stability is not sufficiently controlled.

本発明の目的は、ポリイミド前駆体樹脂溶液を導体上に直接塗布して乾燥・硬化することにより得られるフレキシブル積層基板の品質のばらつきを抑え、かつ寸法安定性に優れたフレキシブル積層基板の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a flexible laminate substrate that suppresses variations in the quality of the flexible laminate substrate obtained by directly applying a polyimide precursor resin solution onto a conductor and then drying and curing the solution, and is excellent in dimensional stability. Is to provide.

本発明者等は、上記課題について鋭意検討を重ねた結果、フレキシブル積層基板を製造するにあたり、ポリイミド前駆体樹脂溶液中の原料モル比を中心に製造条件を制御することで課題を解決しうることを見出し、本発明を完成した。   As a result of intensive studies on the above problems, the present inventors can solve the problem by controlling the manufacturing conditions centering on the raw material molar ratio in the polyimide precursor resin solution in manufacturing a flexible laminated substrate. The present invention has been completed.

すなわち、本発明は、ポリイミド前駆体樹脂溶液を導体上に直接塗布、乾燥した後、熱処理により硬化させて、導体層とポリイミド樹脂層とを有するフレキシブル積層基板を製造する方法において、ポリイミド前駆体樹脂が、テトラカルボン酸又はその酸無水物(イ)とジアミノ化合物(ロ)とを(イ)/(ロ)のモル比が0.98±0.01の範囲に調整して得られるものであり、そのポリイミド前駆体樹脂を硬化して形成されるポリイミド樹脂層の線膨張係数を10×10−6/K以下とすることを特徴とするフレキシブル積層基板の製造方法である。 That is, the present invention relates to a method for producing a flexible laminated substrate having a conductor layer and a polyimide resin layer by directly applying a polyimide precursor resin solution on a conductor, drying it, and then curing it by heat treatment. Is obtained by adjusting the molar ratio of (b) / (b) between the tetracarboxylic acid or its acid anhydride (b) and the diamino compound (b) within the range of 0.98 ± 0.01. The method for producing a flexible laminated substrate is characterized in that the polyimide resin layer formed by curing the polyimide precursor resin has a linear expansion coefficient of 10 × 10 −6 / K or less.

ここで、ポリイミド前駆体樹脂としては、下記一般式(1)

Figure 2006272626
(但し、式中Ar1は芳香環を一個以上有する4価の有機基であり、Yは直結合、−CONH−、−CO−、−O−、−COO−、−SO2−、−CH2のいずれかであり、またX1、X2はH、炭素数1〜5の低級アルキル基又は低級アルコキシ基、フェニル基、フェノキシ基のいずれかであり、それぞれ異なるものであってもよい。)で示される構成単位を主成分とすることが好ましい。また、硬化後のポリイミド樹脂層の厚みは、10〜50μmであることが有利である。 Here, as the polyimide precursor resin, the following general formula (1)
Figure 2006272626
(In the formula, Ar1 is a tetravalent organic group having one or more aromatic rings, and Y is a direct bond, —CONH—, —CO—, —O—, —COO—, —SO 2 —, —CH 2. X1 and X2 are either H, a lower alkyl group having 1 to 5 carbon atoms or a lower alkoxy group, a phenyl group, or a phenoxy group, which may be different from each other. It is preferable that the constituent unit is a main component. Moreover, it is advantageous that the thickness of the polyimide resin layer after curing is 10 to 50 μm.

更に、本発明のフレキシブル積層基板の製造方法においては、ポリイミド前駆体樹脂溶液の粘度を、10,000〜40,000cPの範囲とすることが好ましい。   Furthermore, in the method for producing a flexible laminated substrate of the present invention, the viscosity of the polyimide precursor resin solution is preferably in the range of 10,000 to 40,000 cP.

本発明によれば、ポリイミド樹脂の特徴である耐熱性やその他の物性を保持したまま、寸法安定性に優れたフレキシブル積層基板を品質のばらつきなく製造することができ、近年の高耐熱、ファインパターン加工性の要求に応えたフレキシブル積層基板を提供することができる。   According to the present invention, a flexible laminated substrate having excellent dimensional stability can be produced without variation in quality while maintaining the heat resistance and other physical properties that are characteristic of a polyimide resin. It is possible to provide a flexible laminated substrate that meets the requirements for workability.

以下、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本発明では、ポリイミド前駆体樹脂溶液を導体上に直接塗布する。ポリイミド前駆体樹脂溶液が塗布される導体は、導電性を有する金属箔であることが望ましい。金属箔としては、銅箔、ステンレス箔、合金箔等がある。ここで、合金箔とは銅箔を必須として含有し、クロム、ニッケル、亜鉛、珪素等の元素を少なくとも一種以上含有する金属箔を示し、銅含有率90%以上の金属箔をいう。金属箔を使用する場合、亜鉛メッキ、ニッケルメッキ、シランカップリング材等による表面処理を施してもよい。   In the present invention, the polyimide precursor resin solution is applied directly on the conductor. The conductor to which the polyimide precursor resin solution is applied is desirably a conductive metal foil. Examples of the metal foil include copper foil, stainless steel foil, and alloy foil. Here, the alloy foil refers to a metal foil containing copper foil as an essential element and containing at least one element such as chromium, nickel, zinc, silicon, etc., and means a metal foil having a copper content of 90% or more. When using metal foil, surface treatment with zinc plating, nickel plating, silane coupling material or the like may be performed.

近年、金属配線のファインピッチ化に伴い、薄い金属箔が好まれて使用されている。そのような観点から、好ましい金属箔の厚みは5〜35μm、更に好ましくは8〜18μmの範囲である。また、使用する金属箔は、ポリイミド樹脂層と接する面の表面粗度(Rz)が0.5〜2.0μmの範囲であることが好ましい。表面粗度(Rz)が0.5μm未満の場合、金属箔とポリイミド樹脂層との接着性が不足するおそれがあり、2.0μm以上の場合、近年のファインピッチ化に対応するに好ましくない傾向となり、また、回路加工時に発生するポリイミド樹脂層への金属成分の根残りも懸念される。   In recent years, with the fine pitch of metal wiring, thin metal foil has been favored and used. From such a viewpoint, the preferable thickness of the metal foil is in the range of 5 to 35 μm, more preferably 8 to 18 μm. Moreover, it is preferable that the metal foil to be used has a surface roughness (Rz) of a surface in contact with the polyimide resin layer in the range of 0.5 to 2.0 μm. If the surface roughness (Rz) is less than 0.5 μm, the adhesion between the metal foil and the polyimide resin layer may be insufficient. If the surface roughness is 2.0 μm or more, it tends to be unfavorable to cope with recent fine pitching, Further, there is a concern about the root of the metal component in the polyimide resin layer generated during circuit processing.

本発明において、ポリイミド前駆体樹脂溶液は、公知のジアミノ化合物とテトラカルボン酸又はその無水物を適宜選定し、これらを組み合わせて有機溶剤中で反応させて得ることができる。その際、テトラカルボン酸又はその酸無水物(イ)とジアミノ化合物(ロ)との仕込みモル比(イ)/(ロ)は0.98±0.01の範囲にすることが必要であり、0.98±0.005の範囲が好ましい。
この範囲をはずれると、硬化後のポリイミド樹脂層の線膨張係数が10×10-6/Kよりも大きくなる傾向にあるため、寸法安定性に優れたフレキシブル積層基板を得るためには好ましくない。同時に、モル比が0.97未満では、ポリイミド前駆体樹脂溶液の分子量が低くなりすぎてしまい、硬化させてポリイミド樹脂層としたときに、十分な性能が得られない場合がある。また、モル比が0.99を超えると、分子量が大きく高粘度となるため、導体上に塗布する際に気泡を巻き込む等、操作性が悪くなる場合がある。
更に、ポリイミド前駆体樹脂溶液を導体上に塗布する際の粘度は、10,000〜40,000cP、より好ましくは20,000〜40,000cPの範囲とすることが有利である。
In the present invention, the polyimide precursor resin solution can be obtained by appropriately selecting a known diamino compound and tetracarboxylic acid or an anhydride thereof and combining them in an organic solvent. At that time, the charged molar ratio (i) / (b) of the tetracarboxylic acid or its acid anhydride (a) and the diamino compound (b) needs to be in the range of 0.98 ± 0.01, 0.98 ± 0.005 A range is preferred.
Outside this range, the linear expansion coefficient of the cured polyimide resin layer tends to be larger than 10 × 10 −6 / K, which is not preferable for obtaining a flexible laminated substrate having excellent dimensional stability. At the same time, if the molar ratio is less than 0.97, the molecular weight of the polyimide precursor resin solution becomes too low, and sufficient performance may not be obtained when cured to form a polyimide resin layer. On the other hand, when the molar ratio exceeds 0.99, the molecular weight becomes large and the viscosity becomes high, so that the operability may be deteriorated, for example, bubbles are involved when applying on the conductor.
Further, the viscosity when the polyimide precursor resin solution is applied on the conductor is advantageously in the range of 10,000 to 40,000 cP, more preferably in the range of 20,000 to 40,000 cP.

本発明において、特に好ましいポリイミド樹脂層を与えるポリイミド前駆体樹脂としては、下記一般式(1)で示される構成単位を主成分とするポリイミド前駆体樹脂である。

Figure 2006272626
In the present invention, a polyimide precursor resin that gives a particularly preferable polyimide resin layer is a polyimide precursor resin containing a structural unit represented by the following general formula (1) as a main component.
Figure 2006272626

一般式(1)中、Ar1は芳香環を一個以上有する4価の有機基であり、Yは直結合、−CONH−、−CO−、−O−、−COO−、−SO2−、−CH2のいずれかであり、またX1、X2はH、炭素数1〜5の低級アルキル基又は低級アルコキシ基、フェニル基、フェノキシ基のいずれかであり、X1、X2はそれぞれ異なるものであってもよい。ここで、ポリイミド樹脂層の耐熱性、線膨張係数に代表される寸法安定性、その他の諸物性とのバランスを考慮すると、以下に示す酸無水物残基及びジアミン残基を与えるものが好ましい。 In general formula (1), Ar 1 is a tetravalent organic group having one or more aromatic rings, and Y is a direct bond, —CONH—, —CO—, —O—, —COO—, —SO 2 —, — Any one of CH 2 , X 1 and X 2 are H, a lower alkyl group having 1 to 5 carbon atoms or a lower alkoxy group, a phenyl group, or a phenoxy group, and X 1 and X 2 are different from each other. Also good. Here, considering the balance between the heat resistance of the polyimide resin layer, the dimensional stability represented by the linear expansion coefficient, and other physical properties, those that give the acid anhydride residue and diamine residue shown below are preferable.

一般式(1)中、Ar1は、テトラカルボン酸又はその無水物の残基を示し、芳香環を一個以上有する4価の有機基である。代表的なテトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,3,3’,4’-ジフェニルエーテルテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメタンテトラカルボン酸二無水物等が挙げられる。これらは単独で使用することも、又は2種以上併用することもできる。これらの中でも、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物が好ましい酸二無水物として挙げられる。   In the general formula (1), Ar1 represents a tetracarboxylic acid or an anhydride thereof, and is a tetravalent organic group having one or more aromatic rings. Typical tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic Acid dianhydride, 3,3 ', 4,4'-diphenylsulfone tetracarboxylic dianhydride, 2,3,3', 4'-diphenyl ether tetracarboxylic dianhydride, 2,3,3 ', 4 '-Benzophenonetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 3,3', 4,4 Examples include '-diphenylmethanetetracarboxylic dianhydride. These can be used alone or in combination of two or more. Among these, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride are preferred. Mentioned as an anhydride.

また、一般式(1)中、Yは直結合又は-CO-,-O-,-CONH-のいずれかがより好ましく、
X1、X2はH、-CH3,-0CH3のいずれかがより好ましい。これらのジアミン残基を与える好ましいジアミノ化合物を例示すると、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンズアニリド,2’-メトキシ-4,4’-ジアミノベンズアニリド等が挙げられ、これらを単独で使用することも、又は2種以上併用することもできる。
In general formula (1), Y is more preferably a direct bond or —CO—, —O—, —CONH—,
X1 and X2 are more preferably H, —CH 3 , or —0CH 3 . Examples of preferred diamino compounds that give these diamine residues include 4,4'-diaminodiphenyl ether, 4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'- Dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 4,4'-diaminodiphenylmethane, 3, 3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylsulfone, 4,4'-diaminobenzanilide, 2'-methoxy-4,4'-diaminobenzanilide, etc. Can be used alone, or two or more can be used in combination.

本発明においては、ポリイミド前駆体樹脂溶液に使用されるポリイミド前駆体樹脂としては、上記一般式(1)で示した構成単位を主成分とするものを使用することが好ましく、更に好ましくは70モル%以上、特に好ましくは80モル%以上を一般式(1)に示した構成単位を有するものとすることがよい。一般式(1)で示したポリイミド前駆体以外の構成単位のものを使用する場合も公知のテトラカルボン酸又はその酸無水物とジアミノ化合物とを適宜組み合わせて本発明で用いるポリイミド前駆体樹脂とすることができる。   In the present invention, as the polyimide precursor resin used in the polyimide precursor resin solution, it is preferable to use a resin mainly composed of the structural unit represented by the general formula (1), more preferably 70 mol. % Or more, particularly preferably 80 mol% or more of the structural unit represented by the general formula (1). When using a structural unit other than the polyimide precursor represented by the general formula (1), a polyimide precursor resin used in the present invention is appropriately combined with a known tetracarboxylic acid or acid anhydride thereof and a diamino compound. be able to.

ポリイミド前駆体樹脂溶液は、通常適当な溶媒に溶解された状態で導体上に塗布される。このポリイミド前駆体樹脂溶液を直接導体上に塗布することで、導体−ポリイミド樹脂層の安定した接着強度を得ることができる。
塗布する手段は特に限定されるものではなく、例えば、バーコード方式、グラビアコート方式、ロールコート方式、ダイコート方式等が挙げられるが、樹脂溶液に泡が巻き込まれないことからダイコート方式が好ましい。
ポリイミド前駆体樹脂溶液に含まれる溶剤を例示すると、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ダイグライムなどが挙げられる。
The polyimide precursor resin solution is usually applied on the conductor in a state dissolved in an appropriate solvent. By applying this polyimide precursor resin solution directly on the conductor, a stable adhesive strength of the conductor-polyimide resin layer can be obtained.
The means for applying is not particularly limited, and examples thereof include a bar code method, a gravure coating method, a roll coating method, a die coating method, and the like, but a die coating method is preferable because bubbles are not involved in the resin solution.
Examples of the solvent contained in the polyimide precursor resin solution include N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), diglyme and the like.

導体上に塗布する際のポリイミド前駆体樹脂層の厚みは、硬化後のポリイミド樹脂層の厚みが10〜50μm、より好ましくは20〜40μmとなるように塗布する。ポリイミド樹脂層の厚みが10μm以下では、ポリイミド樹脂層としての性能を充分に発揮できない場合があり、50μm以上では、近年の電子機器の薄型化に反するため不利な設計となり、また線膨張係数も大きくなるおそれがあり、その場合、寸法安定性に劣るものとなる。   The polyimide precursor resin layer is coated on the conductor so that the thickness of the cured polyimide resin layer is 10 to 50 μm, more preferably 20 to 40 μm. If the thickness of the polyimide resin layer is 10 μm or less, the performance as a polyimide resin layer may not be sufficiently exhibited. In this case, the dimensional stability is inferior.

導体上に塗布されたポリイミド前駆体樹脂層は、溶媒をある程度除去するために適当な範囲まで乾燥される。この際の乾燥温度は、ポリイミド前駆体樹脂層のイミド化が進行しない程度の温度で行うことが好ましく、具体的には、150℃以下であることがよく、110〜140℃の範囲が好ましい。また、この際の乾燥時間が短すぎると、乾燥が不十分となり硬化後の線膨張係数が大きくなる傾向にあるため、この乾燥工程でポリイミド前駆体樹脂層に含まれる溶媒量をポリイミド前駆体樹脂100質量部に対して、50質量部以下となるようにしておくことが望ましい。   The polyimide precursor resin layer applied on the conductor is dried to an appropriate range in order to remove the solvent to some extent. In this case, the drying temperature is preferably such that the imidization of the polyimide precursor resin layer does not proceed. Specifically, the drying temperature is preferably 150 ° C. or less, and preferably in the range of 110 to 140 ° C. Also, if the drying time at this time is too short, drying tends to be inadequate and the linear expansion coefficient after curing tends to increase, so the amount of solvent contained in the polyimide precursor resin layer in this drying step is reduced to the polyimide precursor resin. It is desirable that the amount be 50 parts by mass or less with respect to 100 parts by mass.

以上のように、導体上にポリイミド前駆体樹脂溶液を塗布、乾燥したら、導体上のポリイミド前駆体樹脂層は更に加熱処理され熱硬化される。ここでいう硬化とは、イミド化反応を強制的に進めて樹脂の硬化を促す工程をいう。
このイミド化反応は、通常150℃を越える温度、特に160℃を越える温度で速やかに進行する。上記のように一定量以上の溶媒を蒸発させた後、150℃を越える温度で硬化を行うわけであるが、この硬化工程において、温度を急激に上昇させると樹脂の発泡が起こるおそれがあるので、多段階熱処理もしくは連続昇温処理を行うのが好ましい。イミド化反応を充分行うために、最高硬化温度は250℃以上、好ましくは300℃以上である。なお、硬化温度は高すぎると樹脂の分解を招くため、450℃以下で行うことが好ましい。また、イミド化に要する時間は5分〜60分、好ましくは5〜30分の範囲が適切である。
As described above, when the polyimide precursor resin solution is applied on the conductor and dried, the polyimide precursor resin layer on the conductor is further heat-treated and thermally cured. Curing as used herein refers to a step of forcibly promoting imidization reaction to promote resin curing.
This imidization reaction usually proceeds rapidly at a temperature exceeding 150 ° C., particularly at a temperature exceeding 160 ° C. After evaporating a certain amount or more of the solvent as described above, curing is performed at a temperature exceeding 150 ° C. However, in this curing process, if the temperature is rapidly increased, foaming of the resin may occur. It is preferable to perform multi-stage heat treatment or continuous temperature raising treatment. In order to sufficiently perform the imidization reaction, the maximum curing temperature is 250 ° C or higher, preferably 300 ° C or higher. It should be noted that if the curing temperature is too high, the resin is decomposed. The time required for imidization is 5 minutes to 60 minutes, preferably 5 to 30 minutes.

このような乾燥工程、硬化工程は任意のプロセスを採用することができるが、塗布された導体が、装置に接触しないフローティング形式のものを使用することが好ましい。フローティング形式とは、導体を気流中に浮遊させた状態で乾燥及び硬化を行うものであり、導体を連続的に走行させつつ、導体面に対して上又は下に配置したノズルから均一に気流を導体面に向けて吹き出し、走行する導体を浮遊させると共に、波を打つように湾曲しながら走行させるものである。加熱は熱風を気流として吹き出すことにより行うことが好ましいが、赤外線加熱、電磁誘導加熱等を使用又は併用してもよい。加熱雰囲気としては空気や、窒素、炭素ガス、アルゴン等の不活性ガス等のいずれも選択可能である。   Although any process can be adopted as such a drying step and a curing step, it is preferable to use a floating type in which the applied conductor does not contact the apparatus. In the floating type, the conductor is dried and cured in a state where it is suspended in the airflow, and the airflow is uniformly supplied from nozzles arranged above or below the conductor surface while the conductor is continuously running. The conductor is blown out toward the conductor surface, and the running conductor is floated, and it is made to travel while curving so as to hit a wave. Heating is preferably performed by blowing hot air as an air stream, but infrared heating, electromagnetic induction heating, or the like may be used or used in combination. As the heating atmosphere, any of air, an inert gas such as nitrogen, carbon gas, and argon can be selected.

このようにして製造されたフレキシブル積層基板上のポリイミド樹脂層は、線膨張係数が10×10-6/K以下、有利には10×10-7〜10×10-6/Kとなるように制御される。ポリイミド樹脂層の線膨張係数の範囲を、10×10-6/K以下とするには、テトラカルボン酸又はその酸無水物(イ)とジアミノ化合物(ロ)とを(イ)/(ロ)のモル比が0.98±0.01の範囲とし、必要に応じてポリイミド前駆体樹脂の種類や前駆体樹脂の粘度や分子量の範囲を適当な範囲に制御することによって可能となる。ここで、使用されるポリイミド前駆体樹脂としては上記したポリイミド前駆体が好ましいが、その粘度は、10,000〜40,000cP、重量平均分子量は、1万〜15万の範囲とすることが好ましい。また、ポリイミド樹脂層の厚みが厚くなりすぎると、線膨張係数の制御が困難となるおそれがあるため、硬化後の厚みで10〜50μmの範囲が適切な厚みとなる。 The polyimide resin layer on the flexible laminated substrate thus manufactured has a linear expansion coefficient of 10 × 10 −6 / K or less, preferably 10 × 10 −7 to 10 × 10 −6 / K. Be controlled. In order to set the linear expansion coefficient range of the polyimide resin layer to 10 × 10 −6 / K or less, tetracarboxylic acid or its acid anhydride (A) and diamino compound (B) are added to (A) / (B) The molar ratio is 0.98 ± 0.01, and the type of polyimide precursor resin and the viscosity and molecular weight range of the precursor resin can be controlled to an appropriate range as necessary. Here, the polyimide precursor resin used is preferably the polyimide precursor described above, and the viscosity is preferably in the range of 10,000 to 40,000 cP and the weight average molecular weight is in the range of 10,000 to 150,000. Moreover, since there exists a possibility that control of a linear expansion coefficient may become difficult when the thickness of a polyimide resin layer becomes too thick, the range of 10-50 micrometers in thickness after hardening becomes suitable thickness.

本発明によって得られるフレキシブル積層基板の絶縁樹脂層は上記ポリイミド樹脂層のみによって形成されていることが望ましいが、本発明の目的に反しない範囲で、ポリイミド樹脂層の上に他の層を設けてもよい。
他の層としては、上記以外のポリイミド樹脂層が好ましい。構成される層構造としては、M/PI-a、M/
PI-a /PI-b、M/PI-a/M、 M/ PI-a /PI-b/Mが例示される。ここで、Mは金属箔を、PI-aは線膨張係数が10×10-6/K以下のポリイミド樹脂層を、PI-bはその他のポリイミド樹脂層を示す。イミド化が完了した樹脂層の上には、必要に応じて金属箔を積層してもよい。この場合、金属箔は、加熱圧着など公知の方法を適用することができる。
The insulating resin layer of the flexible laminated substrate obtained by the present invention is preferably formed only by the polyimide resin layer, but other layers are provided on the polyimide resin layer as long as the object of the present invention is not adversely affected. Also good.
As the other layer, a polyimide resin layer other than the above is preferable. The layer structure is M / PI-a, M /
Examples include PI-a / PI-b, M / PI-a / M, and M / PI-a / PI-b / M. Here, M represents a metal foil, PI-a represents a polyimide resin layer having a linear expansion coefficient of 10 × 10 −6 / K or less, and PI-b represents another polyimide resin layer. A metal foil may be laminated on the resin layer that has been imidized, if necessary. In this case, a known method such as thermocompression bonding can be applied to the metal foil.

以下、実施例及び比較例に基づいて、本発明を具体的に説明するが、本発明はこれらの実施例に限定されないことは勿論である。なお、本発明の製造方法によって得られたフレキシブル積層基板の各特性の評価は下記の測定法によるものである。
[粘度]
粘度は、恒温水槽付のコーンプレート式粘度計(トキメック社製)にて、25℃で測定した。
[分子量]
分子量は、GPC(HLC-8020、東ソー株式会社製)にて、カラム温度40℃で測定し、ポリスチレン換算の重量平均分子量を求めた。
た。
[線膨張係数(CTE)]
線膨張係数(CTE)は、3mm ×15mmのサイズのポリイミドフィルムを、熱機械分析(TMA)装置にて5.0gの荷重を加えながら一定の昇温速度で30℃から260℃の温度範囲で引張り試験を行った。温度に対するポリイミドフィルムの伸び量から線膨張係数を測定した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example and a comparative example, of course, this invention is not limited to these Examples. In addition, evaluation of each characteristic of the flexible laminated substrate obtained by the manufacturing method of this invention is based on the following measuring method.
[viscosity]
The viscosity was measured at 25 ° C. with a cone plate viscometer (manufactured by Tokimec Co., Ltd.) equipped with a constant temperature water bath.
[Molecular weight]
The molecular weight was measured with GPC (HLC-8020, manufactured by Tosoh Corporation) at a column temperature of 40 ° C., and the weight average molecular weight in terms of polystyrene was determined.
It was.
[Linear expansion coefficient (CTE)]
The coefficient of linear expansion (CTE) is a 3mm x 15mm size polyimide film that is pulled in a temperature range of 30 ° C to 260 ° C at a constant rate of heating while applying a 5.0g load with a thermomechanical analysis (TMA) device. A test was conducted. The linear expansion coefficient was measured from the amount of elongation of the polyimide film with respect to temperature.

なお、各例における略号はそれぞれ以下のものである。
PMDA:ピロメリット酸二無水物
BPDA:
3,3',4,4'-ビフェニルテトラカルボン酸二無水物
m-TB:2,2’-ジメチル-4,4’-ジアミノビフェニル
TPE-R:
1,3-ビス-(4-アミノフェノキシ)ベンゼン
DMAc:ジメチルアセトアミド
The abbreviations in each example are as follows.
PMDA: pyromellitic dianhydride
BPDA:
3,3 ', 4,4'-biphenyltetracarboxylic dianhydride
m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl
TPE-R:
1,3-bis- (4-aminophenoxy) benzene
DMAc: Dimethylacetamide

(合成例1)
TPE-R 0.1モルとm-TB 0.9モルをDMAc255gに溶解した後、PMDA
0.748モルとBPDA0.187モルを徐々に加えて、反応させ、粘調なポリイミド前駆体樹脂溶液(ポリアミック酸A)を得た。得られた樹脂の粘度は550cP、重量平均分子量は36,953であった。
(合成例2〜合成例8)
原料のモノマーの仕込みモル比を表1に示す割合に変化させた以外は、合成例1と同様の方法でポリイミド前駆体樹脂溶液(ポリアミック酸B〜ポリアミック酸H)を得た。
(Synthesis Example 1)
After dissolving 0.1 mol of TPE-R and 0.9 mol of m-TB in 255 g of DMAc, PMDA
0.748 mol and BPDA 0.187 mol were gradually added and reacted to obtain a viscous polyimide precursor resin solution (polyamic acid A). The obtained resin had a viscosity of 550 cP and a weight average molecular weight of 36,953.
(Synthesis Example 2 to Synthesis Example 8)
A polyimide precursor resin solution (polyamic acid B to polyamic acid H) was obtained in the same manner as in Synthesis Example 1, except that the raw monomer charge ratio was changed to the ratio shown in Table 1.

Figure 2006272626
Figure 2006272626

(実施例1)
電解銅箔(厚さ18μm)の鏡面上にポリアミック酸Cを、硬化後の樹脂層の厚みが約25μmとなるように塗布し、循環式熱風オーブン中で130℃で14分間乾燥した。ついで、160℃で4分、200℃で2分、230℃で2分、280℃で2分、320℃で2分、及び、380℃で2分、順次熱処理して硬化させフレキシブル積層基板を得た。得られたフレキシブル積層基板の銅箔をエッチングし、単層のポリイミドフィルムとし、CTEを測定したところ7.9ppm/Kであった。
(実施例2〜実施例5、比較例1〜比較例3)
表2に示すポリアミック酸を各々使用した以外は、実施例1と同様の方法でフレキシブル積層基板を得た。結果を表2にまとめた。
(Example 1)
Polyamic acid C was applied onto the mirror surface of an electrolytic copper foil (thickness: 18 μm) so that the thickness of the cured resin layer was about 25 μm, and dried in a circulating hot air oven at 130 ° C. for 14 minutes. Next, heat-treat and harden the flexible multilayer substrate at 160 ° C for 4 minutes, 200 ° C for 2 minutes, 230 ° C for 2 minutes, 280 ° C for 2 minutes, 320 ° C for 2 minutes, and 380 ° C for 2 minutes. Obtained. The copper foil of the obtained flexible laminated substrate was etched to form a single-layer polyimide film, and the CTE measured was 7.9 ppm / K.
(Example 2 to Example 5, Comparative Example 1 to Comparative Example 3)
A flexible laminated substrate was obtained in the same manner as in Example 1 except that each of the polyamic acids shown in Table 2 was used. The results are summarized in Table 2.

Figure 2006272626
Figure 2006272626

Claims (4)

ポリイミド前駆体樹脂溶液を導体上に直接塗布、乾燥した後、熱処理により硬化させて、導体層とポリイミド樹脂層とを有するフレキシブル積層基板を製造する方法において、ポリイミド前駆体樹脂が、テトラカルボン酸又はその酸無水物(イ)とジアミノ化合物(ロ)とを(イ)/(ロ)のモル比が0.98±0.01の範囲に調整して得られるものであり、ポリイミド樹脂層の線膨張係数を10×10−6/K以下とすることを特徴とするフレキシブル積層基板の製造方法。 In the method of manufacturing a flexible laminated substrate having a conductor layer and a polyimide resin layer by directly applying and drying a polyimide precursor resin solution on a conductor and then drying it by heat treatment, the polyimide precursor resin is tetracarboxylic acid or The acid anhydride (a) and diamino compound (b) are obtained by adjusting the molar ratio of (a) / (b) to a range of 0.98 ± 0.01. A method for producing a flexible laminated substrate, wherein an expansion coefficient is 10 × 10 −6 / K or less. ポリイミド前駆体樹脂が下記一般式(1)
Figure 2006272626
(但し、式中Ar1は芳香環を一個以上有する4価の有機基であり、Yは直結合、−CONH−、−CO−、−O−、−COO−、−SO2−、−CH2のいずれかであり、またX1、X2はH、炭素数1〜5の低級アルキル基又は低級アルコキシ基、フェニル基、フェノキシ基のいずれかであり、それぞれ異なるものであってもよい。)で示される構成単位を主成分とすることを特徴とする請求項1記載のフレキシブル積層基板の製造方法。
The polyimide precursor resin is represented by the following general formula (1)
Figure 2006272626
(In the formula, Ar1 is a tetravalent organic group having one or more aromatic rings, and Y is a direct bond, —CONH—, —CO—, —O—, —COO—, —SO 2 —, —CH 2. X1 and X2 are either H, a lower alkyl group having 1 to 5 carbon atoms or a lower alkoxy group, a phenyl group, or a phenoxy group, which may be different from each other. The method for producing a flexible laminated substrate according to claim 1, comprising a structural unit as a main component.
ポリイミド樹脂層の厚みが10〜50μmであることを特徴とする請求項1又は2記載のフレキシブル積層基板の製造方法。   The method for producing a flexible laminated substrate according to claim 1, wherein the polyimide resin layer has a thickness of 10 to 50 μm. ポリイミド前駆体樹脂溶液の粘度が10,000〜40,000cPであることを特徴とする請求項1〜3のいずれか1項に記載のフレキシブル積層基板の製造方法。   The method for producing a flexible laminated substrate according to any one of claims 1 to 3, wherein the viscosity of the polyimide precursor resin solution is 10,000 to 40,000 cP.
JP2005092252A 2005-03-28 2005-03-28 Method for manufacturing flexible laminated substrate Active JP4577833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005092252A JP4577833B2 (en) 2005-03-28 2005-03-28 Method for manufacturing flexible laminated substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092252A JP4577833B2 (en) 2005-03-28 2005-03-28 Method for manufacturing flexible laminated substrate

Publications (2)

Publication Number Publication Date
JP2006272626A true JP2006272626A (en) 2006-10-12
JP4577833B2 JP4577833B2 (en) 2010-11-10

Family

ID=37207846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092252A Active JP4577833B2 (en) 2005-03-28 2005-03-28 Method for manufacturing flexible laminated substrate

Country Status (1)

Country Link
JP (1) JP4577833B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126559A1 (en) * 2007-03-30 2008-10-23 Nippon Steel Chemical Co., Ltd. Polyimide film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111182A (en) * 1984-11-07 1986-05-29 Nitto Electric Ind Co Ltd Manufacture of polyimide-metallic foil composite film
JPH04331232A (en) * 1991-04-30 1992-11-19 Sumitomo Bakelite Co Ltd Polyamic acid resin composition for flexible printed board
JPH0774443A (en) * 1994-07-06 1995-03-17 Mitsui Toatsu Chem Inc Flexible copper-clad circuit board
JPH07179605A (en) * 1993-06-18 1995-07-18 Shin Etsu Chem Co Ltd Polyimide and its production
JP2005067145A (en) * 2003-08-27 2005-03-17 Toyobo Co Ltd Metalized polyimide film and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111182A (en) * 1984-11-07 1986-05-29 Nitto Electric Ind Co Ltd Manufacture of polyimide-metallic foil composite film
JPH04331232A (en) * 1991-04-30 1992-11-19 Sumitomo Bakelite Co Ltd Polyamic acid resin composition for flexible printed board
JPH07179605A (en) * 1993-06-18 1995-07-18 Shin Etsu Chem Co Ltd Polyimide and its production
JPH0774443A (en) * 1994-07-06 1995-03-17 Mitsui Toatsu Chem Inc Flexible copper-clad circuit board
JP2005067145A (en) * 2003-08-27 2005-03-17 Toyobo Co Ltd Metalized polyimide film and its production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126559A1 (en) * 2007-03-30 2008-10-23 Nippon Steel Chemical Co., Ltd. Polyimide film
JPWO2008126559A1 (en) * 2007-03-30 2010-07-22 新日鐵化学株式会社 Polyimide film
JP5249203B2 (en) * 2007-03-30 2013-07-31 新日鉄住金化学株式会社 Polyimide film
TWI422645B (en) * 2007-03-30 2014-01-11 Nippon Steel & Sumikin Chem Co Polyimine film

Also Published As

Publication number Publication date
JP4577833B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP5180814B2 (en) Laminated body for flexible wiring board
JP5425093B2 (en) Metal foil laminate
JP6403460B2 (en) Metal-clad laminate, circuit board and polyimide
JP5168009B2 (en) Polyimide and process for producing the same
WO2001028767A1 (en) Laminate and process for producing the same
JP2006346874A (en) Copper clad laminated sheet and its manufacturing method
JP7077064B2 (en) Polyimide film
JP5064033B2 (en) Adhesive sheet and copper-clad laminate
JP2006336011A (en) Polyimide resin and method for producing the same
KR101444694B1 (en) Flexible metal-clad laminate manufacturing method thereof
JP2015193117A (en) metal-clad laminate and circuit board
JP4994992B2 (en) Laminate for wiring board and flexible wiring board for COF
JP4901509B2 (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminate, and method for producing multilayer polyimide film
CN112745529A (en) Silica particles, resin composition, resin film, and metal-clad laminate
JP4577833B2 (en) Method for manufacturing flexible laminated substrate
JP4805173B2 (en) Multilayer laminate and method for producing flexible copper clad laminate
JP4684601B2 (en) Manufacturing method of flexible laminated substrate
JP4183765B2 (en) Manufacturing method of flexible printed wiring board
JP2020015237A (en) Method for manufacturing metal-clad laminate and method for manufacturing circuit board
JP5249203B2 (en) Polyimide film
JP2007189011A (en) Substrate for flexible printed wiring board and its production process
JP6603032B2 (en) Copper-clad laminate and circuit board
JP4951513B2 (en) Flexible metal-clad laminate
JP5235079B2 (en) Multilayer laminate and method for producing flexible copper clad laminate
JP6767751B2 (en) Polyamic acid, polyimide, resin film and metal-clad laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4577833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160903

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250