JP2006272150A - Gas mixer and gas mixing method - Google Patents

Gas mixer and gas mixing method Download PDF

Info

Publication number
JP2006272150A
JP2006272150A JP2005094730A JP2005094730A JP2006272150A JP 2006272150 A JP2006272150 A JP 2006272150A JP 2005094730 A JP2005094730 A JP 2005094730A JP 2005094730 A JP2005094730 A JP 2005094730A JP 2006272150 A JP2006272150 A JP 2006272150A
Authority
JP
Japan
Prior art keywords
gas
main pipe
mixing
mixer
blowing nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005094730A
Other languages
Japanese (ja)
Inventor
Tatsuya Shimada
達哉 島田
Toshiaki Amagasa
敏明 天笠
Hidemasa Umeoka
秀征 梅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005094730A priority Critical patent/JP2006272150A/en
Publication of JP2006272150A publication Critical patent/JP2006272150A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas mixer and a gas mixing method for surely and highly efficiently mixing at least two kinds of gases. <P>SOLUTION: The gas mixer is provided with: a main pipe 1 whose cross section is circular or roughly circular and through which a first gas flows; and a gas blowing nozzle 2 whose jetting port 2a is opened to the inner surface of the main pipe 1 and which blows a second gas into the main pipe 1, wherein the gas blowing nozzle 2 is provided such that the jetting direction of the second gas is the tangential direction of the main pipe 1 or is roughly the tangential direction, and the jetting flow rate of the second gas from the gas blowing nozzle 2 is double or more a gas flow rate after mixing. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、都市ガス、コークス炉ガス等の各種燃料ガス、酸素、空気、窒素などの各種工業用ガスの2種類以上のガスを混合するガス混合器およびガス混合方法に関する。   The present invention relates to a gas mixer and a gas mixing method for mixing two or more kinds of gases such as city gas and coke oven gas, and various industrial gases such as oxygen, air and nitrogen.

工業的に使用されるガス混合器は、混合器内部に旋回羽根、整流板等の混合促進のための器機が設置されているのが一般的である。図9は従来の旋回羽根式混合器を示す説明図であり、(a)は混合器の構成図、(b)は(a)のA−A断面図である。この混合器は、内部に旋回羽根41を有した直円管40を有しており、さらにこれら旋回羽根を有した直円管が3つ、円管端に設置されたフランジ45により接続されているという構成である。ガスAが導入管42から、別の種類のガスBが導入管43からそれぞれ送気されてきて、旋回羽根により旋回しながら円管内を流れることにより、旋回乱流を起こし、攪拌混合が促進され、混合ガスは流出口44から流出していく。これによると、短い距離で、効率良く混合できる。   In general, gas mixers used industrially are equipped with devices for promoting mixing, such as swirl vanes and rectifying plates, inside the mixer. 9A and 9B are explanatory views showing a conventional swirl vane mixer, in which FIG. 9A is a configuration diagram of the mixer, and FIG. 9B is a cross-sectional view taken along line AA of FIG. This mixer has a straight circular tube 40 having swirl vanes 41 inside, and three straight circular tubes having swirl vanes are connected by a flange 45 installed at the end of the circular tube. It is the composition of being. Gas A is supplied from the introduction pipe 42 and another type of gas B is supplied from the introduction pipe 43, and flows in the circular pipe while swirling by the swirling blades, thereby causing swirling turbulence and promoting stirring and mixing. The mixed gas flows out from the outlet 44. According to this, it can mix efficiently in a short distance.

しかしながら、上述した従来の混合器には、次のような問題点がある。
(1)旋回羽根により旋回させるため、混合器を通過する際のガスの圧力損失が大きい。
(2)旋回羽根が必須なため、構造が複雑となり、製作に手間がかかり、製作費用および、製作期間も長くなる。
(3)ダストを含んだガスの場合、旋回羽根にダストが付着しやすく、また付着した際、ダストを除去清掃する必要があるが、混合器内部が複雑な形状のため、分解清掃に手間および期間がかかる。
However, the above-described conventional mixer has the following problems.
(1) Since it is swirled by swirl vanes, the pressure loss of the gas when passing through the mixer is large.
(2) Since the swirl vane is essential, the structure is complicated, the production takes time, and the production cost and the production period become long.
(3) In the case of gas containing dust, dust tends to adhere to the swirl vane, and when it is attached, it is necessary to remove and clean the dust. It takes time.

このような不都合を防止するため、主流ガスを導入する円筒状の混合槽と、この混合槽の接線方向に開口するノズルが設けられ、従流ガスを前記混合槽に導入する枝管とからなる混合器が提案されている(特許文献1)。
特開平9−287883号公報
In order to prevent such inconvenience, a cylindrical mixing tank for introducing the mainstream gas, and a branch pipe that is provided with a nozzle that opens in a tangential direction of the mixing tank and that introduces the follower gas into the mixing tank are provided. A mixer has been proposed (Patent Document 1).
Japanese Patent Laid-Open No. 9-287883

しかしながら、上記特許文献1の技術では、ガスの混合性が必ずしも十分ではなく、ガスが十分に混合するまでの混合距離が非常に長くなって効率が悪い場合が生じる。   However, in the technique of the above-mentioned Patent Document 1, the gas mixing property is not always sufficient, and the mixing distance until the gas is sufficiently mixed may become very long, resulting in poor efficiency.

本発明はかかる事情に鑑みてなされたものであって、少なくとも2種類のガスを確実に高効率で混合することができるガス混合器およびガス混合方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a gas mixer and a gas mixing method capable of reliably mixing at least two kinds of gases with high efficiency.

上記課題を解決するため、本発明は、断面が円形または略円形をなし、第1のガスが通流する主管と、噴射口が前記主管の内面に開口し、前記主管に第2のガスを吹き込むガス吹き込み用ノズルとを備え、前記ガス吹き込み用ノズルは、前記第2のガスの噴射方向が前記主管の接線方向または略接線方向となるように設けられ、前記ガス吹き込み用ノズルからの前記第2のガスの噴射流速が混合後のガス流速の2倍以上であることを特徴とするガス混合器を提供する。   In order to solve the above-mentioned problems, the present invention has a circular or substantially circular cross section, a main pipe through which a first gas flows, an injection port opened on the inner surface of the main pipe, and a second gas in the main pipe. A nozzle for blowing gas, and the nozzle for blowing gas is provided so that a jet direction of the second gas is a tangential direction or a substantially tangential direction of the main pipe, and the first nozzle from the gas blowing nozzle is provided. A gas mixer is characterized in that the injection flow rate of the gas No. 2 is twice or more the gas flow rate after mixing.

また、本発明は、断面が円形または略円形をなし、第1のガスが通流する主管と、噴射口が前記主管の内面に開口し、前記主管に第2のガスを吹き込む少なくとも2本のガス吹き込み用ノズルとを備え、前記2本のガス吹き込み用ノズルは、前記第2のガスの噴射方向が前記主管の接線方向または略接線方向となるように、かつ旋回方向が同一になるように設けられることを特徴とするガス混合器を提供する。   In the present invention, the cross-section is circular or substantially circular, the main pipe through which the first gas flows, the injection port is opened on the inner surface of the main pipe, and at least two of the second gas are blown into the main pipe Gas injection nozzles, and the two gas injection nozzles are configured such that the injection direction of the second gas is a tangential direction or a substantially tangential direction of the main pipe, and the swirl directions are the same. A gas mixer is provided that is provided.

さらに、本発明は、断面が円形または略円形をなし、第1のガスが通流する主管と、噴射口が前記主管の内面に開口し、前記主管に第2のガスを吹き込むガス吹き込み用ノズルとを備え、前記ガス吹き込み用ノズルは、前記第2のガスの噴射方向が前記主管の接線方向または略接線方向となるように設けられたガス混合器を用いて前記第1および第2のガスを混合するガス混合方法であって、ガス吹き込み用ノズルからの前記第2のガスの噴射流速が混合後のガス流速の2倍以上とすることを特徴とするガス混合方法を提供する。   Furthermore, the present invention provides a main pipe through which a first gas flows, a nozzle for injecting a second gas into the main pipe, and an injection port that opens to the inner surface of the main pipe. The gas blowing nozzle includes the first and second gases using a gas mixer provided such that the injection direction of the second gas is a tangential direction or a substantially tangential direction of the main pipe. The gas mixing method is characterized in that an injection flow rate of the second gas from the gas blowing nozzle is at least twice the gas flow rate after mixing.

本発明によれば、第1のガスが通流する主管と、噴射口が前記主管の内面に開口し、前記主管に第2のガスを吹き込むガス吹き込み用ノズルとを有するのみであるから構造が簡単であり、かつガス吹き込み用ノズルからの前記第2のガスの噴射方向が前記主管の接線方向または略接線方向であり、しかもガス吹き込み用ノズルからの前記第2のガスの噴射流速を混合後のガス流速の2倍以上とするので、確実に効率良く少なくとも2つのガスを混合することができる。   According to the present invention, the structure has only the main pipe through which the first gas flows and the nozzle for blowing the second gas into the main pipe, the injection port opening on the inner surface of the main pipe. After the mixing, the second gas injection direction from the gas blowing nozzle is tangential or substantially tangential to the main pipe, and the second gas injection flow rate from the gas blowing nozzle is mixed. Therefore, at least two gases can be reliably and efficiently mixed.

また、前記第2のガスの噴射方向が前記主管の接線方向または略接線方向となるように、かつ同一旋回方向となるように2本以上のガス吹き込み用ノズルを用いて、2つ以上のガスを混合するので、この場合にも確実に効率良く少なくとも2つのガスを混合することができる。   Further, two or more gas blowing nozzles are used by using two or more gas blowing nozzles so that the injection direction of the second gas is a tangential direction or a substantially tangential direction of the main pipe and the same turning direction. In this case, at least two gases can be mixed efficiently and reliably.

以下、添付図面を参照して本発明の実施形態について詳細に説明する。
図1は本発明の第1の実施形態に係る混合器を示す横断面図であり、図2は縦断面図である。なお、図1は図2のA−A線で切断した断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a transverse sectional view showing a mixer according to a first embodiment of the present invention, and FIG. 2 is a longitudinal sectional view. 1 is a cross-sectional view taken along line AA in FIG.

このガス混合器は、断面が円形をなし、ガスAが通流する主管1と、噴射口2aが主管1の内面に開口し、主管1にガスBを吹き込むガス吹き込み用ノズル2とを備えている。そして、ガス吹き込み用ノズル2からのガスBの噴射方向が主管1の接線方向である。   This gas mixer includes a main pipe 1 having a circular cross section, a gas A flowing therethrough, and an injection port 2a that opens to the inner surface of the main pipe 1 and a gas blowing nozzle 2 that blows gas B into the main pipe 1. Yes. The injection direction of the gas B from the gas blowing nozzle 2 is the tangential direction of the main pipe 1.

ガスAは図中の矢印の方向から、主管1の内側を流れてくる。ガス吹き込み用ノズル2からガスBを吹き込むと、ガスBは主管1の内周面に沿って符号3で示される矢印のごとく旋回し、ガスAと混合しながら、ガスAの進行方向である矢印方向に流れていく。そして、ある距離まで進むと完全に混合する。   The gas A flows inside the main pipe 1 from the direction of the arrow in the figure. When the gas B is blown from the gas blowing nozzle 2, the gas B swirls along the inner peripheral surface of the main pipe 1 as indicated by an arrow 3 and mixed with the gas A, and the arrow indicating the traveling direction of the gas A Flow in the direction. Then, when it reaches a certain distance, it mixes completely.

ここで、ガス混合器の性能の一つに、混合距離なるものがあるが、それはガスAとガスBが混合し始める場所からガスAとガスBがある混合度まで混合するのに必要な距離であり、混合部の配管径が同じであれば、この距離が短いほうが混合の効率が良く、混合器本体のサイズを小さくできる。図2中に示した記号Xで示される距離が前記混合距離を示す。   Here, one of the performances of the gas mixer is the mixing distance, which is the distance necessary to mix the gas A and the gas B from the place where the gas A and the gas B start to mix to a certain degree of mixing. If the pipe diameter of the mixing section is the same, the shorter the distance, the better the mixing efficiency and the size of the mixer body can be reduced. The distance indicated by the symbol X shown in FIG. 2 indicates the mixing distance.

さらに混合距離を混合後の配管内径で除したものを無次元混合距離とする。すなわち、一般にガス流量が多ければそれを輸送する配管径は必然的に大きくなっていくので、混合器の性能を比較する際には、絶対的な混合距離だけを論ずるだけでは、不充分である。よって、無次元混合距離で論ずれば、配管径の大きさの影響が無くなり、混合器の形式による性能の比較が可能である。   Further, the dimensionless mixing distance is obtained by dividing the mixing distance by the pipe inner diameter after mixing. That is, in general, if the gas flow rate is large, the pipe diameter for transporting the gas will inevitably increase. Therefore, it is not sufficient to discuss only the absolute mixing distance when comparing the performance of the mixer. . Therefore, when discussed in terms of dimensionless mixing distance, the influence of the pipe diameter is eliminated, and the performance can be compared according to the mixer type.

しかしながら、単にガス吹き込み用ノズル2からガスBを吹き込むだけでは、混合距離が長くなってしまい、混合効率が十分でない。本発明者らの検討結果によれば、混合効率を上昇させるためには、ノズル吹き込み流速を混合後ガスの流速で除した値(これを速度比と呼ぶ)を大きくすることが有効であることが判明した。   However, if the gas B is simply blown from the gas blowing nozzle 2, the mixing distance becomes long and the mixing efficiency is not sufficient. According to the examination results of the present inventors, in order to increase the mixing efficiency, it is effective to increase the value obtained by dividing the nozzle blowing flow rate by the mixed gas flow rate (this is called the speed ratio). There was found.

図3に速度比が1.1と3.3の場合の混合度の試験結果を示す。
ここでは、空気193Nm/hと酸素ガス17Nm/hを混合させた。空気中の酸素は20.9%であるから、上記流量比率で完全に混合した場合の酸素濃度は27.3%となる。試験は、80A(内径80.7mm)の直円管に空気を流し、そこに直円管内の接線方向に噴出する20A(内径21.6mm)の吹き込みノズルから酸素ガスを噴出し混合した。混合場所から、下流に200mm(無次元混合距離=2.5)、400mm(無次元混合距離=5)、600mm(無次元混合距離=7.5)、800mm(無次元混合距離=10)、1000mm(無次元混合距離=12.5)の各距離で、配管内流路断面内の9点の酸素濃度を測定した。各断面内で測定された酸素濃度(%)の最大値と最小値の差の絶対値を酸素濃度偏差(%)とした。下流に行くほど混合が進むため、酸素濃度偏差は小さくなっていくが、酸素濃度偏差Δが2.5%を下回る距離を実験から求め、その距離が小さいほど混合度が高いと評価した。
FIG. 3 shows the test results of the degree of mixing when the speed ratio is 1.1 and 3.3.
Here, air 193 Nm 3 / h and oxygen gas 17 Nm 3 / h were mixed. Since oxygen in the air is 20.9%, the oxygen concentration when completely mixed at the above flow rate ratio is 27.3%. In the test, air was allowed to flow through a 80A (inner diameter 80.7 mm) straight tube, and oxygen gas was injected and mixed from a 20A (inner diameter 21.6 mm) blowing nozzle ejected in a tangential direction in the straight tube. 200 mm downstream from the mixing location (dimensionalless mixing distance = 2.5), 400 mm (dimensionalless mixing distance = 5), 600 mm (dimensionalless mixing distance = 7.5), 800 mm (dimensionalless mixing distance = 10), At each distance of 1000 mm (dimensionless mixing distance = 12.5), the oxygen concentration at 9 points in the cross section of the flow path in the pipe was measured. The absolute value of the difference between the maximum value and the minimum value of oxygen concentration (%) measured in each cross section was defined as oxygen concentration deviation (%). Since mixing progresses as it goes downstream, the oxygen concentration deviation becomes smaller. However, a distance where the oxygen concentration deviation Δ is less than 2.5% is obtained from experiments, and the smaller the distance, the higher the degree of mixing.

試験条件として酸素吹き込みノズルは1本とし、ノズル径は20A(内径21.6mm)の場合と10A(ノズル内径12.7mm)の場合の2種類とした。この時の速度比は20Aノズルで1.1、10Aノズルの場合で3.3である。   As test conditions, one oxygen blowing nozzle was used, and the nozzle diameter was two types, 20A (inner diameter 21.6 mm) and 10A (nozzle inner diameter 12.7 mm). The speed ratio at this time is 1.1 for 20A nozzles and 3.3 for 10A nozzles.

図3に示すグラフによると、酸素濃度偏差Δが2.5%となるのは、速度比が1.1の場合では約900mm(無次元混合距離=11)、速度比が3.3の場合では約450mm(無次元混合距離=5.6)であり、速度比が大きい方が、速度比が小さい条件よりも、短い混合距離で酸素濃度偏差が小さくなっていくことが確認され、よって混合度は速度比が大きい方が明らかに高いことがわかった。   According to the graph shown in FIG. 3, the oxygen concentration deviation Δ is 2.5% when the speed ratio is 1.1 and is about 900 mm (dimensionless mixing distance = 11), and when the speed ratio is 3.3. Is about 450 mm (dimensionless mixing distance = 5.6), and it is confirmed that the oxygen concentration deviation becomes smaller at a shorter mixing distance when the speed ratio is larger than when the speed ratio is small. It was found that the degree was obviously higher when the speed ratio was larger.

次に、速度比を種々変化させて同様の実験により酸素濃度偏差Δが2.5%となる無次元混合距離を求めた。その結果を図4に示す。この図から、速度比が2より小さい範囲では、速度比が増加しても混合距離は大きくならないが、速度比が2以上となると、混合度が急激に増加する(無次元混合距離が短くなる)ことが確認された。このため、速度比を2以上、すなわちガス吹き込み用ノズルからの前記第2のガスの噴射流速が混合後のガス流速の2倍以上として、より混合距離を短くし、効率の良いガス混合を行う。   Next, the dimensionless mixing distance at which the oxygen concentration deviation Δ was 2.5% was determined by the same experiment with various speed ratios changed. The result is shown in FIG. From this figure, in the range where the speed ratio is smaller than 2, the mixing distance does not increase even if the speed ratio increases, but when the speed ratio becomes 2 or more, the degree of mixing increases rapidly (the dimensionless mixing distance decreases). ) Was confirmed. For this reason, the speed ratio is set to 2 or more, that is, the injection flow rate of the second gas from the gas blowing nozzle is set to be twice or more the gas flow rate after mixing, the mixing distance is shortened, and efficient gas mixing is performed. .

表1および表2に、上記速度比1.1の場合と3.3の場合の一連の試験で得られた主な結果を示す。また、比較のため、従来の旋回羽根方式の混合器により、同様の試験を行った結果を表3に示す。これらの表に示すように、速度比3.3の場合は、従来の旋回羽根方式の混合器と遜色のない混合度(酸素濃度偏差が2.5%となる混合距離)となることがわかる。また、混合器の特性としては、混合距離の他、圧力損失も重要であり、特にガスA側の圧力損失が低いことが重要であるが、旋回羽根を用いない場合にはいずれもガスA側の圧力損失がΔ3mmAqと低い値を示した。これに対して、旋回羽根方式の混合器では、ガスA側の圧力損失がΔ77mmAqと明らかに圧力損失が大きいことが確認された。   Tables 1 and 2 show the main results obtained in a series of tests when the speed ratio is 1.1 and 3.3. For comparison, Table 3 shows the results of a similar test performed with a conventional swirl vane mixer. As shown in these tables, when the speed ratio is 3.3, it can be seen that the mixing ratio (mixing distance at which the oxygen concentration deviation becomes 2.5%) is inferior to that of the conventional swirl vane mixer. . In addition to the mixing distance, the pressure loss is also important as a characteristic of the mixer, and in particular, it is important that the pressure loss on the gas A side is low. The pressure loss was as low as Δ3 mmAq. On the other hand, in the swirl vane mixer, it was confirmed that the pressure loss on the gas A side was Δ77 mmAq, which was clearly large.

Figure 2006272150
Figure 2006272150

Figure 2006272150
Figure 2006272150

Figure 2006272150
Figure 2006272150

なお、第1の実施形態において、主管1の断面形状は円形に限らず、略円形であればよく、例えば6角形以上の多角形が例示される。また、ガス吹き込み用ノズル2の断面形状も円形に限らず、扁平形状や矩形状等、どのような形状であってもよい。   In the first embodiment, the cross-sectional shape of the main tube 1 is not limited to a circle, and may be a substantially circular shape, for example, a hexagon or more polygon. The cross-sectional shape of the gas blowing nozzle 2 is not limited to a circular shape, and may be any shape such as a flat shape or a rectangular shape.

さらに、ガス吹き込み用ノズル2の寸法は特に限定されないが、図5に示すように、主管1の断面で見た場合のガス吹き込み用ノズル2の寸法hが主管1の内径dの1/4以下であることが好ましい。このようにすることにより、好ましい旋回流を容易に形成することができる。この効果は、このような寸法を満たしている限り、ガス吹き込み用ノズル2の断面形状によらずに得ることができる。   Further, the size of the gas blowing nozzle 2 is not particularly limited. However, as shown in FIG. 5, the size h of the gas blowing nozzle 2 when viewed in a section of the main tube 1 is ¼ or less of the inner diameter d of the main tube 1. It is preferable that By doing so, a preferable swirl flow can be easily formed. This effect can be obtained regardless of the cross-sectional shape of the gas blowing nozzle 2 as long as these dimensions are satisfied.

さらにまた、ガス吹き込み用ノズル2は、ガスの噴射方向が主管1の接線方向になるように設けられた例について示したが、完全に接線方向でなくてもよく、また主管1の断面形状が円でない場合でも外接円の接線方向また略接線方向であればよい。   Furthermore, although the example in which the gas blowing nozzle 2 is provided so that the gas injection direction is the tangential direction of the main pipe 1 has been shown, it may not be completely tangential, and the cross-sectional shape of the main pipe 1 may be Even if it is not a circle, it may be a tangential direction or a substantially tangential direction of a circumscribed circle.

次に、本発明の第2の実施形態について説明する。
図6は本発明の第2の実施形態に係る混合器を示す横断面図であり、図7は縦断面図である。なお、図6は図7のB−B線で切断した断面図である。
Next, a second embodiment of the present invention will be described.
FIG. 6 is a transverse sectional view showing a mixer according to a second embodiment of the present invention, and FIG. 7 is a longitudinal sectional view. 6 is a cross-sectional view taken along line BB in FIG.

本実施形態では、主管1に対し、2本のガス吹き込み用ノズル2が、主管1に対してガスBの噴射方向が主管1の接線方向となるように、かつ旋回方向が同一になるように設置されている。   In the present embodiment, the two gas blowing nozzles 2 with respect to the main pipe 1 are arranged such that the injection direction of the gas B with respect to the main pipe 1 is the tangential direction of the main pipe 1 and the swirl directions are the same. is set up.

本実施形態では、このように2本のガス吹き込み用ノズル2を設けることにより、混合距離を短くすることができ、2つのガスを効率良く混合することができる。   In this embodiment, by providing the two gas blowing nozzles 2 in this way, the mixing distance can be shortened, and the two gases can be mixed efficiently.

図8はノズル本数が1本の場合と2本の場合の混合度の比較を行った試験結果である。ここでは、第1の実施形態と同様、空気193Nm/hと酸素ガス17Nm/hを混合させた。試験は、80A(内径80.7mm)の直円管に空気を流し、そこに直円管内の接線方向に噴出する20A(内径21.6mm)の吹き込みノズルから酸素ガスを噴出し混合した。混合場所から、下流に200mm(無次元混合距離=2.5)、400mm(無次元混合距離=5)、600mm(無次元混合距離=7.5)、800mm(無次元混合距離=10)、1000mm(無次元混合距離=12.5)の各距離で、配管内流路断面内の9点の酸素濃度を測定した。各断面内で測定された酸素濃度(%)の最大値と最小値の差の絶対値を酸素濃度偏差(%)とし、酸素濃度偏差Δが2.5%を下回る距離を実験から求め、その距離が小さいほど混合度が高いと評価した。以上を、吹き込みノズルが1本の場合と、2本の場合で行い混合度を比較した。また、表4に、ガス吹き込み用ノズルが2本の場合の一連の試験で得られた主な結果を示す。 FIG. 8 shows the test results of a comparison of the mixing degree when the number of nozzles is one and two. Here, as in the first embodiment, air 193 Nm 3 / h and oxygen gas 17 Nm 3 / h were mixed. In the test, air was allowed to flow through a 80A (inner diameter 80.7 mm) straight tube, and oxygen gas was injected and mixed from a 20A (inner diameter 21.6 mm) blowing nozzle ejected in a tangential direction in the straight tube. 200 mm downstream from the mixing location (dimensionalless mixing distance = 2.5), 400 mm (dimensionalless mixing distance = 5), 600 mm (dimensionalless mixing distance = 7.5), 800 mm (dimensionalless mixing distance = 10), At each distance of 1000 mm (dimensionless mixing distance = 12.5), the oxygen concentration at 9 points in the cross section of the flow path in the pipe was measured. The absolute value of the difference between the maximum value and the minimum value of oxygen concentration (%) measured in each cross section is defined as oxygen concentration deviation (%), and the distance by which the oxygen concentration deviation Δ is less than 2.5% is obtained from experiments. The smaller the distance, the higher the degree of mixing. The above was performed in the case of one blowing nozzle and in the case of two blowing nozzles, and the degree of mixing was compared. Table 4 shows main results obtained in a series of tests in the case of two gas blowing nozzles.

図8のグラフによると、酸素濃度偏差Δが2.5%となるのは、ノズルが1本の場合では約900mm(無次元混合距離=11)、ノズル2本の場合では約400mm(無次元混合距離=5)であり、吹き込みノズルを2本とすることにより、より短い混合距離で酸素濃度偏差が小さくなっていくことが確認された。すなわち、ガス吹き込み用ノズルを2本にすることにより、混合効率が極めて良好になることが確認された。なお、速度比はノズル1本の場合は1.1、ノズル2本の場合は0.55(同流速)であり、ノズル2本とすることで速度比が2より小さくても混合距離を短くすることができる。   According to the graph of FIG. 8, the oxygen concentration deviation Δ becomes 2.5% when the number of nozzles is one, about 900 mm (dimensionless mixing distance = 11), and when the number of nozzles is two, about 400 mm (dimensionless). It was confirmed that the mixing distance = 5) and the oxygen concentration deviation becomes smaller at a shorter mixing distance by using two blowing nozzles. That is, it was confirmed that the mixing efficiency is extremely improved by using two gas blowing nozzles. The speed ratio is 1.1 for one nozzle and 0.55 (same flow rate) for two nozzles. By using two nozzles, the mixing distance is shortened even if the speed ratio is smaller than two. can do.

表4に示すように、ガス吹き込み用ノズルが2本の場合は、Aガス側の圧力損失がΔ3mmAgと低いのみならず、Bガスの速度が小さくてよいことから、Bガス側の圧力損失もΔ4mmAqと著しく低いことが確認された。   As shown in Table 4, when there are two gas blowing nozzles, not only the pressure loss on the A gas side is as low as Δ3 mmAg, but also the speed of the B gas may be small. It was confirmed that Δ4 mmAq was extremely low.

Figure 2006272150
Figure 2006272150

なお、第2の実施形態において、主管の断面形状やガス吹き込み用ノズルの断面形状、さらにはガス吹き込み用ノズルの寸法と主管の内径との比率、ガス吹き込み用ノズルの方向等は、第1の実施形態と同様である。さらに、ガス吹き込み用ノズルが2本の例について示したが、3本以上であってもよい。さらにまた、2本のガス吹き込み用ノズルを主管の同一断面位置に配置した例について示したが、主管の長手方向に間隔をおいて2本以上のガス吹き込み用ノズルを配置してもよい。さらにまた、2本のガス吹き込み用ノズルから吹き込むガスを同じガスとしたが、異なるガスを吹き込むようにしてもよく、その場合には3種類のガスを混合することになる。3本以上のガス吹き込み用ノズルを用いる場合には、4種類以上のガスを混合することが可能である。ただし、1本のガス吹き込み用ノズルから吹き込むことになるガスについては、第1の実施形態と同様、ガス吹き込み用ノズルからのガスの噴射流速が混合後のガス流速の2倍以上とする必要がある。   In the second embodiment, the cross-sectional shape of the main pipe, the cross-sectional shape of the gas blowing nozzle, the ratio between the size of the gas blowing nozzle and the inner diameter of the main pipe, the direction of the gas blowing nozzle, etc. This is the same as the embodiment. Furthermore, although two examples of the gas blowing nozzles have been shown, three or more nozzles may be used. Furthermore, although an example in which two gas blowing nozzles are arranged at the same cross-sectional position of the main pipe has been shown, two or more gas blowing nozzles may be arranged at intervals in the longitudinal direction of the main pipe. Furthermore, although the gas blown from the two gas blowing nozzles is the same gas, different gases may be blown, and in that case, three kinds of gases are mixed. When three or more gas blowing nozzles are used, four or more kinds of gases can be mixed. However, for the gas to be blown from one gas blowing nozzle, the gas injection flow rate from the gas blowing nozzle needs to be at least twice the mixed gas flow rate as in the first embodiment. is there.

本発明によれば、簡単な構造で確実に効率良く少なくとも2つのガスを混合することができるので、各種燃料ガスや各種工業用ガスの混合に最適であり、産業上の利用価値が高い。   According to the present invention, since at least two gases can be reliably and efficiently mixed with a simple structure, it is optimal for mixing various fuel gases and various industrial gases, and has high industrial utility value.

本発明の第1の実施形態に係るガス混合器を示す横断面図。The cross-sectional view which shows the gas mixer which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るガス混合器を示す縦断面図。The longitudinal cross-sectional view which shows the gas mixer which concerns on the 1st Embodiment of this invention. 速度比1.1および3.3における混合開始からの距離と酸素濃度偏差との関係を示す図。The figure which shows the relationship between the distance from the mixing start and oxygen concentration deviation in speed ratio 1.1 and 3.3. 速度比と酸素濃度偏差2.5%となる無次元混合距離との関係を示す図。The figure which shows the relationship between a speed ratio and the dimensionless mixing distance used as oxygen concentration deviation 2.5%. ガス吹き込み用ノズル2の好ましい寸法を説明するための図。The figure for demonstrating the preferable dimension of the nozzle 2 for gas blowing. 本発明の第2の実施形態に係るガス混合器を示す横断面図。The cross-sectional view which shows the gas mixer which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係るガス混合器を示す縦断面図。The longitudinal cross-sectional view which shows the gas mixer which concerns on the 2nd Embodiment of this invention. 吹き込みノズル1本と2本の場合における混合開始からの距離と酸素濃度偏差との関係を示す図。The figure which shows the relationship between the distance from the mixing start in the case of 1 and 2 blowing nozzles, and oxygen concentration deviation. 従来のガス混合器の構造を示す側面図および断面図。The side view and sectional drawing which show the structure of the conventional gas mixer.

符号の説明Explanation of symbols

1 主管
2 ガス吹き込みノズル
2a 噴射口
3 旋回方向
1 Main Pipe 2 Gas Injection Nozzle 2a Injection Port 3 Turning Direction

Claims (3)

断面が円形または略円形をなし、第1のガスが通流する主管と、
噴射口が前記主管の内面に開口し、前記主管に第2のガスを吹き込むガス吹き込み用ノズルと
を備え、前記ガス吹き込み用ノズルは、前記第2のガスの噴射方向が前記主管の接線方向または略接線方向となるように設けられ、前記ガス吹き込み用ノズルからの前記第2のガスの噴射流速が混合後のガス流速の2倍以上であることを特徴とするガス混合器。
A main pipe having a circular or substantially circular cross section through which the first gas flows;
An injection port that is open to an inner surface of the main pipe and includes a gas blowing nozzle that blows a second gas into the main pipe, and the gas blowing nozzle has a jet direction of the second gas that is tangential to the main pipe or A gas mixer provided so as to be in a substantially tangential direction, wherein an injection flow rate of the second gas from the gas blowing nozzle is at least twice a gas flow rate after mixing.
断面が円形または略円形をなし、第1のガスが通流する主管と、
噴射口が前記主管の内面に開口し、前記主管に第2のガスを吹き込む少なくとも2本のガス吹き込み用ノズルと
を備え、前記2本のガス吹き込み用ノズルは、前記第2のガスの噴射方向が前記主管の接線方向または略接線方向となるように、かつ旋回方向が同一になるように設けられることを特徴とするガス混合器。
A main pipe having a circular or substantially circular cross section through which the first gas flows;
The injection port has an inner surface of the main pipe, and includes at least two gas blowing nozzles for blowing the second gas into the main pipe, and the two gas blowing nozzles are in the second gas injection direction. Is provided so that the tangential direction or substantially tangential direction of the main pipe is the same, and the swirl directions are the same.
断面が円形または略円形をなし、第1のガスが通流する主管と、噴射口が前記主管の内面に開口し、前記主管に第2のガスを吹き込むガス吹き込み用ノズルとを備え、前記ガス吹き込み用ノズルは、前記第2のガスの噴射方向が前記主管の接線方向または略接線方向となるように設けられたガス混合器を用いて前記第1および第2のガスを混合するガス混合方法であって、ガス吹き込み用ノズルからの前記第2のガスの噴射流速が混合後のガス流速の2倍以上とすることを特徴とするガス混合方法。   A cross section having a circular or substantially circular cross section, and a main pipe through which a first gas flows, a gas injection nozzle having an injection port opened on an inner surface of the main pipe, and a second gas blown into the main pipe. A gas mixing method in which the blowing nozzle mixes the first and second gases using a gas mixer provided so that the injection direction of the second gas is a tangential direction or a substantially tangential direction of the main pipe The gas mixing method is characterized in that an injection flow rate of the second gas from the gas blowing nozzle is at least twice the gas flow rate after mixing.
JP2005094730A 2005-03-29 2005-03-29 Gas mixer and gas mixing method Pending JP2006272150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005094730A JP2006272150A (en) 2005-03-29 2005-03-29 Gas mixer and gas mixing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005094730A JP2006272150A (en) 2005-03-29 2005-03-29 Gas mixer and gas mixing method

Publications (1)

Publication Number Publication Date
JP2006272150A true JP2006272150A (en) 2006-10-12

Family

ID=37207406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094730A Pending JP2006272150A (en) 2005-03-29 2005-03-29 Gas mixer and gas mixing method

Country Status (1)

Country Link
JP (1) JP2006272150A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145036A (en) * 2007-08-03 2009-07-02 Daher Aerospace Airflow mixing apparatus
JP2009274886A (en) * 2008-05-12 2009-11-26 Aisin Seiki Co Ltd Combustion apparatus for reforming apparatus, reforming apparatus, and fuel cell system
JP2010058030A (en) * 2008-09-02 2010-03-18 Mirai Ind Co Ltd Mixer for granular material
JP2011067723A (en) * 2009-09-24 2011-04-07 Toyota Motor Corp Dilution device
JP2016074209A (en) * 2014-10-08 2016-05-12 ゼロックス コーポレイションXerox Corporation Mixing device and system for dampening liquid vapor deposition system useful for ink-based digital printing
WO2016194049A1 (en) * 2015-05-29 2016-12-08 Jfeエンジニアリング株式会社 Condensing and mixing device, condensing and mixing method, evaporated gas re-liquefaction device, and evaporated gas re-liquefaction method
CN108355504A (en) * 2017-12-28 2018-08-03 中国航发四川燃气涡轮研究院 A kind of foam removal formula three eccentricity not isothermal air inlet mixing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869158A (en) * 1971-12-22 1973-09-20
JPH05337352A (en) * 1992-06-11 1993-12-21 Fujitsu Ltd Apparatus for mixing liquids in nongraviation environment
JP2001058123A (en) * 1999-08-23 2001-03-06 Nippon Shokubai Co Ltd Method and apparatus for mixing gas
JP2002136855A (en) * 2000-11-02 2002-05-14 Mitsubishi Heavy Ind Ltd Fluid mixer
JP2003508691A (en) * 1999-09-06 2003-03-04 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Mixing device
JP2005030736A (en) * 2003-07-11 2005-02-03 Meidensha Corp Heating treatment system
JP2005037048A (en) * 2003-07-15 2005-02-10 Tlv Co Ltd Heat exchanging device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869158A (en) * 1971-12-22 1973-09-20
JPH05337352A (en) * 1992-06-11 1993-12-21 Fujitsu Ltd Apparatus for mixing liquids in nongraviation environment
JP2001058123A (en) * 1999-08-23 2001-03-06 Nippon Shokubai Co Ltd Method and apparatus for mixing gas
JP2003508691A (en) * 1999-09-06 2003-03-04 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Mixing device
JP2002136855A (en) * 2000-11-02 2002-05-14 Mitsubishi Heavy Ind Ltd Fluid mixer
JP2005030736A (en) * 2003-07-11 2005-02-03 Meidensha Corp Heating treatment system
JP2005037048A (en) * 2003-07-15 2005-02-10 Tlv Co Ltd Heat exchanging device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145036A (en) * 2007-08-03 2009-07-02 Daher Aerospace Airflow mixing apparatus
JP2009274886A (en) * 2008-05-12 2009-11-26 Aisin Seiki Co Ltd Combustion apparatus for reforming apparatus, reforming apparatus, and fuel cell system
JP2010058030A (en) * 2008-09-02 2010-03-18 Mirai Ind Co Ltd Mixer for granular material
JP2011067723A (en) * 2009-09-24 2011-04-07 Toyota Motor Corp Dilution device
JP2016074209A (en) * 2014-10-08 2016-05-12 ゼロックス コーポレイションXerox Corporation Mixing device and system for dampening liquid vapor deposition system useful for ink-based digital printing
WO2016194049A1 (en) * 2015-05-29 2016-12-08 Jfeエンジニアリング株式会社 Condensing and mixing device, condensing and mixing method, evaporated gas re-liquefaction device, and evaporated gas re-liquefaction method
CN108355504A (en) * 2017-12-28 2018-08-03 中国航发四川燃气涡轮研究院 A kind of foam removal formula three eccentricity not isothermal air inlet mixing device

Similar Documents

Publication Publication Date Title
CN109414661B (en) System and method for mixing exhaust gas and reductant in an aftertreatment system
RU2385183C2 (en) Mixer and its use for mixing fluid flow in pipe
JP2006272150A (en) Gas mixer and gas mixing method
US7448794B2 (en) Method for mixing fluid streams
WO2016186038A1 (en) Water quality-improving apparatus for seawater desulfurization waste water and seawater flue gas desulfurization system
CN110267731B (en) Multi-stage mixer
US20060035183A1 (en) Mixer
US6779786B2 (en) Mixer for mixing at least two flows of gas or other newtonian liquids
CN208106533U (en) For handling the mixing tube of Vehicular exhaust
JP5437151B2 (en) Flue gas desulfurization apparatus and oxygen combustion apparatus and method provided with the same
CN101342457A (en) Flue gas denitrating whirling current mixer and whirling current mixing method
RU2429055C2 (en) Method and device for mixing gaseous fluid medium with high gas volume flow, particularly for introducing reducing agent into flue gas containing nitrogen oxides
CN109386355A (en) Mixer apparatus and waste gas system
DE60224204D1 (en) MIXER FOR MIXING TWO LIQUIDS AND / OR A GASEOUS MEDIUM WITH A SOLUTION
KR100668122B1 (en) The Spiral Nozzle with Variety Annular Slit
JPWO2019230165A1 (en) Liquid fuel injector
CN205386409U (en) SCR (selective catalytic reduction) denitration device
JP2008212908A (en) Gas-liquid mixing blow-off nozzle
WO2016136828A1 (en) Discharge nozzle and mixing tank
CN215892351U (en) Coal gas forced mixer
WO2018077127A1 (en) Gas-gas mixed aspirator
JP2023148293A (en) Exhaust gas cooling device and method
JP4159443B2 (en) Fluid mixing device and denitration device
JP2003088739A (en) Gas mixer
JP2011157870A (en) Mixer for biomass fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111122