JPH05337352A - Apparatus for mixing liquids in nongraviation environment - Google Patents

Apparatus for mixing liquids in nongraviation environment

Info

Publication number
JPH05337352A
JPH05337352A JP4151024A JP15102492A JPH05337352A JP H05337352 A JPH05337352 A JP H05337352A JP 4151024 A JP4151024 A JP 4151024A JP 15102492 A JP15102492 A JP 15102492A JP H05337352 A JPH05337352 A JP H05337352A
Authority
JP
Japan
Prior art keywords
fluid
environment
flowing
intersection
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4151024A
Other languages
Japanese (ja)
Inventor
Takaharu Asano
高治 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4151024A priority Critical patent/JPH05337352A/en
Publication of JPH05337352A publication Critical patent/JPH05337352A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enhance mixing capacity in an apparatus for mixing liquids in a nongravitation environment. CONSTITUTION:A fluid 2 flowing in a longitudinal direction and a fluid 4 flowing in a lateral direction are mixed at a T-shape crossing point 5 to form a passage flowing in the lateral direction and the inside diameter of a longitudinal passage 1 is finely throttled toward the crossing point 5 and the crossing axis of the longitudinal passage 1 is eccentrically formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は宇宙など微小重力環境下
における液体の混合装置に関する。最近、宇宙環境を各
種結晶の成長の場として利用したり、新材料の製造の場
に使用することが行なわれている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid mixing device in a microgravity environment such as space. Recently, the space environment has been used as a place for growing various crystals and as a place for manufacturing new materials.

【0002】然し、宇宙環境においては地上とは異な
り、微小重力による物理現象が存在する。そこで、各種
材料の研究開発や製造を行なうに当たっては宇宙環境の
特質を充分に把握して行なうことが大切である。
However, in the space environment, unlike the earth, there is a physical phenomenon due to microgravity. Therefore, in conducting research and development and manufacturing of various materials, it is important to fully understand the characteristics of the space environment.

【0003】[0003]

【従来の技術】宇宙など微小重力環境下において、数ml
程度かそれ以下の量の液体を均一に混合する必要がしば
しば存在する。
2. Description of the Related Art A few ml in a microgravity environment such as space
Often there is a need to mix liquids of moderate or less volume homogeneously.

【0004】一般に、扱う液体が揮発性であったり、微
小である場合の操作は訓練された人手に頼るのが通例で
あるが、宇宙において行なう場合は人工衛星の打ち上げ
の困難さや、費用が高価につくなどから操作の自動化が
必要である。
In general, when the liquid to be handled is volatile or minute, it is customary to rely on trained personnel for the operation, but when it is performed in space, it is difficult to launch a satellite and the cost is high. It is necessary to automate the operation because it becomes tedious.

【0005】例えば、酵素や抗体などの蛋白質は、その
高度な分子識別力のためバイオセンサの形で研究が進め
られているが、そのためには不純物を含まない単結晶を
完全な形で得ることが必要であり、その方法として結晶
化を宇宙空間で行なうことが期待されている。
[0005] For example, proteins such as enzymes and antibodies have been studied in the form of biosensors because of their high molecular discriminating power. For that purpose, it is necessary to obtain single crystals containing no impurities in perfect form. Is required, and it is expected that crystallization will be performed in outer space as a method.

【0006】然し、この場合でも熟練した実験者が行な
うことは困難であり、自動化装置を使用して行なう必要
がある。さて、蛋白質の結晶化を行なうには、貴重な蛋
白質試料を溶した微小容量の溶液を結晶化剤の溶液と混
合する必要があり、結晶化剤としては高イオン強度の無
機塩例えば硫酸アンモニウム, 塩化セシウム, 塩化ナト
リウムや、有機溶剤例えばポリエチレングリコール, ア
セトン, エチルアルコールなどが使われている。
However, even in this case, it is difficult for a skilled experimenter to carry out, and it is necessary to use an automated device. In order to crystallize a protein, it is necessary to mix a small volume of a solution containing a valuable protein sample with a solution of a crystallization agent.As a crystallization agent, an inorganic salt with a high ionic strength such as ammonium sulfate or chloride is used. Cesium, sodium chloride and organic solvents such as polyethylene glycol, acetone, ethyl alcohol are used.

【0007】然し、これらの溶液は蛋白質溶液と密度が
異なることが多く、そのため攪拌混合を行いにくい。発
明者等は航空機弾道飛行により生ずる微小重力環境にお
いて、攪拌混合装置の機能と構造に関して検討した結
果、微小重力環境の下では溶液相互の密度差による相分
離は解消されるものゝ、溶液の粘度と運動による慣性が
液体の流動に与える影響が相対的に大きくなるために、
やはり種類の異なる溶液は混じりにくいことが明らかに
なった。
However, these solutions often have a density different from that of the protein solution, so that it is difficult to perform stirring and mixing. The inventors examined the function and structure of the agitation mixer in the microgravity environment caused by the ballistic flight of the aircraft. As a result, under the microgravity environment, the phase separation due to the density difference between the solutions was eliminated. Since the effect of inertia due to and motion on the flow of liquid becomes relatively large,
After all, it became clear that different kinds of solutions were difficult to mix.

【0008】そこで、発明者等は図3に示すように縦方
向の流路1を流れる流体2と横方向の流路3を流れる流
体4がT字形をした交差部5で混合して横方向の流路3
に流れる場合、縦方向の流路1を絞って交差させると、
流体2と流体4との間に渦6を生じ攪拌混合ができるこ
とを見出している。(特願平01-155213,平成1年6月15
日出願)
Therefore, as shown in FIG. 3, the inventors mixed the fluid 2 flowing in the vertical flow path 1 and the fluid 4 flowing in the horizontal flow path 3 at the intersection 5 having the T-shape, and then the horizontal direction. Channel 3
When flowing in the direction of,
It has been found that a vortex 6 is generated between the fluid 2 and the fluid 4 to allow stirring and mixing. (Japanese Patent Application No. 01-155213, June 15, 1991
(Japanese application)

【0009】[0009]

【発明が解決しようとする課題】宇宙のような微小重力
空間で種類の異なる数ml程度の微量溶液を自動的に均等
に混合させることは容易ではない。
SUMMARY OF THE INVENTION It is not easy to automatically and evenly mix a small amount of a few milliliters of different kinds of solutions in a microgravity space such as the universe.

【0010】発明者は縦方向の流路を絞ってT字形に交
差させた容器を用いて二種類の流体を供給すると、渦を
生じて混合する現象を見出しているが、この攪拌混合を
より効果的に行なうことが課題である。
The inventor has found that when two kinds of fluids are supplied by using a container having narrowed vertical flow passages and intersecting with each other in a T-shape, vortices are generated and mixed. The challenge is to do it effectively.

【0011】[0011]

【課題を解決するための手段】上記の課題は縦方向に流
れる流体と横方向に流れる流体とが、T字型をした交差
部で混合して横方向に流れる流路において、縦方向流路
の内径を交差部に向かって細く絞ると共に、縦方向の交
差軸を偏心させて形成することを特徴として無重力環境
における液体の混合装置を構成することにより解決する
ことができる。
SUMMARY OF THE INVENTION The above-mentioned problem is solved in the longitudinal flow passage in which the fluid flowing in the vertical direction and the fluid flowing in the horizontal direction are mixed at the T-shaped intersection and flow in the horizontal direction. This can be solved by constructing a liquid mixing device in a weightless environment, characterized in that the inner diameter of is narrowed toward the intersecting portion and the longitudinal intersecting axis is eccentric.

【0012】[0012]

【作用】本発明は発明者等が提案している攪拌混合効果
を更に助長したものである。すなわち、発明者は航空機
弾道飛行によって生ずる微小重力環境において、攪拌混
合効率を上げるために更に検討を行なった結果、交差す
る二本の管の内、絞って形成している管の接合位置を偏
心させると、渦の発生をより効率化できることを見出し
た。
The present invention further promotes the stirring and mixing effect proposed by the inventors. That is, as a result of further study by the inventor in a microgravity environment caused by ballistic flight of an aircraft, in order to improve the mixing efficiency of mixing, the eccentricity of the joint position of the two pipes that intersect each other is formed. By doing so, it was found that the generation of vortices can be made more efficient.

【0013】図1はこの関係を説明するもので、理解を
容易にするために図3の従来構造と同一の物については
同一の番号を付した。すなわち、縦方向の流路1と横方
向の流路3とをT字形に交差させ、流体2と流体4を交
差部5で混合させる場合、液体の慣性が液体の運動に与
える影響が大きいために、縦方向の流路1を交差部5で
絞ったほうが、攪拌混合効果が大きいが、この場合、縦
方向流路1と横方向流路3との交差部5の位置を中心よ
りずらせたほうが効果的なことを見出したものである。
FIG. 1 illustrates this relationship, and for ease of understanding, the same parts as those in the conventional structure of FIG. 3 are designated by the same reference numerals. That is, when the vertical flow path 1 and the horizontal flow path 3 intersect in a T-shape and the fluid 2 and the fluid 4 are mixed at the intersection portion 5, the inertia of the liquid has a great influence on the motion of the liquid. In addition, although the effect of stirring and mixing is greater when the flow passage 1 in the vertical direction is narrowed at the crossing portion 5, in this case, the position of the crossing portion 5 between the vertical flow passage 1 and the horizontal flow passage 3 is displaced from the center. It was found that it is more effective.

【0014】発明者は先に縦方向流路1よりの流体2と
横方向流路3よりの流体4は交差部5で渦6を生ずるこ
とを見出しているが、本発明は同図(B)に示すように
縦方向流路1を偏心させることにより渦6の発生を助長
させたものである。
The inventor has previously found that the fluid 2 from the vertical flow passage 1 and the fluid 4 from the horizontal flow passage 3 generate a vortex 6 at the intersection 5, but the present invention is shown in FIG. As shown in (), the generation of the vortex 6 is promoted by eccentricizing the longitudinal flow path 1.

【0015】なお、微小重力下では液体の慣性の影響が
大きいことから、渦6を発生させるには重量密度の高い
流体を縦方向の流路1に流すのがよく、また、縦方向流
路1は交差部5で絞ったほうが効果的であるが、実験の
結果、直径の2/3 以下、また同図(C)で示す絞り角
(θ)が10°≦θ≦ 60 °の条件が攪拌混合効率が高い
ことが判った。
Since the influence of the inertia of the liquid is great under microgravity, it is preferable to flow a fluid having a high weight density into the flow passage 1 in the vertical direction in order to generate the vortex 6, and also in the flow passage in the vertical direction. No. 1 is more effective when narrowed at the intersection 5, but as a result of experiments, it was found that the condition is 2/3 or less of the diameter and that the diaphragm angle (θ) shown in FIG. It was found that the stirring and mixing efficiency was high.

【0016】[0016]

【実施例】内径1mmの透明なアクリル樹脂を用い、直径
が同じな縦方向流路1と横方向流路3を図2に示すよう
に三種類変えてT字形の流路を準備した。
EXAMPLE A T-shaped flow path was prepared by using a transparent acrylic resin having an inner diameter of 1 mm and changing three kinds of the vertical flow path 1 and the horizontal flow path 3 having the same diameter as shown in FIG.

【0017】こゝで、同図(A)は本発明を適用したも
の、同図(B)は発明者が先に提案してある構造、また
同図(C)は通常の構造である。そして、微小重力環境
としてNASAの航空機(KC-135) の弾道飛行で作りだ
される20秒間の0.01〜0.02Gを使用した。
Here, the figure (A) is the one to which the present invention is applied, the figure (B) is the structure previously proposed by the inventor, and the figure (C) is the normal structure. As a microgravity environment, we used 0.01-0.02G for 20 seconds created by ballistic flight of NASA aircraft (KC-135).

【0018】こゝで、縦方向の流路1を流す流体2とし
ては蛋白質溶液(ウマミオグロビン1.0 重量%) を、ま
た横方向の流路3を流す流体4としては飽和度50%の硫
酸アンモニウム溶液を使用し、送液用ポンプとしてはシ
リンジポンプ( テルモ社製STC-521)を使用し、送液速度
を変えて実験を行なった。
Here, a protein solution (1.0% by weight of horse myoglobin) is used as the fluid 2 flowing through the vertical flow path 1, and an ammonium sulfate solution having a saturation degree of 50% is used as the fluid 4 flowing through the horizontal flow path 3. Was used, and a syringe pump (STC-521 manufactured by Terumo Corp.) was used as a liquid-feeding pump, and experiments were conducted while changing the liquid-feeding speed.

【0019】混合の挙動はビデオカメラに収録し、解析
に供した。測定法としてはT字管の横方向流路の後部を
上下に分岐させ、その各々の分岐路の先にUV吸収測定機
を設置してミオグロビン濃度を連続的に測定した。
The mixing behavior was recorded on a video camera and subjected to analysis. As a measuring method, the rear part of the lateral flow path of the T-shaped tube was vertically branched, and a UV absorption measuring instrument was installed at the tip of each branch path to continuously measure the myoglobin concentration.

【0020】すなわち、送液速度を変えて混合後に上下
二液のミオグロビン濃度差を比較した。また、実験装置
には三軸加速度計を搭載して装置に加わる加速度をチェ
ックした。
That is, the difference in myoglobin concentration between the upper and lower liquids was compared after mixing while changing the liquid feeding speed. In addition, the experimental equipment was equipped with a triaxial accelerometer to check the acceleration applied to the equipment.

【0021】表1はこの結果であって、ミオグロビン濃
度差を示しているが、本発明を適用した装置Aが最も攪
拌効率がよく、続いて装置Bがよく、これは流速が小さ
い場合に顕著である。
Table 1 shows the results and shows the difference in myoglobin concentration. The apparatus A to which the present invention is applied has the highest agitation efficiency, and the apparatus B is subsequently effective, which is remarkable when the flow velocity is small. Is.

【0022】[0022]

【表1】 また、ミオグロビン濃度差が小さく良く混合している場
合には渦の発生を観察することができた。
[Table 1] In addition, when the myoglobin concentration difference was small and the mixture was well mixed, the generation of vortices could be observed.

【0023】[0023]

【発明の効果】本発明の実施により、無重力環境下にお
いて溶液の混合を効率よく行なうことが可能となった。
By implementing the present invention, it becomes possible to efficiently mix solutions in a weightless environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を説明する斜視図(A),断面図
(B),正面図(C)である。
FIG. 1 is a perspective view (A), a sectional view (B), and a front view (C) illustrating the present invention.

【図2】実施例において使用したT字形流路の交差部断
面図である。
FIG. 2 is a cross-sectional view of an intersection of a T-shaped channel used in an example.

【図3】発明者が先に提案している混合装置の斜視図
(A)と断面図(B)である。
FIG. 3 is a perspective view (A) and a sectional view (B) of the mixing device proposed by the inventor earlier.

【符号の説明】 1 縦方向の流路 2,4 流体 3 横方向流路 5 交差部 6 渦[Explanation of symbols] 1 longitudinal flow path 2, 4 fluid 3 lateral flow path 5 intersection 6 vortex

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 縦方向に流れる流体(2)と横方向に流
れる流体(4)とが、T字型をした交差部(5)で混合
して横方向に流れる流路を作り、該縦方向流路(1)の
内径を交差部(5)に向かって細く絞ると共に、縦方向
流路(1)の交差軸を偏心させて形成することを特徴と
する無重力環境における液体の混合装置。
1. A longitudinally flowing fluid (2) and a laterally flowing fluid (4) are mixed at a T-shaped intersection (5) to form a laterally flowing channel. A liquid mixing apparatus in a weightless environment, characterized in that the directional flow channel (1) is formed so that the inner diameter thereof is narrowed toward the intersection (5) and the cross axis of the vertical flow channel (1) is eccentric.
【請求項2】 流体(2)を縦方向に流すと共に、交差
部(5)における縦方向流路(1)の内径が、絞られて
いない部分の2/3以下でり、絞り角θが10°≦θ≦ 6
0 °であることを特徴とする請求項1記載の無重力環境
における液体の混合装置。
2. The fluid (2) is caused to flow in the vertical direction, the inner diameter of the vertical flow path (1) at the intersection (5) is not more than 2/3 of the unthrottled portion, and the throttle angle θ is 10 ° ≤ θ ≤ 6
The mixing apparatus for a liquid in a weightless environment according to claim 1, wherein the mixing apparatus is 0 °.
JP4151024A 1992-06-11 1992-06-11 Apparatus for mixing liquids in nongraviation environment Withdrawn JPH05337352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4151024A JPH05337352A (en) 1992-06-11 1992-06-11 Apparatus for mixing liquids in nongraviation environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4151024A JPH05337352A (en) 1992-06-11 1992-06-11 Apparatus for mixing liquids in nongraviation environment

Publications (1)

Publication Number Publication Date
JPH05337352A true JPH05337352A (en) 1993-12-21

Family

ID=15509639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4151024A Withdrawn JPH05337352A (en) 1992-06-11 1992-06-11 Apparatus for mixing liquids in nongraviation environment

Country Status (1)

Country Link
JP (1) JPH05337352A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062263A (en) * 2000-08-15 2002-02-28 Natl Space Development Agency Of Japan Reaction analyzer
JP2002136855A (en) * 2000-11-02 2002-05-14 Mitsubishi Heavy Ind Ltd Fluid mixer
JP2006272150A (en) * 2005-03-29 2006-10-12 Jfe Steel Kk Gas mixer and gas mixing method
JP2008012453A (en) * 2006-07-06 2008-01-24 National Institute Of Advanced Industrial & Technology High-temperature high-pressure micromixer
JP2008168263A (en) * 2007-01-15 2008-07-24 Izumi Kosho Kk Mixing method of powder with liquid and its device
WO2011125303A1 (en) * 2010-04-05 2011-10-13 Nemoto Kyorindo Co., Ltd. Mixing device, mixing tube, drug solution injecting system, and drug solution mixing method
JP2019103953A (en) * 2017-12-08 2019-06-27 パナソニックIpマネジメント株式会社 Liquid treatment device
WO2023036336A1 (en) * 2021-09-13 2023-03-16 临床支持有限公司 Three-way tube connector and high-pressure injector set having three-way tube connector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062263A (en) * 2000-08-15 2002-02-28 Natl Space Development Agency Of Japan Reaction analyzer
JP2002136855A (en) * 2000-11-02 2002-05-14 Mitsubishi Heavy Ind Ltd Fluid mixer
JP2006272150A (en) * 2005-03-29 2006-10-12 Jfe Steel Kk Gas mixer and gas mixing method
JP2008012453A (en) * 2006-07-06 2008-01-24 National Institute Of Advanced Industrial & Technology High-temperature high-pressure micromixer
JP2008168263A (en) * 2007-01-15 2008-07-24 Izumi Kosho Kk Mixing method of powder with liquid and its device
WO2011125303A1 (en) * 2010-04-05 2011-10-13 Nemoto Kyorindo Co., Ltd. Mixing device, mixing tube, drug solution injecting system, and drug solution mixing method
CN102869331A (en) * 2010-04-05 2013-01-09 株式会社根本杏林堂 Mixing device, mixing tube, drug solution injecting system, and drug solution mixing method
US9314749B2 (en) 2010-04-05 2016-04-19 Nemoto Kyorindo Co., Ltd. Mixing device, mixing tube, drug solution injecting system, and drug solution mixing method
US10076729B2 (en) 2010-04-05 2018-09-18 Nemoto Kyorindo Co., Ltd. Mixing device, mixing tube, drug solution injecting system, and drug solution mixing method
JP2019103953A (en) * 2017-12-08 2019-06-27 パナソニックIpマネジメント株式会社 Liquid treatment device
WO2023036336A1 (en) * 2021-09-13 2023-03-16 临床支持有限公司 Three-way tube connector and high-pressure injector set having three-way tube connector

Similar Documents

Publication Publication Date Title
Niebergall et al. Dissolution Rate Studies II: Dissolution of Particles Under Conditions of Rapid Agitation.
Wallach et al. Plasma and cytoplasmic membrane fragments from Ehrlich ascites carcinoma
Monteiro et al. 3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow
Santesson et al. Airborne chemistry: acoustic levitation in chemical analysis
Majji et al. Inertial migration of particles in Taylor-Couette flows
Goldberg et al. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures IV: Chloramphenicol—urea system
Ito Recent advances in counter-current chromatography
EP0206077A2 (en) Device for the separation of magnetic particles in the fluid phase
CN105866404A (en) Membrane material-based micro-fluidic chip
US20030203506A1 (en) Method of obtaining a sample concentration of a solution in a microfluidic device
JPH05337352A (en) Apparatus for mixing liquids in nongraviation environment
US7837944B2 (en) Device for separating and concentrating microfluidic particles
Oguz et al. Effects of soluble and insoluble surfactants on the motion of drops
Albertsson Fractionation of particles and macromolecules in aqueous two-phase systems
US20170176303A1 (en) Method and device for transferring liquids
Ito et al. Micro liquid-liquid partition techniques with the coil planet centrifuge
Jiang et al. Surfactant-free microemulsion reinforced hollow-fiber liquid-phase microextraction combined with micellar electrokinetic capillary chromatography for detection of phthalic acid esters in beverage and urine
Ganatos et al. Gravitational and zero-drag motion of a sphere of arbitrary size in an inclined channel at low Reynolds number
Moreau et al. Microevaporators with accumulators for the screening of phase diagrams of aqueous solutions
JPH04100528A (en) Method for mixing liquid in weightless environment
Wang et al. Mechanics of suspended sediment in random waves
Drogue et al. Separation of pristinamycins by high-speed counter-current chromatography I. Selection of solvent system and preliminary preparative studies
Patel et al. Nonsink dissolution rate equations
JPH0321337A (en) Apparatus for mixing fluids under micro-gravity
CN205720243U (en) Micro-fluidic chip based on membrane material

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831