JP2005030736A - Heating treatment system - Google Patents

Heating treatment system Download PDF

Info

Publication number
JP2005030736A
JP2005030736A JP2003273256A JP2003273256A JP2005030736A JP 2005030736 A JP2005030736 A JP 2005030736A JP 2003273256 A JP2003273256 A JP 2003273256A JP 2003273256 A JP2003273256 A JP 2003273256A JP 2005030736 A JP2005030736 A JP 2005030736A
Authority
JP
Japan
Prior art keywords
gas
furnace
combustion
cylindrical furnace
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003273256A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kashiwagi
佳行 柏木
Original Assignee
Meidensha Corp
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, 株式会社明電舎 filed Critical Meidensha Corp
Priority to JP2003273256A priority Critical patent/JP2005030736A/en
Publication of JP2005030736A publication Critical patent/JP2005030736A/en
Granted legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To improve combustion efficiency by swirling and diffusing inlet gas introduced into a cylindrical furnace to promote the contact of the inlet gas with flames radiated by a combustion burner while diffusing the radiated flames and combustion gas flames into unburnt gas to promote the contact of the radiated flames and the combustion flames with the unburnt gas. <P>SOLUTION: A rod gas stirring member 10 (a fire resistant member) for stirring the inlet gas is arranged in the cylindrical furnace 51 at its inlet gas moving passage (where the inlet gas is swirled) in the state of crossing the cylindrical furnace 51 almost parallel to the radial direction. A flame stirring member 11 (a fire resistant member) is arranged crossing the cylindrical furnace 51 almost parallel to the radial direction in the state of intersecting the radiated flames or the combustion gas flames of the combustion burner 52. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、加熱処理システムであって、例えば従来は廃棄されている有機性物質、例えば各種汚泥,植物由来の各種廃棄物,プラスチック類を含む石油製品由来の高分子物質を熱分解処理加工により炭化し、その炭化物を有効利用することが可能なシステムに関するものである。   The present invention is a heat treatment system, for example, a conventional organic substance, such as various sludges, various plant-derived wastes, and high-molecular substances derived from petroleum products including plastics, by pyrolysis treatment. The present invention relates to a system capable of carbonizing and effectively using the carbide.
従来は廃棄されていた例えば有機性物質(例えば、植物由来の端材物,プラスチック類を含む石油製品由来の高分子物質),無機性物質,各種汚泥(例えば、汚泥,土壌,土砂等)等の各種被処理物は、その各種被処理物を間接加熱処理加工することが可能な装置(以下、熱分解処理装置と称する)により、各種被処理物中に含有する水分や有機系物質を除去し、その間接加熱処理加工で得られた乾燥物,炭化物を有効利用する試みが成されている。   Conventionally discarded organic materials (for example, plant-derived scrap materials, polymer materials derived from petroleum products including plastics), inorganic materials, various sludges (for example, sludge, soil, earth and sand), etc. The various objects to be treated are removed from moisture and organic substances contained in the various objects to be treated by an apparatus capable of indirect heat treatment of the various objects to be treated (hereinafter referred to as a thermal decomposition apparatus). However, attempts have been made to effectively use the dry matter and carbide obtained by the indirect heat treatment.
前記の間接加熱処理加工の際に被処理物から発生する水蒸気,乾留ガス等のガス(以下、熱分解ガスと称する)には、有害物質(例えば、ダイオキシン類,硫黄酸化物,窒素酸化物,一酸化炭素等)が含まれていることがある。このため、前記の熱分解ガスを例えば燃焼装置(ガス燃焼炉等)で燃焼(例えば、温度800℃以上,滞留時間2秒以上で燃焼)して該熱分解ガス中の有害物質を分解(無害化)することにより、その有害物質の大気中への放出を抑制している。   Gases such as water vapor and dry distillation gas (hereinafter referred to as pyrolysis gas) generated from the object to be processed in the indirect heat treatment process include harmful substances (for example, dioxins, sulfur oxides, nitrogen oxides, Carbon monoxide, etc.). For this reason, the pyrolysis gas is burned (for example, burned at a temperature of 800 ° C. or more and a residence time of 2 seconds or more) by a combustion apparatus (gas combustion furnace or the like) to decompose harmful substances in the pyrolysis gas (harmless). The release of harmful substances into the atmosphere.
図5A(縦断面図),B(横断面(A2−A2断面)図),C(部分断面図)は、熱分解ガスを燃焼するための一般的な燃焼装置(符号5)の概略説明図を示すものである。図5において、符号51は少なくとも内壁の横断面が略円状(内壁面が湾曲した形状)の筒型の炉(以下、円筒炉と称する)を示すものであり、その円筒炉51の一端部には燃焼バーナ52が設けられ、他端部には円筒炉51内で燃焼され無害化されたガス(以下、排出ガスと称する)を排出するための排気口53が設けられる。   5A (longitudinal sectional view), B (transverse sectional view (A2-A2 sectional view) view), and C (partial sectional view) are schematic explanatory views of a general combustion apparatus (reference numeral 5) for burning pyrolysis gas. Is shown. In FIG. 5, reference numeral 51 denotes a cylindrical furnace (hereinafter referred to as a cylindrical furnace) whose inner wall has a substantially circular cross section (a shape in which the inner wall is curved), and one end portion of the cylindrical furnace 51. Is provided with a combustion burner 52, and at the other end is provided with an exhaust port 53 for discharging harmlessly burned gas (hereinafter referred to as exhaust gas) in the cylindrical furnace 51.
前記の円筒炉51においては、例えば図5Cに示すように、耐火材等から成る内壁51a,鋼材等から成る外壁51b,内壁51aと外壁51bとの間に介在する断熱材51c等により構成される。また、前記の燃焼バーナ52,排気口53は、一般的に円筒炉51の軸心上に位置し、その燃焼バーナ52からの火炎(以下、放射火炎と称する)が前記軸心に沿って排気口53方向へ放射(例えば、図5A中では点線矢印で示すように放射)される。   For example, as shown in FIG. 5C, the cylindrical furnace 51 includes an inner wall 51a made of a refractory material, an outer wall 51b made of a steel material, a heat insulating material 51c interposed between the inner wall 51a and the outer wall 51b, and the like. . The combustion burner 52 and the exhaust port 53 are generally located on the axial center of the cylindrical furnace 51, and a flame (hereinafter referred to as a radiant flame) from the combustion burner 52 exhausts along the axial center. Radiation is directed toward the mouth 53 (for example, radiation as indicated by a dotted arrow in FIG. 5A).
符号54,55は、前記円筒炉51内に連通(図5中では、垂直方向(図示上方側)から連通)するように設けられた管路(以下、導入管路と称する)を示すものである。これら導入管路54,55からの熱分解ガスの導入方向は、円筒炉51の軸心と交差しないように偏位(例えば、円筒炉51の横断面に対し平行に偏位)して設定される。   Reference numerals 54 and 55 denote pipes (hereinafter referred to as introduction pipes) provided so as to communicate with the cylindrical furnace 51 (communication from the vertical direction (upper side in the figure) in FIG. 5). is there. The introduction direction of the pyrolysis gas from these introduction pipes 54 and 55 is set so as to be deviated (for example, deviated parallel to the cross section of the cylindrical furnace 51) so as not to intersect the axial center of the cylindrical furnace 51. The
前記の導入管路54,55の導入口54a,55aを介して円筒炉51内に導入された熱分解ガス(以下、導入ガスと称する)は、その円筒炉51の内壁51a表面に沿って移動(すなわち、旋回;図5B中の一点鎖線の矢印で示すように移動)し、前記の放射火炎と接触して燃焼された後、排気口53,排気管53aを介して排出される。この排出されるガス(以下、排出ガス)は、必要に応じて例えば熱交換器等により冷却(例えば、図4に示すように熱交換器により冷却)してから大気中に放出される。   Pyrolysis gas (hereinafter referred to as introduction gas) introduced into the cylindrical furnace 51 through the introduction ports 54a and 55a of the introduction pipe lines 54 and 55 moves along the surface of the inner wall 51a of the cylindrical furnace 51. (That is, turning; moving as indicated by the one-dot chain line arrow in FIG. 5B), and after burning in contact with the radiation flame, it is discharged through the exhaust port 53 and the exhaust pipe 53a. This exhausted gas (hereinafter referred to as exhaust gas) is cooled to a heat exchanger or the like as necessary (for example, cooled by a heat exchanger as shown in FIG. 4) and then released into the atmosphere.
前記のように円筒炉の軸心と交差しない方向(以下、軸心偏移方向と称する)に対して導入された導入ガスは、円筒炉の内壁表面に沿って旋回しながら移動し、燃焼バーナの放射火炎と接触して燃焼される。前記の放射火炎と接触せず燃焼されない導入ガス(以下、未燃ガスと称する)が円筒炉内に残存する場合には、少なくとも放射火炎に接触した導入ガスの燃焼によって生じる火炎(以下、燃焼ガス火炎と称する)を円筒炉内の全域に拡散させ、その拡散された燃焼ガス火炎と接触させて燃焼することが好ましい。   As described above, the introduced gas introduced in a direction not intersecting with the axis of the cylindrical furnace (hereinafter referred to as the axial deviation direction) moves while swirling along the inner wall surface of the cylindrical furnace, and the combustion burner. Burned in contact with the radiant flame. When the introduced gas that does not come into contact with the radiant flame and is not burned (hereinafter referred to as unburned gas) remains in the cylindrical furnace, at least a flame (hereinafter referred to as combustion gas) caused by combustion of the introduced gas in contact with the radiant flame. (Referred to as a flame) is preferably diffused throughout the cylindrical furnace and brought into contact with the diffused combustion gas flame for combustion.
しかし、円筒炉における燃焼バーナ(放射火炎の放射方向等),排気口,導入管路(円筒炉内に対する導入ガスの導入方向)等の相互位置関係や、円筒炉内の容積等の要因により、放射火炎と導入ガスとの接触,燃焼ガス火炎と未燃ガスとの混合撹拌が十分には行われず、円筒炉内にて不完全燃焼が起こる恐れがある。   However, due to factors such as the mutual positional relationship such as the combustion burner in the cylindrical furnace (radiation direction of the radiant flame), the exhaust port, the introduction pipe line (introduction direction of the introduced gas into the cylindrical furnace), the volume in the cylindrical furnace, etc. Contact between the radiant flame and the introduced gas and mixing and stirring of the combustion gas flame and the unburned gas are not sufficiently performed, and incomplete combustion may occur in the cylindrical furnace.
すなわち、一般的な円筒炉は、燃焼バーナと排気口とが該円筒炉の軸心上に位置し、燃焼バーナの放射火炎が単に円筒炉の軸心付近で排気口方向に直進(例えば、排気口方向に吸引されるように直進)するため、円筒炉の内壁表面を旋回する導入ガスが燃焼され難くなると共に、燃焼ガス火炎が十分に拡散されず未燃ガスの燃焼も困難となり、円筒炉内における燃焼効率が低下してしまう可能性があった。   That is, in a general cylindrical furnace, the combustion burner and the exhaust port are positioned on the axial center of the cylindrical furnace, and the radiant flame of the combustion burner simply goes straight in the direction of the exhaust port near the axial center of the cylindrical furnace (for example, exhaust gas) Since it is difficult to burn the introduced gas swirling on the inner wall surface of the cylindrical furnace, the combustion gas flame is not sufficiently diffused and it is difficult to burn the unburned gas. There was a possibility that the internal combustion efficiency would be reduced.
例えば、図5に示したように、熱分解ガスが円筒炉の上方側(天井側)から軸心偏位方向に導入される場合、その導入ガスは燃焼バーナの放射火炎と接触せずに円筒炉内の下方側の内壁(地面側の内壁)にて旋回開始、すなわち放射火炎の下方側を旋回するために、燃焼効率が低下してしまう可能性があった。   For example, as shown in FIG. 5, when the pyrolysis gas is introduced from the upper side (ceiling side) of the cylindrical furnace in the axial deviation direction, the introduced gas does not come into contact with the radiant flame of the combustion burner. Since the turning starts on the inner wall on the lower side in the furnace (the inner wall on the ground side), that is, the lower side of the radiant flame is turned, the combustion efficiency may be lowered.
また、円筒炉内にて燃焼された後の排出ガスは、熱交換器,バグフィルタ等を介し排気ブロアで吸引することにより大気中に放出されるが、円筒炉内に導入される熱分解ガスの量が変動(すなわち、前工程の熱分解処理加工で発生する熱分解ガス量が変動)すると円筒炉内からの排出ガス量も変動する。   In addition, the exhaust gas after being burned in the cylindrical furnace is released into the atmosphere by being sucked by an exhaust blower through a heat exchanger, a bag filter, etc., but the pyrolysis gas introduced into the cylindrical furnace When the amount of gas fluctuates (that is, the amount of pyrolysis gas generated in the pyrolysis process of the previous process fluctuates), the amount of exhaust gas from the cylindrical furnace also fluctuates.
しかし、排気ブロアは一般的に一定の吸引力で稼動し、導入ガス量が低下しても円筒炉内からは一定量のガス(導入ガス,排出ガス等)が吸引排気されるため、放射火炎と導入ガスとの接触が減少し、円筒炉内における燃焼ガス火炎の拡散が抑制され該燃焼ガス火炎と未燃ガスとの混合撹拌が減少して、燃焼効率が低下してしまう可能性があった。   However, exhaust blowers generally operate with a constant suction force, and even if the amount of introduced gas decreases, a certain amount of gas (introduced gas, exhaust gas, etc.) is sucked and exhausted from the inside of the cylindrical furnace. Contact with the introduced gas is reduced, diffusion of the combustion gas flame in the cylindrical furnace is suppressed, mixing and stirring of the combustion gas flame and unburned gas is reduced, and combustion efficiency may be reduced. It was.
燃焼装置における導入ガス等の不完全燃焼を防止する技術として、例えば横断面が略矩形状の箱型の炉(以下、箱型炉と称する)を用い、その箱型炉の対向する一対の内壁に対し、複数の滞留用突条を導入ガスの移動方向(箱型炉内における移動方向)と略直角方向に突出させて配設することにより、導入ガスや未燃ガスを箱型炉内にてある程度滞留させる技術が知られている(例えば、特許文献1)。
特許第3120333号公報(段落[0006]〜[0009]等)。
As a technique for preventing incomplete combustion of introduced gas or the like in a combustion apparatus, for example, a box furnace having a substantially rectangular cross section (hereinafter referred to as a box furnace) is used, and a pair of opposed inner walls of the box furnace is used. On the other hand, by introducing a plurality of staying protrusions so as to protrude in a direction substantially perpendicular to the moving direction of the introduced gas (moving direction in the box furnace), the introduced gas and unburned gas can be introduced into the box furnace. For example, Patent Document 1 discloses a technique for retaining a certain amount.
Japanese Patent No. 3120333 (paragraphs [0006] to [0009]).
前記のように滞留用突条を備えた箱型炉において、その箱型炉内の略中央部に対し赤熱筒を配置することにより、導入ガスや未燃ガスを箱型炉内にてある程度滞留させる技術も知られている(例えば、特許文献2)。
特開2000−274627号公報(特許請求の範囲等)。
In the box furnace provided with the staying protrusions as described above, the introduced gas and unburned gas are retained to some extent in the box furnace by disposing the red hot cylinder to the substantially central portion in the box furnace. The technique to make is also known (for example, patent document 2).
JP 2000-274627 A (Claims etc.).
また、筒状炉内における導入ガスの導入口に対して、その導入ガスを旋回させるための部材を設け、筒状炉内の排気口付近に格子煉瓦を設けることにより、燃焼ガス火炎を前記格子煉瓦にて反転させ筒状炉内にて乱流を形成する技術が知られている(例えば、特許文献3)。
特開昭48−29013号公報(特許請求の範囲,第2図,第3図等)。
Further, a member for turning the introduced gas is provided with respect to the inlet of the introduced gas in the cylindrical furnace, and a lattice brick is provided in the vicinity of the exhaust outlet in the cylindrical furnace, so that the combustion gas flame is A technique for reversing with brick and forming turbulent flow in a cylindrical furnace is known (for example, Patent Document 3).
Japanese Patent Laid-Open No. 48-29013 (Claims, FIGS. 2 and 3).
また、予熱室,燃焼室を構成した筒状炉において、それら予熱室,燃焼室に導入ガスを予熱するためのバーナ,予熱された導入ガスを着火するためのバーナを備えた技術が知られている(例えば、非特許文献1)。
実開昭57−199723号公報(実用新案登録請求の範囲,第2図,第3図等)。
In addition, in a cylindrical furnace configured with a preheating chamber and a combustion chamber, a technology including a burner for preheating the introduced gas into the preheating chamber and the combustion chamber and a burner for igniting the preheated introduced gas is known. (For example, Non-Patent Document 1).
Japanese Utility Model Laid-Open No. 57-199723 (the scope of claims for utility model registration, FIGS. 2 and 3).
さらに、仕切り板を介して垂直方向に複数室仕切られ、その仕切り板に排出ガス用の通過孔が穿設された筒状炉(以下、複数室炉と称する)において、その複数室炉内の火炎,燃焼用空気が旋回するようにし、前記の通過孔に加熱接触部材を設けた技術が知られている(例えば、特許文献4)。
特開平11−132423号公報(特許請求の範囲等)。
Furthermore, in a cylindrical furnace (hereinafter, referred to as a multi-chamber furnace) in which a plurality of chambers are partitioned in a vertical direction via a partition plate and a passage hole for exhaust gas is formed in the partition plate (hereinafter referred to as a multi-chamber furnace), A technique is known in which a flame and combustion air are swirled and a heating contact member is provided in the passage hole (for example, Patent Document 4).
Japanese Patent Laid-Open No. 11-132423 (claims, etc.).
さらにまた、筒状炉の導入ガスの導入口に対向した位置に対して、前記導入ガスを反転するための凹部を形成し、凹部により反転した導入ガスに対して撹拌用ガスを噴射させる技術が知られている(例えば、特許文献5)。
特開2000−28118号公報(特許請求の範囲等)。
Furthermore, there is a technique in which a recess for reversing the introduction gas is formed at a position facing the introduction gas introduction port of the cylindrical furnace, and the stirring gas is injected into the introduction gas reversed by the depression. Known (for example, Patent Document 5).
JP 2000-28118 A (claims, etc.).
加えて、炉に接続された排出ガス用の煙道において、排出ガスを長時間滞留かつ撹拌するために屈曲状とすると共に、その煙道内部を高温に保つ技術が知られている(例えば、特許文献6)。
特開平11−132423号公報(特許請求の範囲等)。
In addition, in the flue for exhaust gas connected to the furnace, a technique for keeping the flue inside at a high temperature while keeping the exhaust gas bent and stir for a long time is known (for example, Patent Document 6).
Japanese Patent Laid-Open No. 11-132423 (claims, etc.).
加えてまた、炉の側壁に偏心送気口を設けることにより、炉内に導入された燃焼用の空気を旋回させる技術が知られている(例えば、特許文献7)。
特開平11−51307号公報(特許請求の範囲,段落[0009],[0010],図1乃至図5等)。
In addition, a technique for swirling combustion air introduced into the furnace by providing an eccentric air supply port on the side wall of the furnace is known (for example, Patent Document 7).
Japanese Patent Laid-Open No. 11-51307 (Claims, paragraphs [0009] and [0010], FIGS. 1 to 5 and the like).
前記の各特許文献に示したように、箱型炉,格子煉瓦を用いた炉,予熱室と燃焼室とから成る炉,複数室炉,内部に凹部が形成された炉,煙道を加熱する機構,偏心送気口を備えた炉を構成した従来の燃焼装置は、炉の構造や、炉内における燃焼バーナ(放射火炎の放射方向),排気口,導入ガスの導入口(導入方向)の位置等の複合要因に鑑み、各々最適な構成により炉内の燃焼効率を高め完全燃焼できるように工夫されている。   As shown in each of the above patent documents, a box furnace, a furnace using lattice bricks, a furnace composed of a preheating chamber and a combustion chamber, a multi-chamber furnace, a furnace having a recess formed therein, and a flue are heated. The conventional combustor with a mechanism and a furnace equipped with an eccentric air supply port consists of the structure of the furnace, the combustion burner in the furnace (radiation direction of the radiant flame), the exhaust port, and the introduction port of the introduction gas (introduction direction). In view of complex factors such as position, the optimum configuration is devised so that the combustion efficiency in the furnace is increased and complete combustion is possible.
しかしながら、従来の燃焼装置で利用されている燃焼効率を高める技術は、図5に示したような炉に適用、すなわち少なくとも内壁の横断面形状が略円状の炉であって、熱分解ガスを炉の軸心偏位方向に導入して旋回(すなわち、炉の湾曲した内壁を利用して導入ガスを旋回)させ、その旋回流の軸心付近に対して燃焼バーナの放射火炎が放射される構造の円筒炉に適用することは困難である。   However, the technique for improving the combustion efficiency used in the conventional combustion apparatus is applied to a furnace as shown in FIG. 5, that is, a furnace having at least a substantially circular cross section on the inner wall, It is introduced in the direction of axial deviation of the furnace and swirled (that is, the introduced gas is swirled using the curved inner wall of the furnace), and the radiant flame of the combustion burner is radiated near the axis of the swirling flow It is difficult to apply to a cylindrical furnace of structure.
本発明は、前記課題に基づいてなされたものであり、少なくとも内壁の横断面が略円状の炉であって燃焼バーナの放射火炎が炉の軸心に沿って放射される構造の円筒炉において、円筒炉に導入される導入ガスを旋回および拡散し、その導入ガスと燃焼バーナの放射火炎との接触を促進させると共に、前記放射火炎,燃焼ガス火炎,未燃ガスとを拡散し、放射火炎や燃焼ガス火炎と未燃ガスとの接触を促進させることにより、円筒炉内の燃焼効率を向上させる加熱処理システムを提供することにある。   The present invention has been made based on the above problems, and is a cylindrical furnace having a structure in which at least the inner wall has a substantially circular cross section and a radiant flame of a combustion burner is radiated along the axis of the furnace. The gas introduced into the cylindrical furnace is swirled and diffused to promote contact between the introduced gas and the radiant flame of the combustion burner, and the radiant flame, combustion gas flame, and unburned gas are diffused to radiate flame. Another object of the present invention is to provide a heat treatment system that improves the combustion efficiency in a cylindrical furnace by promoting contact between the combustion gas flame and the unburned gas.
本発明は、前記課題の解決を図るために、請求項1記載の発明は、被処理物(例えば、有機性物質(植物由来の端材物,プラスチック類を含む石油製品由来の高分子物質等),無機性物質,各種汚泥(汚泥,土壌,土砂等))を間接加熱処理することが可能な熱分解処理装置と、その間接加熱処理によって発生した熱分解ガスを燃焼(例えば、温度800℃以上,滞留時間2秒以上で燃焼)することが可能な円筒炉を備えた燃焼装置と、を構成したシステムであって、前記の燃焼装置は、少なくとも内壁の横断面が円状の円筒炉を備え、その炉の軸心における一端側に燃焼バーナおよび他端側に排気口を備え、前記の熱分解ガスを円筒炉の側壁から該円筒炉の軸心偏位方向に導入させる導入管路を備えた加熱処理システムに関するものである。そして、前記円筒炉内において該円筒炉の軸心と交差する方向(例えば、軸心偏位方向,導入ガスの旋回方向,円筒炉の径方向)に対して略平行に棒状の撹拌手段(例えば、横断面の形状が略円状,略楕円状,略四角形状,略矩形状,略菱形状等や、燃焼バーナ側または排気口側に傾斜した略矩形状の撹拌手段)を1個以上(円筒炉内の容積,熱分解ガスの発生量等を考慮して複数個)配置したことを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a material to be treated (for example, an organic substance (a plant-derived scrap material, a high-molecular substance derived from petroleum products including plastics, etc.). ), Inorganic substances, various sludges (sludge, soil, earth and sand, etc.)) and pyrolysis treatment apparatus capable of indirect heat treatment, and combustion of pyrolysis gas generated by the indirect heat treatment (for example, temperature 800 ° C. A combustion apparatus having a cylindrical furnace capable of burning in a residence time of 2 seconds or more), wherein the combustion apparatus includes a cylindrical furnace having at least a circular cross section of the inner wall. Provided with a combustion burner on one end side in the axial center of the furnace and an exhaust port on the other end side, and an introduction pipe for introducing the pyrolysis gas from the side wall of the cylindrical furnace in the axial deviation direction of the cylindrical furnace. It is related with the heat processing system providedIn the cylindrical furnace, a bar-like stirring means (for example, substantially parallel to the direction crossing the axial center of the cylindrical furnace (for example, the axial deviation direction, the swirl direction of the introduced gas, the radial direction of the cylindrical furnace)) 1 or more (agitating means having a substantially circular shape, a substantially elliptical shape, a substantially rectangular shape, a substantially rectangular shape, a substantially rhombus shape, or a substantially rectangular stirring means inclined to the combustion burner side or the exhaust port side) It is characterized in that it is arranged in consideration of the volume in the cylindrical furnace, the generation amount of pyrolysis gas, etc.).
請求項2記載の発明は、前記請求項1記載の発明において、前記撹拌手段は、前記燃焼バーナの放射火炎の位置(または、燃焼ガス火炎の位置,円筒炉の軸心に沿った位置)に配置したことを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the stirring means is located at the position of the radiant flame of the combustion burner (or the position of the combustion gas flame, the position along the axis of the cylindrical furnace). It is arranged.
請求項3記載の発明は、前記請求項1記載の発明において、前記撹拌手段は、前記燃焼バーナの放射火炎(または、燃焼ガス火炎)の位置と、前記導入管路から導入される導入ガスの移動経路(旋回経路)と、に配置したことを特徴とする。   According to a third aspect of the present invention, in the first aspect of the present invention, the stirring means includes a position of a radiant flame (or a combustion gas flame) of the combustion burner and an introduction gas introduced from the introduction pipe. It is characterized by being arranged on a moving route (turning route).
請求項4記載の発明は、前記請求項1乃至3記載の発明において、前記の撹拌手段は、前記円筒炉内を横断するように配置したことを特徴とする。   According to a fourth aspect of the present invention, in the first to third aspects of the present invention, the stirring means is disposed so as to cross the inside of the cylindrical furnace.
請求項5記載の発明は、前記請求項1乃至3記載の発明において、前記の撹拌手段は、前記円筒炉の内壁から突出するように配置(例えば、片持ち梁状に配置)したことを特徴とする。   According to a fifth aspect of the present invention, in the first to third aspects of the present invention, the stirring means is arranged so as to protrude from the inner wall of the cylindrical furnace (for example, arranged in a cantilever shape). And
本発明のように少なくとも内壁の横断面が略円状の円筒炉内において撹拌手段を配置したことにより、その円筒炉内に導入される導入ガス,放射火炎,燃焼ガス火炎等が前記の撹拌手段に衝突し、例えば該撹拌手段における排気口側(導入ガス等の通流背部側)に渦が形成され、それら導入ガス,放射火炎,燃焼ガス火炎等は円筒炉内全域にて撹拌されながら拡散する。また、前記の撹拌手段は棒状であるため、前記の導入ガス,放射火炎,燃焼ガス火炎等は、排気口方向への移動が妨げられない。   By arranging the stirring means in a cylindrical furnace having at least a substantially circular cross section of the inner wall as in the present invention, the introduced gas, radiation flame, combustion gas flame, etc. introduced into the cylindrical furnace are the above-mentioned stirring means. For example, a vortex is formed on the exhaust port side (the back side of the flow of introduced gas, etc.) in the stirring means, and the introduced gas, radiant flame, combustion gas flame, etc. diffuse while being stirred throughout the entire cylindrical furnace. To do. Further, since the stirring means is rod-shaped, the introduction gas, the radiant flame, the combustion gas flame, and the like are not hindered from moving in the direction of the exhaust port.
なお、前記撹拌手段には、耐火性を有するものであれば、種々の材料から成るものを用いて良い。   The stirring means may be made of various materials as long as it has fire resistance.
以上示したように本発明によれば、導入ガス,放射火炎,燃焼ガス火炎等が円筒炉内全域にて撹拌されながら拡散するため、放射火炎や燃焼ガス火炎に対する導入ガスや未燃ガスの接触が促進され、円筒炉内における導入ガス等の滞留時間が増加および燃焼効率が向上(すなわち、完全燃焼)する。   As described above, according to the present invention, the introduced gas, the radiant flame, the combustion gas flame, and the like diffuse while being stirred throughout the cylindrical furnace, so that the introduced gas and the unburned gas contact the radiant flame and the combustion gas flame. And the residence time of the introduced gas or the like in the cylindrical furnace is increased and the combustion efficiency is improved (that is, complete combustion).
ゆえに、有害物質(例えば、ダイオキシン類,硫黄酸化物,窒素酸化物,一酸化炭素等)を含んだ熱分解ガスを安全および効率的に燃焼することができ、環境汚染を引き起こすことなく被処理物の資源利用に大きく貢献することが可能となる。   Therefore, the pyrolysis gas containing harmful substances (for example, dioxins, sulfur oxides, nitrogen oxides, carbon monoxide, etc.) can be burned safely and efficiently, and the object to be treated without causing environmental pollution. It is possible to greatly contribute to the use of resources.
以下、本発明の実施の形態における加熱処理システムを図面等に基づいて詳細に説明する。なお、図5に示すものと同様なものには同一符号等を用いて、その詳細な説明を省略する。   Hereinafter, a heat treatment system according to an embodiment of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol etc. are used for the thing similar to what is shown in FIG. 5, and the detailed description is abbreviate | omitted.
本実施の形態は、内壁の横断面が略円状の円筒炉を備える燃焼装置を構成した加熱処理システムにおいて、円筒炉内に導入(円筒炉の軸心偏位方向に導入)される導入ガスの移動経路(例えば、導入ガスが旋回する経路),燃焼バーナの放射火炎が放射される位置(例えば、円筒炉の軸心付近)や燃焼ガス火炎の位置(例えば、導入ガスが燃焼して燃焼ガス火炎が発生する位置)等に対し、円筒炉の軸心と交差する方向(例えば、軸心偏位方向,導入ガスの旋回方向,円筒炉の径方向)と略平行に撹拌手段(耐火性を有する撹拌手段;例えば、後述のガス撹拌部材,火炎撹拌部材)を横断、または内壁から突出するように配置(必要に応じて複数個の撹拌手段を構成)したものである。   In this embodiment, in a heat treatment system that constitutes a combustion apparatus including a cylindrical furnace whose inner wall has a substantially circular cross section, an introduced gas that is introduced into the cylindrical furnace (introduced in the direction of axial displacement of the cylindrical furnace). Travel path (for example, the path in which the introduced gas turns), the position where the radiant flame of the combustion burner is radiated (for example, near the axis of the cylindrical furnace) and the position of the combustion gas flame (for example, the introduced gas burns and burns) Stirring means (fire resistance) in a direction substantially parallel to the direction intersecting the axial center of the cylindrical furnace (for example, the direction of axial displacement, the direction of swirling of the introduced gas, the radial direction of the cylindrical furnace) For example, a gas stirring member and a flame stirring member, which will be described later, are arranged so as to traverse or protrude from the inner wall (a plurality of stirring means are configured as necessary).
前記のように、円筒炉内を横断または内壁から突出するように撹拌手段を構成したことにより、その撹拌手段に衝突した導入ガス,放射火炎,燃焼ガス火炎等は円筒炉内全域にて撹拌されながら拡散するため、放射火炎や燃焼ガス火炎に対する導入ガスや未燃ガスの接触が促進され、円筒炉内における燃焼効率が向上(すなわち、完全燃焼)する。   As described above, since the stirring means is configured to cross the cylindrical furnace or protrude from the inner wall, the introduced gas, radiation flame, combustion gas flame, etc. colliding with the stirring means are stirred throughout the cylindrical furnace. However, since it diffuses, the contact of the introduced gas and the unburned gas with the radiant flame or the combustion gas flame is promoted, and the combustion efficiency in the cylindrical furnace is improved (that is, complete combustion).
図1A(縦断面図),B(横断面(A1−A1断面)図)は、本実施の形態の加熱処理システムに用いられる燃焼装置の一例を示す概略説明図である。図1において、符号10は、耐火性を有する材料から成り導入ガスを撹拌するための棒状の部材(以下、ガス撹拌部材と称する)を示すものであり、円筒炉51の径方向と略平行に横断するように、その円筒炉51内における導入ガスの移動経路(例えば、導入ガスが旋回する経路)に対して配置(例えば、軸心偏位方向に配置)される。   1A (longitudinal sectional view) and B (transverse sectional view (A1-A1 sectional view)) are schematic explanatory views showing an example of a combustion apparatus used in the heat treatment system of the present embodiment. In FIG. 1, reference numeral 10 denotes a rod-shaped member (hereinafter referred to as a gas stirring member) that is made of a material having fire resistance and stirs the introduced gas, and is substantially parallel to the radial direction of the cylindrical furnace 51. It arrange | positions with respect to the movement path | route (For example, path | route in which introduction gas turns) in the cylindrical furnace 51 so that it may cross (for example, arrangement | positioning in an axial center deviation direction).
前記の導入ガスは円筒炉51内にて旋回しながら排気口53方向に移動するため、前記ガス撹拌部材10は導入管路54の導入口54a(または導入管路55の導入口55a)よりも排気口53側に配置することが好ましい。   Since the introduced gas moves in the direction of the exhaust port 53 while swirling in the cylindrical furnace 51, the gas stirring member 10 is more than the introduction port 54a of the introduction pipe line 54 (or the introduction port 55a of the introduction pipe line 55). It is preferable to arrange on the exhaust port 53 side.
符号11は、耐火性を有する材料から成り放射火炎や燃焼ガス火炎を撹拌するための棒状の部材(以下、火炎撹拌部材と称する)を示すものであり、前記放射火炎または燃焼ガス火炎と交差するように、円筒炉51の径方向と略平行に横断して配置される。   Reference numeral 11 denotes a rod-shaped member (hereinafter referred to as a flame stirring member) made of a material having fire resistance for stirring the radiation flame or the combustion gas flame, and intersects with the radiation flame or the combustion gas flame. Thus, it is arranged so as to be substantially parallel to the radial direction of the cylindrical furnace 51.
図1に示したように構成された円筒炉によれば、その円筒炉内に導入された導入ガスは単に該円筒炉内壁に沿って旋回するのではなく、前記ガス撹拌部材と衝突して撹拌および拡散されながら旋回する。また、放射火炎は単に円筒炉の軸心に沿って放射されるのではなく、火炎撹拌部材と衝突し撹拌および拡散(例えば、円筒炉の内壁方向に拡散)して放射される。さらに、燃焼ガス火炎においても、単に排気口方向に移動するのではなく、火炎撹拌部材と衝突して撹拌および拡散(例えば、円筒炉の内壁方向に拡散)されて移動する。   According to the cylindrical furnace configured as shown in FIG. 1, the introduced gas introduced into the cylindrical furnace does not simply swirl along the inner wall of the cylindrical furnace, but collides with the gas stirring member and stirs. And swirl while being diffused. Further, the radiant flame is not radiated along the axial center of the cylindrical furnace, but is radiated by colliding with the flame stirring member and stirring and diffusing (for example, diffusing toward the inner wall of the cylindrical furnace). Further, the combustion gas flame does not simply move in the direction of the exhaust port, but collides with the flame stirring member and is stirred and diffused (for example, diffused toward the inner wall of the cylindrical furnace) and moved.
これにより、放射火炎と導入ガスとの接触,燃焼ガス火炎(または放射火炎)と未燃ガスとの混合撹拌が十分には行われ、円筒炉内にて燃焼効率が良好となり、導入ガスまたは未燃ガスの完全燃焼を図ることができる。   As a result, the contact between the radiant flame and the introduced gas, the mixing and stirring of the combustion gas flame (or radiant flame) and the unburned gas are sufficiently performed, and the combustion efficiency is improved in the cylindrical furnace. Complete combustion of the fuel gas can be achieved.
なお、前記のガス撹拌部材10や火炎撹拌部材11においては、例えば図2に示すように円筒炉51の内壁51aから該円筒炉51の径方向に対して突出させて片持ち梁状に配置しても良い。また、前記ガス撹拌部材10や火炎撹拌部材11の形状においては、横断面(すなわち、導入ガスの旋回経路に交差する方向または円筒炉51の軸心方向(または、放射火炎等の放射方向)の断面)の形状が略円状で棒状の部材に限られるものではなく、例えば図3A,Bに示すように略楕円状,略四角形状,略矩形状,略菱形状や、燃焼バーナ側または排気口側に傾斜した略矩形状であっても良い。   In the gas stirring member 10 and the flame stirring member 11, for example, as shown in FIG. 2, the gas stirring member 10 and the flame stirring member 11 are arranged in a cantilever shape by projecting from the inner wall 51a of the cylindrical furnace 51 in the radial direction of the cylindrical furnace 51. May be. Further, in the shape of the gas agitating member 10 or the flame agitating member 11, the cross section (that is, the direction crossing the swirling path of the introduced gas or the axial direction of the cylindrical furnace 51 (or the radiation direction of the radiation flame or the like)). The shape of the cross section is not limited to a substantially circular and rod-shaped member. For example, as shown in FIGS. 3A and 3B, a substantially elliptical shape, a substantially rectangular shape, a substantially rectangular shape, a substantially rhombus shape, a combustion burner side or an exhaust gas It may be a substantially rectangular shape inclined toward the mouth side.
図4は、本実施の形態における加熱処理システムの一例を示す概略説明図である。図4において、乾燥炉3は、回転キルン方式を採用した回転自在の回転炉31と、その回転炉31の外周側に形成されたガスダクト(図示省略)を介して導入される熱風ガスにより該回転炉31を外部から加熱することが可能な外部加熱手段としての加熱ジャケット32と、前記の回転炉31を該回転炉31の両端側にて回転自在に支承する支持ローラ310と、前記の回転炉31を回転駆動する回転駆動源311と、を具備して成る。なお、前記の熱風ガスは、熱風炉24から導入される。   FIG. 4 is a schematic explanatory diagram illustrating an example of a heat treatment system in the present embodiment. In FIG. 4, the drying furnace 3 is rotated by hot air gas introduced through a rotatable rotary furnace 31 adopting a rotary kiln system and a gas duct (not shown) formed on the outer peripheral side of the rotary furnace 31. A heating jacket 32 as an external heating means capable of heating the furnace 31 from the outside, a support roller 310 for rotatably supporting the rotary furnace 31 at both ends of the rotary furnace 31, and the rotary furnace And a rotational drive source 311 for rotationally driving 31. The hot air gas is introduced from the hot air furnace 24.
前記の回転炉31の一端側には、原料(被処理物;例えば、有機性物質の各種廃棄物等)を搬入するための供給口(図示省略)が設けられ、その他端側には排出口(図示省略)が設けられる。また、回転炉31内部には、搬送物を撹拌搬送するための送り羽根(図示省略)が複数枚具備される。そして、ダクト30から供給された原料(必要に応じて計量された原料)を前記の供給口側から回転炉31に導入し、その回転炉31を回転させることによって、前記の原料を撹拌しながら排出口側へ移送することが可能となる。なお、前記ダクト30には、原料を投入するホッパー設備301が設けられる。   One end side of the rotary furnace 31 is provided with a supply port (not shown) for carrying a raw material (object to be treated; for example, various wastes of organic substances), and a discharge port on the other end side. (Not shown) is provided. In addition, a plurality of feed blades (not shown) are provided inside the rotary furnace 31 for agitating and conveying the conveyed product. Then, the raw material supplied from the duct 30 (the raw material weighed as necessary) is introduced into the rotary furnace 31 from the supply port side, and the rotary furnace 31 is rotated while stirring the raw material. It becomes possible to transfer to the discharge port side. The duct 30 is provided with a hopper facility 301 for charging raw materials.
炭化炉2は、乾燥炉3にて乾燥処理された原料を熱分解処理加工する手段であり、回転キルン方式を採用した前記乾燥炉3と同様の構成をなし、回転炉21,加熱ジャケット22,ダクト23,支持ローラ210,回転駆動源211を備える。   The carbonization furnace 2 is a means for subjecting the raw material dried in the drying furnace 3 to a thermal decomposition treatment, and has the same configuration as that of the drying furnace 3 adopting a rotary kiln system, and includes a rotary furnace 21, a heating jacket 22, A duct 23, a support roller 210, and a rotation drive source 211 are provided.
前記の乾燥炉3および炭化炉2は、図示するように、前記乾燥炉3の排出口と炭化炉2の供給口とが連絡するように配置される。この場合、乾燥炉3の排出口と炭化炉2の供給口には、これら排出口と供給口を覆って連通する連絡ダクト20が設けられる。この連絡ダクト20には、前記の乾燥炉3内で発生した水蒸気,炭化炉2内で発生した熱分解ガスをそれぞれガス燃焼炉6に移送するための経路(例えば、配管)が接続される。また、連絡ダクト20内には、乾燥した原料を炭化炉2に誘導するためのガイド201が設けられる。   The drying furnace 3 and the carbonization furnace 2 are arranged so that the discharge port of the drying furnace 3 and the supply port of the carbonization furnace 2 communicate with each other as illustrated. In this case, the discharge port of the drying furnace 3 and the supply port of the carbonization furnace 2 are provided with a communication duct 20 that covers and communicates with the discharge port and the supply port. The communication duct 20 is connected to a path (for example, a pipe) for transferring the steam generated in the drying furnace 3 and the pyrolysis gas generated in the carbonization furnace 2 to the gas combustion furnace 6. Further, a guide 201 for guiding the dried raw material to the carbonization furnace 2 is provided in the communication duct 20.
熱風炉24は、熱風ガスを供給するための手段であり、熱風ガスを発生させるための燃焼バーナー240が備えられている。前記の熱風ガスは、循環ブロア33によって炭化炉2の加熱ジャケット22に供給され、回転炉21を加熱する。その後、前記の炭化炉2の回転炉21を加熱した熱風ガスは、乾燥炉3の加熱ジャケット32内に供給され、回転炉31を加熱する。   The hot air furnace 24 is a means for supplying hot air gas, and is provided with a combustion burner 240 for generating hot air gas. The hot air gas is supplied to the heating jacket 22 of the carbonization furnace 2 by the circulation blower 33 to heat the rotary furnace 21. Then, the hot air gas which heated the rotary furnace 21 of the said carbonization furnace 2 is supplied in the heating jacket 32 of the drying furnace 3, and the rotary furnace 31 is heated.
なお、前記の加熱ジャケット32から排出された熱風ガスは排気(例えば、屋外へ排気)されるが、その一部のガスはエゼクタブロア41,42を介してエゼクタ41a,42a(導入管路54,55に相当)に供給され、燃焼装置5のエゼクタ駆動ガスとしての利用に供される。   The hot air gas exhausted from the heating jacket 32 is exhausted (for example, exhausted to the outside), but some of the gas is ejected from the ejector blowers 41, 42 through the ejectors 41a, 42a (introducing conduits 54, And is used for the ejector driving gas of the combustion device 5.
また、前記の熱風ガスには、温度調整用の空気が注入され、ガス温度が適宜調整される。例えば、原料が脱水汚泥である場合、原料は乾燥炉3において例えば150℃〜350℃で間接加熱され、次いで炭化炉2において例えば450℃〜600℃で間接加熱される。このようにして、乾燥炉3内に導入される原料は乾燥処理された後、炭化炉2内にて熱分解処理されて炭化物となる。   In addition, temperature adjusting air is injected into the hot air gas, and the gas temperature is appropriately adjusted. For example, when the raw material is dehydrated sludge, the raw material is indirectly heated at, for example, 150 to 350 ° C. in the drying furnace 3, and then indirectly heated at, for example, 450 to 600 ° C. in the carbonization furnace 2. In this way, the raw material introduced into the drying furnace 3 is dried and then pyrolyzed in the carbonizing furnace 2 to become carbide.
燃焼装置5の円筒炉51内に導入された被処理ガス(熱分解ガス,水蒸気等)は燃焼バーナ52(または燃焼ガス火炎)によって燃焼(例えば、温度800℃以上,滞留時間2秒以上で燃焼)されるが、前記熱分解ガス,可燃性成分が十分発生している場合、その発生量に応じて燃焼バーナー52の燃料の供給を規制することにより適宜制限しても良い。なお、前記の各被処理ガスには、例えば系外から燃焼補助のための空気が適宜導入されるものとする。   The gas to be treated (pyrolysis gas, steam, etc.) introduced into the cylindrical furnace 51 of the combustion apparatus 5 is combusted by the combustion burner 52 (or combustion gas flame) (for example, at a temperature of 800 ° C. or more and a residence time of 2 seconds or more). However, when the pyrolysis gas and the combustible component are sufficiently generated, the fuel supply to the combustion burner 52 may be appropriately restricted according to the generation amount. Note that air to assist combustion is appropriately introduced into each of the gases to be treated from outside the system, for example.
熱交換器6は、燃焼装置5にて処理された排出ガスを冷却処理する手段であり、例えば空気を冷却媒体とする気体−気体熱交換方式のものが用いられる。この熱交換器6により、被冷却ガスを例えば200〜150℃程度までに冷却処理するが、前記被冷却ガスには新鮮な空気が適宜供給され、そのガス温度が適切に調整される。そして、冷却されたガスは、バグフィルタ61に供した後、ブロア62によって煙突73から屋外に開放している。なお、本実施の形態においては、熱交換器6にて加熱された空気は、熱風炉24での熱風ガスとして利用されている。   The heat exchanger 6 is a means for cooling the exhaust gas processed in the combustion device 5, and for example, a gas-gas heat exchange type using air as a cooling medium is used. The heat exchanger 6 cools the gas to be cooled to, for example, about 200 to 150 ° C., and fresh air is appropriately supplied to the gas to be cooled, and the gas temperature is appropriately adjusted. Then, after the cooled gas is supplied to the bag filter 61, it is opened to the outdoors from the chimney 73 by the blower 62. In the present embodiment, the air heated by the heat exchanger 6 is used as hot air gas in the hot stove 24.
以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.
例えば、本実施形態に示した炭化物の生成施設によれば、種々の原料、例えば汚泥由来の物質(下水汚泥,し尿汚泥,生産活動に伴って発生する各種産業汚泥等),植物由来の物質(廃木材,建材等),高分子物質由来の物質(樹脂,ゴム等)や、それら各物質の混合物から炭化物等を得ることができる。   For example, according to the carbide generation facility shown in the present embodiment, various raw materials, for example, sludge-derived substances (sewage sludge, human waste sludge, various industrial sludges generated during production activities), plant-derived substances ( Waste wood, building materials, etc.), substances derived from polymer substances (resins, rubber, etc.), and mixtures of these substances can be used to obtain carbides.
また、乾燥炉,炭化炉,燃焼装置の円筒炉,熱交換器等の各処理温度は、例えば被処理物である原料の種類や量に応じて種々変更することができる。   Moreover, each processing temperature, such as a drying furnace, a carbonization furnace, a cylindrical furnace of a combustion apparatus, and a heat exchanger, can be variously changed according to, for example, the type and amount of the raw material to be processed.
本実施の形態における加熱処理システムの燃焼装置の一例を示す概略説明図。Schematic explanatory drawing which shows an example of the combustion apparatus of the heat processing system in this Embodiment. 本実施の形態における加熱処理システムの燃焼装置の他の例を示す概略説明図。Schematic explanatory drawing which shows the other example of the combustion apparatus of the heat processing system in this Embodiment. 本実施の形態における撹拌手段の一例を示す概略説明図。Schematic explanatory drawing which shows an example of the stirring means in this Embodiment. 本実施の形態における加熱処理システムの一例を示す概略説明図。Schematic explanatory drawing which shows an example of the heat processing system in this Embodiment. 一般的な加熱処理システムの燃焼装置を示す概略説明図。Schematic explanatory drawing which shows the combustion apparatus of a general heat processing system.
符号の説明Explanation of symbols
2…炭化炉
3…乾燥炉
5…燃焼装置
10…ガス撹拌部材
11…火炎撹拌部材
51…円筒炉
52…燃焼バーナ
53…排気口
54,55…導入管路
DESCRIPTION OF SYMBOLS 2 ... Carbonization furnace 3 ... Drying furnace 5 ... Combustion apparatus 10 ... Gas stirring member 11 ... Flame stirring member 51 ... Cylindrical furnace 52 ... Combustion burner 53 ... Exhaust port 54, 55 ... Inlet line

Claims (5)

  1. 被処理物を間接加熱処理することが可能な熱分解処理装置と、その間接加熱処理によって発生した熱分解ガスを燃焼することが可能な燃焼装置と、を構成したシステムであって、
    前記の燃焼装置は、少なくとも内壁の横断面が円状の円筒炉を備え、その炉の軸心における一端側に燃焼バーナおよび他端側に排気口を備え、前記の熱分解ガスを円筒炉の側壁から該円筒炉の軸心偏位方向に導入させる導入管路を備えた加熱処理システムにおいて、
    前記円筒炉内における該円筒炉の軸心と交差する方向に対して略平行に棒状の撹拌手段を1個以上配置したことを特徴とする加熱処理システム。
    A system comprising a pyrolysis apparatus capable of indirectly heating a workpiece and a combustion apparatus capable of combusting pyrolysis gas generated by the indirect heat treatment,
    The combustion apparatus includes a cylindrical furnace having at least a circular cross section of the inner wall, a combustion burner on one end side in the axial center of the furnace, and an exhaust port on the other end side. The pyrolysis gas is supplied to the cylindrical furnace. In the heat treatment system provided with the introduction pipe line to be introduced from the side wall in the axial deviation direction of the cylindrical furnace,
    One or more bar-like stirring means are disposed substantially parallel to a direction intersecting the axial center of the cylindrical furnace in the cylindrical furnace.
  2. 前記撹拌手段は、前記燃焼バーナの放射火炎の位置に配置したことを特徴とする請求項1記載の加熱処理システム。   The heat treatment system according to claim 1, wherein the stirring unit is disposed at a position of a radiant flame of the combustion burner.
  3. 前記撹拌手段は、前記燃焼バーナの放射火炎の位置と、前記導入管路から導入される導入ガスの移動経路と、に配置したことを特徴とする請求項1記載の加熱処理システム。   2. The heat treatment system according to claim 1, wherein the stirring means is disposed at a position of a radiant flame of the combustion burner and a moving path of an introduction gas introduced from the introduction pipe.
  4. 前記の撹拌手段は、前記円筒炉内を横断するように配置したことを特徴とする請求項1乃至3記載の加熱処理システム。   4. The heat treatment system according to claim 1, wherein the stirring means is disposed so as to traverse the inside of the cylindrical furnace.
  5. 前記の撹拌手段は、前記円筒炉の内壁から突出するように配置したことを特徴とする請求項1乃至3記載の加熱処理システム。   4. The heat treatment system according to claim 1, wherein the stirring means is disposed so as to protrude from an inner wall of the cylindrical furnace.
JP2003273256A 2003-07-11 2003-07-11 Heating treatment system Granted JP2005030736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003273256A JP2005030736A (en) 2003-07-11 2003-07-11 Heating treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003273256A JP2005030736A (en) 2003-07-11 2003-07-11 Heating treatment system

Publications (1)

Publication Number Publication Date
JP2005030736A true JP2005030736A (en) 2005-02-03

Family

ID=34210545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003273256A Granted JP2005030736A (en) 2003-07-11 2003-07-11 Heating treatment system

Country Status (1)

Country Link
JP (1) JP2005030736A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220366A (en) * 2005-02-10 2006-08-24 Jfe Steel Kk Exhaust gas preheating device and exhaust gas preheating method
JP2006272150A (en) * 2005-03-29 2006-10-12 Jfe Steel Kk Gas mixer and gas mixing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220366A (en) * 2005-02-10 2006-08-24 Jfe Steel Kk Exhaust gas preheating device and exhaust gas preheating method
JP4534783B2 (en) * 2005-02-10 2010-09-01 Jfeスチール株式会社 Exhaust gas preheating apparatus and exhaust gas preheating method
JP2006272150A (en) * 2005-03-29 2006-10-12 Jfe Steel Kk Gas mixer and gas mixing method

Similar Documents

Publication Publication Date Title
US6698365B2 (en) Apparatus for thermal treatment using superheated steam
KR20030028624A (en) Method and apparatus for carbonization treatment of organic waste
KR20180054939A (en) Apparatus and method for pyrolysis carbonizing of sludge
JP2005030736A (en) Heating treatment system
JP2005030735A (en) Heating treatment system
CN111380056A (en) Clean incinerator
KR100933437B1 (en) High water content of smokeless device
JP2004256329A (en) Method and apparatus for refining carbonized material and production facility
KR200422220Y1 (en) Apparatus for burning waste tires
KR200408326Y1 (en) Air supply in the combustion chamber of the combustor
RU2292515C2 (en) Method for recovery of municipal wastes and apparatus for performing the same
KR100490051B1 (en) Drying apparatus for organic waste
JP3435568B2 (en) Continuous carbonization device and continuous carbonization method
KR20010077414A (en) Multiple grate incinerator
KR200335340Y1 (en) Drying apparatus for organic waste
JP2003120910A (en) Heat treating equipment and its treating facility
JP2018076997A (en) Horizontal rotary raw material heating device
KR100467931B1 (en) Burner apparatus for reduce to ashes
KR20210078902A (en) Land drying apparatus for an ocean disposal waste
KR101098219B1 (en) Combustion furnace for thermal- depolimerization of refuse derived fuel
KR20040009041A (en) waste carbonizing machine
KR200204318Y1 (en) Destruction by fire device of waste material
JP4139761B2 (en) Rotary kiln furnace
KR20010113280A (en) Destruction by fire device of waste material
JP3618280B2 (en) Waste carbonization and reduction equipment