JP2006269910A - 金属用研磨液及びこれを用いた研磨方法 - Google Patents

金属用研磨液及びこれを用いた研磨方法 Download PDF

Info

Publication number
JP2006269910A
JP2006269910A JP2005088357A JP2005088357A JP2006269910A JP 2006269910 A JP2006269910 A JP 2006269910A JP 2005088357 A JP2005088357 A JP 2005088357A JP 2005088357 A JP2005088357 A JP 2005088357A JP 2006269910 A JP2006269910 A JP 2006269910A
Authority
JP
Japan
Prior art keywords
group
acid
polishing
metal
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005088357A
Other languages
English (en)
Inventor
Kenji Takenouchi
研二 竹之内
Tetsuya Kamimura
上村  哲也
Tomohiko Akatsuka
朝彦 赤塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005088357A priority Critical patent/JP2006269910A/ja
Publication of JP2006269910A publication Critical patent/JP2006269910A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】 バリアメタルの絶対的な研磨速度を適度に上げることに加え、金属配線材との研磨速度比を適切な選択比に調節できる金属研磨用、特にバリア金属研磨用、研磨液及び該研磨液を用いた研磨方法を提供する。
【解決手段】
表面にアミノ基を有する研磨粒子、及び、アミノ酸を含有することを特徴とする金属用研磨液及び該研磨液を用いた研磨方法。
【選択図】 なし

Description

本発明は、半導体デバイス製造のCMP工程において、余分な金属配線膜やバリアメタル層を除去するのに適した金属用研磨液に関するものである。
LSIなどの半導体デバイスを製造する際には、微細な配線を多層に形成することが行われており、その各層においてCuなどの金属配線を形成する際には層間絶縁膜への配線材料の拡散を防止するために、TaやTaNなどのバリアメタルを前もって形成することが行われている。各配線層を形成するためには、まずメッキ法などで盛付けられた余分な配線材を除去する金属膜のCMP(以下、金属膜CMPと呼ぶ)を1段もしくは多段に渡って行い、次にこれによって表面に露出したバリアメタルを除去するCMP(以下、バリアメタルCMPと呼ぶ)を行うことが一般的になされている。しかしながら金属膜CMPによって、配線部が過研磨されてしまういわゆるディッシングや、更にエロージョンを引き起こしてしまうことが問題となっている。このディッシングを軽減するため、次に行うバリアメタルCMPでは、金属配線部の研磨速度とバリアメタル部の研磨速度を調整して最終的にディッシングの少ない配線層を形成することが求められている。即ちバリアメタルCMPでは、金属配線材に比較してバリアメタルの研磨速度が相対的に小さい場合は配線部が早く研磨されるなどディッシングやエロージョンが発生してしまうため、バリアメタルの研磨速度は適度に大きい方が望ましい。これはバリアメタルCMPのスループットを上げるメリットがあることに加え、実際的には金属膜CMPによってディッシングが発生していることが多く、前述の理由からバリアメタルの研磨速度を相対的に高くすることが求められている点においても望ましいからである。
また、研磨液について、以下のように種々の検討がなされている。
特許文献1(特開2001−269857号公報)は、ディッシング現象の低減、バリアメタルの選択的研磨の点から、表面にシラノール基、カルボキシル基、またはアミノ基を有するシリカ微粒子を含有する研磨用組成物を開示している。
特許文献2(特開2001−226666号公報)は、カルボキシル基、またはアミノ基を有するシリカ微粒子を含有する研磨用組成物を開示している。
特許文献3(特開平9−82668号公報)は、スクラッチ抑制の点から、カルボキシル基、アミノ基、スルホン酸基 等を含有する表面処理剤で処理された研磨粒子を含有するスラリーを開示している。
特許文献4(特開2002−294220号公報)は、経時安定性、スクラッチ抑制の点から、シランカップリング剤で処理された二酸化ケイ素粉末を含有する研磨剤を開示している。
特許文献5(WO01/057919)は、TaまたはTaNなどのバリアメタルの研磨速度を高くするためpH5.5〜9.0に調整された研磨組成物を開示している。
上記のような研磨液においても、バリアメタルの絶対的な研磨速度を適度に上げること、そして金属配線材との研磨速度比を適切な選択比に調節できることが課題となっている。
特開2001−269857号公報 特開2001−226666号公報 特開平9−82668号公報 特開2002−294220号公報 WO01/057919号パンフレット
バリアメタルの絶対的な研磨速度を適度に上げることに加え、金属配線材との研磨速度比を適切な選択比に調節できる金属研磨用、特にバリア金属研磨用、研磨液を提供する。
(1)表面にアミノ基を有する研磨粒子及びアミノ酸を含有することを特徴とする金属用研磨液。
(2)更に、テトラゾール類、アントラニル酸類、およびこれらの誘導体から選ばれる少なくとも一種の化合物を含有する上記(1)に記載の金属用研磨液。
(3)中性であることを特徴とする上記(1)または(2)に記載の金属用研磨液。
(4)上記(1)〜(3)のいずれかに記載の金属用研磨液を、被研磨面と接触させ、被研磨面と研磨面を相対運動させて研磨することを特徴とする化学的機械的研磨方法。
本発明の研磨液によれば、バリアメタルの研磨速度が大きく、また適度に調整可能であるので、金属配線材との研磨速度比を適切な選択比を有する研磨液を提供できる。
上記課題を検討するにあたり、表面にアミノ基を有する粒子を砥粒に採用し、アミノ酸を含有した研磨液を用いることにより、TaやTaNなどのバリアメタルの研磨速度を適度に上げ、金属配線材との選択比を広い範囲で調節できることを見出した。
また、シリカ粒子では、表面にアミノ基を導入することによって、Cuなどの金属配線材の研磨速度を下げることができることが分かった。
〔表面にアミノ基を有する研磨粒子〕
まず第一に表面にアミノ基を有する研磨粒子を採用し、更に、当該アミノ基の密度が高いほどバリアメタルの研磨速度が増すことを発見した。
表面にアミノ基を付与する研磨粒子としては、例えばシリカ(沈降シリカ、フュームドシリカ、コロイダルシリカ、その他合成シリカ)、セリア、アルミナ、チタニア、ジルコニア、ゲルマニア、酸化マンガン、炭化ケイ素、ポリスチレン、ポリアクリル、ポリテレフタレートなどが挙げられ、特にコロイダルシリカが好ましい。
また、砥粒は平均粒径が5〜1000nmが好ましく、特には10〜200nmが好ましい。
バリアメタルの研磨速度向上の点でアミノ酸の密度は、0.01〜10個/nm2が好ましく、0.1〜7個/nm2がより好ましい。
粒子表面にアミノ基を存在させるには、カップリング処理を用いるなどの一般的に知られている表面処理方法でも良いし、プラズマ反応プロセスを用いて表面にアミノ基を植え付けてもよい。また、末端がアミノ基になるようなポリマー鎖を粒子にグラフト化しても良い。
カップリング処理を行う場合は、シランカップリング剤(例えば、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシランなど)やチタネート系カップリング剤(例えば、アミノエチル〜チタンモノイソプロピレート)、アルミネート系カップリング剤、ジルコネート系カップリング剤、フォスフェー
ト系カップリング剤などが有効である。中でもシランカップリング剤は扱いやすく、入手の容易さから望ましい。カップリング処理は扱う粒子によって気相もしくは液相処理を行うことができる。例えばヒュームド系やヒューズド系粒子など気相合成した粒子などは気相/液相処理のどちらでも可能であるが、コロイダルシリカのような液相合成粒子では液相処理が有利である。
気相/液相処理のいずれの場合も加水分解を起こさせるために、水の添加、必要に応じてpHの調整を行う。
表面処理剤の量は、処理剤の被覆面積と処理される粒子の表面積によって決定できるが、ESCAやXPSなどで確認することが好ましい。
表面にアミノ基を有する研磨粒子の添加量は、使用する際の金属用研磨液の全質量に対して0.3〜30質量%であることが好ましく、3〜21質量%の範囲であることがより好ましい。
〔アミノ酸〕
表面にアミノ基を有する研磨粒子とともに、アミノ酸を添加することがバリアメタルの研磨速度の調整に有効であることを見出した。
また、アミノ酸の中でもモノカルボン酸に対し、ジカルボン酸やトリカルボン酸などの2つ以上のカルボキシル基を持つアミノ酸を用いることによりバリアメタルの研磨速度がより向上することを見出した。
モノカルボン酸であるアミノ酸としては、例えば、グリシン、アラニン、バリン、ロイシン、イソロイシン、アルギニン、リシン、メチオニン、トリプトファン、ヒスチジン、チトルリン、システイン、オルニチン、セリン、グリシルグリシン、アミノ酪酸、アミノカプロン酸、トレオニン、メチオニン、フェニルアラニン、フェニルグリシン、チロシン、スレオニン、ジヒドロキシエチルグリシン(DHEG)やこれらの誘導体(カルボキシル基置換を除く)が挙げられる。
バリアメタルの研磨速度の向上により効果がある2つ以上のカルボキシル基を持つアミノ酸としては、例えば、グルタミン酸やアスパラギン酸およびこれらの塩類、シスチン、グルタチオン、イミノジ酢酸(IDA)、ニトリロ三酢酸(NTA)、ヒドロキシイミノジ酢酸(HIDA)、アセトアミドイミノジ酢酸(AcDA)、カルボキシエチルイミノジ酢酸(CE−IDA)、エチレンジアミン四酢酸(EDTA)およびこれらの誘導体(カルボキシル基置換を除く)などが挙げられる。
アミノ酸の添加量は、使用する際の金属用研磨液の全質量に対して、0.01〜5.0質量%が好ましく、0.1〜2.0質量%がより好ましい。
これらの表面にアミノ基を有する研磨粒子とアミノ酸を組み合わせることで、バリアメタルの研磨速度を向上、そして調節することができ、最適なバリアメタルの研磨速度と、金属配線材との適切な選択比を得ることが可能である。
本発明の金属用研磨液は、一般に、銅金属及び/または銅合金からなる配線と層間絶縁膜との間に存在させる銅の拡散を防ぐ為のバリアメタル層の研磨に適する。
バリアメタル層は、一般に低抵抗のメタル材料がよく、特にはTiN、TiW、Ta、TaN、W、WNが好ましく、中でもTa、TaNが特に好ましい。
更に、研磨粒子の種類によっては、研磨液のpHによって凝集や溶解が生じるため、研磨液のpHは5.0〜10.5の範囲に調整されていることが望ましい。
また、作業環境や廃液処理の負荷などを考慮した場合、中性付近で用いることが望ましいが、従来のスラリーでは研磨速度を稼ぐために酸性液あるいはアルカリ性液として使用することが多かった。
本発明により表面にアミノ基を有する研磨粒子およびアミノ酸(特に2つ以上のカルボキシル基を持つアミノ酸)を含有することによって、中性域(例えば、pH5.5〜8.4)でも十分に研磨速度が高くなることが見出された。
また、選択比を大きく取るためにも例えば酸性域で使用することがあったが、本発明により従来よりも中性側で同等の選択比を得ることが可能である。
金属用研磨液の他の構成成分について、以下に説明するが、これらに限定されるものではない。
本発明の金属用研磨液は、構成成分として上記成分とともに、少なくとも酸化剤を含有し、通常水溶液である。
本発明の金属用研磨液は、さらに他の成分を含有してもよく、好ましい成分として、砥粒、いわゆる皮膜形成剤として添加される化合物、界面活性剤、水溶性ポリマー、及び添加剤を挙げることができる。
金属用研磨液が含有する各成分は1種でも2種以上併用してもよい。
また、酸化剤は、使用の直前に他の成分を含む組成物に添加して、研磨液としてもよい。
本発明において「金属用研磨液」とは、研磨に使用する際の研磨液(即ち、必要により希釈された研磨液)のみならず、金属用研磨液の濃縮液をも包含する意である。濃縮液または濃縮された研磨液とは、研磨に使用する際の研磨液よりも、溶質の濃度が高く調製された研磨液を意味し、研磨に使用する際に、水または水溶液などで希釈して、研磨に使用されるものである。希釈倍率は、一般的には1〜20体積倍である。本明細書において「濃縮」及び「濃縮液」とは、使用状態よりも「濃厚」及び「濃厚な液」を意味する慣用表現にしたがって用いており、蒸発などの物理的な濃縮操作を伴う一般的な用語の意味とは異なる用法で用いている。
〔酸化剤〕
本発明の金属用研磨液は、研磨対象の金属を酸化できる化合物(酸化剤)を含有する。
酸化剤としては、例えば、過酸化水素、過酸化物、硝酸塩、ヨウ素酸塩、過ヨウ素酸塩、次亜塩素酸塩、亜塩素酸塩、塩素酸塩、過塩素酸塩、過硫酸塩、重クロム酸塩、過マンガン酸塩、オゾン水および銀(II)塩、鉄(III)塩が挙げられる。
鉄(III)塩としては例えば、硝酸鉄(III)、塩化鉄(III)、硫酸鉄(III)、臭化鉄(III)など無機の鉄(III)塩の他、鉄(III)の有機錯塩が好ましく用いられる。
鉄(III)の有機錯塩を用いる場合、鉄(III)錯塩を構成する錯形成化合物としては、例えば、酢酸、クエン酸、シュウ酸、サリチル酸、ジエチルジチオカルバミン酸、コハク酸、酒石酸、グリコール酸、グリシン、アラニン、アスパラギン酸、チオグリコール酸、エチレンジアミン、トリメチレンジアミン、ジエチレングリコール、トリエチレングリコール、1,2−エタンジチオール、マロン酸、グルタル酸、3−ヒドロキシ酪酸、プロピオン酸、フタル酸、イソフタル酸、3−ヒドロキシサリチル酸、3,5−ジヒドロキシサリチル酸、没食子酸、安息香酸、マレイン酸などやこれらの塩の他、アミノポリカルボン酸及びその塩が挙げられる。
アミノポリカルボン酸及びその塩としては、エチレンジアミン−N,N,N',N'−四
酢酸、ジエチレントリアミン五酢酸、1,3−ジアミノプロパン−N,N,N',N'−四酢酸、1,2−ジアミノプロパン−N,N,N',N'−四酢酸、エチレンジアミン−N,N'−ジコハク酸(ラセミ体)、エチレンジアミンジコハク酸(SS体)、N−(2−カルボキシラートエチル)−L−アスパラギン酸、N−(カルボキシメチル)−L−アスパラギン酸、β-アラニンジ酢酸、メチルイミノジ酢酸、ニトリロ三酢酸、シクロヘキサンジアミン四酢酸、イミノジ酢酸、グリコールエーテルジアミン四酢酸、エチレンジアミン1−N,N'−ニ酢酸、エチレンジアミンオルトヒドロキシフェニル酢酸、N,N−ビス(2−ヒドロキシベンジル)エチレンジアミン−N,N−ジ酢酸など及びその塩が挙げられる。対塩の種類は、アルカリ金属塩及びアンモニウム塩が好ましく、特にはアンモニウム塩が好ましい。
中でも、過酸化水素、ヨウ素酸塩、次亜塩素酸塩、塩素酸塩、鉄(III)の有機錯塩が好ましく、鉄(III)の有機錯塩を用いる場合の好ましい錯形成化合物は、クエン酸、酒石酸、アミノポリカルボン酸(具体的には、エチレンジアミン−N,N,N',N'−四酢酸、ジエチレントリアミン五酢酸、1,3−ジアミノプロパン−N,N,N',N'−四酢酸、エチレンジアミン−N,N'−ジコハク酸(ラセミ体)、エチレンジアミンジコハク酸(SS体)、N−(2−カルボキシラートエチル)−L−アスパラギン酸、N−(カルボキシメチル)−L−アスパラギン酸、β−アラニンジ酢酸、メチルイミノジ酢酸、ニトリロ三酢酸、イミノジ酢酸)を挙げることができる。
酸化剤の中でも過酸化水素並びに鉄(III)のエチレンジアミン−N,N,N',N'−四酢酸、1,3−ジアミノプロパン−N,N,N',N'−四酢酸及びエチレンジアミンジコハク酸(SS体)錯体が最も好ましい。
酸化剤の添加量は、研磨に使用する際の金属用研磨液の1L中、0.003mol〜8molとすることが好ましく、0.03mol〜6molとすることがより好ましく、0.1mol〜4molとすることが特に好ましい。即ち、酸化剤の添加量は、金属の酸化が十分で高いCMP速度を確保する点で0.003mol以上が好ましく、研磨面の荒れ防止の点から8mol以下が好ましい。
〔一般式(1)または(2)で表される化合物〕
また、研磨液は一般式(1)または(2)で表される化合物を含有することが好ましい。
Figure 2006269910
1は、単結合、アルキレン基、又はフェニレン基を表す。
2及びR3は、各々独立に、水素原子、ハロゲン原子、カルボキシル基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、又はアリール基を表す。
4及びR5は、各々独立に、水素原子、ハロゲン原子、カルボキシル基、アルキル基、又はアシル基を表す。
但し、R1が単結合のとき、R4及びR5の少なくともいずれかは水素原子ではない。
Figure 2006269910
6は単結合、アルキレン基、又はフェニレン基を表す。
7及びR8は、各々独立に、水素原子、ハロゲン原子、カルボキシル基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、又はアリール基を表す。
9は、水素原子、ハロゲン原子、カルボキシル基、又はアルキル基を表す。
10はアルキレン基を表す。
但し、R10が−CH2−のとき、R6は単結合ではないか、R9が水素原子ではないかの少なくともいずれかである。
式(1)におけるR1としてのアルキレン基は、直鎖状、分岐状、環状のいずれであってもよく、好ましくは炭素数1〜8であり、例えば、メチレン基、エチレン基を挙げることができる。
アルキレン基が有していてもよい置換基としては、水酸基、ハロゲン原子などを挙げることができる。
2及びR3としてのアルキル基は、好ましくは炭素数1〜8であり、例えば、メチル基、プロピル基などを挙げることができる。
2及びR3としてのシクロアルキル基は、好ましくは炭素数5〜15であり、例えば、シクロペンチル基、シクロヘキシル基、シクロオクチル基を挙げることができる。
2及びR3としてのアルケニル基は、好ましくは炭素数2〜9であり、例えば、ビニル基、プロペニル基、アリル基を挙げることができる。
2及びR3としてのアルキニル基は、好ましくは炭素数2〜9であり、例えば、エチニル基、プロピニル基、ブチニル基を挙げることができる。
2及びR3としてのアリール基は、好ましくは炭素数6〜15であり、例えばフェニル基を挙げることができる。
これらの基におけるアルキレン鎖中には、酸素原子、硫黄原子などのヘテロ原子を有していてもよい。
2及びR3としての各基が有してもよい置換基としては、水酸基、ハロゲン原子、芳香環(好ましくは炭素数3〜15)などを挙げることができる。
4及びR5としてのアルキル基は、好ましくは炭素数1〜8であり、例えば、メチル基、エチル基を挙げることができる。
アシル基は、好ましくは炭素数2〜9であり、例えば、メチルカルボニル基を挙げることができる。
4及びR5としての各基が有してもよい置換基としては、水酸基、アミノ基、ハロゲン原子を挙げることができる。
一般式(1)において、R4及びR5のいずれか一方は水素原子でないことが好ましい。
式(2)におけるR6及びR10としてのアルキレン基は、直鎖状、分岐状、環状のいずれであってもよく、好ましくは炭素数1〜8であり、例えば、メチレン基、エチレン基を挙げることができる。
アルキレン基及びフェニレン基が有していてもよい置換基としては、水酸基、ハロゲン原子などを挙げることができる。
7及びR8としてのアルキル基は、好ましくは炭素数1〜8であり、例えば、メチル基、プロピル基などを挙げることができる。
7及びR8としてのシクロアルキル基は、好ましくは炭素数5〜15であり、例えば、シクロペンチル基、シクロヘキシル基、シクロオクチル基を挙げることができる。
7及びR8としてのアルケニル基は、好ましくは炭素数2〜9であり、例えば、ビニル基、プロペニル基、アリル基を挙げることができる。
7及びR8としてのアルキニル基は、好ましくは炭素数2〜9であり、例えば、エチニル基、プロピニル基、ブチニル基を挙げることができる。
7及びR8としてのアリール基は、好ましくは炭素数6〜15であり、例えばフェニル基を挙げることができる。
これらの基におけるアルキレン鎖中には、酸素原子、硫黄原子などのヘテロ原子を有していてもよい。
7及びR8としての各基が有してもよい置換基としては、水酸基、ハロゲン原子、芳香環(好ましくは炭素数3〜15)などを挙げることができる。
9としてのアルキル基は、好ましくは炭素数1〜8であり、例えば、メチル基、エチル基を挙げることができる。
9としてのアシル基は、好ましくは炭素数2〜9であり、例えば、メチルカルボニル基を挙げることができる。
これらの基におけるアルキレン鎖中には、酸素原子、硫黄原子などのヘテロ原子を有していてもよい。
9としての各基が有してもよい置換基としては、水酸基、アミノ基、ハロゲン原子、カルボキシル基を挙げることができる。
一般式(2)において、R9は水素原子でないことが好ましい。
以下に、一般式(1)又は一般式(2)で表される化合物の具体例を挙げるが、これらに限定するものではない。
Figure 2006269910
Figure 2006269910
一般式(1)または(2)で表される化合物は、公知の方法により合成できるが、市販のものを用いてもよい。
一般式(1)または(2)で表される化合物の添加量は、総量として、研磨に使用する際の金属用研磨液の1L中、好ましくは0.0005〜5mol、より好ましくは0.01〜0.5molである。
一般式(1)で表される化合物及び一般式(2)で表される化合物の両者を併用することが好ましい。この場合の割合(一般式(1)で表される化合物/一般式(2)で表される化合物)は、質量比として、一般的には100/1〜1/100、好ましくは10/1〜1/10である。
〔芳香環を有する化合物〕
また、金属用研磨液は、芳香環を有する化合物を含有することが好ましい。
芳香環を有する化合物とは、ベンゼン環、ナフタレン環などの芳香環を有する、好ましくは分子量20〜600の化合物であり、例えば、テトラゾール類及びその誘導体またはアントラニル酸類及びその誘導体、アミノトルイル酸、キナルジン酸、以下のようなアゾール類が挙げられる。
芳香環を有する化合物としてのアゾール類は、ベンズイミダゾール−2−チオール、2−[2−(ベンゾチアゾリル)]チオプロピオン酸、2−[2−(ベンゾチアゾリル)]チオブチル酸、2−メルカプトベンゾチアゾール、1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ−1H−1,2,4−トリアゾール、ベンゾトリアゾール、1−ヒドロキシベンゾトリアゾール、1−ジヒドロキシプロピルベンゾトリアゾール、2,3−ジカルボキシプロピルベンゾトリアゾール、4−ヒドロキシベンゾトリアゾール、4−カルボキシル−1H−ベンゾトリアゾール、4−メトキシカルボニル−1H−ベン
ゾトリアゾール、4−ブトキシカルボニル−1H−ベンゾトリアゾール、4−オクチルオキシカルボニル−1H−ベンゾトリアゾール、5−ヘキシルベンゾトリアゾール、N−(1,2,3−ベンゾトリアゾリル−1−メチル)−N−(1,2,4−トリアゾリル−1−メチル)−2−エチルヘキシルアミン、トリルトリアゾール、ナフトトリアゾール、ビス[(1−ベンゾトリアゾリル)メチル]ホスホン酸等が挙げられ、ベンゾトリアゾール、4−ヒドロキシベンゾトリアゾール、4−カルボキシル−1H−ベンゾトリアゾールブチルエステル、トリルトリアゾール、ナフトトリアゾールが高いCMP速度と低いエッチング速度を両立する上で好ましい。
本発明においては、芳香環を有する化合物として、特に、テトラゾール類及びその誘導体またはアントラニル酸類及びその誘導体から選ばれる少なくとも1種類の化合物を含有することが好ましい。
テトラゾール類及びその誘導体としては、式(I)で表される化合物が好ましく、アントラニル酸類及びその誘導体としては、式(II)で表される化合物が好ましい。
Figure 2006269910
式(I)中、R1a及びR2aは、各々独立に、水素原子又は置換基を表す。R1a及びR2aはお互いに結合して環を形成してもよい。なお、R1a及びR2aが同時に水素原子の場合、一般式(I)で表される化合物は、その互変異性体でもよい。
式(II)中、R3a〜R8aは、各々独立に、水素原子又は置換基を表す。R3a〜R6aのうちの隣り合った二つはお互いに結合して環を形成してもよい。M+は陽イオンを表す。
式(I)におけるR1a及びR2aとしての置換基は、特に限定されないが、例えば以下のものが挙げられる。
ハロゲン原子(フッ素原子、塩素原子、臭素原子、または沃素原子)、アルキル基(直鎖、分岐又は環状のアルキル基であり、ビシクロアルキル基のように多環アルキル基であっても、活性メチン基を含んでもよい)、アルケニル基、アルキニル基、アリール基、ヘテロ環基(置換する位置は問わない)、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロ環オキシカルボニル基、カルバモイル基(置換基を有するカルバモイル基としては、例えば、N−ヒドロキシカルバモイル基、N−アシルカルバモイル基、N−スルホニルカルバモイル基、N−カルバモイルカルバモイル基、チオカルバモイル基、N−スルファモイルカルバモイル基)、カルバゾイル基、カルボキシ基またはその塩、オキサリル基、オキサモイル基、シアノ基、カルボンイミドイル基(Carbonimidoyl基)、ホルミル基、ヒドロキシ基、アルコキシ基(エチレンオキシ基もしくはプロピレンオキシ基単位を繰り返し含む基を含む)、アリールオキシ基、ヘテロ環オキシ基、アシルオキシ基、(アルコキシもしくはアリールオキシ)カルボニルオキシ基、カルバモイルオキシ基、スルホニルオキシ基、
アミノ基、(アルキル、アリール、またはヘテロ環)アミノ基、アシルアミノ基、スルホンアミド基、ウレイド基、チオウレイド基、N−ヒドロキシウレイド基、イミド基、(アルコキシもしくはアリールオキシ)カルボニルアミノ基、スルファモイルアミノ基、セ
ミカルバジド基、チオセミカルバジド基、ヒドラジノ基、アンモニオ基、オキサモイルアミノ基、N−(アルキルもしくはアリール)スルホニルウレイド基、N−アシルウレイド基、N−アシルスルファモイルアミノ基、ヒドロキシアミノ基、ニトロ基、4級化された窒素原子を含むヘテロ環基(例えばピリジニオ基、イミダゾリオ基、キノリニオ基、イソキノリニオ基)、イソシアノ基、イミノ基、メルカプト基、(アルキル、アリール、またはヘテロ環)チオ基、(アルキル、アリール、またはヘテロ環)ジチオ基、(アルキルまたはアリール)スルホニル基、(アルキルまたはアリール)スルフィニル基、スルホ基またはその塩、スルファモイル基(置換基を有するスルファモイル基としては、例えばN−アシルスルファモイル基、N−スルホニルスルファモイル基)またはその塩、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基等が挙げられる。
なお、活性メチン基とは2つの電子求引性基で置換されたメチン基を意味し、電子求引性基とは、例えば、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルスルホニル基、アリールスルホニル基、スルファモイル基、トリフルオロメチル基、シアノ基、ニトロ基、カルボンイミドイル基(Carbonimidoyl基)を意味する。2つの電子求引性基は互いに結合して環状構造をとっていてもよい。また塩とは、アルカリ金属、アルカリ土類金属、重金属などの陽イオンや、アンモニウムイオン、ホスホニウムイオンなどの有機の陽イオンを意味する。
これらの中でも好ましい置換基としては、例えばハロゲン原子(フッ素原子、塩素原子、臭素原子、または沃素原子)、アルキル基(直鎖、分岐又は環状のアルキル基であり、ビシクロアルキル基のように多環アルキル基であっても、活性メチン基を含んでもよい)、アルケニル基、アルキニル基、アリール基、ヘテロ環基(置換する位置は問わない)、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロ環オキシカルボニル基、カルバモイル基、N−ヒドロキシカルバモイル基、N−アシルカルバモイル基、N−スルホニルカルバモイル基、N−カルバモイルカルバモイル基、チオカルバモイル基、N−スルファモイルカルバモイル基、カルバゾイル基、オキサリル基、オキサモイル基、シアノ基、カルボンイミドイル基(Carbonimidoyl基)、ホルミル基、ヒドロキシ基、アルコキシ基(エチレンオキシ基もしくはプロピレンオキシ基単位を繰り返し含む基を含む)、アリールオキシ基、ヘテロ環オキシ基、アシルオキシ基、(アルコキシもしくはアリールオキシ)カルボニルオキシ基、カルバモイルオキシ基、スルホニルオキシ基、(アルキル、アリール、またはヘテロ環)アミノ基、アシルアミノ基、スルホンアミド基、ウレイド基、チオウレイド基、N−ヒドロキシウレイド基、イミド基、
(アルコキシもしくはアリールオキシ)カルボニルアミノ基、スルファモイルアミノ基、セミカルバジド基、チオセミカルバジド基、ヒドラジノ基、アンモニオ基、オキサモイルアミノ基、N−(アルキルもしくはアリール)スルホニルウレイド基、N−アシルウレイド基、N−アシルスルファモイルアミノ基、ヒドロキシアミノ基、ニトロ基、4級化された窒素原子を含むヘテロ環基(例えばピリジニオ基、イミダゾリオ基、キノリニオ基、イソキノリニオ基)、イソシアノ基、イミノ基、メルカプト基、(アルキル、アリール、またはヘテロ環)チオ基、(アルキル、アリール、またはヘテロ環)ジチオ基、(アルキルまたはアリール)スルホニル基、(アルキルまたはアリール)スルフィニル基、スルホ基またはその塩、スルファモイル基、N−アシルスルファモイル基、N−スルホニルスルファモイル基またはその塩、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基等が挙げられる。なおここで活性メチン基とは2つの電子求引性基で置換されたメチン基を意味し、ここに電子求引性基とはアシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルスルホニル基、アリールスルホニル基、スルファモイル基、トリフルオロメチル基、シアノ基、ニトロ基、カルボンイミドイル基(Carbonimidoyl基)が挙げられる。
さらに好ましくは、例えばハロゲン原子(フッ素原子、塩素原子、臭素原子、または沃素原子)、アルキル基(直鎖、分岐又は環状のアルキル基であり、ビシクロアルキル基のように多環アルキル基であっても、活性メチン基を含んでもよい)、アルケニル基、アルキニル基、アリール基、ヘテロ環基(置換する位置は問わない)が挙げられる。
1a及びR2aが結合して、式(I)における−C−N−結合とともに、形成する環としては、単環であっても多環であってもよく、好ましくは5〜6員環の単環、または5〜6員環から構成される多環である。
上記置換基は、さらに上記置換基で置換されていてもよい。
一般式(I)で表される化合物の分子量は、好ましくは20〜600、より好ましくは40〜400である。
一般式(I)で表される化合物の具体例を以下に挙げるが、これらに限定するものではない。
Figure 2006269910
Figure 2006269910
Figure 2006269910
一般式(I)で表される化合物の中で好ましいものとしては、化合物I−1、I−3、I−4、I−10、I−15、I−21、I−22、I−23、I−41、I−48が挙げられ、化合物I−1、I−4、I−15、I−22、I−23がより好ましい。
また、一般式(I)で表される化合物は単独で用いてもよいし、2種以上併用してもよい。
一般式(I)で表される化合物は、常法に従って合成できるほか、市販品を使用してもよい。
式(II)におけるR3a〜R8aとしての置換基は、特に限定されないが、例えば以下のものが挙げられる。
ハロゲン原子(フッ素原子、塩素原子、臭素原子、または沃素原子)、アルキル基(直鎖、分岐又は環状のアルキル基であり、ビシクロアルキル基のように多環アルキル基であっても、活性メチン基を含んでもよい)、アルケニル基、アルキニル基、アリール基、ヘテロ環基(置換する位置は問わない)、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロ環オキシカルボニル基、カルバモイル基(置換基を有するカルバモイル基としては、例えば、N−ヒドロキシカルバモイル基、N−アシルカルバモイル
基、N−スルホニルカルバモイル基、N−カルバモイルカルバモイル基、チオカルバモイル基、N−スルファモイルカルバモイル基)、カルバゾイル基、カルボキシ基またはその塩、オキサリル基、オキサモイル基、シアノ基、カルボンイミドイル基(Carbonimidoyl基)、ホルミル基、ヒドロキシ基、アルコキシ基(エチレンオキシ基もしくはプロピレンオキシ基単位を繰り返し含む基を含む)、アリールオキシ基、ヘテロ環オキシ基、アシルオキシ基、(アルコキシもしくはアリールオキシ)カルボニルオキシ基、カルバモイルオキシ基、スルホニルオキシ基、
アミノ基、(アルキル、アリール、またはヘテロ環)アミノ基、アシルアミノ基、スルホンアミド基、ウレイド基、チオウレイド基、N−ヒドロキシウレイド基、イミド基、(アルコキシもしくはアリールオキシ)カルボニルアミノ基、スルファモイルアミノ基、セミカルバジド基、チオセミカルバジド基、ヒドラジノ基、アンモニオ基、オキサモイルアミノ基、N−(アルキルもしくはアリール)スルホニルウレイド基、N−アシルウレイド基、N−アシルスルファモイルアミノ基、ヒドロキシアミノ基、ニトロ基、4級化された窒素原子を含むヘテロ環基(例えばピリジニオ基、イミダゾリオ基、キノリニオ基、イソキノリニオ基)、イソシアノ基、イミノ基、メルカプト基、(アルキル、アリール、またはヘテロ環)チオ基、(アルキル、アリール、またはヘテロ環)ジチオ基、(アルキルまたはアリール)スルホニル基、(アルキルまたはアリール)スルフィニル基、スルホ基またはその塩、スルファモイル基(置換基を有するスルファモイル基としては、例えばN−アシルスルファモイル基、N−スルホニルスルファモイル基)またはその塩、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基等が挙げられる。
なお、活性メチン基とは2つの電子求引性基で置換されたメチン基を意味し、電子求引性基とは、例えば、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基、アルキルスルホニル基、アリールスルホニル基、スルファモイル基、トリフルオロメチル基、シアノ基、ニトロ基、カルボンイミドイル基(Carbonimidoyl基)を意味する。2つの電子求引性基は互いに結合して環状構造をとっていてもよい。また塩とは、アルカリ金属、アルカリ土類金属、重金属などの陽イオンや、アンモニウムイオン、ホスホニウムイオンなどの有機の陽イオンを意味する。
これら置換基は、これら置換基でさらに置換されていてもよい。
これらの中でも好ましい置換基としては、R3a〜R6aのうち少なくとも1つが、置換基を有しないアルキル基以外の置換基であり、さらに好ましくは、R7a〜R8aのそれぞれが水素原子である。特に好ましくは、R3a〜R6aのうち少なくとも1つが上述の電子吸引性基でかつR7a〜R8aのそれぞれが水素原子である。
+としての陽イオンは、特に限定されないが、例えば、水素イオン、アルカリ金属イオン(例えば、Na+、K+、Li+など)、アンモニウムイオン(例えば、NH4 +、4級アンモニウムイオンなど)を挙げることができる。
一般式(II)で表される化合物の分子量は、好ましくは20〜600、より好ましくは40〜400である。
一般式(II)で表される化合物の具体例を以下に挙げるが、これらに限定するものではない。
Figure 2006269910

Figure 2006269910
Figure 2006269910
上記の化合物の中で、II−2、II−5、II−9、II−27、II−29、II−30、II−33、II−35、II−37が好ましく、II−5、II−9、II−27、II−29、II−33が特に好ましい。
さらに、上記例示化合物におけるカルボキシ基の水素原子をNa+、K+、Li+などのアルカリ金属イオン、NH4 +や4級アンモニウムイオンなどのアンモニウムイオンで置換し塩としたものを挙げることができる。
また、一般式(II)で表される化合物は単独で用いてもよいし、2種以上併用してもよい。
一般式(II)で表される化合物は、市販品を使用してもよいし、常法に従って合成してもよい。
例えば、化合物II−29は、Synthesis (8), 654-659 (1983) に記載の合成法に準じて合成することができる。化合物II−37は、Tetrahedron Letters, 51(7), 1861-1866 (1995) 及び Tetrahedron Letters, 44(25), 4741-4745 (2003) に記載の方法に準じて合成することができる。他の化合物もこれらに記載の方法に準じて合成することができる。
上記テトラゾール類及びその誘導体またはアントラニル酸類及びその誘導体などの芳香環を有する化合物の添加量は、総量として、研磨に使用する際の金属用研磨液(即ち、水または水溶液で希釈する場合は希釈後の研磨液。以降の「研磨に使用する際の研磨液」も同意である。)の1L中、0.0001〜1.0molが好ましく、より好ましくは0.001〜0.5mol、更に好ましくは0.01〜0.1molである。
すなわち、芳香環を有する化合物の添加量は、酸化剤及びこれらの化合物の劣化(無効果、分解)防止の点から研磨に使用する際の研磨液1L中1.0mol以下が好ましく、充分な効果を得る上で0.0001mol以上が好ましい。
なお、テトラゾール類及びその誘導体またはアントラニル酸類及びその誘導体の添加量よりも少ない添加量で、チオシアン酸塩、チオエーテル類、チオ硫酸塩又はメソイオン化合物を併用してもよい。
〔酸〕
本発明の研磨液は更に酸を含有することができる。ここでいう酸は、金属を酸化するための酸化剤とは構造が異なる化合物であり、前述の酸化剤として機能する酸、及び、前述の一般式(1)又は(2)で表される化合物を包含するものではない。ここでの酸は、酸化の促進、pH調整、緩衝剤としての作用を有する。
酸の例として、その範囲で、例えば、無機酸、有機酸が挙げられる。
無機酸としては、硫酸、硝酸、ホウ酸、燐酸などが挙げられ、無機酸の中では燐酸が好ましい。
有機酸としては、水溶性のものが望ましい。以下の群から選ばれたものがより適している。ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2−メチルヘキサン酸、n−オクタン酸、2−エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸、及びそれらのアンモニウム塩やアルカリ金属塩等の塩、硫酸、硝酸、アンモニア、アンモニウム塩類、又はそれらの混合物等が挙げられる。これらの中ではギ酸、マロン酸、リンゴ酸、酒石酸、クエン酸が銅、銅合金及び銅又は銅合金の酸化物から選ばれた少なくとも1種の金属層を含む積層膜に対して好適である。
特に、リンゴ酸、酒石酸、クエン酸、グリコール酸については実用的なCMP速度を維持しつつ、エッチング速度を効果的に抑制できるという点で好ましい。
酸の添加量は、研磨に使用する際の金属用研磨液の1L中、0.0005〜0.5molとすることが好ましく、0.005mol〜0.3molとすることがより好ましく、0.01mol〜0.1molとすることが特に好ましい。即ち、酸の添加量は、エッチングの抑制の点から0.5mol以下が好ましく、充分な効果を得る上で0.0005mol以上が好ましい。
〔キレート剤〕
本発明の金属用研磨液は、混入する多価金属イオンなどの悪影響を低減させるために、必要に応じてキレート剤(すなわち硬水軟化剤)を含有することが好ましい。
キレート剤としては、カルシウムやマグネシウムの沈澱防止剤である汎用の硬水軟化剤
やその類縁化合物であり、例えば、ニトリロ三酢酸、ジエチレントリアミン五酢酸、エチレンジアミン四酢酸、N,N,N−トリメチレンホスホン酸、エチレンジアミン−N,N,N′,N′−テトラメチレンスルホン酸、トランスシクロヘキサンジアミン四酢酸、1,2−ジアミノプロパン四酢酸、グリコールエーテルジアミン四酢酸、エチレンジアミンオルトヒドロキシフェニル酢酸、エチレンジアミンジ琥珀酸(SS体)、N−(2−カルボキシラートエチル)−L−アスパラギン酸、β−アラニンジ酢酸、2−ホスホノブタン−1,2,4−トリカルボン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、N,N′−ビス(2−ヒドロキシベンジル)エチレンジアミン−N,N′−ジ酢酸、1,2−ジヒドロキシベンゼン−4,6−ジスルホン酸等が挙げられる。
キレート剤は必要に応じて2種以上併用しても良い。
キレート剤の添加量は混入する多価金属イオンなどの金属イオンを封鎖するのに充分な量であれば良く、例えば、研磨に使用する際の金属用研磨液の1L中、0.0003mol〜0.07molになるように添加する。
〔添加剤〕
また、本発明の金属用研磨液には以下の添加剤を用いることも好ましい。
アンモニア;ジメチルアミン、トリメチルアミン、トリエチルアミン、プロピレンジアミン等のアルキルアミンや、エチレンジアミンテトラ酢酸(EDTA)、ジエチルジチオカルバミン酸ナトリウム及びキトサン等のアミン;ジチゾン、クプロイン(2,2'−ビキノリン)、ネオクプロイン(2,9−ジメチル−1,10−フェナントロリン)、バソクプロイン(2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン)及びキュペラゾン(ビスシクロヘキサノンオキサリルヒドラゾン)等のイミン;ノニルメルカプタン、ドデシルメルカプタン、トリアジンチオール、トリアジンジチオール、トリアジントリチオール等のメルカプタン。
これらの中でもキトサン、エチレンジアミンテトラ酢酸、L−トリプトファン、キュペラゾン、トリアジンジチオールが高いCMP速度と低いエッチング速度を両立する上で好ましい。
これら添加剤の添加量は、研磨に使用する際の金属用研磨液の1L中、0.0001mol〜0.5molとすることが好ましく0.001mol〜0.2molとすることがより好ましく、0.005mol〜0.1molとすることが特に好ましい。即ち、添加剤の添加量は、エッチング抑制の点から0.0001mol以上が好ましく、CMP速度低下防止の点から0.5mol以下が好ましい。
〔界面活性剤及び/又は親水性ポリマー〕
本発明の金属用研磨液は、界面活性剤及び/又は親水性ポリマーを含有することが好ましい。界面活性剤と親水性ポリマーは、いずれも被研磨面の接触角を低下させる作用を有して、均一な研磨を促す作用を有する。用いられる界面活性剤及び/又は親水性ポリマーとしては、以下の群から選ばれたものが好適である。
陰イオン界面活性剤として、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩が挙げられ、カルボン酸塩として、石鹸、N−アシルアミノ酸塩、ポリオキシエチレンまたはポリオキシプロピレンアルキルエーテルカルボン酸塩、アシル化ペプチド;スルホン酸塩として、アルキルスルホン酸塩、アルキルベンゼン及びアルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、スルホコハク酸塩、α−オレフィンスルホン酸塩、N−アシルスルホン酸塩;硫酸エステル塩として、硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテル硫酸塩、アルキルアミド硫酸塩;リン酸エステル塩として、アルキルリン酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテルリン酸塩を挙げること
ができる。
陽イオン界面活性剤として、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩;両性界面活性剤として、カルボキシベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、アルキルアミンオキサイドを挙げることができる。
非イオン界面活性剤として、エーテル型、エーテルエステル型、エステル型、含窒素型が挙げられ、エーテル型として、ポリオキシエチレンアルキルおよびアルキルフェニルエーテル、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルが挙げられ、エーテルエステル型として、グリセリンエステルのポリオキシエチレンエーテル、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル、エステル型として、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ポリグリセリンエステル、ソルビタンエステル、プロピレングリコールエステル、ショ糖エステル、含窒素型として、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミド等が例示される。
また、フッ素系界面活性剤などが挙げられる。
さらに、その他の界面活性剤、親水性化合物、親水性ポリマー等としては、グリセリンエステル、ソルビタンエステル、メトキシ酢酸、エトキシ酢酸、3−エトキシプロピオン酸及びアラニンエチルエステル等のエステル;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルケニルエーテル、アルキルポリエチレングリコール、アルキルポリエチレングリコールアルキルエーテル、アルキルポリエチレングリコールアルケニルエーテル、アルケニルポリエチレングリコール、アルケニルポリエチレングリコールアルキルエーテル、アルケニルポリエチレングリコールアルケニルエーテル、ポリプロピレングリコールアルキルエーテル、ポリプロピレングリコールアルケニルエーテル、アルキルポリプロピレングリコール、アルキルポリプロピレングリコールアルキルエーテル、アルキルポリプロピレングリコールアルケニルエーテル、アルケニルポリプロピレングリコール、アルケニルポリプロピレングリコールアルキルエーテル及びアルケニルポリプロピレングリコールアルケニルエーテル等のエーテル;アルギン酸、ペクチン酸、カルボキシメチルセルロース、カードラン及びプルラン等の多糖類;グリシンアンモニウム塩及びグリシンナトリウム塩等のアミノ酸塩;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、
ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ;メチルタウリン酸アンモニウム塩、メチルタウリン酸ナトリウム塩、硫酸メチルナトリウム塩、硫酸エチルアンモニウム塩、硫酸ブチルアンモニウム塩、ビニルスルホン酸ナトリウム塩、1−アリルスルホン酸ナトリウム塩、2−アリルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3−エトキシプロピルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3−エトキシプロピルスルホン酸ナトリウム塩及びスルホコハク酸ナトリウム塩等のスルホン酸及びその塩;プロピオンアミド、アクリルアミド、メチル尿素、ニコチンアミド、コハク酸アミド及びスルファニル
アミド等のアミド等が挙げられる。
但し、適用する基体が半導体集積回路用シリコン基板などの場合はアルカリ金属、アルカリ土類金属、ハロゲン化物等による汚染は望ましくないため、酸もしくはそのアンモニウム塩が望ましい。基体がガラス基板等である場合はその限りではない。上記例示化合物の中でもシクロヘキサノール、ポリアクリル酸アンモニウム塩、ポリビニルアルコール、コハク酸アミド、ポロビニルピロリドン、ポリエチレングリコール、ポリオキシエチレンポリオキシプロピレンブロックポリマーがより好ましい。
界面活性剤及び/又は親水性ポリマーの添加量は、総量として、研磨に使用する際の金属用研磨液の1L中、0.001〜10gとすることが好ましく、0.01〜5gとすることがより好ましく0.1〜3gとすることが特に好ましい。即ち、界面活性剤及び/又は親水性ポリマーの添加量は、充分な効果を得る上で、0.001g以上が好ましく、CMP速度の低下防止の点から10g以下が好ましい。また、これらの界面活性剤及び/又は親水性ポリマーの重量平均分子量としては、500〜100000が好ましく、特には2000〜50000が好ましい。
〔アルカリ剤及び緩衝剤〕
本発明の研磨液は、必要に応じて、pH調整のためにアルカリ剤、さらにはpHの変動抑制の点から緩衝剤を含有することができる。
アルカリ剤及び緩衝剤としては、水酸化アンモニウム及びテトラメチルアンモニウムハイドロキサイドなどの有機水酸化アンモニウム、ジエタノールアミン、トリエタノールアミン、トリイソプロパノールアミンなどのようなアルカノールアミン類などの非金属アルカリ剤、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属水酸化物、炭酸塩、リン酸塩、ホウ酸塩、四ホウ酸塩、ヒドロキシ安息香酸塩、グリシル塩、N,N−ジメチルグリシン塩、ロイシン塩、ノルロイシン塩、グアニン塩、3,4−ジヒドロキシフェニルアラニン塩、アラニン塩、アミノ酪酸塩、2−アミノ−2−メチル−1, 3−プロパンジオール塩、バリン塩、プロリン塩、トリスヒドロキシアミノメタン塩、リシン塩などを用いることができる。
アルカリ剤及び緩衝剤の具体例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、重炭酸ナトリウム、重炭酸カリウム、リン酸三ナトリウム、リン酸三カリウム、リン酸二ナトリウム、リン酸二カリウム、ホウ酸ナトリウム、ホウ酸カリウム、四ホウ酸ナトリウム(ホウ砂)、四ホウ酸カリウム、o−ヒドロキシ安息香酸ナトリウム(サリチル酸ナトリウム)、o−ヒドロキシ安息香酸カリウム、5−スルホ−2−ヒドロキシ安息香酸ナトリウム(5−スルホサリチル酸ナトリウム)、5−スルホ−2−ヒドロキシ安息香酸カリウム(5−スルホサリチル酸カリウム)、水酸化アンモニウムなどを挙げることができる。
特に好ましいアルカリ剤として水酸化アンモニウム、水酸化カリウム、水酸化リチウム及びテトラメチルアンモニウムハイドロキサイドである。
アルカリ剤及び緩衝剤の添加量としては、pHが好ましい範囲に維持される量であればよく、研磨に使用する際の研磨液の1L中、0.0001mol〜1.0molとすることが好ましく、0.003mol〜0.5molとすることがより好ましい。
研磨に使用する際の研磨液のpHは2〜14が好ましく、3〜12がより好ましく、3.5〜8が最も好ましい。この範囲において本発明の金属液は特に優れた効果を発揮する。
本発明においては、研磨面への吸着性や反応性、研磨金属の溶解性、被研磨面の電気化
学的性質、化合物官能基の解離状態、液としての安定性などにより、適時化合物種、添加量やpHを設定することが好ましい。
なお、金属用研磨液の濃縮液作製時に添加する成分の内、室温での水に対する溶解度が5%未満のものの配合量は、濃縮液を5℃に冷却した際の析出を防止する点で、室温での水に対する溶解度の2倍以内とすることが好ましく、1.5倍以内とすることがより好ましい。
〔配線金属原材料〕
本発明においては、研磨する対象である半導体が、銅金属及び/又は銅合金からなる配線を持つLSIであることが好ましく、特には銅合金が好ましい。更には、銅合金の中でも銀を含有する銅合金が好ましい。銅合金に含有される銀含量は、40質量%以下が好ましく、特には10質量%以下、さらには1質量%以下が好ましく、0.00001〜0.1質量%の範囲である銅合金において最も優れた効果を発揮する。
〔配線の太さ〕
本発明においては、研磨する対象である半導体が、例えばDRAMデバイス系ではハーフピッチで0.15μm以下で特には0.10μm以下、更には0.08μm以下、一方、MPUデバイス系では0.12μm以下で特には0.09μm以下、更には0.07μm以下の配線を持つLSIであることが好ましい。これらのLSIに対して、本発明の研磨液は特に優れた効果を発揮する。
〔研磨方法〕
金属用研磨液は、濃縮液であって使用する際に水を加えて希釈して使用液とする場合、または、各成分が次項に述べる水溶液の形態でこれらを混合し、必要により水を加え希釈して使用液とする場合、あるいは使用液として調製されている場合がある。本発明の金属用研磨液を用いた研磨方法は、いずれの場合にも適用でき、研磨液を研磨定盤上の研磨パッドに供給し、被研磨面と接触させて被研磨面と研磨パッドを相対運動させて研磨する研磨方法である。
研磨する装置としては、被研磨面を有する半導体基板等を保持するホルダーと研磨パッドを貼り付けた(回転数が変更可能なモータ等を取り付けてある)研磨定盤を有する一般的な研磨装置が使用できる。研磨パッドとしては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。研磨条件には制限はないが、研磨定盤の回転速度は基板が飛び出さないように200rpm以下の低回転が好ましい。被研磨面(被研磨膜)を有する半導体基板の研磨パッドへの押しつけ圧力は、5〜500g/cm2であることが好ましく、研磨速度のウエハ面内均一性及びパターンの平坦性を満足するためには、12〜240g/cm2であることがより好ましい。
研磨している間、研磨パッドには金属用研磨液をポンプ等で連続的に供給する。この供給量に制限はないが、研磨パッドの表面が常に研磨液で覆われていることが好ましい。研磨終了後の半導体基板は、流水中で良く洗浄した後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させる。本発明の研磨方法では、希釈する水溶液は、次ぎに述べる水溶液と同じである。水溶液は、予め酸化剤、酸、添加剤、界面活性剤のうち少なくとも1つ以上を含有した水で、水溶液中に含有した成分と希釈される金属用研磨液の成分を合計した成分が、金属用研磨液を使用して研磨する際の成分となるようにする。水溶液で希釈して使用する場合は、溶解しにくい成分を水溶液の形で配合することができ、より濃縮した金属用研磨液を調製することができる。
濃縮された金属用研磨液に水または水溶液を加え希釈する方法としては、濃縮された金属用研磨液を供給する配管と水または水溶液を供給する配管を途中で合流させて混合し、
混合し希釈された金属用研磨液を研磨パッドに供給する方法がある。混合は、圧力を付した状態で狭い通路を通して液同士を衝突混合する方法、配管中にガラス管などの充填物を詰め液体の流れを分流分離、合流させることを繰り返し行う方法、配管中に動力で回転する羽根を設ける方法など通常に行われている方法を採用することができる。
金属用研磨液の供給速度は10〜1000ml/minが好ましく、研磨速度のウエハ面内均一性及びパターンの平坦性を満足するためには、170〜800ml/minであることがより好ましい。
濃縮された金属用研磨液を水または水溶液などにより希釈し、研磨する方法としては、金属用研磨液を供給する配管と水または水溶液を供給する配管を独立に設け、それぞれから所定量の液を研磨パッドに供給し、研磨パッドと被研磨面の相対運動で混合しつつ研磨する方法である。または、1つの容器に、所定量の濃縮された金属用研磨液と水または水溶液を入れ混合してから、研磨パッドにその混合した金属用研磨液を供給し、研磨をする方法がある。
本発明の別の研磨方法は、金属用研磨液が含有すべき成分を少なくとも2つの構成成分に分けて、それらを使用する際に、水または水溶液を加え希釈して研磨定盤上の研磨パッドに供給し、被研磨面と接触させて被研磨面と研磨パッドを相対運動させて研磨する方法である。
例えば、酸化剤を1つの構成成分(A)とし、酸、添加剤、界面活性剤及び水を1つの構成成分(B)とし、それらを使用する際に水または水溶液で構成成分(A)と構成成分(B)を希釈して使用する。
また、溶解度の低い添加剤を2つの構成成分(A)と(B)に分け、酸化剤、添加剤及び界面活性剤を1つの構成成分(A)とし、酸、添加剤、界面活性剤及び水を1つの構成成分(B)とし、それらを使用する際に水または水溶液を加え構成成分(A)と構成成分(B)を希釈して使用する。この例の場合、構成成分(A)と構成成分(B)と水または水溶液をそれぞれ供給する3つの配管が必要であり、希釈混合は、3つの配管を、研磨パッドに供給する1つの配管に結合し、その配管内で混合する方法があり、この場合、2つの配管を結合してから他の1つの配管を結合することも可能である。
例えば、溶解しにくい添加剤を含む構成成分と他の構成成分を混合し、混合経路を長くして溶解時間を確保してから、さらに水または水溶液の配管を結合する方法である。その他の混合方法は、上記したように直接に3つの配管をそれぞれ研磨パッドに導き、研磨パッドと被研磨面の相対運動により混合する方法、1つの容器に3つの構成成分を混合して、そこから研磨パッドに希釈された金属用研磨液を供給する方法である。上記した研磨方法において、酸化剤を含む1つの構成成分を40℃以下にし、他の構成成分を室温から100℃の範囲に加温し、且つ1つの構成成分と他の構成成分または水もしくは水溶液を加え希釈して使用する際に、混合した後に40℃以下とするようにすることもできる。温度が高いと溶解度が高くなるため、金属用研磨液の溶解度の低い原料の溶解度を上げるために好ましい方法である。
酸化剤を含まない他の成分を室温から100℃の範囲で加温して溶解させた原料は、温度が下がると溶液中に析出するため、温度が低下したその成分を用いる場合は、予め加温して析出したものを溶解させる必要がある。これには、加温し溶解した構成成分液を送液する手段と、析出物を含む液を攪拌しておき、送液し配管を加温して溶解させる手段を採用することができる。加温した成分が酸化剤を含む1つの構成成分の温度を40℃以上に高めると酸化剤が分解してくる恐れがあるので、加温した構成成分とこの加温した構成成分を冷却する酸化剤を含む1つの構成成分で混合した場合、40℃以下となるようにする。
また本発明においては、上述したように金属用研磨液の成分を二分割以上に分割して、研磨面に供給してもよい。この場合、酸化物を含む成分と酸を含有する成分とに分割して供給する事が好ましい。また、金属用研磨液を濃縮液とし、希釈水を別にして研磨面に供給してもよい。
〔パッド〕
研磨用のパッドは、無発泡構造パッドでも発泡構造パッドでもよい。前者はプラスチック板のように硬質の合成樹脂バルク材をパッドに用いるものである。また、後者は更に独立発泡体(乾式発泡系)、連続発泡体(湿式発泡系)、2層複合体(積層系)の3つがあり、特には2層複合体(積層系)が好ましい。発泡は、均一でも不均一でもよい。
更に研磨に用いる砥粒(例えば、セリア、シリカ、アルミナ、樹脂など)を含有したものでもよい。また、それぞれに硬さは軟質のものと硬質のものがあり、どちらでもよく、積層系ではそれぞれの層に異なる硬さのものを用いることが好ましい。材質としては不織布、人工皮革、ポリアミド、ポリウレタン、ポリエステル、ポリカーボネート等が好ましい。また、研磨面と接触する面には、格子溝/穴/同心溝/らせん状溝などの加工を施してもよい。
〔ウエハ〕
本発明の金属用研磨液でCMPを行なう対象ウエハは、径が200mm以上であることが好ましく、特には300mm以上が好ましい。300mm以上である時に顕著に本発明の効果を発揮する。
以下、実施例により本発明を説明する。本発明はこれらの実施例により限定されるものではない。
下記の組成範囲を示す金属膜CMP用の研磨液を数種類作成し、これを用いて初期ディッシング量の異なる数種類のウエハをバリアメタルCMP評価用として作成した。更に下記に示す組成にてバリアメタルCMP用の水系研磨液を作成し、下記に示す研磨条件にてバリアメタルCMPの評価を行った。
ディッシング量の評価には12インチのパターン付きウエハを用い、下記に示す研磨液で研磨した後に段差計(Dektak V320 Veeco製)にて測定したL/S=100/100部の段差量(Max−Min)を使用した。
(金属膜CMP用研磨液の調製)
以下の組成の範囲で金属膜CMP用研磨液を数種類作成して研磨を行い、ディッシング量の異なるパターンウエハを作成し、これらのウエハを用いてバリアメタルCMPの評価を行った。金属膜CMP後のディッシング量を表1に示す。
コロイダルシリカ(平均1次粒子径は約40nm) 10g/L
グリシン 0.1〜3.0g/L
アントラニル酸 0.01〜5.0g/L
過酸化水素 15g/L
(これらに脱イオン水等を追加して、最終的に1Lとした。)
pH 7.2
(研磨粒子の調製)
市販のヒュームドシリカ(平均粒子径:約20nm)1kgをヘンシェルミキサーに投入し、シリカ粒子をミキサーで撹拌させながら約100mlの脱イオン水を含むアルコー
ルを均等に噴霧した。同時に予めアルコールと均一に混合してある3−アミノプロピルトリメトキシシラン(東芝シリコーン製)を含む溶液を同様に噴霧させて、粒子表面にカップリング処理を行った。処理された粒子は水系溶媒中に回収され、限外ろ過による数回の洗浄によって液中に遊離しているシランカップリング剤はほとんど除去された。ここから粒子のアンプリングを行い、このバルクに対してESCAによる定量分析を行ったところ、噴霧する溶液に占めるアミノシランの量を変えることによって、粒子表面に有するアミノ基の密度は0.3〜3個/nm2とすることができた。処理後回収された粒子は直ちに高圧ホモジナイザーによって分散処理された。
次に、市販のコロイダルシリカ(平均粒子径:約40nm)スラリーに対して湿式処理を行った。即ち、脱イオン水を噴霧することを除き、同様の処理を施した。処理量の違いによって表面に有するアミノ基の密度が0.3〜7個/nm2と変化している粒子を作成した。
ヒュームドシリカの場合と同様に、市販のα−アルミナ粒子(平均粒子径:約40nm)に対して乾式処理を行い、処理量の違いによって表面のアミノ基の密度が0.2〜3個/nm2と変化している粒子を作成した。
<実施例1>
下記に示すバリアメタルCMP用の研磨液を調製し、下記の条件で研磨試験を行い、評価した。
(バリアメタルCMP用研磨液の調製)
コロイダルシリカ(平均粒子径:約40nm)
(表面のアミノ基の密度=6個/nm2) 40g/L
HIDA 8g/L
テトラゾール 0.7g/L
過酸化水素 10g/L
脱イオン水 全量の99質量%以上となる量
pH 7.0
(研磨試験)
ポリッシャ:FREX300(荏原製作所製)
加工圧:2.0psi
ワーク/プラテン回転数:95rpm/100rpm
スラリー供給速度:300ml/min
ワーク:金属膜CMP処理済み12インチCuパターンウエハ
Taベタ膜付き12インチウエハ
研磨パッド:IC1400(ニッタ・ハース社)
(評価方法)
ディッシング量は前述の段差計を用いて、パターンウエハ上の直径方法に並ぶチップ中のL/S=100/100部を等間隔に5箇所測定し、その平均値を算出した。エッジエクスクルージョンは5mmとした。バリアメタルの平均研磨速度は、CMP前後での49箇所の残膜厚さを電気抵抗値から求め、その差分から平均研磨速度を求めた。研磨時間は60秒とした。
バリアメタルCMP後のディッシング量とTaの研磨速度を表1に示す。
<実施例2〜8及び比較例1〜4>
実施例1と同様にして、表1に記載の化合物を使用して、実施例2〜8及び比較例1〜
4の研磨液を調製、研磨試験を行い、ディッシング量と研磨速度を評価した。結果を表1に示す。
なお、表1においてアミノ酸を2種使用の場合の添加量の質量比を括弧内に示した。アミノ酸の総量は実施例1におけるのと同様8g/Lである。
Figure 2006269910
なお、モノカルボン酸類以外のアミノ酸についてのカルボキシル基の数は、HIDA、IDA、AcDA、アスパラギン酸、グルタミン酸、シスチンが2個、NTAが3個、EDTAが4個である。
表1に示されるように、表面にアミノ基を有する粒子およびアミノ酸を含有する水系研磨液は、Taなどのバリアメタルに対して顕著な研磨速度の向上を可能にしてスループットを上げると共に、その研磨速度の範囲を微調整することができる。その結果、金属膜CMPによって発生したディッシングを最終的には有効的に軽減することができることが示された。
すなわち、本発明の研磨液による研磨においては、Cu膜研磨時ディッシングが大きくとも、Taの研磨速度を上げることで、最終的なディッシングを抑制することができる。

Claims (4)

  1. 表面にアミノ基を有する研磨粒子及びアミノ酸を含有することを特徴とする金属用研磨液。
  2. 更に、テトラゾール類、アントラニル酸類、およびこれらの誘導体から選ばれる少なくとも一種の化合物を含有する請求項1に記載の金属用研磨液。
  3. 中性であることを特徴とする請求項1または2に記載の金属用研磨液。
  4. 請求項1〜3のいずれかに記載の金属用研磨液を、被研磨面と接触させ、被研磨面と研磨面を相対運動させて研磨することを特徴とする化学的機械的研磨方法。
JP2005088357A 2005-03-25 2005-03-25 金属用研磨液及びこれを用いた研磨方法 Pending JP2006269910A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088357A JP2006269910A (ja) 2005-03-25 2005-03-25 金属用研磨液及びこれを用いた研磨方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088357A JP2006269910A (ja) 2005-03-25 2005-03-25 金属用研磨液及びこれを用いた研磨方法

Publications (1)

Publication Number Publication Date
JP2006269910A true JP2006269910A (ja) 2006-10-05

Family

ID=37205518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088357A Pending JP2006269910A (ja) 2005-03-25 2005-03-25 金属用研磨液及びこれを用いた研磨方法

Country Status (1)

Country Link
JP (1) JP2006269910A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530166A (ja) * 2008-07-30 2011-12-15 キャボット マイクロエレクトロニクス コーポレイション シリコン含有基材を研磨するための方法及び組成物
JP2015077681A (ja) * 2007-09-21 2015-04-23 キャボット マイクロエレクトロニクス コーポレイション 研磨組成物およびアミノシランを用いて処理された研削剤粒子の使用方法
WO2019030865A1 (ja) * 2017-08-09 2019-02-14 日立化成株式会社 研磨液及び研磨方法
WO2023026814A1 (ja) * 2021-08-24 2023-03-02 Jsr株式会社 化学機械研磨用組成物および研磨方法
WO2023026813A1 (ja) * 2021-08-24 2023-03-02 Jsr株式会社 化学機械研磨用組成物および研磨方法
WO2023026780A1 (ja) * 2021-08-24 2023-03-02 Jsr株式会社 化学機械研磨用組成物および研磨方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077063A (ja) * 1999-09-07 2001-03-23 Mitsubishi Materials Silicon Corp シリコンウェーハの研磨液及びこれを用いた研磨方法
WO2001057919A1 (fr) * 2000-02-04 2001-08-09 Showa Denko K. K. Composite de polissage destine a etre utilise dans la fabrication des circuits lsi, et procede de fabrication de circuits lsi
WO2004069947A1 (en) * 2003-02-03 2004-08-19 Cabot Microelectronics Corporation Method of polishing a silicon-containing dielectric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077063A (ja) * 1999-09-07 2001-03-23 Mitsubishi Materials Silicon Corp シリコンウェーハの研磨液及びこれを用いた研磨方法
WO2001057919A1 (fr) * 2000-02-04 2001-08-09 Showa Denko K. K. Composite de polissage destine a etre utilise dans la fabrication des circuits lsi, et procede de fabrication de circuits lsi
WO2004069947A1 (en) * 2003-02-03 2004-08-19 Cabot Microelectronics Corporation Method of polishing a silicon-containing dielectric

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015077681A (ja) * 2007-09-21 2015-04-23 キャボット マイクロエレクトロニクス コーポレイション 研磨組成物およびアミノシランを用いて処理された研削剤粒子の使用方法
JP2011530166A (ja) * 2008-07-30 2011-12-15 キャボット マイクロエレクトロニクス コーポレイション シリコン含有基材を研磨するための方法及び組成物
WO2019030865A1 (ja) * 2017-08-09 2019-02-14 日立化成株式会社 研磨液及び研磨方法
JPWO2019030865A1 (ja) * 2017-08-09 2020-04-16 日立化成株式会社 研磨液及び研磨方法
TWI773803B (zh) * 2017-08-09 2022-08-11 日商昭和電工材料股份有限公司 研磨液及研磨方法
WO2023026814A1 (ja) * 2021-08-24 2023-03-02 Jsr株式会社 化学機械研磨用組成物および研磨方法
WO2023026813A1 (ja) * 2021-08-24 2023-03-02 Jsr株式会社 化学機械研磨用組成物および研磨方法
WO2023026780A1 (ja) * 2021-08-24 2023-03-02 Jsr株式会社 化学機械研磨用組成物および研磨方法

Similar Documents

Publication Publication Date Title
KR101290090B1 (ko) 수계 연마액 및 화학 기계적 연마방법
JP5121273B2 (ja) 金属用研磨液及び研磨方法
JP2006100538A (ja) 研磨用組成物及びそれを用いた研磨方法
JP2006179845A (ja) 金属用研磨液及び研磨方法
JP2007214155A (ja) バリア用研磨液及び化学的機械的研磨方法
KR20070088245A (ko) 금속용 연마액
JP2006269600A (ja) 化学的機械的研磨方法及びこれに用いる研磨液
JP2006228955A (ja) 研磨液及びそれを用いた研磨方法
JP4448787B2 (ja) 金属用研磨液及び研磨方法
JP4070622B2 (ja) 金属用研磨液及び研磨方法
JP2006049790A (ja) 金属用研磨液及び研磨方法
JP2006269910A (ja) 金属用研磨液及びこれを用いた研磨方法
JP2007088024A (ja) 研磨方法
JP5080012B2 (ja) 金属用研磨液
JP2006190890A (ja) 研磨液及びそれを用いた研磨方法
JP2007088284A (ja) 水系研磨液及び化学機械的研磨方法
JP2007227525A (ja) 貴金属用研磨液、及び、化学的機械的研磨方法
JP2004235326A (ja) 金属用研磨液及び研磨方法
JP2007088226A (ja) カーボン配線用研磨液、及び、研磨方法
JP2006100570A (ja) 研磨用組成物及びそれを用いた研磨方法
JP2007194593A (ja) 金属用研磨液及びそれを用いた研磨方法
JP4658825B2 (ja) 金属用研磨液
JP2004235319A (ja) 金属用研磨液及び研磨方法
JP2006093580A (ja) 化学的機械的研磨方法
JP2006086353A (ja) 銅用研磨液及び研磨方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406