JP2006270008A - Lead-free soldering board and its manufacturing method - Google Patents

Lead-free soldering board and its manufacturing method Download PDF

Info

Publication number
JP2006270008A
JP2006270008A JP2005121863A JP2005121863A JP2006270008A JP 2006270008 A JP2006270008 A JP 2006270008A JP 2005121863 A JP2005121863 A JP 2005121863A JP 2005121863 A JP2005121863 A JP 2005121863A JP 2006270008 A JP2006270008 A JP 2006270008A
Authority
JP
Japan
Prior art keywords
lead
free
board
solder
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005121863A
Other languages
Japanese (ja)
Other versions
JP4570505B2 (en
Inventor
Hideki Nakazato
秀樹 中里
Kazuyuki Moriyama
和幸 森山
Isamu So
勇 曹
Takahiro Imai
高広 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2005121863A priority Critical patent/JP4570505B2/en
Publication of JP2006270008A publication Critical patent/JP2006270008A/en
Application granted granted Critical
Publication of JP4570505B2 publication Critical patent/JP4570505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-free soldering board and its manufacturing method wherein, when a lead of an electronic component is soldered by use of a lead-free solder, voids, etc. are not formed in lead-free soldering in a through hole of the board. <P>SOLUTION: In this board, a lead 8a of an electronic component 8 is inserted into a through-hole 17 of the board, and lead-free solder 16 is filled in the through-hole by flow treatment to solder the lead of the electronic component. This board is a metal core board 10 in which both faces of a metal layer 11 are covered with a resin layer 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鉛フリー半田付け基板及びその製造方法に関し、この基板は例えば車両等に搭載される電気接続箱等に使用される。   The present invention relates to a lead-free soldering substrate and a method for manufacturing the same, and the substrate is used in, for example, an electric connection box mounted on a vehicle or the like.

従来から基板としてはガラエポ基板が一般的で、そのスルーホール内に半田付けを行うためにフロー半田付を行っている。また、近年は環境対策として鉛を含有しない、いわゆる鉛フリー半田が利用されるようになってきている(例えば特許文献1など)。   Conventionally, a glass epoxy substrate has been generally used as a substrate, and flow soldering is performed in order to perform soldering in the through hole. In recent years, so-called lead-free solder that does not contain lead has been used as an environmental measure (for example, Patent Document 1).

特開2000−351064号公報JP 2000-35164 A

しかしながら、例えば図3に示すような、ガラエポ基板2に電極3とガラエポ基板2の厚み方向に貫通するスルーホール7と、前記電極3とスルーホール7をメッキするメッキ層4を備えたプリント基板1に、電子部品8のリード8aをスルーホール7に挿通して鉛フリー半田6で半田付けする場合、スルーホール7内で鉛フリー半田6の広がりや濡れ性が悪くなることがあるという現象が起こっていた。そのため、スルーホール7内に充填された鉛フリー半田6の内部にボイドが発生したり、リード8aと鉛フリー半田6との界面やメッキ層4と鉛フリー半田6との界面などに空隙が生じるなどして、電子部品8とプリント基板1との接合強度が十分に得られなかったり、耐熱衝撃性の面で問題が生じる虞があった。   However, for example, as shown in FIG. 3, a printed circuit board 1 provided with a glass epoxy substrate 2 having an electrode 3 and a through hole 7 penetrating in the thickness direction of the glass epoxy substrate 2 and a plating layer 4 for plating the electrode 3 and the through hole 7. Furthermore, when the lead 8 a of the electronic component 8 is inserted into the through hole 7 and soldered with the lead-free solder 6, the phenomenon that the lead-free solder 6 may spread and the wettability may deteriorate in the through hole 7 occurs. It was. For this reason, voids are generated in the lead-free solder 6 filled in the through holes 7, or voids are formed in the interface between the lead 8a and the lead-free solder 6, the interface between the plating layer 4 and the lead-free solder 6, or the like. As a result, there is a risk that sufficient bonding strength between the electronic component 8 and the printed circuit board 1 cannot be obtained, or that there is a problem in terms of thermal shock resistance.

以上のような状況に鑑み、発明者は以下のような鋭意検討を行った。
まず第一に、鉛フリー半田は一般的に融点が共晶半田の融点である180℃程度より高く200℃以上である。したがって240℃程度では鉛フリー半田の溶け具合が悪く、粘性、濡れ性の問題が発生し、そのためボイドなどの半田形成不良が生じると考えられる。
In view of the above situation, the inventor conducted the following intensive studies.
First of all, lead-free solder generally has a melting point higher than about 180 ° C., which is the melting point of eutectic solder, and above 200 ° C. Therefore, at about 240 ° C., it is considered that lead-free solder is poorly melted, causing problems of viscosity and wettability, resulting in poor solder formation such as voids.

第二に、鉛フリー半田の温度240℃では半田が溶融しているはずなのに、半田のつきが悪くなることがあるのは、むしろガラエポ基板の温度がその240℃まで急速に上がりにくく、そのような温度の低い基板と鉛フリー半田が接触することにより鉛フリー半田の温度が融点以下かそれに近いところまで下がるからであると考えられる。これを改善するため鉛フリー半田の温度を260℃以上にあげてフロー処理することが考えられるが、それは基板上の電子部品や樹脂層などの基板耐熱の面で問題がある。また鉛フリー半田の接着性を改善するためポストフラックスを用いると、260℃以上ではポストフラックスからガスが発生して気泡となり、さらにボイドが多くなってしまうことが問題になってしまうことも判明した。また別の方法として、ガラエポ基板の温度が半田温度と同じ240℃に追従するようにフロー処理をゆっくり行った場合には処理に時間がかかりすぎて半田付け基板の生産性が悪くなる。   Secondly, although the solder should be melted at a lead-free solder temperature of 240 ° C., the solder adhesion may worsen, rather, the temperature of the glass-epoxy substrate is unlikely to rise rapidly to 240 ° C. This is probably because the temperature of the lead-free solder is lowered to a temperature lower than or equal to the melting point when the lead-free solder comes into contact with a low temperature substrate. In order to improve this, it is conceivable to increase the temperature of the lead-free solder to 260 ° C. or higher, but there is a problem in terms of heat resistance of the substrate such as an electronic component or a resin layer on the substrate. It was also found that when post-flux was used to improve the adhesion of lead-free solder, gas was generated from the post-flux at 260 ° C. or higher, resulting in bubbles and more voids. . As another method, when the flow process is performed slowly so that the temperature of the glass epoxy substrate follows 240 ° C., which is the same as the solder temperature, the process takes too much time and the productivity of the soldered substrate is deteriorated.

本発明は、以上の検討を基になされたものであり、鉛フリー半田を用いて電子部品のリードを半田付けする場合における基板のスルーホール内の鉛フリー半田に、ボイドなどが発生しない鉛フリー半田付け基板及びその製造方法を提供することを目的とする。   The present invention has been made on the basis of the above study, and lead-free solder that does not generate voids in the lead-free solder in the through hole of the board when the lead of the electronic component is soldered using lead-free solder. It is an object of the present invention to provide a soldering substrate and a manufacturing method thereof.

上述の課題を解決するために、請求項1記載の鉛フリー半田付け基板は、基板のスルーホール内に電子部品のリードが挿通され、フロー処理により鉛フリー半田を前記スルーホール内に充填して前記電気部品のリードが半田付けされる鉛フリー半田付け基板であって、前記基板が金属層の両面が樹脂層で覆われたメタルコア基板であることを特徴とする。   In order to solve the above-described problem, the lead-free soldered board according to claim 1 is configured such that the lead of the electronic component is inserted into the through hole of the board, and the lead-free solder is filled into the through hole by a flow process. A lead-free soldering board to which leads of the electrical component are soldered, wherein the board is a metal core board in which both surfaces of a metal layer are covered with a resin layer.

また、請求項2記載の鉛フリー半田付け基板は、請求項1記載の発明において、前記金属層の厚さが0.3〜0.6mmであることを特徴とする。   A lead-free soldering board according to claim 2 is characterized in that, in the invention according to claim 1, the thickness of the metal layer is 0.3 to 0.6 mm.

また、請求項3記載の鉛フリー半田付け基板は、請求項1又は2記載の発明において、前記樹脂層は前記金属層を複数の樹脂シートを張り合わせて形成されたものであり、かつ該樹脂シートの厚さが0.2〜0.4mmであることを特徴とする。   The lead-free soldering board according to claim 3 is the invention according to claim 1 or 2, wherein the resin layer is formed by bonding the metal layer to a plurality of resin sheets, and the resin sheet. The thickness is 0.2 to 0.4 mm.

また、請求項4記載の鉛フリー半田付け基板は、請求項1〜3のいずれかに記載の発明において、前記金属層と樹脂層との合計の厚さが0.9〜1.2mmであるあることを特徴とする。   The lead-free soldering board according to claim 4 is the invention according to any one of claims 1 to 3, wherein the total thickness of the metal layer and the resin layer is 0.9 to 1.2 mm. It is characterized by being.

また、請求項5記載の鉛フリー半田付け基板の製造方法は、基板のスルーホール内に電子部品のリードを挿通し、フロー処理により鉛フリー半田を前記スルーホール内に充填して前記電気部品のリードを半田付けする鉛フリー半田付け基板の製造方法において、前記基板がメタルコア基板であることを特徴とする。   According to a fifth aspect of the present invention, there is provided a method for manufacturing a lead-free soldered substrate, wherein the lead of the electronic component is inserted into the through hole of the substrate, and the lead-free solder is filled into the through hole by a flow process. In the method of manufacturing a lead-free soldered substrate for soldering leads, the substrate is a metal core substrate.

また、請求項6記載の鉛フリー半田付け基板の製造方法は、請求項4記載の発明において、前記半田の融点が230℃以下であって、前記フロー処理における前記鉛フリー半田の温度が220〜255℃であることを特徴とする。   According to a sixth aspect of the present invention, there is provided the method for producing a lead-free soldered substrate according to the fourth aspect of the invention, wherein the solder has a melting point of 230 ° C. or less, and the lead-free solder temperature in the flow treatment is 220 to It is 255 degreeC.

また、請求項7記載の鉛フリー半田付け基板の製造方法は、請求項5記載の発明において、前記メタルコア基板の端面の一部から前記金属層が露出しており、前記フロー処理における前記鉛フリー半田付けを前記金属層が露出している端面側から行うことを特徴とする。   According to a seventh aspect of the present invention, there is provided a method for manufacturing a lead-free soldered substrate according to the fifth aspect, wherein the metal layer is exposed from a part of an end surface of the metal core substrate, and the lead-free solder in the flow process is used. Soldering is performed from the end face side where the metal layer is exposed.

また、請求項8記載の鉛フリー半田付け基板の製造方法は、請求項6記載の発明において、鉛フリー半田付けを行う半田噴流が最初の半田付け部に到達する前に、前記金属層が露出している端部に前記半田噴流を0.1秒間以上接触させることを特徴とする。   The lead-free soldering board manufacturing method according to claim 8 is the method according to claim 6, wherein the metal layer is exposed before the solder jet for performing lead-free soldering reaches the first soldering portion. The solder jet is brought into contact with the end of the solder for 0.1 second or longer.

本発明の請求項1記載の鉛フリー半田付け基板は、基板のスルーホール内に電子部品のリードが挿通され、フロー処理により鉛フリー半田をスルーホール内に充填して電気部品のリードが半田付けされる基板に、金属層の両面が樹脂層で覆われたメタルコア基板を用いるので、半田噴流による熱がメタルコア基板の金属層によって急速に基板全体が半田噴流と同等又はそれに近い温度まで均熱化され、鉛フリー半田の温度を必要以上の温度まで上げる必要なく、ボイドなどが発生しない良好な電子部品と基板との接続状態を得ることができる。   In the lead-free soldering board according to claim 1 of the present invention, the lead of the electronic component is inserted into the through hole of the substrate, the lead-free solder is filled into the through hole by flow processing, and the lead of the electric component is soldered Since the metal core board with both sides of the metal layer covered with a resin layer is used as the printed board, the heat generated by the solder jet flow is rapidly equalized to a temperature close to or close to the solder jet flow by the metal layer of the metal core board. In addition, it is not necessary to raise the temperature of the lead-free solder to a temperature higher than necessary, and it is possible to obtain a good connection state between the electronic component and the substrate that does not generate voids.

また、前記鉛フリー半田付け基板の金属層の厚さが0.3〜0.6mmであると、スルーホール内に形成されるメッキ層でのバレルクラックの発生を防止することができる上、均熱速度と基板強度の点でも好ましい。   In addition, when the thickness of the metal layer of the lead-free soldering substrate is 0.3 to 0.6 mm, it is possible to prevent the occurrence of barrel cracks in the plating layer formed in the through hole, and to equalize. It is also preferable in terms of heat speed and substrate strength.

また、前記鉛フリー半田付け基板の樹脂層を形成する樹脂シートの厚さが0.2〜0.4mmであると、スルーホール内に形成されるメッキ層でのバレルクラックの発生を防止することができる上、金属層への熱伝導の点と基板強度、絶縁性確保の点で好ましい。   Further, when the resin sheet forming the resin layer of the lead-free soldering substrate has a thickness of 0.2 to 0.4 mm, occurrence of barrel cracks in the plating layer formed in the through hole is prevented. In addition, it is preferable in terms of heat conduction to the metal layer, substrate strength, and insulation.

また、前記鉛フリー半田付け基板の前記金属層と樹脂層との合計の厚さが0.9〜1.2mmであると、スルーホール内に形成されるメッキ層でのバレルクラックの発生を防止することができるので好ましい。   Further, when the total thickness of the metal layer and the resin layer of the lead-free soldering substrate is 0.9 to 1.2 mm, occurrence of barrel cracks in the plating layer formed in the through hole is prevented. This is preferable.

また、本発明の請求項5記載の鉛フリー半田付け基板の製造方法は、基板のスルーホール内に電子部品のリードを挿通し、フロー処理により鉛フリー半田をスルーホール内に充填して電気部品のリードを半田付けする鉛フリー半田付け基板の製造方法において、基板がメタルコア基板であるので、半田噴流による熱がメタルコア基板の金属層によって急速に基板全体が半田噴流と同等又はそれに近い温度まで均熱化され、鉛フリー半田の温度を必要以上の温度まで上げる必要なく、ボイドなどが発生しない良好な電子部品と基板との接続状態を得ることができる。   According to a fifth aspect of the present invention, there is provided a method of manufacturing a lead-free soldered substrate, wherein the lead of the electronic component is inserted into the through hole of the substrate, and the lead-free solder is filled into the through hole by a flow process. In the method of manufacturing a lead-free soldering board for soldering the leads of the lead, the board is a metal core board, so that the heat from the solder jet is rapidly equalized to a temperature close to or close to the solder jet by the metal layer of the metal core board. It is possible to obtain a good connection state between the electronic component and the substrate that is heated and does not need to raise the temperature of the lead-free solder to a temperature higher than necessary and does not generate voids.

また、上記鉛フリー半田付け基板の製造方法において、半田の融点が230℃以下であって、フロー処理における前記鉛フリー半田の温度が220〜255℃であると、電子部品と基板との接続状態の点と、電子部品や基板の熱的劣化を防止する点で好ましい。   Further, in the method for producing a lead-free soldered substrate, when the melting point of the solder is 230 ° C. or less and the temperature of the lead-free solder in the flow process is 220 to 255 ° C., the connection state between the electronic component and the substrate This is preferable from the viewpoint of preventing thermal deterioration of electronic components and substrates.

また、上記鉛フリー半田付け基板の製造方法において、メタルコア基板の端面の一部から金属層が露出しており、前記フロー処理における前記鉛フリー半田付けを前記金属層が露出している端面側から行うと、金属層への熱伝導の点で好ましく、更に、鉛フリー半田付けを行う半田噴流が最初の半田付け部に到達する前に、前記金属層が露出している端部に前記半田噴流を0.1秒間以上接触させるとより好ましい。   In the lead-free soldering board manufacturing method, a metal layer is exposed from a part of the end face of the metal core board, and the lead-free soldering in the flow process is performed from the end face side where the metal layer is exposed. It is preferable in terms of heat conduction to the metal layer. Further, before the solder jet for performing lead-free soldering reaches the first soldering portion, the solder jet is applied to the end portion where the metal layer is exposed. Is more preferable for 0.1 seconds or more.

本発明の実施形態を、まず、鉛フリー半田付け基板の構造について図面を用いて説明する。図1は、本発明に係る鉛フリー半田付け基板の実施形態を示す鉛フリー半田付け基板の部分断面図である。   In the embodiment of the present invention, the structure of a lead-free soldering substrate will be described with reference to the drawings. FIG. 1 is a partial cross-sectional view of a lead-free soldering board showing an embodiment of a lead-free soldering board according to the present invention.

本実施形態に係る鉛フリー半田付け基板20は、図1に示すように、銅又はアルミなどの金属からなる金属層11の両面がガラエポのなどの樹脂層12で覆われたメタルコア基板10と、メタルコア基板10に電極13とメタルコア基板10の厚み方向に貫通するスルーホール17と、前記電極13とスルーホール17内壁をメッキするメッキ層14、お及び電極13などの回路形成過程で利用するレジスト層15を備え、電子部品8のリード8aをスルーホール17に挿通して鉛フリー半田16で半田付けされてなる。   As shown in FIG. 1, the lead-free soldering substrate 20 according to the present embodiment includes a metal core substrate 10 in which both surfaces of a metal layer 11 made of a metal such as copper or aluminum are covered with a resin layer 12 such as glass epoxy, A resist layer used in a circuit forming process such as an electrode 13 and a through hole 17 penetrating the metal core substrate 10 in the thickness direction of the metal core substrate 10, a plating layer 14 for plating the inner wall of the electrode 13 and the through hole 17, and the electrode 13. 15, the lead 8 a of the electronic component 8 is inserted into the through hole 17 and soldered with lead-free solder 16.

メタルコア基板10は、平面図を図示していないが、上面から見ると方形或いは丸形をなし、端部では金属層11が露出している。即ち、メタルコア基板10を上面から見て四角形である場合、その四辺を側面からみると、金属層11が露出している状態となっている。また、金属層11の厚さは0.3mm〜0.6mmの範囲であると好ましい。この理由は、金属層11の厚さが0.3mm未満であると、基板の強度を損なうと共に、フロー半田付け工程においてメタルコア基板10全体が均熱化した状態を保持するために0.3mm以上の厚さであることが望ましく、また金属層11の厚さが0.6mmを超えると、後述する実施例の表1に示すように、スルーホール内に形成されるメッキ層にバレルクラックが発生してしまうと共に、フロー半田付け工程においてメタルコア基板10全体を均熱化する速度が低下し、十分にメタルコア基板10が温度上昇しないうちに半田付けが行われる可能性が生じる。したがって金属層11の厚さは0.3mm〜0.6mmの範囲であることが好ましい。本実施形態においては金属層11の厚さを0.4mmに設定している。なお、金属層の材質は熱伝導性の観点から銅である方が望ましい。   Although the metal core substrate 10 is not shown in a plan view, the metal core substrate 10 is square or round when viewed from above, and the metal layer 11 is exposed at the end. That is, when the metal core substrate 10 is a quadrangle when viewed from the top, the metal layer 11 is exposed when the four sides are viewed from the side. The thickness of the metal layer 11 is preferably in the range of 0.3 mm to 0.6 mm. The reason for this is that if the thickness of the metal layer 11 is less than 0.3 mm, the strength of the substrate is impaired, and the entire metal core substrate 10 is maintained at a uniform temperature in the flow soldering process, so that the thickness is 0.3 mm or more. When the thickness of the metal layer 11 exceeds 0.6 mm, barrel cracks are generated in the plated layer formed in the through hole as shown in Table 1 of Examples described later. In addition, the speed at which the entire metal core substrate 10 is soaked in the flow soldering process is reduced, and there is a possibility that the soldering is performed before the temperature of the metal core substrate 10 is sufficiently increased. Therefore, the thickness of the metal layer 11 is preferably in the range of 0.3 mm to 0.6 mm. In the present embodiment, the thickness of the metal layer 11 is set to 0.4 mm. The material of the metal layer is preferably copper from the viewpoint of thermal conductivity.

また、金属層11の両面に張り合わされる樹脂シート(樹脂層12)の厚さは、0.2mm〜0.4mmの範囲であると好ましい。この理由は、後述するメタルコア基板10の製造過程において、金属層11に形成されたスルーホール形成予定の孔を樹脂シートによって一旦埋められるが(後に再び孔空けする)、樹脂シートの厚さが0.2mm未満であると、樹脂量が足りず、このスルーホール形成予定箇所を樹脂で埋め切ることができない上、完成したメタルコア基板10において、金属層11と電極13との絶縁距離が確保できない。また、0.4mmを超えると、フロー半田付け工程においてメタルコア基板10への熱伝達が樹脂層12を介して行われるため均熱化速度が低下する上、後述する実施例の表2に示すように、スルーホール内に形成されるメッキ層にバレルクラックが発生してしまうためである。本実施形態においては樹脂シートの厚さを0.2mmに設定しており、樹脂シートの金属層11の両面に1枚づつ張り合わせている。したがってメタルコア基板10の合計の厚さは0.2+0.4+0.2=0.8(mm)である。   Moreover, it is preferable that the thickness of the resin sheet (resin layer 12) bonded to both surfaces of the metal layer 11 is in a range of 0.2 mm to 0.4 mm. This is because, in the process of manufacturing the metal core substrate 10 to be described later, the hole to be formed in the metal layer 11 is temporarily filled with a resin sheet (after that, the hole is formed again), but the thickness of the resin sheet is 0. If it is less than 2 mm, the amount of resin is insufficient, and the through-hole formation planned portion cannot be filled with resin, and the insulation distance between the metal layer 11 and the electrode 13 cannot be secured in the completed metal core substrate 10. On the other hand, if the thickness exceeds 0.4 mm, heat transfer to the metal core substrate 10 is performed through the resin layer 12 in the flow soldering process, so that the rate of soaking is reduced and as shown in Table 2 of Examples described later. In addition, barrel cracks occur in the plating layer formed in the through hole. In this embodiment, the thickness of the resin sheet is set to 0.2 mm, and the resin sheet is bonded to both surfaces of the metal layer 11 of the resin sheet one by one. Therefore, the total thickness of the metal core substrate 10 is 0.2 + 0.4 + 0.2 = 0.8 (mm).

なお、鉛フリー半田16に使用される合金には、Sn−Ag系、Sn−Bi系、Sn−Zn系、Sn−In系などにBi、In、Cuなどを添加した合金など、種々使用することができるが、本発明においては、Sn−Ag−Cu系の合金で、半田の融点が230℃以下の合金であることが望ましい。これは、半田の融点は230℃を超えると、半田噴流の温度が255℃を超えてしまい、メタルコア基板10に搭載された電子部品8や樹脂層12が熱的に劣化する可能性があるためである。本実施形態においては、Ag3.5wt%、Cu0.5wt%、残部Sn及び不可避的不純物からなり、融点が220℃の合金が使用される。   In addition, the alloy used for the lead-free solder 16 is variously used, such as an alloy in which Bi, In, Cu or the like is added to Sn—Ag, Sn—Bi, Sn—Zn, Sn—In, or the like. However, in the present invention, it is desirable that the alloy is a Sn—Ag—Cu alloy and the solder has a melting point of 230 ° C. or less. This is because if the melting point of the solder exceeds 230 ° C., the temperature of the solder jet exceeds 255 ° C., and the electronic component 8 and the resin layer 12 mounted on the metal core substrate 10 may be thermally deteriorated. It is. In the present embodiment, an alloy composed of Ag 3.5 wt%, Cu 0.5 wt%, the balance Sn and inevitable impurities and having a melting point of 220 ° C. is used.

次に、鉛フリー半田付け基板の製造方法について説明する。
まず、板状の金属層11にスルーホール形成用の孔をドリル等で孔空けする。この孔の直径は、図2に示すようにスルーホール17の孔径d、メッキ層14の厚さf(×2)、スルーホール17内の樹脂層の厚さe(×2)を合計した値となる。次に金属層11の両面に、ガラエポなどからなるシート状のプリプレグ(樹脂シート)をそれぞれ1枚づつ配置し、樹脂シートを加圧と加熱によって、接着、硬化させる。次に、スルーホール形成箇所に再びドリル等で孔空けする。この時の孔の直径は、図4に示すようにスルーホールの孔径dとメッキ層の厚さf(×2)を合計した値となる。次に、電極13を印刷、およびレジスト層15で被覆するなどして回路を形成して、電極13上及び孔開箇所の内面に銅などの金属のメッキ層14を形成して、スルーホール17を形成してメタルコア基板10を得る。
最後に電子部品8のリード8aをスルーホール17に挿通して鉛フリー半田16でフロー処理を行い半田付けする。
Next, a method for manufacturing a lead-free soldered substrate will be described.
First, a hole for forming a through hole is formed in the plate-like metal layer 11 with a drill or the like. As shown in FIG. 2, the diameter of the hole is a total value of the hole diameter d of the through hole 17, the thickness f (× 2) of the plating layer 14, and the thickness e (× 2) of the resin layer in the through hole 17. It becomes. Next, one sheet-like prepreg (resin sheet) made of glass epoxy or the like is disposed on both surfaces of the metal layer 11, and the resin sheets are bonded and cured by pressing and heating. Next, the through hole is formed again with a drill or the like. The diameter of the hole at this time is a total value of the hole diameter d of the through hole and the thickness f (× 2) of the plating layer as shown in FIG. Next, a circuit is formed by printing and covering the electrode 13 with a resist layer 15 to form a plated layer 14 of a metal such as copper on the electrode 13 and the inner surface of the hole, and through holes 17 are formed. To obtain the metal core substrate 10.
Finally, the lead 8a of the electronic component 8 is inserted into the through hole 17 and subjected to flow treatment with the lead-free solder 16 and soldered.

なお、フロー処理の際、鉛フリー半田16の融点が230℃以下であって、フロー処理における鉛フリー半田16の温度が220〜255℃であることが望ましい。これは、フロー処理における鉛フリー半田16の温度が220℃未満であると電子部品と基板との接続強度が不足する虞があり、また255℃を超えるとメタルコア基板10に搭載された電子部品8や樹脂層12が熱的に劣化する可能性があるためである。   In the flow process, it is desirable that the melting point of the lead-free solder 16 is 230 ° C. or less, and the temperature of the lead-free solder 16 in the flow process is 220 to 255 ° C. This is because if the temperature of the lead-free solder 16 in the flow process is less than 220 ° C., the connection strength between the electronic component and the substrate may be insufficient, and if it exceeds 255 ° C., the electronic component 8 mounted on the metal core substrate 10 may be insufficient. This is because the resin layer 12 may be thermally deteriorated.

また、フロー処理はメタルコア基板10の端面側から行うと、メタルコア基板10の端面から露出している金属層11に半田噴流の熱が伝わりやすく、メタルコア基板全体の均熱しやすくなり、スルーホール17内で鉛フリー半田16にボイドが発生することを防止することができる。なお、半田噴流が最初の半田付け部に到達する前に、前記金属層が露出している端部に前記半田噴流を0.1秒間以上接触させるとこの効果は更に顕著になる。本実施形態においては0.5秒間接触させている。   Further, when the flow process is performed from the end face side of the metal core substrate 10, the heat of the solder jet flow is easily transmitted to the metal layer 11 exposed from the end face of the metal core substrate 10, so that the entire metal core substrate is easily heated and the inside of the through hole 17. Thus, the generation of voids in the lead-free solder 16 can be prevented. Note that this effect becomes more prominent if the solder jet is brought into contact with the end where the metal layer is exposed for 0.1 second or more before the solder jet reaches the first soldering portion. In this embodiment, the contact is made for 0.5 seconds.

また、フロー処理の処理スピードはなるべく遅い方がメタルコア基板10の均熱化の観点から望ましく、2m/min程度、或いはそれ以下が望ましいが、あまり遅いと生産性に支障を来たすことも鑑み本実施形態では0.6m/minで設定している。なお、半田噴流とメタルコア基板10との接触幅はなるべく広い方がメタルコア基板10の均熱化の観点から望ましく、10mm以上であることが望ましい。本実施形態では前記接触幅を70mmに設定している。   In addition, it is desirable that the processing speed of the flow processing is as slow as possible from the viewpoint of soaking the metal core substrate 10, and it is preferably about 2 m / min or less. However, if the processing speed is too slow, productivity may be hindered. In the form, it is set at 0.6 m / min. Note that the contact width between the solder jet and the metal core substrate 10 is preferably as wide as possible from the viewpoint of heat equalization of the metal core substrate 10 and is preferably 10 mm or more. In this embodiment, the contact width is set to 70 mm.

また、フロー処理の前にメタルコア基板10に予熱処理を施すと、メタルコア基板10の均熱化は更に効率的となり、本発明の効果が更に顕著となる。   Further, if the metal core substrate 10 is pre-heated before the flow treatment, the soaking of the metal core substrate 10 becomes more efficient, and the effect of the present invention becomes more remarkable.

〔実施例1〕
図2に示すように、金属層11の厚さをa(mm)、樹脂シートの厚さをb(mm)、金属層11に樹脂シートを張り合わせた後の金属層11と樹脂層12の合計厚さをc(mm)、スルーホール17の孔径をd(mm)、スルーホール17内における金属層11とメッキ層14との距離をe(mm)、メッキ層14の厚さをf(mm)として、金属層11の厚さa(mm)を種々変更してメッキ層14でのバレルクラックの発生の有無や、メタルコア基板10の強度、後工程であるフロー半田処理への影響などを確認する実験を行った。その結果を表1に示す。なお、樹脂シートの厚さbを0.2mm、スルーホール17の孔径dを1.0mm、距離eを0.5mm、メッキ層14の厚さfを0.5mmに設定している。また、樹脂シートの線膨張率は40〜60(10-6/℃)のものを使用することが好ましく、本実施例1では線膨張率が40(10-6/℃)の樹脂シートを使用した。
[Example 1]
As shown in FIG. 2, the thickness of the metal layer 11 is a (mm), the thickness of the resin sheet is b (mm), and the total of the metal layer 11 and the resin layer 12 after the resin sheet is bonded to the metal layer 11. The thickness is c (mm), the hole diameter of the through hole 17 is d (mm), the distance between the metal layer 11 and the plating layer 14 in the through hole 17 is e (mm), and the thickness of the plating layer 14 is f (mm). ), Various changes were made to the thickness a (mm) of the metal layer 11 to confirm the presence or absence of barrel cracks in the plating layer 14, the strength of the metal core substrate 10, and the influence on the flow soldering process, which is a subsequent process. An experiment was conducted. The results are shown in Table 1. The thickness b of the resin sheet is set to 0.2 mm, the hole diameter d of the through hole 17 is set to 1.0 mm, the distance e is set to 0.5 mm, and the thickness f of the plating layer 14 is set to 0.5 mm. Moreover, it is preferable to use a resin sheet having a linear expansion coefficient of 40 to 60 (10 −6 / ° C.). In Example 1, a resin sheet having a linear expansion coefficient of 40 (10 −6 / ° C.) is used. did.

Figure 2006270008
Figure 2006270008

表1に示すように、金属層11の厚さaが0.3〜0.6mmの範囲では、メッキ層14にバレルクラックが発生せず、また、メタルコア基板10の強度、フロー半田処理でも良好な状態であることが分かった。また、金属層11の厚さaが0.6mmを超えるとメッキ層14にバレルクラックが発生し、金属層11の厚さaが0.3mm未満であるとバレルクラック等の発生はないものの、メタルコア基板10の強度と均熱保持性が損なわれて、後工程である電子部品8のメタルコア基板10への搭載や、フロー半田付け処理に影響を及ぼすことが判明した。   As shown in Table 1, when the thickness a of the metal layer 11 is in the range of 0.3 to 0.6 mm, barrel cracks do not occur in the plating layer 14, and the strength of the metal core substrate 10 and the flow soldering process are also good. It turns out that it is a state. Further, when the thickness a of the metal layer 11 exceeds 0.6 mm, barrel cracks occur in the plating layer 14, and when the thickness a of the metal layer 11 is less than 0.3 mm, barrel cracks and the like do not occur, It has been found that the strength and soaking capability of the metal core substrate 10 are impaired, which affects the subsequent mounting of the electronic component 8 on the metal core substrate 10 and the flow soldering process.

〔実施例2〕
実施例2では実施例1と同様な条件で、樹脂シートの厚さbを種々変更してメッキ層14でのバレルクラックの発生の有無、メタルコア基板10の強度、後工程であるフロー半田処理への影響などを確認する実験を行った。その結果を表2に示す。なお、金属層11の厚さaは0.4mmに設定した。
[Example 2]
In Example 2, the thickness b of the resin sheet was changed variously under the same conditions as in Example 1 to determine whether or not barrel cracks occurred in the plating layer 14, the strength of the metal core substrate 10, and the flow solder process, which is a subsequent process. Experiments were conducted to confirm the effects of The results are shown in Table 2. The thickness a of the metal layer 11 was set to 0.4 mm.

Figure 2006270008
Figure 2006270008

表2に示すように、樹脂シートの厚さbが0.2〜0.4mmの範囲では、メッキ層14にバレルクラック等が発生せず、また、メタルコア基板10の強度、フロー半田処理でも良好な状態であることが分かった。また、樹脂シートの厚さbが0.4mmを超えるとメッキ層14にバレルクラックが発生する上、フロー半田付け工程において半田噴流からメタルコア基板10の熱伝達が樹脂層12を介して行われるため、この樹脂層12が厚すぎる、即ち樹脂シートの厚さが0.4mmを超えると金属層11への熱供給が損なわれ、メタルコア基板10全体の均熱化速度が低下することが判明した。また、樹脂シートの厚さbが0.2mm未満であるとバレルクラック等の発生はないものの、前述したように、メタルコア基板10の製造段階で生じるスルーホール形成予定箇所の穴埋めの際、樹脂シートから供給される樹脂量が足りず、スルーホール形成予定箇所を樹脂で埋め切ることができない上、完成したメタルコア基板10において、金属層11と電極13との絶縁距離が確保できない、メタルコア基板10の強度が不足するなどの問題があることが判明した。
また、上記実施例1及び実施例2の結果から、金属層11と樹脂層12の合計の厚さは0.8〜1.2mmの範囲内であることが望ましい。
As shown in Table 2, when the thickness b of the resin sheet is in the range of 0.2 to 0.4 mm, barrel cracks or the like do not occur in the plating layer 14, and the strength of the metal core substrate 10 and the flow soldering process are also good. It turns out that it is a state. Further, if the thickness b of the resin sheet exceeds 0.4 mm, barrel cracks occur in the plating layer 14 and heat transfer from the metal core substrate 10 through the solder jet flow through the resin layer 12 in the flow soldering process. It has been found that if the resin layer 12 is too thick, that is, if the thickness of the resin sheet exceeds 0.4 mm, the heat supply to the metal layer 11 is impaired, and the soaking rate of the entire metal core substrate 10 is reduced. In addition, when the thickness b of the resin sheet is less than 0.2 mm, barrel cracks and the like are not generated. However, as described above, the resin sheet is filled when filling the through-hole formation planned portion that occurs in the manufacturing stage of the metal core substrate 10. The through-hole formation planned portion cannot be filled with resin because the amount of resin supplied from the metal is insufficient, and the insulation distance between the metal layer 11 and the electrode 13 cannot be secured in the completed metal core substrate 10. It became clear that there were problems such as insufficient strength.
From the results of Example 1 and Example 2, the total thickness of the metal layer 11 and the resin layer 12 is preferably in the range of 0.8 to 1.2 mm.

〔実施例3〕
実施例3では実施例1と同様な条件で、スルーホール17の孔径dを種々変更してメッキ層14でのバレルクラックの発生の有無、メタルコア基板10の強度、後工程であるフロー半田処理への影響などを確認する実験を行った。その結果を表3に示す。なお、金属層11の厚さaは0.4mm、樹脂シートの厚さbは0.2mmに設定した。
Example 3
In Example 3, under the same conditions as in Example 1, various changes were made to the hole diameter d of the through hole 17 to determine whether or not barrel cracks occurred in the plated layer 14, the strength of the metal core substrate 10, and the flow solder process, which is a subsequent process. Experiments were conducted to confirm the effects of The results are shown in Table 3. In addition, the thickness a of the metal layer 11 was set to 0.4 mm, and the thickness b of the resin sheet was set to 0.2 mm.

Figure 2006270008
Figure 2006270008

表3に示すように、スルーホール17の孔径dが0.9mm以下になるとメッキ層14にバレルクラックが発生することが判明した。従ってスルーホール17の孔径は1.0以上であることが望ましい。   As shown in Table 3, it was found that barrel cracks occurred in the plated layer 14 when the through hole 17 had a hole diameter d of 0.9 mm or less. Accordingly, it is desirable that the through hole 17 has a hole diameter of 1.0 or more.

本発明の実施形態に係る基板の断面図である。It is sectional drawing of the board | substrate which concerns on embodiment of this invention. 本発明の実施例に係る基板の説明図である。It is explanatory drawing of the board | substrate which concerns on the Example of this invention. 従来の基板の断面図である。It is sectional drawing of the conventional board | substrate.

符号の説明Explanation of symbols

1 プリント基板
2 ガラエポ基板
3 電極
4 メッキ層
6 鉛フリー半田
7 スルーホール
8 電子部品
8a リード
10 メタルコア基板
11 金属層
12 樹脂層
13 電極
14 メッキ層
15 レジスト層
16 鉛フリー半田
17 スルーホール
20 鉛フリー半田付け基板
DESCRIPTION OF SYMBOLS 1 Printed circuit board 2 Glass epoxy board 3 Electrode 4 Plating layer 6 Lead free solder 7 Through hole 8 Electronic component 8a Lead 10 Metal core board 11 Metal layer 12 Resin layer 13 Electrode 14 Plating layer 15 Resist layer 16 Lead free solder 17 Through hole 20 Lead free Soldering board

Claims (8)

基板のスルーホール内に電子部品のリードが挿通され、フロー処理により鉛フリー半田を前記スルーホール内に充填して前記電気部品のリードが半田付けされる鉛フリー半田付け基板であって、前記基板が金属層の両面が樹脂層で覆われたメタルコア基板であることを特徴とする鉛フリー半田付け基板。   A lead-free soldering board in which a lead of an electronic component is inserted into a through-hole of the board, lead-free solder is filled in the through-hole by a flow process, and the lead of the electrical component is soldered. A lead-free soldering board characterized by being a metal core board in which both surfaces of a metal layer are covered with a resin layer. 前記金属層の厚さが0.3〜0.6mmであることを特徴とする請求項1に記載の鉛フリー半田付け基板。   The lead-free soldering board according to claim 1, wherein the metal layer has a thickness of 0.3 to 0.6 mm. 前記樹脂層は前記金属層を複数の樹脂シートを張り合わせて形成されたものであり、かつ該樹脂シートの厚さが0.2〜0.4mmであることを特徴とする請求項1又は2記載の鉛フリー半田付け基板。   3. The resin layer according to claim 1, wherein the resin layer is formed by laminating a plurality of resin sheets to the metal layer, and the thickness of the resin sheet is 0.2 to 0.4 mm. Lead-free soldering board. 前記金属層と樹脂層との合計の厚さが0.9〜1.2mmであることを特徴とする請求項1〜3のいずれかに記載の鉛フリー半田付け基板。   The lead-free soldering substrate according to any one of claims 1 to 3, wherein a total thickness of the metal layer and the resin layer is 0.9 to 1.2 mm. 基板のスルーホール内に電子部品のリードを挿通し、フロー処理により鉛フリー半田を前記スルーホール内に充填して前記電気部品のリードを半田付けする鉛フリー半田付け基板の製造方法において、前記基板がメタルコア基板であることを特徴とする鉛フリー半田付け基板の製造方法。   In the method of manufacturing a lead-free soldered substrate, the lead of the electronic component is inserted into the through-hole of the substrate, and the lead-free solder is filled into the through-hole by flow processing to solder the lead of the electrical component. A method for producing a lead-free soldering board, characterized in that is a metal core board. 前記半田の融点が230℃以下であって、前記フロー処理における前記鉛フリー半田の温度が220〜255℃であることを特徴とする請求項4記載の鉛フリー半田付け基板の製造方法。   5. The method for producing a lead-free soldering board according to claim 4, wherein the solder has a melting point of 230 ° C. or lower, and the temperature of the lead-free solder in the flow treatment is 220 to 255 ° C. 6. 前記メタルコア基板の端面の一部から前記金属層が露出しており、前記フロー処理における前記鉛フリー半田付けを前記金属層が露出している端面側から行うことを特徴とする請求項4又は5記載の鉛フリー半田付け基板の製造方法。   6. The metal layer is exposed from a part of an end surface of the metal core substrate, and the lead-free soldering in the flow process is performed from the end surface side where the metal layer is exposed. The manufacturing method of the lead-free soldering board of description. 請求項6記載の鉛フリー半田付け基板の製造方法において、鉛フリー半田付けを行う半田噴流が最初の半田付け部に到達する前に、前記金属層が露出している端部に前記半田噴流を0.1秒間以上接触させることを特徴とする鉛フリー半田付け基板の製造方法。   7. The method of manufacturing a lead-free soldering board according to claim 6, wherein the solder jet is applied to an end portion where the metal layer is exposed before the solder jet for performing lead-free soldering reaches the first soldering portion. A method for producing a lead-free soldering substrate, wherein the contact is performed for 0.1 second or more.
JP2005121863A 2005-02-23 2005-04-20 Lead-free soldering substrate and manufacturing method thereof Active JP4570505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121863A JP4570505B2 (en) 2005-02-23 2005-04-20 Lead-free soldering substrate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005046610 2005-02-23
JP2005121863A JP4570505B2 (en) 2005-02-23 2005-04-20 Lead-free soldering substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006270008A true JP2006270008A (en) 2006-10-05
JP4570505B2 JP4570505B2 (en) 2010-10-27

Family

ID=37205593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121863A Active JP4570505B2 (en) 2005-02-23 2005-04-20 Lead-free soldering substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4570505B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235375A (en) * 2007-03-16 2008-10-02 Furukawa Electric Co Ltd:The Metal core multilayer printed wiring board
JP2009218392A (en) * 2008-03-11 2009-09-24 Furukawa Electric Co Ltd:The Metal core multilayer printed wiring board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787194A (en) * 1980-11-19 1982-05-31 Sumitomo Electric Industries Method of soldering metallic core printed circuit board
JPH02224393A (en) * 1989-02-27 1990-09-06 Nec Corp Method of soldering mixed mounting metal core printed board assembly
JPH06169048A (en) * 1992-12-01 1994-06-14 Ibiden Co Ltd Bonding method for conductor pin
JPH10303518A (en) * 1997-04-25 1998-11-13 Toshiba Corp Board for mounting electronic component, electronic component mounting board and method of bonding tin/zinc alloy
JPH114050A (en) * 1997-06-13 1999-01-06 Matsushita Electric Ind Co Ltd Circuit board
JP2003101183A (en) * 2001-09-20 2003-04-04 Matsushita Electric Ind Co Ltd Circuit board, power converting module and production method therefor
JP2005044990A (en) * 2003-07-22 2005-02-17 Sony Corp Land, manufacturing method, and mounting method for multilayer printed wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787194A (en) * 1980-11-19 1982-05-31 Sumitomo Electric Industries Method of soldering metallic core printed circuit board
JPH02224393A (en) * 1989-02-27 1990-09-06 Nec Corp Method of soldering mixed mounting metal core printed board assembly
JPH06169048A (en) * 1992-12-01 1994-06-14 Ibiden Co Ltd Bonding method for conductor pin
JPH10303518A (en) * 1997-04-25 1998-11-13 Toshiba Corp Board for mounting electronic component, electronic component mounting board and method of bonding tin/zinc alloy
JPH114050A (en) * 1997-06-13 1999-01-06 Matsushita Electric Ind Co Ltd Circuit board
JP2003101183A (en) * 2001-09-20 2003-04-04 Matsushita Electric Ind Co Ltd Circuit board, power converting module and production method therefor
JP2005044990A (en) * 2003-07-22 2005-02-17 Sony Corp Land, manufacturing method, and mounting method for multilayer printed wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235375A (en) * 2007-03-16 2008-10-02 Furukawa Electric Co Ltd:The Metal core multilayer printed wiring board
JP2009218392A (en) * 2008-03-11 2009-09-24 Furukawa Electric Co Ltd:The Metal core multilayer printed wiring board

Also Published As

Publication number Publication date
JP4570505B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP5373598B2 (en) PCB terminal
JP2008311273A (en) Junction body, and electronic module, and bonding method
JP2013138169A (en) Bonded substrate and manufacturing method of the same
JP2007013028A (en) Ceramic circuit board and power control component using same
JP2009065008A (en) Conductive paste composition
JP4846455B2 (en) A method for manufacturing a nitride ceramic circuit board.
JP4873332B2 (en) Lead frame and manufacturing method thereof, method of improving fatigue characteristics, electronic component and electronic device using the same
US20060168803A1 (en) Layered board and manufacturing method of the same, electronic apparatus having the layered board
JP4570505B2 (en) Lead-free soldering substrate and manufacturing method thereof
JP2008042071A (en) Electroless plating method
JP2012140678A (en) Plated member for preventing occurrence of whisker in bending part, electric electronic component using the same, method for producing plated member, and method for preventing occurrence of whisker in plated member
JP2007109995A (en) Method of mounting circuit board
JP2004342776A (en) Circuit board
JP4639353B2 (en) Electronic component mounting substrate, mounting method and apparatus
JP2008004585A (en) Electrode terminal
JP2006245195A (en) Double-sided printed wiring board
JP6621353B2 (en) Heat resistant ceramic circuit board
KR101487267B1 (en) Printed circuit board using conductive paste and method of manufacturing thereof
JP5825265B2 (en) Soldering method for printed circuit boards
JP2006324282A (en) Multilayer printed-wiring board and manufacturing method thereof
JP5082428B2 (en) Method for adjusting space between component having lead wire and substrate
JP2009135285A (en) Method for manufacturing flexible printed wiring board, and flexible printed wiring board manufactured by the method
JP4962175B2 (en) Printed wiring board
JP2007189043A (en) Wiring board and its manufacturing method
JP2016018800A (en) Printed board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100325

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4570505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350