JP2006266094A - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device Download PDF

Info

Publication number
JP2006266094A
JP2006266094A JP2005081461A JP2005081461A JP2006266094A JP 2006266094 A JP2006266094 A JP 2006266094A JP 2005081461 A JP2005081461 A JP 2005081461A JP 2005081461 A JP2005081461 A JP 2005081461A JP 2006266094 A JP2006266094 A JP 2006266094A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
control constant
response characteristic
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005081461A
Other languages
Japanese (ja)
Other versions
JP4492802B2 (en
Inventor
Yuri Takahashi
ゆり 高橋
Hisashi Iida
飯田  寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005081461A priority Critical patent/JP4492802B2/en
Publication of JP2006266094A publication Critical patent/JP2006266094A/en
Application granted granted Critical
Publication of JP4492802B2 publication Critical patent/JP4492802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To set optimum control constants for the overall response characteristics (dead time and n-th delay) of an air-fuel ratio sensor. <P>SOLUTION: The variation timing of a fuel supply amount to an internal combustion engine is detected and the behaviors of outputs from the air-fuel ratio sensor before and after a variation in the fuel supply amount are monitored to detect the response characteristics of the air-fuel ratio sensor in two groups, i.e., the dead time between a time point when the fuel supply amount is varied and a time point when the output from the air-fuel ratio sensor is started to vary and the n-th delay characteristics (n is a positive integer) indicating sensor output variation characteristics after the dead time is passed. When the detected response characteristics are deviated from the response characteristics mounted on an ECU (hereafter, referred to as "the mounted response characteristics"), the mounted response characteristics are corrected and the control constants at which the outputs from the air-fuel ratio sensor become optimum behaviors are calculated by the mounted response characteristics after the correction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関(エンジン)の排出ガスの空燃比又は酸素濃度を検出するセンサの応答特性を模擬したモデルを用いて混合気の空燃比をフィードバック制御する空燃比制御装置に関する発明である。   The present invention relates to an air-fuel ratio control apparatus that feedback-controls the air-fuel ratio of an air-fuel mixture using a model that simulates the response characteristics of a sensor that detects the air-fuel ratio or oxygen concentration of exhaust gas from an internal combustion engine (engine).

近年の空燃比フィードバック制御は、排出ガスの空燃比又は酸素濃度を検出するセンサを排気管に設置すると共に、制御対象であるエンジンへの燃料供給量を変化させてから排出ガスの空燃比が変化する応答特性を無駄時間+1次遅れ特性(又は2次遅れ特性)でモデル化し、このモデルを用いて、上記センサの出力に基づいてエンジンに供給する混合気の空燃比(燃料供給量)をフィードバック制御するフィードバック制御系を設計している。このため、エンジン機差、センサ個体差、エンジンの劣化やセンサの劣化等により無駄時間と1次遅れが変化した場合に、実装した制御定数をそのまま用いて制御を行なうと、空燃比の制御性の悪化に繋がってしまう。   In recent air-fuel ratio feedback control, a sensor for detecting the air-fuel ratio or oxygen concentration of exhaust gas is installed in the exhaust pipe, and the air-fuel ratio of exhaust gas changes after changing the fuel supply amount to the engine to be controlled. The response characteristic is modeled by dead time + first-order lag characteristic (or second-order lag characteristic), and this model is used to feed back the air-fuel ratio (fuel supply amount) of the air-fuel mixture supplied to the engine based on the output of the sensor. The feedback control system to control is designed. For this reason, when the dead time and the first-order lag change due to engine machine differences, sensor individual differences, engine deterioration, sensor deterioration, etc., if control is performed using the mounted control constants as they are, the controllability of the air-fuel ratio will be increased. Will lead to worsening.

そこで、従来は、特許文献1(特開2004−190591号公報)に示すように、単なる1次遅れのモデル誤差に応じて制御定数(制御ゲイン)を補正する補正係数を一律に設定して、この補正係数により制御定数を補正するようにしている。
特開2004−190591号公報(第1頁等)
Therefore, conventionally, as shown in Patent Document 1 (Japanese Patent Laid-Open No. 2004-190591), a correction coefficient for correcting a control constant (control gain) according to a simple first-order lag model error is uniformly set, and The control constant is corrected by this correction coefficient.
JP 2004-190591 A (first page, etc.)

しかし、上記特許文献1の技術では、モデル誤差に応じて一律に設定した補正係数により制御定数を補正するものであるため、センサの劣化やエンジンの機差等に対して最適な制御定数を設定することが困難であった。すなわち、モデル誤差に応じた補正係数を設定することで、その補正係数を使用する全領域で制御が安定となるものとしなければならないことから、安定側の制御定数を選択せざるを得ず、センサの応答特性全体(無駄時間とn次遅れ)に対して最適化した制御定数を設定することが困難であった。   However, since the technique of Patent Document 1 corrects the control constant with a correction coefficient that is uniformly set according to the model error, an optimal control constant is set for sensor deterioration, engine differences, and the like. It was difficult to do. In other words, by setting a correction coefficient according to the model error, the control must be stable in the entire area using the correction coefficient, so the control constant on the stable side must be selected, It has been difficult to set a control constant optimized for the entire response characteristics of the sensor (dead time and n-th order delay).

本発明はこのような事情を考慮してなされたものであり、従ってその目的は、排出ガスの空燃比又は酸素濃度を検出するセンサの応答特性全体(無駄時間とn次遅れ)に対して最適化した制御定数を設定することができる空燃比制御装置を提供することにある。   The present invention has been made in consideration of such circumstances. Therefore, the object of the present invention is optimal for the entire response characteristics (dead time and n-th order delay) of the sensor that detects the air-fuel ratio or oxygen concentration of the exhaust gas. An object of the present invention is to provide an air-fuel ratio control device that can set a control constant.

上記目的を達成するために、請求項1に係る発明は、内燃機関の排出ガスの空燃比又は酸素濃度を検出するセンサの応答特性を模擬したモデルを用いて前記センサの出力に基づいて内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御手段を備えた空燃比制御装置において、内燃機関への燃料供給量の変化タイミングを検出し、その燃料供給量変化前後のセンサ出力の挙動を監視して前記センサの応答特性を前記燃料供給量が変化した時点から前記センサ出力が変化し始めるまでの無駄時間とその後のセンサ出力変化特性を表すn次遅れ特性(nは正の整数)とに分けて検出すると共に、検出した応答特性が前記空燃比制御手段に実装された応答特性(以下「実装応答特性」という)からずれている場合に、該実装応答特性を補正し、補正後の実装応答特性で前記センサ出力が最適挙動となる制御定数を算出するようにしたものである。このようにすれば、実際に検出したセンサ応答特性(無駄時間+n次遅れ)に基づいて、実装応答特性を適正に補正できると共に、センサ劣化や内燃機関の機差等に対して、センサ出力が最適挙動となる制御定数をオンボードで算出することが可能となり、センサの劣化や内燃機関の機差等により発生する制御性悪化を回避することができる。   In order to achieve the above object, an invention according to claim 1 is directed to an internal combustion engine based on an output of the sensor using a model that simulates a response characteristic of a sensor that detects an air-fuel ratio or oxygen concentration of exhaust gas of the internal combustion engine. In the air-fuel ratio control device having an air-fuel ratio control means for feedback control of the air-fuel ratio of the air-fuel mixture supplied to the engine, the change timing of the fuel supply amount to the internal combustion engine is detected, and the sensor output behavior before and after the fuel supply amount change The response characteristic of the sensor is monitored, and the n-th order lag characteristic (n is a positive integer) representing the dead time from when the fuel supply amount changes until the sensor output starts to change and the subsequent sensor output change characteristic When the detected response characteristic deviates from the response characteristic mounted on the air-fuel ratio control means (hereinafter referred to as “mounting response characteristic”), the mounting response characteristic is detected. It corrects the sensor output implementation response characteristics after the correction is obtained to calculate the control constants for the optimization behavior. In this way, the mounting response characteristic can be corrected appropriately based on the actually detected sensor response characteristic (dead time + n-order delay), and the sensor output can be reduced with respect to sensor deterioration, internal machine engine differences, and the like. It is possible to calculate the control constant that achieves the optimum behavior on-board, and it is possible to avoid deterioration of controllability caused by deterioration of the sensor, internal machine engine difference, or the like.

この場合、請求項2のように、制御定数算出手段で算出した制御定数によって実装制御定数を補正するようにすると良い。このようにすれば、センサ劣化や内燃機関の機差等に応じて実装制御定数を適正に補正することができる。この実装制御定数の補正方法は、空燃比フィードバック実行中と停止中とで切り換えるようにしても良く、例えば、フィードバック実行中は、実装制御定数を算出制御定数に向けて徐々に変化させることで、実装制御定数の急変による内燃機関の制御状態が急変するのを避けるようにしたり、或は、フィードバック実行中は、実装制御定数を変化させずに次のフィードバック停止時に変化させるようにしたり、一方、フィードバック停止中は、実装制御定数を算出制御定数に一気に変化させるようにしても良い。   In this case, it is preferable that the mounting control constant is corrected by the control constant calculated by the control constant calculating means. In this way, it is possible to appropriately correct the mounting control constant according to sensor deterioration, machine difference of the internal combustion engine, and the like. The mounting control constant correction method may be switched between executing and stopping the air-fuel ratio feedback.For example, during the feedback execution, by gradually changing the mounting control constant toward the calculated control constant, While avoiding sudden changes in the control state of the internal combustion engine due to a sudden change in the mounting control constant, or during the execution of feedback, the mounting control constant is not changed, but is changed at the next feedback stop, While the feedback is stopped, the mounting control constant may be changed to the calculated control constant all at once.

また、請求項3のように、制御定数算出手段で算出した制御定数と実装制御定数とを比較してセンサの異常の有無を異常判定手段により判定するようにすると良い。制御定数を算出する際にセンサ応答特性(無駄時間とn次遅れ)を使用するため、センサ応答特性が異常になれば、算出制御定数も異常になり、算出制御定数と実装制御定数とのずれが異常に大きくなる。この関係から、算出制御定数と実装制御定数とを比較すれば、センサの異常の有無を判定することができる。この場合、従来システムでは異常の検出が困難であった低レベルの異常(例えば無駄時間と応答時間の両方が微妙にずれている異常)も検出することができる利点がある。   Further, as described in claim 3, it is preferable to compare the control constant calculated by the control constant calculating means and the mounting control constant to determine whether the sensor is abnormal by the abnormality determining means. Since sensor response characteristics (dead time and n-th order delay) are used when calculating the control constant, if the sensor response characteristics become abnormal, the calculated control constant also becomes abnormal, and the deviation between the calculated control constant and the mounted control constant Becomes abnormally large. From this relationship, if the calculated control constant is compared with the mounting control constant, it is possible to determine whether or not the sensor is abnormal. In this case, there is an advantage that it is possible to detect a low level abnormality (for example, an abnormality in which both the dead time and the response time are slightly different), which is difficult to detect in the conventional system.

更に、請求項4のように、異常判定手段がセンサの異常有りと判定したときにそれを警告手段によって警告するようにすると良い。このようにすれば、センサの異常発生時に、速やかに修理等の必要性を運転者に知らせることができて、長期間にわたりセンサ異常による排気エミッション悪化の状態が放置されることを回避することができる。   Further, as in claim 4, when the abnormality determining means determines that there is a sensor abnormality, it is preferable to warn the warning means. In this way, when a sensor abnormality occurs, the driver can be immediately informed of the need for repair, etc., and it is possible to avoid leaving the exhaust emission deterioration state due to the sensor abnormality over a long period of time. it can.

また、請求項5のように、応答特性検出手段で検出した応答特性が実装応答特性からずれている場合に、空燃比フィードバック制御系の伝達関数とゲイン余裕又は位相余裕を用いてセンサ出力が最適挙動となる制御定数を算出するようにしても良い。ゲイン余裕や位相余裕は、運転条件や応答特性とは関係なく最適挙動に応じて設定できるため、運転条件毎や応答特性毎にゲイン余裕や位相余裕を指定する必要がなく、同一のゲイン余裕や位相余裕で、同等の最適挙動を実現できる。但し、本発明は、運転条件により最適挙動を変化させたい場合は、ゲイン余裕や位相余裕を運転条件毎に設定するようにしても良い。   Further, as described in claim 5, when the response characteristic detected by the response characteristic detection means deviates from the mounting response characteristic, the sensor output is optimal using the transfer function and gain margin or phase margin of the air-fuel ratio feedback control system. You may make it calculate the control constant used as a behavior. Since the gain margin and phase margin can be set according to the optimum behavior regardless of the operating conditions and response characteristics, it is not necessary to specify the gain margin and phase margin for each operating condition and response characteristics, and the same gain margin or Equivalent optimum behavior can be achieved with phase margin. However, according to the present invention, when it is desired to change the optimum behavior depending on the operating condition, a gain margin or a phase margin may be set for each operating condition.

この場合、請求項6のように、応答特性検出手段で検出した応答特性が実装応答特性からずれている場合には、その応答特性の誤差に応じてゲイン余裕又は位相余裕を変更して上記請求項5の手法で制御定数を算出するようにしても良い。このようにすれば、センサが劣化しても、その応答特性の劣化度合いを考慮した適正な制御定数を算出することができ、制御の安定性、応答性の悪化を防止することができる。尚、ゲイン余裕又は位相余裕を変更する場合は、実装応答特性を補正する必要はない。   In this case, if the response characteristic detected by the response characteristic detecting means deviates from the mounting response characteristic as in claim 6, the gain margin or the phase margin is changed according to the error of the response characteristic and the above-mentioned claim is made. The control constant may be calculated by the method of item 5. In this way, even if the sensor is deteriorated, an appropriate control constant can be calculated in consideration of the degree of deterioration of the response characteristic, and the stability of control and the deterioration of responsiveness can be prevented. When changing the gain margin or phase margin, it is not necessary to correct the mounting response characteristics.

また、請求項7のように、センサ出力に重畳するノイズ成分をノイズ成分検出手段により検出し、そのノイズ成分の大きさに応じてゲイン余裕又は位相余裕を変更して空燃比フィードバック制御系の伝達関数と前記ゲイン余裕又は前記位相余裕を用いてセンサ出力が最適挙動となる制御定数を算出するようにしても良い。このようにすれば、センサの劣化や内燃機関の劣化等によりセンサの出力にノイズ成分が重畳しても、そのノイズ成分の影響を排除した適正な制御定数を算出することができ、制御の安定性、応答性の悪化を防止することができる。尚、この場合も、実装応答特性を補正する必要はない。   According to another aspect of the present invention, the noise component superimposed on the sensor output is detected by the noise component detection means, and the gain margin or the phase margin is changed according to the magnitude of the noise component to transmit the air-fuel ratio feedback control system. A control constant that causes the sensor output to behave optimally may be calculated using the function and the gain margin or the phase margin. In this way, even if a noise component is superimposed on the output of the sensor due to deterioration of the sensor, deterioration of the internal combustion engine, etc., it is possible to calculate an appropriate control constant that eliminates the influence of the noise component and stabilizes control. Deterioration of responsiveness and responsiveness can be prevented. In this case as well, there is no need to correct the mounting response characteristics.

また、請求項8のように、応答特性検出手段で検出した応答特性が実装応答特性からずれている場合に、センサの応答特性を模擬したプラントの入力又は出力を最適挙動とする制御定数をシミュレーションにより算出するようにしても良い。このようにすれば、理想の応答波形を指定できる(プラントの入力・出力の最適挙動を波形レベルで指定できる)。しかも、プラントの入力も制約できるため、内燃機関の保護の観点から、制御定数を無闇に大きくし過ぎることなく、制御が可能である。   In addition, as in claim 8, when the response characteristic detected by the response characteristic detection means deviates from the mounting response characteristic, a control constant that simulates the input or output of the plant that simulates the response characteristic of the sensor is simulated. You may make it calculate by. In this way, an ideal response waveform can be designated (optimal plant input / output behavior can be designated at the waveform level). In addition, since the input of the plant can also be restricted, control can be performed without making the control constant too large from the viewpoint of protection of the internal combustion engine.

この場合、請求項9のように、応答特性検出手段で検出した応答特性と実装応答特性との誤差を含むシミュレーションにより制御定数を算出するようにしても良い。このようにすれば、センサが劣化しても、その応答特性の劣化度合いを考慮して、適正な制御定数を算出することができ、安定性、応答性の悪化を防止することができる。この場合、運転条件毎に補正係数等を持つ必要がなく、また、実装応答特性を補正する必要はない。   In this case, as in the ninth aspect, the control constant may be calculated by simulation including an error between the response characteristic detected by the response characteristic detecting means and the mounting response characteristic. In this way, even if the sensor deteriorates, an appropriate control constant can be calculated in consideration of the degree of deterioration of the response characteristic, and deterioration of stability and responsiveness can be prevented. In this case, it is not necessary to have a correction coefficient or the like for each operating condition, and it is not necessary to correct the mounting response characteristics.

また、請求項10のように、センサの出力に重畳するノイズ成分の大きさを含むシミュレーションにより制御定数を算出するようにしても良い。このようにすれば、センサの劣化や内燃機関の劣化等によりセンサの出力にノイズ成分が重畳しても、そのノイズ成分の影響を排除した適正な制御定数を算出することができ、制御の安定性、応答性の悪化を防止することができる。   Further, as in claim 10, the control constant may be calculated by a simulation including the magnitude of the noise component superimposed on the output of the sensor. In this way, even if a noise component is superimposed on the output of the sensor due to deterioration of the sensor, deterioration of the internal combustion engine, etc., it is possible to calculate an appropriate control constant that eliminates the influence of the noise component and stabilizes control. Deterioration of responsiveness and responsiveness can be prevented.

この場合、請求項11のように、ゲイン余裕又は位相余裕を用いて制御定数を算出する第1の算出手段と、制御対象である内燃機関の動特性を前記センサの応答特性を考慮して模擬したプラントの入力又は出力を最適挙動とする制御定数をシミュレーションにより算出する第2の算出手段とを備え、前記第1の算出手段で算出された制御定数と前記第2の算出手段で算出された制御定数のうちの安定性が高い方を選択するようにしても良い。このようにすれば、2種類の手法で算出した2つの制御定数の中から、より安定性を重視した制御定数を選択することができ、安全かつ正確な制御定数での制御が可能となる。   In this case, as in claim 11, the first calculation means for calculating the control constant using the gain margin or the phase margin, and the dynamic characteristics of the internal combustion engine to be controlled are simulated in consideration of the response characteristics of the sensor. Second control means for calculating, by simulation, a control constant that makes the input or output of the plant the optimum behavior, and the control constant calculated by the first calculation means and the second calculation means The control constant having higher stability may be selected. In this way, a control constant that emphasizes stability can be selected from the two control constants calculated by the two types of methods, and control with a safe and accurate control constant becomes possible.

また、請求項12のように、応答特性検出手段で検出した応答特性と実装応答特性との誤差を含むシミュレーションにより前記制御定数を算出する第3の算出手段と、前記センサの出力に重畳するノイズ成分の大きさを含むシミュレーションにより前記制御定数を算出する第4の算出手段とを備え、前記第3の算出手段で算出された制御定数と前記第4の算出手段で算出された制御定数のうちの安定性が高い方を選択するようにしても良い。このようにすれば、センサの劣化等にて発生するすべての状況を考慮して算出した2つの制御定数の中から、より安定性を重視した制御定数を選択することができて、安全かつ正確な制御定数での制御が可能となる。   Further, according to a twelfth aspect of the present invention, third calculation means for calculating the control constant by simulation including an error between the response characteristic detected by the response characteristic detection means and the mounting response characteristic, and noise superimposed on the output of the sensor A fourth calculation unit that calculates the control constant by a simulation including the magnitude of the component, and among the control constant calculated by the third calculation unit and the control constant calculated by the fourth calculation unit The one having higher stability may be selected. In this way, a control constant that emphasizes more stability can be selected from the two control constants calculated in consideration of all the situations that occur due to sensor degradation, etc., and is safe and accurate. It is possible to control with various control constants.

また、請求項13のように、制御定数を所定の運転条件で算出し、この所定の運転条件と算出した制御定数との関係に基づいて他の運転条件の制御定数を推定するようにしても良い。このようにすれば、運転条件毎に最適となる制御定数を算出する処理を多数回繰り返す必要がなくなり、検出工数・算出工数低減が可能となる。しかも、全領域の制御定数を瞬時に変更することが可能であるため、故障による排出ガス悪化に瞬時に対応可能である。更に、内燃機関の運転中では計測不可能な領域(過渡的には使用するが、定常的に運転し続けることが困難な運転条件のような領域)の制御定数の推測が可能となる。   Further, as in claim 13, the control constant is calculated under a predetermined operating condition, and the control constant of the other operating condition is estimated based on the relationship between the predetermined operating condition and the calculated control constant. good. In this way, it is not necessary to repeat the process of calculating the optimal control constant for each operating condition many times, and the detection man-hours and calculation man-hours can be reduced. In addition, since the control constants of the entire region can be changed instantaneously, it is possible to instantly cope with exhaust gas deterioration due to failure. Further, it is possible to estimate a control constant in a region that cannot be measured during the operation of the internal combustion engine (a region that is used transiently but is difficult to keep operating constantly).

また、請求項14のように、ある運転条件でのゲイン余裕又は位相余裕で制御定数を算出し、前記ある運転条件でのゲイン余裕又は位相余裕の関係に基づいて他の運転条件での制御定数を推定するようにしても良い。このようにすれば、運転条件毎に最適挙動を変化させたい場合でも、運転条件毎にゲイン余裕又は位相余裕を変更して最適となる制御定数を算出する処理を多数回繰り返す必要がなくなり、検出工数・算出工数低減が可能となる。その他、前記請求項13と同様の効果を得ることができる。   Further, as in claim 14, a control constant is calculated based on a gain margin or phase margin under a certain operating condition, and a control constant under other operating conditions is calculated based on the relationship between the gain margin or phase margin under the certain operating condition. May be estimated. In this way, even if you want to change the optimal behavior for each operating condition, it is not necessary to repeat the process of calculating the optimal control constant by changing the gain margin or phase margin for each operating condition. Man-hours and calculated man-hours can be reduced. In addition, the same effect as in the thirteenth aspect can be obtained.

以下、本発明を実施するための最良の形態を具体化した幾つかの実施例を説明する。   Several embodiments embodying the best mode for carrying out the present invention will be described below.

本発明を吸気ポート噴射エンジンに適用した実施例1を図1乃至図11に基づいて説明する。まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ10によって開度調節されるスロットルバルブ15とスロットル開度を検出するスロットル開度センサ16とが設けられている。 更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17には、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ21が取り付けられ、各点火プラグ21の火花放電によって筒内の混合気に着火される。   A first embodiment in which the present invention is applied to an intake port injection engine will be described with reference to FIGS. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. On the downstream side of the air flow meter 14, a throttle valve 15 whose opening is adjusted by the motor 10 and a throttle opening sensor 16 for detecting the throttle opening are provided. Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 18 for detecting the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. Yes. A spark plug 21 is attached to each cylinder of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by spark discharge of each spark plug 21.

また、エンジン11の吸気バルブ28には、該吸気バルブ28の開閉タイミング(吸気バルブタイミング)を可変する可変吸気バルブタイミング機構29が設けられ、排気バルブ30には、該排気バルブ30の開閉タイミング(排気バルブタイミング)を可変する可変排気バルブタイミング機構31が設けられている。   The intake valve 28 of the engine 11 is provided with a variable intake valve timing mechanism 29 that varies the opening / closing timing (intake valve timing) of the intake valve 28, and the exhaust valve 30 has an opening / closing timing ( A variable exhaust valve timing mechanism 31 that varies the exhaust valve timing) is provided.

一方、エンジン11の排気管22には、排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒23が設けられ、この触媒23の上流側に、排出ガスの空燃比(又は酸素濃度)を検出する空燃比センサ24が設けられている。また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ25や、エンジン11のクランク軸が一定クランク角回転する毎にパルス信号を出力するクランク角センサ26が取り付けられている。このクランク角センサ26の出力信号に基づいてクランク角やエンジン回転速度が検出される。   On the other hand, the exhaust pipe 22 of the engine 11 is provided with a catalyst 23 such as a three-way catalyst that purifies CO, HC, NOx, etc. in the exhaust gas. An air-fuel ratio sensor 24 for detecting (oxygen concentration) is provided. A cooling water temperature sensor 25 that detects the cooling water temperature and a crank angle sensor 26 that outputs a pulse signal each time the crankshaft of the engine 11 rotates at a constant crank angle are attached to the cylinder block of the engine 11. Based on the output signal of the crank angle sensor 26, the crank angle and the engine speed are detected.

これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)27に入力される。このECU27は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、空燃比センサ24で検出した排出ガスの空燃比を目標空燃比に一致させるように空燃比フィードバック補正係数を算出して、エンジン11に供給する混合気の空燃比(燃料供給量)をフィードバック制御する空燃比制御手段として機能する。この空燃比フィードバック制御系は、制御対象であるエンジン11への燃料供給量(燃料噴射弁20の燃料噴射量)を変化させてから排出ガスの空燃比が変化する応答特性を無駄時間+1次遅れ特性でモデル化して設計されている。尚、この応答特性を無駄時間+2次遅れ特性でモデル化しても良く、要は、無駄時間+n次遅れ特性(nは正の整数)でモデル化すれば良い。   Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 27. The ECU 27 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), thereby setting the air-fuel ratio of the exhaust gas detected by the air-fuel ratio sensor 24 to the target air. The air-fuel ratio feedback correction coefficient is calculated so as to match the fuel ratio, and functions as air-fuel ratio control means for feedback-controlling the air-fuel ratio (fuel supply amount) of the air-fuel mixture supplied to the engine 11. This air-fuel ratio feedback control system changes the response characteristic of the change in the air-fuel ratio of the exhaust gas after changing the fuel supply amount (fuel injection amount of the fuel injection valve 20) to the engine 11 to be controlled to the dead time + 1st order delay. Designed by modeling with characteristics. This response characteristic may be modeled by dead time + second-order lag characteristic. In short, it may be modeled by dead time + n-order lag characteristic (n is a positive integer).

更に、ECU27は、後述する図4乃至図6に示す各ルーチンを実行することで、エンジン11を目標空燃比近傍で安定して運転している定常運転中に、燃料供給量をステップ的に変化させて空燃比センサ24の応答特性を無駄時間と1次遅れ特性(n次遅れ特性)とに分けて検出する応答特性検出手段として機能する。   Further, the ECU 27 executes each routine shown in FIGS. 4 to 6 to be described later, thereby changing the fuel supply amount stepwise during the steady operation in which the engine 11 is stably operated near the target air-fuel ratio. Thus, the response characteristic of the air-fuel ratio sensor 24 functions as a response characteristic detection unit that detects the dead time and the first-order delay characteristic (n-order delay characteristic) separately.

以下、空燃比センサ24の応答特性の検出方法を図2及び図3のタイムチャートに基づいて説明する。図2のタイムチャートは、ECU27が、時刻t1で、エンジン運転状態が定常運転状態であると判定して、定常運転フラグをONに切り換え、その後、時刻t2で、応答特性検出実行条件が成立して計測処理フラグをONに切り換え、応答特性の計測処理を開始する。ここで、応答特性検出実行条件は、定常運転状態で空燃比センサ24の出力(以下単に「センサ出力」という)が目標空燃比近傍で安定してセンサ出力の変動量が小さいことである。センサ出力が不安定な状態では、空燃比センサ24の応答特性を精度良く検出できないためである。   Hereinafter, a method of detecting the response characteristic of the air-fuel ratio sensor 24 will be described based on the time charts of FIGS. In the time chart of FIG. 2, the ECU 27 determines that the engine operation state is the steady operation state at the time t1, switches the steady operation flag to ON, and then the response characteristic detection execution condition is satisfied at the time t2. Then, the measurement processing flag is turned ON, and response characteristic measurement processing is started. Here, the response characteristic detection execution condition is that the output of the air-fuel ratio sensor 24 (hereinafter simply referred to as “sensor output”) is stable in the vicinity of the target air-fuel ratio in a steady operation state and the fluctuation amount of the sensor output is small. This is because the response characteristic of the air-fuel ratio sensor 24 cannot be detected with high accuracy when the sensor output is unstable.

応答特性の計測開始時t2から所定時間T1が経過するまでの期間(t2〜t3)は、空燃比フィードバック制御を継続して定常運転状態を維持しながら、センサ出力の平均値をなまし処理又は相加平均等の平均化処理によって算出する。このセンサ出力の平均値は“燃料増量前のセンサ出力の定常値BA”としてECU27のメモリに記憶される。尚、応答特性の計測開始時t2において、センサ出力が定常値BAで十分に安定している場合は、応答特性の計測開始時t2にサンプリングしたセンサ出力をそのまま燃料増量前のセンサ出力の定常値BAとしても良い。   During the period (t2 to t3) from the time t2 when the response characteristic is measured until the predetermined time T1 elapses, the average value of the sensor output is smoothed while continuing the air-fuel ratio feedback control and maintaining the steady operation state. It is calculated by an averaging process such as an arithmetic mean. The average value of the sensor output is stored in the memory of the ECU 27 as “the steady value BA of the sensor output before fuel increase”. If the sensor output is sufficiently stable at the steady-state value BA at the response characteristic measurement start time t2, the sensor output sampled at the response characteristic measurement start time t2 is used as it is before the fuel increase. It may be BA.

そして、燃料増量前のセンサ出力の定常値BAの計測を終了した時点t3で、空燃比フィードバック制御を停止して、燃料増量フラグをONに切り換え、燃料供給量(燃料噴射量)をステップ的に増量して、無駄時間TAの計測を開始する。この後は、センサ出力の変化勾配がしきい値を越えた点を変化開始点として検出する。   Then, at the time t3 when the measurement of the steady value BA of the sensor output before the fuel increase is finished, the air-fuel ratio feedback control is stopped, the fuel increase flag is turned ON, and the fuel supply amount (fuel injection amount) is stepwise. Increase the amount and start measuring the dead time TA. Thereafter, the point where the change gradient of the sensor output exceeds the threshold value is detected as the change start point.

このセンサ出力の変化勾配の算出方法は種々の方法が考えられるが、本実施例1では、現在のセンサ出力AF(N) と前回のセンサ出力AF(N-1) との差[AF(N) −AF(N-1) ]をセンサ出力の変化勾配として用いる。尚、現在のセンサ出力AF(N) とS回前のセンサ出力AF(N-S) との差[AF(N) −AF(N-S) ]をセンサ出力の変化勾配として用いるようにしても良い。   Various methods can be considered for calculating the change gradient of the sensor output. In the first embodiment, the difference between the current sensor output AF (N) and the previous sensor output AF (N-1) [AF (N ) −AF (N−1)] is used as the change gradient of the sensor output. Note that the difference [AF (N) −AF (N−S)] between the current sensor output AF (N) and the sensor output AF (N−S) before S times may be used as the change gradient of the sensor output.

このセンサ出力の変化勾配[AF(N) −AF(N-1) ]が最初にしきい値を越えた点を変化開始点として検出するようにしても良いが、本実施例1では、ノイズ等による変化開始点の誤検出を未然に防止するために、センサ出力の変化勾配がしきい値を所定回数越えるまで変化開始点の検出を継続するようにしている。   The point at which the change gradient [AF (N) −AF (N−1)] of the sensor output first exceeds the threshold value may be detected as the change start point. In order to prevent erroneous detection of the change start point due to the above, detection of the change start point is continued until the change gradient of the sensor output exceeds the threshold value a predetermined number of times.

この場合、しきい値は、演算処理の簡略化のために予め設定した固定値としても良いが、本実施例1では、センサ出力に重畳するノイズに影響を与える運転パラメータ(例えばエンジン回転速度と空燃比)に基づいてしきい値を設定するようにしている。このようにすれば、実際のノイズの大きさに応じた適正なしきい値を設定することができ、ノイズ等による誤検出を防止しながら、変化開始点をより正確に検出することができる。
尚、変化開始点は、所定割合応答点(例えば10%応答点)としても良い。
In this case, the threshold value may be a fixed value set in advance for the sake of simplification of the arithmetic processing, but in the first embodiment, the operating parameter (for example, the engine speed and the engine speed that affects the noise superimposed on the sensor output). The threshold value is set based on the air / fuel ratio. In this way, an appropriate threshold value can be set according to the actual noise level, and the change start point can be detected more accurately while preventing erroneous detection due to noise or the like.
The change start point may be a predetermined rate response point (for example, a 10% response point).

以上のようにして変化開始点を検出した後、燃料増量タイミングt3から変化開始点t4までの時間を無駄時間TAとして検出する。変化開始点を検出した時点t4で、変化開始点検出フラグをONに切り換えて、1次遅れ特性の計測処理を開始する。   After detecting the change start point as described above, the time from the fuel increase timing t3 to the change start point t4 is detected as a dead time TA. At the time t4 when the change start point is detected, the change start point detection flag is switched to ON, and the measurement process of the first-order lag characteristic is started.

1次遅れ特性の計測処理開始後は、燃料増量タイミングt3から所定時間T0が経過するまでの期間に、燃料増量前のセンサ出力の定常値BAからのセンサ出力の変化量が、燃料増量後のセンサ出力の定常値AAまでの変化量(AA−BA)の所定割合(例えば63%)に達するまでの応答時間TBを算出する。この応答時間TBは、1次遅れ特性を評価する情報として用いられる。   After the start of the measurement process of the first-order lag characteristic, the change amount of the sensor output from the steady value BA of the sensor output before the fuel increase becomes a value after the fuel increase during the period from the fuel increase timing t3 until the predetermined time T0 elapses. A response time TB until a predetermined ratio (for example, 63%) of the change amount (AA-BA) of the sensor output to the steady value AA is calculated. This response time TB is used as information for evaluating the first-order lag characteristic.

この際、燃料増量後のセンサ出力の定常値AAは、運転領域毎に学習した学習値を用いるようにしても良いが、本実施例1では、燃料増量タイミングt3から所定時間T0が経過した時点t6で、空燃比フィードバック制御を再開して、所定時間T2が経過するまで、燃料増量分だけ目標空燃比をリッチ側にずらして燃料供給量をフィードバック補正することで、センサ出力を目標空燃比近傍(定常値AA)で安定させる。この期間(t6〜t7)のセンサ出力の平均値をなまし処理又は相加平均等の平均化処理によって算出し、この平均値を、“燃料増量後のセンサ出力の定常値AA”として用いる。尚、燃料増量タイミングt3から所定時間T0経過時t6において、センサ出力が定常値AAで十分に安定している場合は、所定時間T0経過時t6のセンサ出力を燃料増量後のセンサ出力の定常値AAとしても良い。   At this time, the steady value AA of the sensor output after the fuel increase may be a learning value learned for each operation region. However, in the first embodiment, when the predetermined time T0 has elapsed from the fuel increase timing t3. At t6, the air-fuel ratio feedback control is restarted, and until the predetermined time T2 elapses, the target air-fuel ratio is shifted to the rich side by the amount of fuel increase, and the fuel supply amount is feedback-corrected so that the sensor output is near the target air-fuel ratio Stabilize at (steady value AA). The average value of the sensor output in this period (t6 to t7) is calculated by averaging processing such as smoothing processing or arithmetic averaging, and this average value is used as “steady value AA of sensor output after fuel increase”. If the sensor output is sufficiently stable at the steady value AA at the time t6 when the predetermined time T0 has elapsed from the fuel increase timing t3, the sensor output at the time t6 when the predetermined time T0 has elapsed is the steady value of the sensor output after the fuel increase. AA may be used.

以上のようにして、燃料増量後のセンサ出力の定常値AAの計測を終了した時点t7で、計測処理フラグをOFFに切り換えて、応答特性の計測処理を終了する。尚、燃料増量後のセンサ出力の定常値AAが予め学習値等で判明している場合は、センサ出力がその定常値AAまで達した時点で、計測処理フラグをOFFに切り換えて、応答特性の計測処理を終了するようにしても良い。   As described above, at the time t7 when the measurement of the steady value AA of the sensor output after the fuel increase is completed, the measurement process flag is switched to OFF, and the response characteristic measurement process ends. If the steady value AA of the sensor output after fuel increase is known in advance from the learning value or the like, when the sensor output reaches the steady value AA, the measurement processing flag is switched to OFF and the response characteristic You may make it complete | finish a measurement process.

応答特性計測処理終了後は、目標空燃比を通常運転時の目標空燃比に切り換えて空燃比フィードバック制御を実行する。尚、本実施例1では、応答特性検出のために燃料供給量を増量して空燃比をリッチ側に変化させたが、これとは反対に燃料供給量を減量して空燃比をリーン側に変化させるようにしても良い。或は、応答特性計測開始時に燃料供給量をステップ的に減量(又は増量)して空燃比をリーン側(又はリッチ側)にずらしてセンサ出力の定常値BAを算出した後、燃料供給量をステップ的に増量(又は減量)して空燃比をリッチ側(又はリーン側)にずらしてセンサ出力の定常値AAを算出し、燃料増量前(又は減量前)のセンサ出力の定常値BAからのセンサ出力の変化量が、燃料増量後(又は減量後)のセンサ出力の定常値AAまでの変化量(AA−BA)の所定割合(例えば63%)に達するまでの応答時間TBを算出するようにしても良い。   After the response characteristic measurement process is completed, the target air-fuel ratio is switched to the target air-fuel ratio during normal operation, and air-fuel ratio feedback control is executed. In the first embodiment, the fuel supply amount is increased and the air-fuel ratio is changed to the rich side to detect the response characteristics. On the contrary, the fuel supply amount is decreased and the air-fuel ratio is set to the lean side. It may be changed. Alternatively, the fuel supply amount is decreased (or increased) stepwise at the start of response characteristic measurement, the air-fuel ratio is shifted to the lean side (or rich side), and the steady value BA of the sensor output is calculated. Increase (or decrease) stepwise and shift the air-fuel ratio to the rich side (or lean side) to calculate the steady value AA of the sensor output. From the steady value BA of the sensor output before the fuel increase (or before the decrease) The response time TB until the change amount of the sensor output reaches a predetermined ratio (for example, 63%) of the change amount (AA-BA) up to the steady value AA of the sensor output after the fuel increase (or after the decrease) is calculated. Anyway.

更に、ECU27は、後述する図7乃至図11に示す各ルーチンを実行することで、検出した応答特性がECU27に実装された応答特性(以下「実装応答特性」という)から許容値を越えてずれている場合に、該実装応答特性を補正し、補正後の実装応答特性で空燃比センサ24の出力が最適挙動となる制御定数(制御ゲイン)を算出する制御定数算出手段として機能する。以下、これら各ルーチンの処理内容を説明する。   Further, the ECU 27 executes routines shown in FIGS. 7 to 11 to be described later, so that the detected response characteristics deviate from the response characteristics mounted on the ECU 27 (hereinafter referred to as “mounting response characteristics”) beyond an allowable value. In this case, the mounting response characteristic is corrected, and functions as a control constant calculation means for calculating a control constant (control gain) at which the output of the air-fuel ratio sensor 24 becomes an optimum behavior with the corrected mounting response characteristic. The processing contents of these routines will be described below.

[空燃比センサ応答特性検出メインルーチン]
図4の空燃比センサ応答特性検出メインルーチンは、エンジン運転中に周期的に実行され、特許請求の範囲でいう応答特性検出手段としての役割を果たす。本ルーチンが起動されると、まずステップ101で、応答特性検出実行条件が成立しているか否か(計測処理フラグがONであるか否か)を判定する。ここで、応答特性検出実行条件は、エンジン運転状態が定常運転状態(定常運転フラグがON)で、空燃比センサ24の出力(センサ出力)が目標空燃比近傍で安定してことである。センサ出力が不安定な状態では、空燃比センサ24の応答特性を精度良く検出できないためである。
[Air-fuel ratio sensor response characteristic detection main routine]
The air / fuel ratio sensor response characteristic detection main routine of FIG. 4 is periodically executed during engine operation, and serves as response characteristic detection means in the claims. When this routine is started, first, at step 101, it is determined whether or not the response characteristic detection execution condition is satisfied (whether or not the measurement processing flag is ON). Here, the response characteristic detection execution condition is that the engine operation state is a steady operation state (the steady operation flag is ON), and the output (sensor output) of the air-fuel ratio sensor 24 is stable near the target air-fuel ratio. This is because the response characteristic of the air-fuel ratio sensor 24 cannot be detected with high accuracy when the sensor output is unstable.

このステップ101で、応答特性検出実行条件が成立していないと判定されれば、以降の処理を行うことなく、本ルーチンを終了するが、応答特性検出実行条件が成立していると判定されれば、次のようにして応答特性の検出処理が実行される。   If it is determined in step 101 that the response characteristic detection execution condition is not satisfied, this routine is terminated without performing the subsequent processing, but it is determined that the response characteristic detection execution condition is satisfied. For example, the response characteristic detection process is executed as follows.

まず、ステップ102で、応答特性の計測を開始し、所定時間T1が経過するまで待機する(ステップ103)。応答特性計測開始後は、燃料増量前のセンサ出力の定常値BAを算出するデータとなるセンサ出力の時系列データをECU27のメモリに記憶する。そして、応答特性計測開始から所定時間T1が経過するまでの期間に、空燃比フィードバック制御を継続して定常運転状態を維持しながら、燃料増量前のセンサ出力の定常値BA(平均値)をなまし処理又は相加平均等の平均化処理によって算出する。   First, in step 102, response characteristic measurement is started, and the process waits until a predetermined time T1 elapses (step 103). After the response characteristic measurement is started, time series data of the sensor output, which is data for calculating the steady value BA of the sensor output before the fuel increase, is stored in the memory of the ECU 27. Then, during the period from the start of response characteristic measurement to the elapse of the predetermined time T1, the air-fuel ratio feedback control is continued and the steady operation state is maintained, and the steady value BA (average value) of the sensor output before fuel increase is obtained. Calculated by averaging processing such as mash processing or arithmetic averaging.

そして、応答特性計測開始から所定時間T1が経過した時点で、ステップ104に進み、空燃比フィードバック制御を停止して、燃料増量フラグをONに切り換え、次のステップ105で、燃料供給量(燃料噴射量)をステップ的に増量する。この後、ステップ106に進み、燃料増量タイミングから所定時間T0が経過するまで待機する。ここで、所定時間T0は、燃料増量後にセンサ出力が定常値AAで安定するまでに必要な時間に設定されている。燃料増量開始から所定時間T0が経過するまでの期間には、応答時間TBを算出するデータとなるセンサ出力の時系列データがECU27のメモリに記憶される。   Then, when a predetermined time T1 has elapsed from the start of response characteristic measurement, the routine proceeds to step 104, the air-fuel ratio feedback control is stopped, the fuel increase flag is turned ON, and in the next step 105, the fuel supply amount (fuel injection) Increase the amount in steps. Thereafter, the process proceeds to step 106 and waits until a predetermined time T0 elapses from the fuel increase timing. Here, the predetermined time T0 is set to a time necessary for the sensor output to stabilize at the steady value AA after the fuel increase. During the period from the start of fuel increase to the elapse of the predetermined time T0, sensor output time-series data serving as data for calculating the response time TB is stored in the memory of the ECU 27.

その後、燃料増量開始から所定時間T0が経過した時点で、ステップ107に進み、空燃比フィードバック制御を再開して、所定時間T2が経過するまで(ステップ108)、燃料増量分だけ目標空燃比をリッチ側にずらして燃料供給量をフィードバック補正することで、センサ出力を目標空燃比近傍(定常値AA)で安定させる。この期間のセンサ出力の平均値をなまし処理又は相加平均等の平均化処理によって算出し、この平均値を、“燃料増量後のセンサ出力の定常値AA”として用いる。   Thereafter, when a predetermined time T0 has elapsed from the start of fuel increase, the routine proceeds to step 107, where the air-fuel ratio feedback control is resumed and the target air-fuel ratio is increased by the fuel increase until the predetermined time T2 has elapsed (step 108). The sensor output is stabilized in the vicinity of the target air-fuel ratio (steady value AA) by feedback-correcting the fuel supply amount by shifting to the side. The average value of the sensor output during this period is calculated by averaging processing such as smoothing or arithmetic averaging, and this average value is used as the “steady value AA of sensor output after fuel increase”.

そして、所定時間T2が経過した時点で、ステップ109に進み、応答特性の計測を終了し、目標空燃比を通常運転時の目標空燃比に切り換えて空燃比フィードバック制御を実行する。   Then, when the predetermined time T2 has elapsed, the routine proceeds to step 109, where the response characteristic measurement is terminated, the target air-fuel ratio is switched to the target air-fuel ratio during normal operation, and air-fuel ratio feedback control is executed.

[無駄時間算出ルーチン]
図5の無駄時間算出ルーチンは、エンジン運転中に周期的に実行され、特許請求の範囲でいう応答特性検出手段としての役割を果たす。本ルーチンが起動されると、まずステップ201で、無駄時間算出条件が成立しているか否かを判定する。この無駄時間算出条件は、(1) 計測処理フラグがON(応答特性の計測処理中)であること、(2) 無駄時間TAがまだ算出されていないことであり、これら2つの条件(1) 、(2) のうちのいずれか一方でも満たさない条件があれば、無駄時間算出条件が不成立となり、以降の処理を行うことなく、本ルーチンを終了する。
[Waste time calculation routine]
The dead time calculation routine of FIG. 5 is periodically executed during engine operation, and serves as response characteristic detection means in the claims. When this routine is started, first, at step 201, it is determined whether or not a dead time calculation condition is satisfied. This dead time calculation condition is that (1) the measurement processing flag is ON (response characteristic is being measured), and (2) the dead time TA has not yet been calculated. These two conditions (1) If there is a condition that does not satisfy either one of (2), the dead time calculation condition is not satisfied, and this routine is terminated without performing the subsequent processing.

一方、上記2つの条件(1) 、(2) を同時に満たせば、無駄時間算出条件が成立して、ステップ202に進み、燃料供給量が増量されるまで待機する。このステップ202の処理が特許請求の範囲でいう検出手段としての役割を果たす。   On the other hand, if the above two conditions (1) and (2) are satisfied at the same time, the dead time calculation condition is satisfied and the routine proceeds to step 202 and waits until the fuel supply amount is increased. The processing in step 202 serves as detection means in the claims.

この後、燃料供給量が増量された時点で、ステップ203に進み、現在のセンサ出力の変化勾配[AF(N) −AF(N-1) ]をしきい値と比較し、センサ出力の変化勾配[AF(N) −AF(N-1) ]がしきい値を越えるまで待機する。   Thereafter, when the fuel supply amount is increased, the routine proceeds to step 203 where the current sensor output change gradient [AF (N) −AF (N−1)] is compared with a threshold value, and the sensor output change is detected. Wait until the gradient [AF (N) −AF (N−1)] exceeds the threshold.

そして、センサ出力の変化勾配[AF(N) −AF(N-1) ]がしきい値を越えたときに、変化開始点と判断して、ステップ204に進み、変化開始点検出カウンタCountをカウントアップして、ステップ205に進み、変化開始点検出カウンタCountのカウント値が所定値Mに達したか否かを判定して、所定値Mに達していなければ、ステップ203に戻り、上述した処理を繰り返す。これにより、センサ出力の変化勾配[AF(N) −AF(N-1) ]がしきい値を所定回数(M回)越えるまで、変化開始点の検出を継続する。   When the change gradient [AF (N) −AF (N−1)] of the sensor output exceeds the threshold value, the change start point is determined, and the process proceeds to step 204 where the change start point detection counter Count is set. Counting up and proceeding to step 205, it is determined whether or not the count value of the change start point detection counter Count has reached a predetermined value M, and if not, the process returns to step 203 and described above. Repeat the process. Thus, the detection of the change start point is continued until the change gradient [AF (N) −AF (N−1)] of the sensor output exceeds the threshold value a predetermined number of times (M times).

その後、センサ出力の変化勾配[AF(N) −AF(N-1) ]がしきい値を所定回数(M回)越えて変化開始点検出カウンタCountのカウント値が所定値Mに達した時点で、ステップ206に進み、燃料増量タイミング(j)から変化開始点(N−M)までの無駄時間TAを次式により算出する。
TA={(N−M)−J}×演算周期
ここで、(N−M)は、センサ出力の変化勾配[AF(N) −AF(N-1) ]が最初にしきい値を越えた点を変化開始点とみなして、この変化開始点をそれまでの累積演算回数で表したものであり、Jは、燃料増量タイミングをそれまでの累積演算回数で表したものである。
Thereafter, when the change gradient [AF (N) −AF (N−1)] of the sensor output exceeds the threshold value a predetermined number of times (M times) and the count value of the change start point detection counter Count reaches the predetermined value M In step 206, the dead time TA from the fuel increase timing (j) to the change start point (NM) is calculated by the following equation.
TA = {(N−M) −J} × arithmetic cycle Here, (N−M) indicates that the change gradient [AF (N) −AF (N−1)] of the sensor output first exceeded the threshold value. The point is regarded as a change start point, and this change start point is expressed by the cumulative calculation count so far, and J is the fuel increase timing expressed by the cumulative calculation count so far.

[n次遅れ特性算出ルーチン]
図6のn次遅れ特性算出ルーチンは、エンジン運転中に周期的に実行され、特許請求の範囲でいう応答特性検出手段としての役割を果たす。本ルーチンが起動されると、まずステップ301で、応答時間算出条件が成立しているか否かを判定する。この応答時間算出条件は、(1) 計測処理フラグがOFF(応答特性の計測処理終了)であること、(2) 応答時間TBがまだ算出されていないことであり、これら2つの条件(1) 、(2) のいずれか一方でも満たさない条件があれば、応答時間算出条件が不成立となり、以降の処理を行うことなく、本ルーチンを終了する。
[Nth delay characteristic calculation routine]
The n-th order lag characteristic calculation routine of FIG. 6 is periodically executed during engine operation, and serves as response characteristic detection means in the claims. When this routine is started, first, at step 301, it is determined whether or not a response time calculation condition is satisfied. The response time calculation conditions are (1) the measurement processing flag is OFF (response characteristic measurement processing end), (2) the response time TB has not yet been calculated, and these two conditions (1) If there is a condition that does not satisfy either of the conditions (2) and (2), the response time calculation condition is not satisfied, and this routine is terminated without performing the subsequent processing.

一方、上記2つの条件(1) 、(2) を同時に満たせば、応答時間算出条件が成立して、ステップ302に進み、無駄時間TAが検出されるまで待機する。この後、無駄時間TAが検出された時点で、ステップ303に進み、ECU27のメモリに記憶されたセンサ出力の時系列データに基づいて燃料増量前のセンサ出力の定常値BAと燃料増量後のセンサ出力の定常値AAを算出する。ここで、燃料増量前のセンサ出力の定常値BAは、計測処理開始から所定時間T1が経過するまでのセンサ出力の平均値であり、燃料増量後のセンサ出力の定常値AAは、計測処理終了前の所定時間T2のセンサ出力の平均値である。   On the other hand, if the above two conditions (1) and (2) are satisfied at the same time, the response time calculation condition is satisfied and the routine proceeds to step 302 and waits until the dead time TA is detected. Thereafter, when the dead time TA is detected, the routine proceeds to step 303 where the sensor output steady value BA before the fuel increase and the sensor after the fuel increase based on the time series data of the sensor output stored in the memory of the ECU 27. The output steady value AA is calculated. Here, the steady value BA of the sensor output before the fuel increase is an average value of the sensor output until the predetermined time T1 elapses from the start of the measurement process, and the steady value AA of the sensor output after the fuel increase is the end of the measurement process. It is the average value of the sensor output of the previous predetermined time T2.

この後、ステップ304に進み、燃料増量前の定常値BAから燃料増量後の定常値AAまでの変化量(AA−BA)の所定割合(例えば63%)に相当するセンサ出力AF63を次式により算出する。
AF63=(AA−BA)×所定割合
Thereafter, the process proceeds to step 304, and the sensor output AF63 corresponding to a predetermined ratio (for example, 63%) of the change amount (AA-BA) from the steady value BA before the fuel increase to the steady value AA after the fuel increase is calculated by the following equation. calculate.
AF63 = (AA−BA) × predetermined ratio

この後、ステップ305に進み、ECU27のメモリに記憶されたセンサ出力の時系列データを検索して、センサ出力がAF63に達した時点NTを求めた後、ステップ306に進み、変化開始点(N−M)からセンサ出力がAF63に達した時点NTまでの応答時間TBを次式により算出する。
TB={NT−(N−M)}×演算周期
Thereafter, the process proceeds to step 305, the time series data of the sensor output stored in the memory of the ECU 27 is searched, the time NT when the sensor output reaches AF63 is obtained, then the process proceeds to step 306, and the change start point (N The response time TB from (M) to the time point NT when the sensor output reaches AF63 is calculated by the following equation.
TB = {NT− (NM)} × operation cycle

尚、本ルーチンでは、応答特性の計測処理終了後(計測処理フラグのOFF時)に、ECU27のメモリに記憶されているセンサ出力の時系列データに基づいて燃料増量前後のセンサ出力の定常値BA,定常値AAを算出するようにしたが、応答特性の計測処理開始時(計測処理フラグのON時)に、燃料増量前後のセンサ出力の定常値BA,AAが学習値等により予め判明している場合には、応答特性の計測処理中に、変化開始点(無駄時間TA)を検出するまでに、AF63=(AA−BA)×所定割合の演算を行っておき、変化開始点(無駄時間TA)の検出後に、センサ出力のサンプリング毎にセンサ出力をAF63と比較して、センサ出力がAF63に達した時点NTをリアルタイムで検出するようにしても良い。   In this routine, after completion of the response characteristic measurement process (when the measurement process flag is OFF), the sensor output steady value BA before and after fuel increase is based on the sensor output time-series data stored in the memory of the ECU 27. The steady-state value AA is calculated, but at the start of the response characteristic measurement process (when the measurement process flag is ON), the steady-state values BA and AA of the sensor output before and after the fuel increase are determined in advance by the learning value or the like. In the case of the response characteristic measurement process, AF63 = (AA−BA) × predetermined ratio is calculated before the change start point (dead time TA) is detected, and the change start point (dead time). After the detection of TA), the sensor output may be compared with AF63 every time the sensor output is sampled, and the time point NT when the sensor output reaches AF63 may be detected in real time.

また、本ルーチンでは、1次遅れの応答時間を算出するようにしたが、これに代えて、2次遅れの応答時間、或は3次以上の応答時間を検出するようにしても良い。また、応答時間に代えて、n次遅れの伝達関数の係数を算出するようにしても良い。   In this routine, the response time of the first-order lag is calculated, but instead of this, a response time of the second-order lag, or a response time of the third or higher order may be detected. Further, instead of the response time, a coefficient of an nth-order lag transfer function may be calculated.

[制御定数決定メインルーチン]
図7の制御定数決定メインルーチンは、エンジン運転中に周期的に実行され、特許請求の範囲でいう制御定数算出手段としての役割を果たす。本ルーチンが起動されると、まずステップ401で、前記図4〜図6のルーチンによって空燃比センサ24の応答特性(無駄時間+n次遅れ)が検出されたか否かを判定し、検出されていなければ、検出されるまで待機する。
[Control constant determination main routine]
The control constant determination main routine of FIG. 7 is periodically executed during engine operation, and serves as a control constant calculation means in the claims. When this routine is started, first, at step 401, it is determined whether or not the response characteristic (dead time + n-order delay) of the air-fuel ratio sensor 24 has been detected by the routines of FIGS. If so, it waits until it is detected.

その後、応答特性が検出された時点で、ステップ402に進み、ECU27に実装された応答特性(実装応答特性)と前記図4〜図6のルーチンで検出された応答特性(検出応答特性)との差の絶対値が許容値1を越えているか否かを判定する。この際、実装応答特性と検出応答特性との差は、無駄時間の実装値と検出値の差と、n次遅れの実装値と検出値の差について、それぞれ許容値1を越えているか否かを判定し、両方とも許容値1以下であれば、実装応答特性と検出応答特性との差の絶対値が許容値1を越えていない(実装応答特性を補正する必要がない)と判定されて、ステップ401に戻り、次の応答特性が検出されるまで待機する。ここで、許容値1は、空燃比センサ24の出力に重畳するノイズ等の影響による応答特性の微妙なばらつきによる制御定数の誤補正を避けるために設定されている。この許容値1は、応答特性に対して、絶対値、相対値、運転条件毎に設定しても良い。   Thereafter, when the response characteristic is detected, the process proceeds to step 402, where the response characteristic (mounting response characteristic) mounted on the ECU 27 and the response characteristic (detection response characteristic) detected in the routines of FIGS. It is determined whether or not the absolute value of the difference exceeds the allowable value 1. At this time, whether the difference between the mounting response characteristic and the detection response characteristic exceeds the allowable value 1 for the difference between the dead time mounting value and the detection value, and the difference between the mounting value and the detection value for the nth order delay. If both are less than the allowable value 1, it is determined that the absolute value of the difference between the mounting response characteristic and the detection response characteristic does not exceed the allowable value 1 (the mounting response characteristic need not be corrected). The process returns to step 401 and waits until the next response characteristic is detected. Here, the allowable value 1 is set in order to avoid erroneous correction of the control constant due to subtle variations in response characteristics due to the influence of noise or the like superimposed on the output of the air-fuel ratio sensor 24. This allowable value 1 may be set for each of the absolute value, relative value, and operating condition with respect to the response characteristic.

これに対して、無駄時間とn次遅れのどちらか一方でも差が許容値1を越えていれば、実装応答特性と検出応答特性との差の絶対値が許容値1を越えている(実装応答特性を補正する必要がある)と判定されて、ステップ403に進み、実装応答特性(無駄時間+n次遅れ)を検出応答特性で補正する。例えば、無駄時間、n次遅れの実装値を検出値で書き替える。   On the other hand, if the difference between either the dead time or the n-th order delay exceeds the allowable value 1, the absolute value of the difference between the mounting response characteristic and the detection response characteristic exceeds the allowable value 1 (mounting) It is determined that the response characteristic needs to be corrected), and the process proceeds to step 403, where the mounting response characteristic (dead time + n-order delay) is corrected with the detection response characteristic. For example, the implementation value of dead time and n-th order lag is rewritten with the detected value.

この後、ステップ404に進み、補正後の実装応答特性で空燃比センサ24の出力が最適挙動となる制御定数(制御ゲイン)を算出する。この後、ステップ405に進み、ECU27に実装された制御定数(実装応答特性)と上記ステップ404で算出した制御定数(算出制御定数)との差の絶対値が許容値2を越えているか否かを判定し、実装制御定数と算出制御定数との差の絶対値が許容値2を越えていない場合は、実装制御定数を補正する必要がないと判断して、上記ステップ401に戻り、上述した処理を繰り返す。   Thereafter, the process proceeds to step 404, and a control constant (control gain) at which the output of the air-fuel ratio sensor 24 becomes the optimum behavior with the corrected mounting response characteristic is calculated. Thereafter, the process proceeds to step 405, and whether or not the absolute value of the difference between the control constant (mounting response characteristic) mounted in the ECU 27 and the control constant (calculated control constant) calculated in step 404 exceeds the allowable value 2 or not. If the absolute value of the difference between the mounting control constant and the calculated control constant does not exceed the allowable value 2, it is determined that there is no need to correct the mounting control constant, and the process returns to step 401 above. Repeat the process.

これに対して、実装制御定数と算出制御定数との差の絶対値が許容値2を越えている場合は、ステップ406に進み、図8の実装制御定数補正ルーチンを実行して、実装制御定数を補正する。   On the other hand, if the absolute value of the difference between the mounting control constant and the calculated control constant exceeds the allowable value 2, the process proceeds to step 406 and the mounting control constant correction routine of FIG. Correct.

[実装制御定数補正ルーチン]
図7のステップ406で、図8の実装制御定数補正ルーチンが起動されると、まずステップ501で、算出制御定数と実装制御定数との差の絶対値が所定値1を越えているか否かを判定し、所定値1を越えていなければ、実装制御定数を補正する必要がないと判断して、そのまま本ルーチンを終了する。これは、算出制御定数と実装制御定数との差が小さいときには、ノイズ等の影響が考えられるため、実装制御定数を補正しない趣旨である。
[Mounting control constant correction routine]
When the mounting control constant correction routine of FIG. 8 is started in step 406 of FIG. 7, first, in step 501, it is determined whether or not the absolute value of the difference between the calculated control constant and the mounting control constant exceeds a predetermined value 1. If the predetermined value 1 is not exceeded, it is determined that there is no need to correct the mounting control constant, and this routine is terminated as it is. This means that when the difference between the calculated control constant and the mounting control constant is small, the influence of noise or the like is considered, so that the mounting control constant is not corrected.

これに対して、算出制御定数と実装制御定数との差の絶対値が所定値1を越えていれば、ステップ502に進み、実装制御定数の補正を禁止する禁止条件に該当するか否かを判定し、もし、禁止条件に該当すれば、そのまま本ルーチンを終了する。特殊な条件下では実装制御定数の補正を実施しないようにするためである。   On the other hand, if the absolute value of the difference between the calculated control constant and the mounting control constant exceeds the predetermined value 1, the process proceeds to step 502 to determine whether or not a prohibition condition for prohibiting correction of the mounting control constant is satisfied. If it is determined that the prohibit condition is satisfied, this routine is terminated as it is. This is to prevent the mounting control constant from being corrected under special conditions.

一方、禁止条件に該当しなければ、ステップ503に進み、空燃比フィードバック停止中であるか否かを判定し、空燃比フィードバック停止中と実行中とで実装制御定数の補正方法を次のように切り替える。空燃比フィードバック停止中であれば、ステップ504に進み、実装制御定数を算出制御定数に一気に変更する。   On the other hand, if the prohibition condition is not met, the process proceeds to step 503, where it is determined whether the air-fuel ratio feedback is stopped, and the mounting control constant correction method between the air-fuel ratio feedback stop and the execution is as follows. Switch. If the air-fuel ratio feedback is stopped, the process proceeds to step 504, and the mounting control constant is immediately changed to the calculated control constant.

空燃比フィードバック実行中であれば、ステップ505に進み、算出制御定数と実装制御定数との差が0より大きいか否かによって、算出制御定数が実装制御定数よりも大きいか否かを判定し、算出制御定数が実装制御定数よりも大きければ、ステップ506に進み、実装制御定数を現在の実装制御定数に所定値3を加算した値に書き替え、算出制御定数が実装制御定数よりも小さければ、ステップ507に進み、実装制御定数を現在の実装制御定数から所定値3を減算した値に書き替える。このように、空燃比フィードバック実行中は、実装制御定数を所定値3ずつ増減させることで、実装制御定数を算出制御定数に向けて徐々に変化させる。これは、空燃比フィードバック実行中に実装制御定数を急変させると、エンジン制御状態が急変してトルクショック等が発生するためである。   If air-fuel ratio feedback is being executed, the process proceeds to step 505, where it is determined whether or not the calculated control constant is greater than the mounted control constant depending on whether or not the difference between the calculated control constant and the mounted control constant is greater than zero. If the calculated control constant is larger than the mounting control constant, the process proceeds to step 506, where the mounting control constant is rewritten to a value obtained by adding the predetermined value 3 to the current mounting control constant, and if the calculated control constant is smaller than the mounting control constant, Proceeding to step 507, the mounting control constant is rewritten to a value obtained by subtracting the predetermined value 3 from the current mounting control constant. Thus, during execution of the air-fuel ratio feedback, the mounting control constant is gradually increased toward the calculated control constant by increasing / decreasing the mounting control constant by a predetermined value of 3. This is because if the mounting control constant is suddenly changed during the execution of the air-fuel ratio feedback, the engine control state is suddenly changed and a torque shock or the like occurs.

この後、ステップ508に進み、算出制御定数と実装制御定数との差の絶対値がシステム上の最大誤差に相当する所定値2よりも小さくなっているか否かを判定し、算出制御定数と実装制御定数との差の絶対値が所定値2以上であれば、上記ステップ505に戻り、実装制御定数を所定値3ずつ増減させる処理を繰り返す。そして、算出制御定数と実装制御定数との差の絶対値が所定値2よりも小さくなった時点で、算出制御定数が実装制御定数とほぼ一致すると判断して、本ルーチンを終了する。   Thereafter, the process proceeds to step 508, where it is determined whether or not the absolute value of the difference between the calculated control constant and the mounting control constant is smaller than a predetermined value 2 corresponding to the maximum error on the system. If the absolute value of the difference from the control constant is greater than or equal to the predetermined value 2, the process returns to step 505, and the process of increasing or decreasing the mounting control constant by the predetermined value 3 is repeated. When the absolute value of the difference between the calculated control constant and the mounting control constant becomes smaller than the predetermined value 2, it is determined that the calculated control constant substantially matches the mounting control constant, and this routine is terminated.

以上説明した図8の実装制御定数補正ルーチンによる実装制御定数の補正例が図9、図10に示されている。
図9は空燃比フィードバック実行中の実装制御定数の補正例を示すタイムチャートである。図9の補正例では、空燃比フィードバック実行中に、算出制御定数と実装制御定数との差の絶対値が所定値1を越えたと判定された時点t1で、算出制御定数と実装制御定数との差が所定値2以上であるため、所定周期で実装制御定数を所定値3ずつ増加させる処理を繰り返す。これは、空燃比フィードバック実行中に実装制御定数を急変させると、エンジン制御状態が急変してトルクショック等が発生するため、実装制御定数を算出制御定数に向けて徐々に変化させることで、実装制御定数の急変によるエンジン制御状態の急変を避けるようにしている。そして、算出制御定数と実装制御定数との差が所定値2以下になった時点t2で、算出制御定数が実装制御定数とほぼ一致すると判断して、実装制御定数の変化を停止する。
Examples of correction of the mounting control constants by the mounting control constant correction routine of FIG. 8 described above are shown in FIGS.
FIG. 9 is a time chart showing an example of correcting the mounting control constant during execution of air-fuel ratio feedback. In the correction example of FIG. 9, when the absolute value of the difference between the calculated control constant and the mounting control constant is determined to exceed the predetermined value 1 during execution of the air-fuel ratio feedback, the calculated control constant and the mounting control constant are changed. Since the difference is equal to or greater than the predetermined value 2, the process of increasing the mounting control constant by the predetermined value 3 by a predetermined period is repeated. This is because if the mounting control constant is changed suddenly during the execution of air-fuel ratio feedback, the engine control state will change suddenly and torque shock etc. will occur, so the mounting control constant will gradually change toward the calculated control constant. A sudden change in the engine control state due to a sudden change in the control constant is avoided. Then, at time t2 when the difference between the calculated control constant and the mounting control constant becomes equal to or smaller than the predetermined value 2, it is determined that the calculated control constant substantially matches the mounting control constant, and the change of the mounting control constant is stopped.

一方、図10は空燃比フィードバック停止中の実装制御定数の補正例を示すタイムチャートである。図10の補正例では、空燃比フィードバック停止中に、算出制御定数と実装制御定数との差の絶対値が所定値1を越えたと判定された時点t3で、実装制御定数を算出制御定数に一気に変更する。空燃比フィードバック停止中は、実装制御定数を急変させても、その影響がエンジン制御状態に現れないためである。   On the other hand, FIG. 10 is a time chart showing an example of correcting the mounting control constant during air-fuel ratio feedback stop. In the correction example of FIG. 10, when it is determined that the absolute value of the difference between the calculated control constant and the mounted control constant exceeds the predetermined value 1 while the air-fuel ratio feedback is stopped, the mounted control constant is immediately set to the calculated control constant. change. This is because, during the air-fuel ratio feedback stop, even if the mounting control constant is suddenly changed, the effect does not appear in the engine control state.

[センサ異常判定ルーチン]
図11のセンサ異常判定ルーチンは、エンジン運転中に周期的に実行され、特許請求の範囲でいう異常判定手段としての役割を果たす。本ルーチンが起動されると、まずステップ601で、制御定数が算出されたか否かを判定し、算出されていなければ、算出されるまで待機する。そして、制御定数が算出された時点で、ステップ602に進み、ECU27のメモリに記憶された実装制御定数のマップを検索して、現在のエンジン運転条件に応じた実装制御定数を読み込む。
[Sensor abnormality determination routine]
The sensor abnormality determination routine in FIG. 11 is periodically executed during engine operation, and serves as abnormality determination means in the claims. When this routine is started, first, at step 601, it is determined whether or not a control constant has been calculated. If not, the process waits until it is calculated. Then, when the control constant is calculated, the process proceeds to step 602, a map of the mounting control constant stored in the memory of the ECU 27 is searched, and the mounting control constant corresponding to the current engine operating condition is read.

この後、ステップ603に進み、現在のエンジン運転条件に応じた許容誤差を例えばデータのばらつきやノイズ等を考慮して算出する。そして、次のステップ604で、上記ステップ602で読み込んだ実装制御定数と算出制御定数との差が許容誤差の範囲内であるか否かを判定し、許容誤差の範囲内であれば、ステップ605に進み、空燃比センサ24が正常であると判定する。   Thereafter, the process proceeds to step 603, and an allowable error corresponding to the current engine operating condition is calculated in consideration of, for example, data variation and noise. Then, in the next step 604, it is determined whether or not the difference between the mounting control constant read in step 602 and the calculated control constant is within the allowable error range. Then, it is determined that the air-fuel ratio sensor 24 is normal.

一方、実装制御定数と算出制御定数との差が許容誤差の範囲を越えていれば、ステップ606に進み、空燃比センサ24が異常であると判定し、次のステップ607に進み、異常情報をECU27のバックアップRAM等の書き換え可能な不揮発性メモリ(図示せず)に記憶すると共に、警告ランプ32を点灯(又は点滅)させたり、運転席のインストルメントパネルの表示部(図示せず)に警告表示して運転者に警告する。   On the other hand, if the difference between the mounting control constant and the calculated control constant exceeds the allowable error range, the process proceeds to step 606, where it is determined that the air-fuel ratio sensor 24 is abnormal, and the process proceeds to the next step 607, where the abnormality information is displayed. The information is stored in a rewritable non-volatile memory (not shown) such as a backup RAM of the ECU 27, the warning lamp 32 is turned on (or flashes), and a warning is given to a display unit (not shown) of the instrument panel of the driver's seat. Display and warn the driver.

以上説明した本実施例1では、空燃比センサ24の応答特性を無駄時間とn次遅れ特性(nは正の整数)とに分けて検出すると共に、検出した応答特性がECU27に実装された応答特性(実装応答特性)から許容値を越えてずれている場合に、該実装応答特性を補正し、補正後の実装応答特性で空燃比センサ24の出力が最適挙動となる制御定数を算出するようにしたので、実際に検出した応答特性(無駄時間+n次遅れ)に基づいて、実装応答特性を適正に補正できると共に、空燃比センサ24の劣化やエンジン11の機差等に対して、空燃比センサ24の出力が最適挙動となる制御定数をオンボードで算出することが可能となり、空燃比センサ24の劣化やエンジン11の機差等により発生する制御性悪化を回避することができる。   In the first embodiment described above, the response characteristic of the air-fuel ratio sensor 24 is detected by dividing it into a dead time and an nth-order lag characteristic (n is a positive integer), and the detected response characteristic is a response implemented in the ECU 27. When a deviation from the characteristic (mounting response characteristic) exceeds an allowable value, the mounting response characteristic is corrected, and a control constant is calculated so that the output of the air-fuel ratio sensor 24 becomes an optimum behavior with the corrected mounting response characteristic. Therefore, the mounting response characteristic can be appropriately corrected based on the actually detected response characteristic (dead time + n-order delay), and the air-fuel ratio can be controlled against the deterioration of the air-fuel ratio sensor 24, the machine difference of the engine 11, and the like. A control constant at which the output of the sensor 24 becomes an optimum behavior can be calculated on-board, and deterioration of controllability caused by deterioration of the air-fuel ratio sensor 24, machine difference of the engine 11, or the like can be avoided.

しかも、本実施例1では、実際に検出した応答特性(無駄時間+n次遅れ)を用いて算出した制御定数と実装制御定数とを比較してセンサの異常の有無を判定するようにしたので、従来システムでは異常の検出が困難であった低レベルの異常(例えば無駄時間と応答時間の両方が微妙にずれている異常)も検出することができる利点がある。   Moreover, in the first embodiment, since the control constant calculated using the actually detected response characteristic (dead time + n-order delay) is compared with the mounting control constant, it is determined whether there is an abnormality in the sensor. There is an advantage that it is possible to detect a low level abnormality (for example, an abnormality in which both the dead time and the response time are slightly different), which is difficult to detect the abnormality in the conventional system.

一般に、空燃比フィードバック制御系は、図12に示すように、制御対象P(プラント)であるエンジン11とコントローラC(空燃比制御手段)とから構成され、それぞれ図13に示す伝達関数で表現される。   In general, as shown in FIG. 12, the air-fuel ratio feedback control system is composed of an engine 11 that is a control target P (plant) and a controller C (air-fuel ratio control means), and each is expressed by a transfer function shown in FIG. The

ここで、ゲイン余裕は、空燃比フィードバック制御系の伝達関数C*Pの分母Dの絶対値と分子Eの絶対値の比で表される。
ゲイン余裕=|分母D|/|分子E| ……(1)
分子E=b1 *FI*z+b2 *FI
分母D=zd+3 +A1 *zd+2 +A2 *zd+1 −b1 *FI*z−b2 *FI
Here, the gain margin is expressed by the ratio of the absolute value of the denominator D to the absolute value of the numerator E of the transfer function C * P of the air-fuel ratio feedback control system.
Gain margin = | Denominator D | / | Numerator E | (1)
Molecule E = b1 * FI * z + b2 * FI
Denominator D = z d +3 + A1 * z d +2 + A2 * z d + 1 -b1 * FI * z -b2 * FI

また、位相余裕は、分子Eの位相と分母Dの位相で表される。
位相余裕=位相(分子E)−位相(分母D) ……(2)
The phase margin is expressed by the phase of the numerator E and the phase of the denominator D.
Phase margin = phase (numerator E) -phase (denominator D) (2)

本発明の実施例2では、前記実施例1と同様の方法で、空燃比センサ24の応答特性(無駄時間+n次遅れ)を検出し、検出した応答特性がECU27に実装された応答特性からずれている場合に、空燃比フィードバック制御系の伝達関数C*Pとゲイン余裕又は位相余裕を用いて2つの制御定数ω,ζを算出するようにしている。この際、2つの制御定数ω,ζのどちらか一方の制御定数を固定値として、上記(1)式又は(2)式にゲイン余裕又は位相余裕の設定値を代入して他方の制御定数に関して解くことにより、他方の制御定数を逆算する。このような処理を2つの制御定数ω,ζについてそれぞれ行うことで、2つの制御定数ω,ζを算出する。   In the second embodiment of the present invention, the response characteristic (dead time + n-order delay) of the air-fuel ratio sensor 24 is detected by the same method as in the first embodiment, and the detected response characteristic deviates from the response characteristic mounted on the ECU 27. In this case, the two control constants ω and ζ are calculated using the transfer function C * P and the gain margin or phase margin of the air-fuel ratio feedback control system. At this time, one of the two control constants ω and ζ is set as a fixed value, and the gain margin or phase margin set value is substituted into the above formula (1) or (2), and the other control constant is set. By solving, the other control constant is calculated backward. By performing such processing for the two control constants ω and ζ, respectively, the two control constants ω and ζ are calculated.

この場合、ゲイン余裕や位相余裕は、運転条件や応答特性とは関係なく最適挙動に応じて設定できるため、運転条件毎や応答特性毎にゲイン余裕や位相余裕を指定する必要がなく、同一のゲイン余裕や位相余裕で、同等の最適挙動を実現できる。但し、本発明は、運転条件により最適挙動を変化させたい場合は、ゲイン余裕や位相余裕を運転条件毎に設定するようにしても良い。   In this case, the gain margin and phase margin can be set according to the optimal behavior regardless of the operating conditions and response characteristics, so there is no need to specify the gain margin and phase margin for each operating condition and response characteristics. The same optimal behavior can be realized with gain margin and phase margin. However, according to the present invention, when it is desired to change the optimum behavior depending on the operating condition, a gain margin or a phase margin may be set for each operating condition.

本発明の実施例3では、ECU27によって図14の制御定数決定メインルーチンを実行することで、検出した応答特性が実装応答特性から許容値を越えてずれている場合に、その応答特性の誤差に応じてゲイン余裕又は位相余裕を変更して前記実施例2と同様の手法で制御定数を算出するようにしている。   In the third embodiment of the present invention, when the detected response characteristic deviates from the mounting response characteristic beyond the allowable value by executing the control constant determination main routine of FIG. Accordingly, the gain margin or the phase margin is changed, and the control constant is calculated by the same method as in the second embodiment.

図14の制御定数決定メインルーチンでは、まずステップ701で、前記実施例1と同様の方法で空燃比センサ24の応答特性(無駄時間+n次遅れ)が検出されたか否かを判定し、検出されていなければ、検出されるまで待機する。   In the control constant determination main routine of FIG. 14, first, in step 701, it is determined whether or not the response characteristic (waste time + n-order delay) of the air-fuel ratio sensor 24 has been detected by the same method as in the first embodiment. If not, wait until it is detected.

その後、応答特性が検出された時点で、ステップ702に進み、ECU27に実装された応答特性(実装応答特性)と検出された応答特性(検出応答特性)との差の絶対値が許容値1を越えているか否かを判定し、許容値1を越えていなければ、実装制御定数を補正する必要がないと判断して、ステップ701に戻り、次の応答特性が検出されるまで待機する。   After that, when the response characteristic is detected, the process proceeds to step 702, where the absolute value of the difference between the response characteristic mounted on the ECU 27 (mounting response characteristic) and the detected response characteristic (detection response characteristic) is an allowable value 1. It is determined whether or not the value exceeds the allowable value 1. If the allowable value 1 is not exceeded, it is determined that it is not necessary to correct the mounting control constant, and the process returns to step 701 and waits until the next response characteristic is detected.

一方、実装応答特性と検出応答特性との差の絶対値が許容値1を越えていれば、ステップ703に進み、実装応答特性と検出応答特性との差を“応答特性の誤差”として算出し、次のステップ704で、この応答特性の誤差に応じたゲイン余裕又は位相余裕を図15のマップにより算出する。この図15のマップは、応答特性の誤差が大きくなるほど、ゲイン余裕又は位相余裕が大きくなるように設定されている(ゲイン余裕又は位相余裕が大きくなるほど、制御定数ωが小さくなる)。   On the other hand, if the absolute value of the difference between the mounting response characteristic and the detection response characteristic exceeds the allowable value 1, the process proceeds to step 703, and the difference between the mounting response characteristic and the detection response characteristic is calculated as an “response characteristic error”. In the next step 704, a gain margin or a phase margin corresponding to the response characteristic error is calculated from the map of FIG. The map in FIG. 15 is set so that the gain margin or phase margin increases as the response characteristic error increases (the control constant ω decreases as the gain margin or phase margin increases).

この後、ステップ705に進み、上記ステップ704で算出したゲイン余裕又は位相余裕を用いて前記実施例2と同様の手法で制御定数を算出する。この後、ステップ706に進み、ECU27に実装された制御定数(実装応答特性)と上記ステップ705で算出した制御定数(算出制御定数)との差の絶対値が許容値2を越えているか否かを判定し、実装制御定数と算出制御定数との差の絶対値が許容値2を越えていない場合は、実装制御定数を補正する必要がないと判断して、上記ステップ701に戻り、上述した処理を繰り返す。   Thereafter, the process proceeds to step 705, and the control constant is calculated by the same method as in the second embodiment using the gain margin or phase margin calculated in step 704. Thereafter, the process proceeds to step 706, and whether or not the absolute value of the difference between the control constant (mounting response characteristic) mounted in the ECU 27 and the control constant (calculated control constant) calculated in step 705 exceeds the allowable value 2. If the absolute value of the difference between the mounting control constant and the calculated control constant does not exceed the allowable value 2, it is determined that there is no need to correct the mounting control constant, the process returns to step 701, and the above-mentioned Repeat the process.

これに対して、実装制御定数と算出制御定数との差の絶対値が許容値2を越えている場合は、ステップ707に進み、前記実施例1と同様の手法で実装制御定数を補正する。   On the other hand, if the absolute value of the difference between the mounting control constant and the calculated control constant exceeds the allowable value 2, the process proceeds to step 707 and the mounting control constant is corrected by the same method as in the first embodiment.

以上説明した本実施例3では、検出した応答特性が実装応答特性から許容値を越えてずれている場合に、その応答特性の誤差に応じてゲイン余裕又は位相余裕を変更して前記実施例2と同様の手法で制御定数を算出するようにしたので、空燃比センサ24が劣化しても、その応答特性の劣化度合いを考慮した適正な制御定数を算出することができ、制御の安定性、応答性の悪化を防止することができる。尚、ゲイン余裕又は位相余裕を変更する場合は、実装応答特性を補正する必要はない。   In the third embodiment described above, when the detected response characteristic deviates from the mounting response characteristic beyond the allowable value, the gain margin or the phase margin is changed in accordance with the error of the response characteristic, and the second embodiment. Therefore, even if the air-fuel ratio sensor 24 is deteriorated, an appropriate control constant can be calculated in consideration of the degree of deterioration of the response characteristics, and the stability of control, The deterioration of responsiveness can be prevented. When changing the gain margin or phase margin, it is not necessary to correct the mounting response characteristics.

本発明の実施例4では、ECU27によって図16の制御定数決定メインルーチンを実行することで、空燃比センサ24の出力に重畳するノイズ成分の大きさが許容値を越えている場合に、ノイズ成分の大きさに応じてゲイン余裕又は位相余裕を変更して前記実施例2と同様の手法で制御定数を算出するようにしている。   In the fourth embodiment of the present invention, when the control constant determination main routine of FIG. 16 is executed by the ECU 27, the noise component superimposed on the output of the air-fuel ratio sensor 24 exceeds the allowable value. The control margin is calculated by the same method as in the second embodiment by changing the gain margin or the phase margin according to the magnitude of.

図16の制御定数決定メインルーチンでは、まずステップ711で、ノイズ成分検出手段によりノイズ成分が検出されたか否かを判定し、検出されていなければ、検出されるまで待機する。   In the control constant determination main routine of FIG. 16, first, at step 711, it is determined whether or not a noise component has been detected by the noise component detection means, and if not detected, it waits until it is detected.

その後、ノイズ成分が検出された時点で、ステップ712に進み、ノイズ成分の大きさが許容値1以上であるか否かを判定し、許容値1以上でなければ、実装制御定数を補正する必要がないと判断して、ステップ711に戻り、次のノイズ成分が検出されるまで待機する。   Thereafter, when a noise component is detected, the process proceeds to step 712, where it is determined whether or not the magnitude of the noise component is greater than or equal to the allowable value 1. If not, the mounting control constant needs to be corrected. If it is determined that there is no noise, the process returns to step 711 and waits until the next noise component is detected.

一方、ノイズ成分の大きさが許容値1以上であれば、ステップ713に進み、ノイズ成分の大きさを算出し、次のステップ714で、このノイズ成分の大きさに応じたゲイン余裕又は位相余裕を図15のマップにより算出する。この図15のマップは、ノイズ成分が大きくなるほど、ゲイン余裕又は位相余裕が大きくなるように設定されている(ゲイン余裕又は位相余裕が大きくなるほど、制御定数ωが小さくなる)。   On the other hand, if the magnitude of the noise component is greater than or equal to the allowable value 1, the process proceeds to step 713, where the magnitude of the noise component is calculated, and in the next step 714, the gain margin or phase margin corresponding to the magnitude of the noise component is calculated. Is calculated from the map of FIG. The map of FIG. 15 is set so that the gain margin or phase margin increases as the noise component increases (the control constant ω decreases as the gain margin or phase margin increases).

この後、ステップ715に進み、上記ステップ714で算出したゲイン余裕又は位相余裕を用いて前記実施例2と同様の手法で制御定数を算出する。この後、ステップ716に進み、ECU27に実装された制御定数(実装応答特性)と上記ステップ715で算出した制御定数(算出制御定数)との差の絶対値が許容値2を越えているか否かを判定し、実装制御定数と算出制御定数との差の絶対値が許容値2を越えていない場合は、実装制御定数を補正する必要がないと判断して、上記ステップ711に戻り、上述した処理を繰り返す。   Thereafter, the process proceeds to step 715, and the control constant is calculated by the same method as in the second embodiment, using the gain margin or phase margin calculated in step 714. Thereafter, the process proceeds to step 716, and whether or not the absolute value of the difference between the control constant (mounting response characteristic) mounted in the ECU 27 and the control constant (calculated control constant) calculated in step 715 exceeds the allowable value 2. If the absolute value of the difference between the mounting control constant and the calculated control constant does not exceed the allowable value 2, it is determined that there is no need to correct the mounting control constant, the process returns to step 711, and the above-mentioned Repeat the process.

これに対して、実装制御定数と算出制御定数との差の絶対値が許容値2を越えている場合は、ステップ717に進み、前記実施例1と同様の手法で実装制御定数を補正する。   On the other hand, if the absolute value of the difference between the mounting control constant and the calculated control constant exceeds the allowable value 2, the process proceeds to step 717 and the mounting control constant is corrected by the same method as in the first embodiment.

以上説明した本実施例4では、空燃比センサ24の出力に重畳するノイズ成分の大きさに応じてゲイン余裕又は位相余裕を変更して、空燃比フィードバック制御系の伝達関数とゲイン余裕又は位相余裕を用いて制御定数を算出するようにしたので、空燃比センサ24の劣化やエンジン11の劣化等により空燃比センサ24の出力にノイズ成分が重畳しても、そのノイズ成分の影響を排除した適正な制御定数を算出することができ、制御の安定性、応答性の悪化を防止することができる。尚、この場合も、実装応答特性を補正する必要はない。   In the fourth embodiment described above, the gain margin or phase margin is changed according to the magnitude of the noise component superimposed on the output of the air-fuel ratio sensor 24, and the transfer function and gain margin or phase margin of the air-fuel ratio feedback control system are changed. Since the control constant is calculated using the above, even if the noise component is superimposed on the output of the air-fuel ratio sensor 24 due to the deterioration of the air-fuel ratio sensor 24, the deterioration of the engine 11, or the like, it is possible to eliminate the influence of the noise component. Control constants can be calculated, and control stability and responsiveness can be prevented from deteriorating. In this case as well, there is no need to correct the mounting response characteristics.

尚、応答特性の誤差とノイズ成分の大きさの両方に基づいてゲイン余裕又は位相余裕を変更するようにしても良い。   The gain margin or the phase margin may be changed based on both the response characteristic error and the magnitude of the noise component.

本発明の実施例5では、前記実施例1と同様の方法で、空燃比センサ24の応答特性(無駄時間+n次遅れ)を検出し、検出した応答特性がECU27に実装された応答特性からずれている場合に、空燃比センサ24の応答特性を模擬したプラントの入力又は出力を最適挙動とする制御定数をシミュレーションにより算出する。シミュレーションのモデルは、図17に示すように、コントローラとプラント(制御対象)とからなり、コントローラ(ECU27に実装されている制御ロジック)は、空燃比センサ24の出力と空燃比フィードパック補正係数が理想の応答波形となるように構成され、プラントは、ECU27に実装されている応答特性モデルをそのまま使用する。   In the fifth embodiment of the present invention, the response characteristic (dead time + n-order delay) of the air-fuel ratio sensor 24 is detected in the same manner as in the first embodiment, and the detected response characteristic deviates from the response characteristic mounted on the ECU 27. In this case, a control constant that optimizes the input or output of the plant simulating the response characteristic of the air-fuel ratio sensor 24 is calculated by simulation. As shown in FIG. 17, the simulation model is composed of a controller and a plant (control target). The controller (control logic implemented in the ECU 27) has an output of the air-fuel ratio sensor 24 and an air-fuel ratio feed pack correction coefficient. The plant is configured to have an ideal response waveform, and the plant uses the response characteristic model mounted in the ECU 27 as it is.

本実施例5では、ECU27によって図18の制御定数算出ルーチンを実行することで、制御定数をシミュレーションにより算出する。図18の制御定数算出ルーチンは、一方の制御定数ζを固定して、他方の制御定数ωを最適化するルーチンである。制御定数ζを最適化する場合は、制御定数ωを固定して、図18の制御定数算出ルーチンと同様の処理を行えば良い。   In the fifth embodiment, the control constant is calculated by simulation by executing the control constant calculation routine of FIG. 18 by the ECU 27. The control constant calculation routine of FIG. 18 is a routine for fixing one control constant ζ and optimizing the other control constant ω. When optimizing the control constant ζ, the control constant ω is fixed and the same processing as the control constant calculation routine of FIG. 18 may be performed.

図18の制御定数算出ルーチンでは、まずステップ801で、実装応答特性が変更(補正)されるまで待機する。この実装応答特性の変更は、前記実施例1と同様の方法で行われる。そして、実装応答特性が変更された時点で、ステップ802に進み、変更された運転条件での実装制御定数ω,ζを検索し、次のステップ803で、図19に示すように、プラントの入力に燃料ステップ入力(燃料外乱inj)を加えて、一方の実装制御定数ωを上記ステップ802で検索した値に固定してシミュレーションを行う。   In the control constant calculation routine of FIG. 18, first, in step 801, the process waits until the mounting response characteristic is changed (corrected). The mounting response characteristic is changed by the same method as in the first embodiment. Then, when the mounting response characteristic is changed, the process proceeds to step 802 to search for the mounting control constants ω and ζ under the changed operating condition, and in the next step 803, as shown in FIG. A fuel step input (fuel disturbance inj) is added to the above, and one of the mounting control constants ω is fixed to the value searched in the above step 802, and the simulation is performed.

この後、ステップ804に進み、プラントの出力λ(空燃比)の応答性と収束性を検出する。ここで、図19に示すように、応答性は、燃料ステップ入力の発生時からプラントの出力λが例えば目標値の±10%以内に最初に到達するまでの時間で検出され、収束性は、燃料ステップ入力の発生時からプラントの出力λが例えば目標値の±10%以内に最終的に収束するまでの時間で検出される。   Thereafter, the process proceeds to step 804, where the response and convergence of the output λ (air-fuel ratio) of the plant are detected. Here, as shown in FIG. 19, the responsiveness is detected in the time from the occurrence of the fuel step input until the plant output λ first reaches within, for example, ± 10% of the target value. It is detected in the time from when the fuel step input occurs until the output λ of the plant finally converges within ± 10% of the target value, for example.

この後、ステップ805に進み、検出した応答性と収束性が一致するか否かで、プラントの出力λが理想的な波形(図20参照)であるか否か、つまり、実装制御定数ωが理想値よりも小さいのか大きいのかを判定する。この結果、検出した応答性と収束性が一致すると判定されれば、実装制御定数ωが理想値よりも小さいと判断して、ステップ806に進み、実装制御定数ω(n) を前回値ω(n-1) に所定値2を加算した値に更新する。この後、ステップ807に進み、今回の実装制御定数ω(n) で燃料ステップ入力を加えて再度シミュレーションを行い、次のステップ808で、プラントの出力λの応答性と収束性を検出した後、ステップ809に進み、検出した応答性と収束性とが不一致になったか否かを判定し、応答性と収束性とが不一致になっていなければ、上記ステップ805に戻る。これにより、応答性と収束性とが不一致になるまで、実装制御定数ω(n) を所定値2ずつ増加させて、燃料ステップ入力を加えてプラントの出力λの応答性と収束性を検出するという処理を繰り返す。   Thereafter, the process proceeds to step 805, and whether or not the output λ of the plant is an ideal waveform (see FIG. 20) depending on whether or not the detected responsiveness and convergence match, that is, the mounting control constant ω is It is determined whether it is smaller or larger than the ideal value. As a result, if it is determined that the detected responsiveness and convergence are the same, it is determined that the mounting control constant ω is smaller than the ideal value, and the process proceeds to step 806, where the mounting control constant ω (n) is set to the previous value ω ( n-1) is updated to a value obtained by adding the predetermined value 2. Thereafter, the process proceeds to step 807, the fuel step input is added with the current mounting control constant ω (n), and the simulation is performed again. In the next step 808, the response and convergence of the output λ of the plant are detected. Proceeding to step 809, it is determined whether or not the detected responsiveness and convergence are inconsistent. If the responsiveness and convergence are not inconsistent, the process returns to step 805. As a result, the mounting control constant ω (n) is increased by a predetermined value 2 by 2 until the response and the convergence do not match, and the fuel step input is added to detect the response and convergence of the plant output λ. Repeat the process.

その後、検出した応答性と収束性とが不一致になった時点で、ステップ714に進み、前回の実装制御定数ω(n-1) を最終的な実装制御定数ω(n) と決定して本ルーチンを終了する。   After that, when the detected responsiveness and the convergence do not coincide with each other, the process proceeds to step 714 to determine the previous mounting control constant ω (n−1) as the final mounting control constant ω (n). End the routine.

一方、上記ステップ805で、検出した応答性と収束性が一致していないと判定されれば、実装制御定数ωが理想値よりも大きいと判断して、ステップ710に進み、実装制御定数ω(n) を前回値ω(n-1) から所定値1を減算した値に更新する。この後、ステップ717に進み、今回の実装制御定数ω(n) で燃料ステップ入力を加えて再度シミュレーションを行い、次のステップ712で、プラントの出力λの応答性と収束性を検出した後、ステップ713に進み、検出した応答性と収束性とが一致したか否かを判定し、応答性と収束性とが一致していなければ、上記ステップ805に戻る。これにより、応答性と収束性とが一致するまで、実装制御定数ω(n) を所定値1ずつ減少させて、燃料ステップ入力を加えてプラントの出力λの応答性と収束性を検出するという処理を繰り返す。その後、検出した応答性と収束性とが一致した時点で、本ルーチンを終了する。
このような処理を行うことで、プラントの入力がオーバーシュートしないように実装制御定数ω(n) が設定される。
On the other hand, if it is determined in step 805 that the detected responsiveness and the convergence are not the same, it is determined that the mounting control constant ω is larger than the ideal value, and the process proceeds to step 710 where the mounting control constant ω ( n) is updated to a value obtained by subtracting the predetermined value 1 from the previous value ω (n−1). Thereafter, the process proceeds to step 717, the fuel step input is added with the current mounting control constant ω (n), and the simulation is performed again. In the next step 712, the response and convergence of the output λ of the plant are detected. Proceeding to step 713, it is determined whether or not the detected responsiveness and convergence are matched. If the responsiveness and convergence are not matched, the process returns to step 805. As a result, the mounting control constant ω (n) is decreased by a predetermined value 1 by 1 until the responsiveness and the convergence match, and the fuel step input is added to detect the responsiveness and convergence of the plant output λ. Repeat the process. Thereafter, when the detected responsiveness and convergence are matched, this routine is terminated.
By performing such processing, the mounting control constant ω (n) is set so that the plant input does not overshoot.

以上説明した本実施例5では、検出した応答特性が実装応答特性からずれて、実装応答特性が変更(補正)される毎に、プラントの入力・出力を最適挙動とする制御定数をシミュレーションにより算出するようにしたので、理想の応答波形を指定できる(プラントの入力・出力の最適挙動を波形レベルで指定できる)。しかも、プラントの入力も制約できるため、エンジン11の保護の観点から、制御定数を無闇に大きくし過ぎることなく、制御が可能である。   In the fifth embodiment described above, every time the detected response characteristic deviates from the mounting response characteristic and the mounting response characteristic is changed (corrected), control constants that optimize the plant input / output behavior are calculated by simulation. As a result, an ideal response waveform can be specified (the optimal behavior of plant input / output can be specified at the waveform level). In addition, since the plant input can also be restricted, control can be performed from the viewpoint of protecting the engine 11 without making the control constant too large.

本発明の実施例6では、ECU27によって図21の制御定数決定メインルーチンを実行することで、検出した応答特性が実装応答特性から許容値を越えてずれている場合に、その応答特性の誤差を含むシミュレーションにより制御定数を算出するようにしている。   In the sixth embodiment of the present invention, when the detected response characteristic deviates from the mounting response characteristic beyond the allowable value by executing the control constant determination main routine of FIG. The control constant is calculated by a simulation including this.

図21の制御定数決定メインルーチンでは、前記実施例3(図14)と同様の方法で、実装応答特性と検出応答特性との差の絶対値が許容値1を越えたときに、その応答特性の誤差を算出する(ステップ701〜703)。   In the control constant determination main routine of FIG. 21, when the absolute value of the difference between the mounting response characteristic and the detection response characteristic exceeds the allowable value 1 in the same manner as in the third embodiment (FIG. 14), the response characteristic is obtained. Are calculated (steps 701 to 703).

この後、ステップ705に進み、プラントに応答特性の誤差を入力してシミュレーションを行い、制御定数を算出する。この後、ステップ706に進み、ECU27に実装された制御定数(実装応答特性)と上記ステップ705で算出した制御定数(算出制御定数)との差の絶対値が許容値2を越えているか否かを判定し、実装制御定数と算出制御定数との差の絶対値が許容値2を越えていない場合は、実装制御定数を補正する必要がないと判断して、上記ステップ701に戻り、上述した処理を繰り返す。   Thereafter, the process proceeds to step 705, where an error of the response characteristic is input to the plant, a simulation is performed, and a control constant is calculated. Thereafter, the process proceeds to step 706, and whether or not the absolute value of the difference between the control constant (mounting response characteristic) mounted in the ECU 27 and the control constant (calculated control constant) calculated in step 705 exceeds the allowable value 2. If the absolute value of the difference between the mounting control constant and the calculated control constant does not exceed the allowable value 2, it is determined that there is no need to correct the mounting control constant, the process returns to step 701, and the above-mentioned Repeat the process.

これに対して、実装制御定数と算出制御定数との差の絶対値が許容値2を越えている場合は、ステップ707に進み、前記実施例1と同様の手法で実装制御定数を補正する。   On the other hand, if the absolute value of the difference between the mounting control constant and the calculated control constant exceeds the allowable value 2, the process proceeds to step 707 and the mounting control constant is corrected by the same method as in the first embodiment.

以上説明した本実施例6では、検出応答特性と実装応答特性との誤差を含むシミュレーションにより制御定数を算出するようにしたので、空燃比センサ24が劣化しても、その応答特性の劣化度合いを考慮して、適正な制御定数を算出することができ、安定性、応答性の悪化を防止することができる。この場合、運転条件毎に補正係数等を持つ必要がなく、また、実装応答特性を補正する必要はない。   In the sixth embodiment described above, the control constant is calculated by simulation including an error between the detection response characteristic and the mounting response characteristic. Therefore, even if the air-fuel ratio sensor 24 deteriorates, the degree of deterioration of the response characteristic is determined. In consideration of this, an appropriate control constant can be calculated, and deterioration of stability and responsiveness can be prevented. In this case, it is not necessary to have a correction coefficient or the like for each operating condition, and it is not necessary to correct the mounting response characteristics.

本発明の実施例7では、ECU27によって図22の制御定数決定メインルーチンを実行することで、空燃比センサ24の出力に重畳するノイズ成分が許容値を越えたときに、そのノイズ成分の大きさを含むシミュレーションにより制御定数を算出するようにしている。   In the seventh embodiment of the present invention, when the control constant determination main routine of FIG. 22 is executed by the ECU 27, when the noise component superimposed on the output of the air-fuel ratio sensor 24 exceeds the allowable value, the magnitude of the noise component The control constant is calculated by a simulation including

図22の制御定数決定メインルーチンでは、前記実施例4(図16)と同様の方法で、ノイズ成分検出手段により検出したノイズ成分の大きさが許容値1以上になったときに、ノイズ成分の大きさを算出する(ステップ711〜713)。   In the control constant determination main routine of FIG. 22, when the magnitude of the noise component detected by the noise component detection means exceeds the allowable value 1 in the same manner as in the fourth embodiment (FIG. 16), The size is calculated (steps 711 to 713).

この後、ステップ715に進み、プラントにノイズ成分の大きさを入力してシミュレーションを行い、制御定数を算出する。この後、ステップ716に進み、ECU27に実装された制御定数(実装応答特性)と上記ステップ715で算出した制御定数(算出制御定数)との差の絶対値が許容値2を越えているか否かを判定し、実装制御定数と算出制御定数との差の絶対値が許容値2を越えていない場合は、実装制御定数を補正する必要がないと判断して、上記ステップ711に戻り、上述した処理を繰り返す。   Thereafter, the process proceeds to step 715, where the magnitude of the noise component is input to the plant and a simulation is performed to calculate a control constant. Thereafter, the process proceeds to step 716, and whether or not the absolute value of the difference between the control constant (mounting response characteristic) mounted in the ECU 27 and the control constant (calculated control constant) calculated in step 715 exceeds the allowable value 2. If the absolute value of the difference between the mounting control constant and the calculated control constant does not exceed the allowable value 2, it is determined that there is no need to correct the mounting control constant, the process returns to step 711, and the above-mentioned Repeat the process.

これに対して、実装制御定数と算出制御定数との差の絶対値が許容値2を越えている場合は、ステップ717に進み、前記実施例1と同様の手法で実装制御定数を補正する。   On the other hand, if the absolute value of the difference between the mounting control constant and the calculated control constant exceeds the allowable value 2, the process proceeds to step 717 and the mounting control constant is corrected by the same method as in the first embodiment.

以上説明した本実施例7では、空燃比センサ24の出力に重畳するノイズ成分の大きさを含むシミュレーションにより制御定数を算出するようにしたので、空燃比センサ24の劣化やエンジン11の劣化等によりセンサの出力にノイズ成分が重畳しても、そのノイズ成分の影響を排除した適正な制御定数を算出することができ、制御の安定性、応答性の悪化を防止することができる。   In the seventh embodiment described above, the control constant is calculated by the simulation including the magnitude of the noise component superimposed on the output of the air-fuel ratio sensor 24. Therefore, due to the deterioration of the air-fuel ratio sensor 24, the deterioration of the engine 11, etc. Even if a noise component is superimposed on the output of the sensor, an appropriate control constant that eliminates the influence of the noise component can be calculated, and deterioration of control stability and responsiveness can be prevented.

上記実施例1〜7のうちの2つの実施例の手法によって2つの制御定数を算出して、2つの制御定数を比較して安定性が高い方の制御定数を選択するようにしても良い。   Two control constants may be calculated by the method of two of the first to seventh embodiments, and the control constant having the higher stability may be selected by comparing the two control constants.

例えば、図23に示す本発明の実施例8では、前記実施例2と同様の手法でゲイン余裕又は位相余裕を用いて制御定数G1を算出する第1の算出手段901と、前記実施例5と同様の手法で空燃比センサ24の応答特性を模擬したプラントの入力又は出力を最適挙動とする制御定数G2をシミュレーションにより算出する第2の算出手段902とを備え、前記第1の算出手段901で算出された制御定数G1と前記第2の算出手段902で算出された制御定数G2とを比較して安定性が高い方を選択する(903)。このようにすれば、2種類の手法で算出した2つの制御定数G1,G2の中から、より安定性を重視した制御定数を選択することができ、安全かつ正確な制御定数での制御が可能となる。   For example, in the eighth embodiment of the present invention shown in FIG. 23, the first calculation means 901 for calculating the control constant G1 using the gain margin or the phase margin by the same method as the second embodiment, And a second calculation unit 902 that calculates a control constant G2 having an optimum behavior of the input or output of the plant simulating the response characteristic of the air-fuel ratio sensor 24 by the same method. The first calculation unit 901 includes: The calculated control constant G1 is compared with the control constant G2 calculated by the second calculating means 902 to select the one having higher stability (903). In this way, it is possible to select a control constant that emphasizes more stability from the two control constants G1 and G2 calculated by the two methods, and control with a safe and accurate control constant is possible. It becomes.

図24に示す本発明の実施例9では、前記実施例6と同様の手法で検出応答特性と実装応答特性との誤差を含むシミュレーションにより制御定数G3を算出する第3の算出手段911と、前記実施例7と同様の手法で空燃比センサ24の出力に重畳するノイズ成分の大きさを含むシミュレーションにより制御定数G4を算出する第4の算出手段912とを備え、前記第3の算出手段911で算出された制御定数G3と前記第4の算出手段912で算出された制御定数G4とを比較して安定性が高い方を選択する(913)。このようにすれば、空燃比センサ24の劣化等にて発生するすべての状況を考慮して算出した2つの制御定数G3,G4の中から、より安定性を重視した制御定数を選択することができて、安全かつ正確な制御定数での制御が可能となる。   In the ninth embodiment of the present invention shown in FIG. 24, the third calculation means 911 that calculates the control constant G3 by simulation including an error between the detection response characteristic and the mounting response characteristic by the same method as in the sixth embodiment, A fourth calculation unit 912 that calculates a control constant G4 by a simulation including the magnitude of the noise component superimposed on the output of the air-fuel ratio sensor 24 in the same manner as in the seventh embodiment, and the third calculation unit 911 includes The calculated control constant G3 and the control constant G4 calculated by the fourth calculating means 912 are compared to select the one having higher stability (913). In this way, it is possible to select a control constant that emphasizes more stability from the two control constants G3 and G4 calculated in consideration of all the situations that occur due to deterioration of the air-fuel ratio sensor 24 or the like. This enables safe and accurate control constant control.

図25に示す本発明の実施例10では、シミュレーションによりプラントの出力を最適とする制御定数G5を算出する第5の算出手段921と、シミュレーションによりプラントの入力を最適とする制御定数G6を算出する第6の算出手段922とを備え、前記第5の算出手段921で算出された制御定数G5と前記第6の算出手段922で算出された制御定数G6とを比較して安定性が高い方を選択する(923)。このようにすれば、プラントの入力と出力の両方を考慮して安定性の高い制御定数を設定することができる。   In the tenth embodiment of the present invention shown in FIG. 25, a fifth calculation unit 921 that calculates a control constant G5 that optimizes the plant output by simulation and a control constant G6 that optimizes the plant input by simulation are calculated. A sixth calculating means 922, and comparing the control constant G5 calculated by the fifth calculating means 921 with the control constant G6 calculated by the sixth calculating means 922, which has a higher stability. Select (923). In this way, a highly stable control constant can be set in consideration of both plant input and output.

図26に示す本発明の実施例10では、制御定数を所定の運転条件(エンジン負荷、エンジン回転速度等)で算出し、この所定の運転条件と算出した制御定数との関係に基づいて他の運転条件の制御定数を推定するようにしている。   In the tenth embodiment of the present invention shown in FIG. 26, control constants are calculated under predetermined operating conditions (engine load, engine speed, etc.), and other values are calculated based on the relationship between the predetermined operating conditions and the calculated control constant. The control constant of the operating condition is estimated.

このようにすれば、運転条件毎に最適となる制御定数を算出する処理を多数回繰り返す必要がなくなり、検出工数・算出工数低減が可能となる。しかも、全領域の制御定数を瞬時に変更することが可能であるため、故障による排出ガス悪化に瞬時に対応可能である。更に、エンジン運転中では計測不可能な領域(過渡的には使用するが、定常的に運転し続けることが困難な運転条件のような領域)の制御定数の推測が可能となる。   In this way, it is not necessary to repeat the process of calculating the optimal control constant for each operating condition many times, and the detection man-hours and calculation man-hours can be reduced. In addition, since the control constants of the entire region can be changed instantaneously, it is possible to instantly cope with exhaust gas deterioration due to failure. Furthermore, it is possible to estimate a control constant in a region that cannot be measured during engine operation (a region that is used transiently but is difficult to continue to operate steadily).

図27に示す本発明の実施例11では、ある運転条件でのゲイン余裕又は位相余裕で制御定数を算出し、前記ある運転条件でのゲイン余裕又は位相余裕と算出した制御定数との関係に基づいて他の運転条件での制御定数を推定するようにしている。   In Example 11 of the present invention shown in FIG. 27, a control constant is calculated based on a gain margin or phase margin under a certain operating condition, and based on the relationship between the gain margin or phase margin under the certain operating condition and the calculated control constant. Thus, control constants under other operating conditions are estimated.

このようにすれば、運転条件毎に最適挙動を変化させたい場合でも、運転条件毎にゲイン余裕又は位相余裕を変更して最適となる制御定数を算出する処理を多数回繰り返す必要がなくなり、検出工数・算出工数低減が可能となる。その他、前記実施例11と同様の効果を得ることができる。   In this way, even if you want to change the optimal behavior for each operating condition, it is not necessary to repeat the process of calculating the optimal control constant by changing the gain margin or phase margin for each operating condition. Man-hours and calculated man-hours can be reduced. In addition, the same effects as those of the eleventh embodiment can be obtained.

[その他の実施例]
上記各実施例のうちの3つ以上の実施例の手法によって3つ以上の制御定数を算出して、3つ以上の制御定数の中から安定性が最も高い制御定数を選択するようにしても良い。
[Other Examples]
Three or more control constants are calculated by the method of three or more of the embodiments described above, and the control constant having the highest stability is selected from the three or more control constants. good.

また、実装制御定数を、最大の余裕を持たせた定数にしておき、応答特性の誤差やノイズ成分の大きさに合わせて余裕を狭める(制御定数を大きくする)方向にのみ変更するようにしても良い。   Also, keep the mounting control constant to a constant with the maximum margin, and change it only in the direction of narrowing the margin (increasing the control constant) according to the response characteristic error and noise component size. Also good.

或は、実装制御定数を余裕のない定数(つまり、応答特性の誤差・ノイズ成分=0の状態と仮定)にしておき、応答特性の誤差・ノイズ成分の大きさに合わせて余裕を持たせる方向にのみ変更するようにしても良い。   Alternatively, the mounting control constant is set to a constant with no margin (that is, it is assumed that the error / noise component of the response characteristic is 0), and a margin is provided in accordance with the magnitude of the error / noise component of the response characteristic. You may make it change only to.

また、制御定数を大きくする方向(余裕を狭める方向)には動かさず、安定方向にのみ制御定数を変更するようにしても良い。
また、制御定数の変更を禁止する禁止条件として、周りの制御定数と飛びぬけて異なるとき、フィードバック中等という条件を用いても良い。
Further, the control constant may be changed only in the stable direction without moving in the direction of increasing the control constant (in the direction of narrowing the margin).
In addition, as a prohibition condition for prohibiting the change of the control constant, a condition such as during feedback may be used when the control constant is far different from the surrounding control constant.

また、検出した応答特性は、N回検出の平均値を使用するようにしても良い。
また、マイコンの処理負荷軽減のため、予めノイズやセンサの応答特性誤差と制御定数の関係をシミュレーションにより算出して実装しておき、この定数を使用するようにしても良い。(マイコンの処理負荷軽減の為に予めマップを実装しておき、そのマップから定数を引いてきても良い。)
The detected response characteristic may use an average value of N detections.
In order to reduce the processing load on the microcomputer, the relationship between noise and sensor response characteristic errors and control constants may be calculated and implemented in advance, and these constants may be used. (A map may be mounted in advance to reduce the processing load of the microcomputer, and a constant may be drawn from the map.)

本発明の実施例1におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in Example 1 of this invention. 実施例1の応答特性検出方法を説明するタイムチャートである。3 is a time chart illustrating a response characteristic detection method according to the first embodiment. 実施例1の空燃比センサの異常診断方法を説明するタイムチャートである。3 is a time chart illustrating an abnormality diagnosis method for the air-fuel ratio sensor according to the first embodiment. 実施例1の空燃比センサ応答特性検出メインルーチンの処理の流れを示すフローチャートである。6 is a flowchart showing a process flow of an air-fuel ratio sensor response characteristic detection main routine according to the first embodiment. 実施例1の無駄時間算出ルーチンの処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of processing of a dead time calculation routine according to the first embodiment. 実施例1のn次遅れ特性算出ルーチンの処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of processing of an n-th order lag characteristic calculation routine according to the first embodiment. 実施例1の制御定数決定メインルーチンの処理の流れを示すフローチャートである。7 is a flowchart illustrating a flow of processing of a control constant determination main routine according to the first embodiment. 実施例1の実装制御定数補正ルーチンの処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of processing of a mounting control constant correction routine according to the first exemplary embodiment. 実施例1の空燃比フィードバック実行中の実装制御定数の補正例を示すタイムチャートである。6 is a time chart illustrating an example of correcting a mounting control constant during execution of air-fuel ratio feedback according to the first embodiment. 実施例1の空燃比フィードバック停止中の実装制御定数の補正例を示すタイムチャートである。6 is a time chart illustrating an example of correcting the mounting control constant during the air-fuel ratio feedback stop according to the first embodiment. 実施例1のセンサ異常判定ルーチンの処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of processing of a sensor abnormality determination routine according to the first embodiment. 実施例2の空燃比フィードバック制御系のブロック図である。6 is a block diagram of an air-fuel ratio feedback control system of Embodiment 2. FIG. 実施例2の空燃比フィードバック制御系の伝達関数とゲイン余裕又は位相余裕との関係を説明する図である。It is a figure explaining the relationship between the transfer function of the air-fuel ratio feedback control system of Example 2, and a gain margin or a phase margin. 実施例3の制御定数決定メインルーチンの処理の流れを示すフローチャートである。12 is a flowchart illustrating a flow of processing of a control constant determination main routine according to a third embodiment. 応答特性の誤差(ノイズ成分の大きさ)に応じてゲイン余裕又は位相余裕を算出するマップの一例を示す図である。It is a figure which shows an example of the map which calculates a gain margin or a phase margin according to the error (size of a noise component) of a response characteristic. 実施例4の制御定数決定メインルーチンの処理の流れを示すフローチャートである。14 is a flowchart illustrating a flow of processing of a control constant determination main routine according to a fourth embodiment. 実施例5のシミュレーションのモデルを説明する図である。FIG. 10 is a diagram illustrating a simulation model of Example 5. 実施例5の制御定数決定メインルーチンの処理の流れを示すフローチャートである。FIG. 10 is a flowchart illustrating a process flow of a control constant determination main routine according to a fifth embodiment. 燃料ステップ入力後のプラントの出力λの挙動を説明するタイムチャートである。It is a time chart explaining the behavior of the output λ of the plant after fuel step input. プラントの出力λの理想的な波形を説明するタイムチャートである。It is a time chart explaining the ideal waveform of plant output λ. 実施例6の制御定数決定メインルーチンの処理の流れを示すフローチャートである。FIG. 18 is a flowchart illustrating a process flow of a control constant determination main routine according to a sixth embodiment. 実施例7の制御定数決定メインルーチンの処理の流れを示すフローチャートである。FIG. 18 is a flowchart illustrating a process flow of a control constant determination main routine according to a seventh embodiment. 実施例8の制御定数選択メインルーチンの処理の流れを示すフローチャートである。FIG. 20 is a flowchart illustrating a process flow of a control constant selection main routine according to an eighth embodiment. 実施例9の制御定数選択メインルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the control constant selection main routine of Example 9. 実施例10の制御定数選択メインルーチンの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the control constant selection main routine of Example 10. 実施例11の制御定数の推定手法を説明する図である。It is a figure explaining the estimation method of the control constant of Example 11. FIG. 実施例12の制御定数の推定手法を説明する図である。FIG. 20 is a diagram illustrating a control constant estimation method according to a twelfth embodiment.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、15…スロットルバルブ、18…吸気管圧力センサ、19…吸気マニホールド、20…燃料噴射弁、22…排気管、23…触媒、24…空燃比センサ、27…ECU(空燃比制御手段,応答特性検出手段,制御定数算出手段,異常判定手段,検出手段)、32…警告ランプ(警告手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 15 ... Throttle valve, 18 ... Intake pipe pressure sensor, 19 ... Intake manifold, 20 ... Fuel injection valve, 22 ... Exhaust pipe, 23 ... Catalyst, 24 ... Air-fuel ratio sensor 27 ... ECU (air-fuel ratio control means, response characteristic detection means, control constant calculation means, abnormality determination means, detection means), 32 ... warning lamp (warning means)

Claims (14)

内燃機関の排出ガスの空燃比又は酸素濃度を検出するセンサの応答特性を模擬したモデルを用いて前記センサの出力に基づいて内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御手段を備えた空燃比制御装置において、
前記内燃機関への燃料供給量の変化タイミングを検出する検出手段と、
燃料供給量変化前後の前記センサ出力の挙動を監視して前記センサの応答特性を前記燃料供給量が変化した時点から前記センサ出力が変化し始めるまでの無駄時間とその後のセンサ出力変化特性を表すn次遅れ特性(nは正の整数)とに分けて検出する応答特性検出手段と、
前記応答特性検出手段で検出した応答特性が前記空燃比制御手段に実装された応答特性(以下「実装応答特性」という)からずれている場合に該実装応答特性を補正し、補正後の実装応答特性で前記センサ出力が最適挙動となる制御定数を算出する制御定数算出手段と
を備えていることを特徴とする空燃比制御装置。
Air-fuel ratio control means for feedback-controlling the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine based on the output of the sensor using a model simulating the response characteristic of the sensor for detecting the air-fuel ratio or oxygen concentration of the exhaust gas of the internal combustion engine In an air-fuel ratio control device comprising:
Detecting means for detecting a change timing of a fuel supply amount to the internal combustion engine;
The behavior of the sensor output before and after the change of the fuel supply amount is monitored, and the response characteristic of the sensor indicates the dead time until the sensor output starts to change from the time when the fuel supply amount changes and the subsequent sensor output change characteristic. a response characteristic detecting means for detecting the n-th delay characteristic (n is a positive integer);
When the response characteristic detected by the response characteristic detection unit deviates from the response characteristic mounted on the air-fuel ratio control unit (hereinafter referred to as “mounting response characteristic”), the mounting response characteristic is corrected, and the corrected mounting response An air-fuel ratio control apparatus comprising: control constant calculation means for calculating a control constant that causes the sensor output to exhibit an optimum behavior in terms of characteristics.
前記制御定数算出手段は、算出した制御定数によって実装制御定数を補正することを特徴とする請求項1に記載の空燃比制御装置。   The air-fuel ratio control apparatus according to claim 1, wherein the control constant calculation unit corrects the mounting control constant based on the calculated control constant. 前記制御定数算出手段で算出した制御定数と前記実装制御定数とを比較して前記センサの異常の有無を判定する異常判定手段を備えていることを特徴とする請求項1又は2に記載の空燃比制御装置。   3. The sky determination unit according to claim 1, further comprising an abnormality determination unit that compares the control constant calculated by the control constant calculation unit with the mounting control constant to determine whether the sensor is abnormal. Fuel ratio control device. 前記異常判定手段が前記センサの異常有りと判定したときにそれを警告する警告手段を備えていることを特徴とする請求項3に記載の空燃比制御装置。   4. The air-fuel ratio control apparatus according to claim 3, further comprising warning means for warning when the abnormality determination means determines that the sensor is abnormal. 内燃機関の排出ガスの空燃比又は酸素濃度を検出するセンサの応答特性を模擬したモデルを用いて前記センサの出力に基づいて内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御手段を備えた空燃比制御装置において、
前記内燃機関への燃料供給量の変化タイミングを検出する検出手段と、
燃料供給量変化前後の前記センサ出力の挙動を監視して前記センサの応答特性を前記燃料供給量が変化した時点から前記センサ出力が変化し始めるまでの無駄時間とその後のセンサ出力変化特性を表すn次遅れ特性(nは正の整数)とに分けて検出する応答特性検出手段と、
前記応答特性検出手段で検出した応答特性が前記空燃比制御手段に実装された応答特性からずれている場合に空燃比フィードバック制御系の伝達関数とゲイン余裕又は位相余裕を用いて前記センサ出力が最適挙動となる制御定数を算出する制御定数算出手段と
を備えていることを特徴とする空燃比制御装置。
Air-fuel ratio control means for feedback-controlling the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine based on the output of the sensor using a model simulating the response characteristic of the sensor for detecting the air-fuel ratio or oxygen concentration of the exhaust gas of the internal combustion engine In an air-fuel ratio control device comprising:
Detecting means for detecting a change timing of a fuel supply amount to the internal combustion engine;
The behavior of the sensor output before and after the change of the fuel supply amount is monitored, and the response characteristic of the sensor indicates the dead time until the sensor output starts to change from the time when the fuel supply amount changes and the subsequent sensor output change characteristic. a response characteristic detecting means for detecting the n-th delay characteristic (n is a positive integer);
When the response characteristic detected by the response characteristic detection unit deviates from the response characteristic mounted on the air-fuel ratio control unit, the sensor output is optimized using the transfer function and gain margin or phase margin of the air-fuel ratio feedback control system An air-fuel ratio control apparatus comprising: control constant calculating means for calculating a control constant that becomes a behavior.
前記応答特性検出手段で検出した応答特性が前記実装応答特性からずれている場合にその応答特性の誤差に応じて前記ゲイン余裕又は前記位相余裕を変更する手段を備えていることを特徴とする請求項5に記載の空燃比制御装置。   And a means for changing the gain margin or the phase margin according to an error of the response characteristic when the response characteristic detected by the response characteristic detection means deviates from the mounting response characteristic. Item 6. The air-fuel ratio control device according to Item 5. 内燃機関の排出ガスの空燃比又は酸素濃度を検出するセンサの応答特性を模擬したモデルを用いて前記センサの出力に基づいて内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御手段を備えた空燃比制御装置において、
前記センサ出力に重畳するノイズ成分を検出するノイズ成分検出手段と、
前記ノイズ成分検出手段で検出したノイズ成分の大きさに応じてゲイン余裕又は位相余裕を変更して空燃比フィードバック制御系の伝達関数と前記ゲイン余裕又は前記位相余裕を用いて前記センサ出力が最適挙動となる制御定数を算出する制御定数算出手段と
を備えていることを特徴とする空燃比制御装置。
Air-fuel ratio control means for feedback-controlling the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine based on the output of the sensor using a model simulating the response characteristic of the sensor for detecting the air-fuel ratio or oxygen concentration of the exhaust gas of the internal combustion engine In an air-fuel ratio control device comprising:
Noise component detection means for detecting a noise component superimposed on the sensor output;
By changing the gain margin or phase margin according to the magnitude of the noise component detected by the noise component detection means, the sensor output is optimally operated using the transfer function of the air-fuel ratio feedback control system and the gain margin or phase margin. An air-fuel ratio control apparatus comprising: control constant calculating means for calculating a control constant to be
内燃機関の排出ガスの空燃比又は酸素濃度を検出するセンサの応答特性を模擬したモデルを用いて前記センサの出力に基づいて内燃機関に供給する混合気の空燃比をフィードバック制御する空燃比制御手段を備えた空燃比制御装置において、
前記内燃機関への燃料供給量の変化タイミングを検出する検出手段と、
燃料供給量変化前後の前記センサ出力の挙動を監視して前記センサの応答特性を前記燃料供給量が変化した時点から前記センサ出力が変化し始めるまでの無駄時間とその後のセンサ出力変化特性を表すn次遅れ特性(nは正の整数)とに分けて検出する応答特性検出手段と、
前記応答特性検出手段で検出した応答特性が前記空燃比制御手段に実装された応答特性からずれている場合に前記センサの応答特性を模擬したプラントの入力又は出力を最適挙動とする制御定数をシミュレーションにより算出する制御定数算出手段と
を備えていることを特徴とする空燃比制御装置。
Air-fuel ratio control means for feedback-controlling the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine based on the output of the sensor using a model simulating the response characteristic of the sensor for detecting the air-fuel ratio or oxygen concentration of the exhaust gas of the internal combustion engine In an air-fuel ratio control device comprising:
Detecting means for detecting a change timing of a fuel supply amount to the internal combustion engine;
The behavior of the sensor output before and after the change of the fuel supply amount is monitored, and the response characteristic of the sensor indicates the dead time until the sensor output starts to change from the time when the fuel supply amount changes and the subsequent sensor output change characteristic. a response characteristic detecting means for detecting the n-th delay characteristic (n is a positive integer);
When the response characteristic detected by the response characteristic detection unit deviates from the response characteristic mounted on the air-fuel ratio control unit, the control constant that simulates the input or output of the plant that simulates the response characteristic of the sensor is simulated. An air-fuel ratio control apparatus comprising: control constant calculating means for calculating
前記制御定数算出手段は、前記応答特性検出手段で検出した応答特性と前記実装応答特性との誤差を含むシミュレーションにより前記制御定数を算出することを特徴とする請求項8に記載の空燃比制御装置。   9. The air-fuel ratio control apparatus according to claim 8, wherein the control constant calculating unit calculates the control constant by a simulation including an error between the response characteristic detected by the response characteristic detecting unit and the mounting response characteristic. . 前記制御定数算出手段は、前記センサ出力に重畳するノイズ成分の大きさを含むシミュレーションにより前記制御定数を算出することを特徴とする請求項8に記載の空燃比制御装置。   9. The air-fuel ratio control apparatus according to claim 8, wherein the control constant calculation unit calculates the control constant by a simulation including a magnitude of a noise component superimposed on the sensor output. 前記制御定数算出手段は、ゲイン余裕又は位相余裕を用いて制御定数を算出する第1の算出手段と、前記センサの応答特性を模擬したプラントの入力又は出力を最適挙動とする制御定数をシミュレーションにより算出する第2の算出手段とを備え、前記第1の算出手段で算出された制御定数と前記第2の算出手段で算出された制御定数のうちの安定性が高い方を選択することを特徴とする請求項5乃至10のいずれかに記載の空燃比制御装置。   The control constant calculation means includes a first calculation means for calculating a control constant using a gain margin or a phase margin, and a control constant that optimizes an input or output of a plant that simulates the response characteristics of the sensor by simulation. A second calculating means for calculating, wherein the control constant selected by the first calculating means and the control constant calculated by the second calculating means are selected with higher stability. The air-fuel ratio control apparatus according to any one of claims 5 to 10. 前記制御定数算出手段は、前記応答特性検出手段で検出した応答特性と前記実装応答特性との誤差を含むシミュレーションにより前記制御定数を算出する第3の算出手段と、前記センサ出力に重畳するノイズ成分の大きさを含むシミュレーションにより前記制御定数を算出する第4の算出手段とを備え、前記第3の算出手段で算出された制御定数と前記第4の算出手段で算出された制御定数のうちの安定性が高い方を選択することを特徴とする請求項8乃至10のいずれかに記載の空燃比制御装置。   The control constant calculating means includes a third calculating means for calculating the control constant by simulation including an error between the response characteristic detected by the response characteristic detecting means and the mounting response characteristic, and a noise component superimposed on the sensor output. And a fourth calculation means for calculating the control constant by a simulation including the magnitude of the control constant, the control constant calculated by the third calculation means and the control constant calculated by the fourth calculation means 11. The air-fuel ratio control apparatus according to claim 8, wherein the one having higher stability is selected. 前記制御定数算出手段は、前記制御定数を所定の運転条件で算出し、この所定の運転条件と算出した制御定数との関係に基づいて他の運転条件の制御定数を推定することを特徴とする請求項1乃至12のいずれかに記載の空燃比制御装置。   The control constant calculating means calculates the control constant under a predetermined operating condition, and estimates a control constant of another operating condition based on a relationship between the predetermined operating condition and the calculated control constant. The air-fuel ratio control apparatus according to any one of claims 1 to 12. 前記制御定数算出手段は、ある運転条件でのゲイン余裕又は位相余裕で前記制御定数を算出し、前記ある運転条件でのゲイン余裕又は位相余裕の関係に基づいて他の運転条件での制御定数を推定することを特徴とする請求項5に記載の空燃比制御装置。   The control constant calculating means calculates the control constant based on the gain margin or phase margin under a certain operating condition, and calculates the control constant under other operating conditions based on the relationship between the gain margin or phase margin under the certain operating condition. The air-fuel ratio control apparatus according to claim 5, wherein the air-fuel ratio control apparatus estimates the air-fuel ratio.
JP2005081461A 2005-03-22 2005-03-22 Air-fuel ratio control device Expired - Fee Related JP4492802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005081461A JP4492802B2 (en) 2005-03-22 2005-03-22 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005081461A JP4492802B2 (en) 2005-03-22 2005-03-22 Air-fuel ratio control device

Publications (2)

Publication Number Publication Date
JP2006266094A true JP2006266094A (en) 2006-10-05
JP4492802B2 JP4492802B2 (en) 2010-06-30

Family

ID=37202334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005081461A Expired - Fee Related JP4492802B2 (en) 2005-03-22 2005-03-22 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JP4492802B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2929650A1 (en) * 2008-04-04 2009-10-09 Bosch Gmbh Robert METHOD AND DEVICE FOR ADAPTING A DYNAMIC MODEL OF AN EXHAUST GAS PROBE.
FR2981697A1 (en) * 2011-10-24 2013-04-26 Bosch Gmbh Robert METHOD AND DEVICE FOR ADAPTING A LAMBDA REGULATION
JP2020169587A (en) * 2019-04-02 2020-10-15 日本特殊陶業株式会社 Sensor control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979069A (en) * 1995-09-11 1997-03-25 Nissan Motor Co Ltd Vaporized fuel processing device for internal combustion engine
JPH11173195A (en) * 1997-12-11 1999-06-29 Hitachi Ltd Air-fuel ratio control device and air-fuel ratio control method of engine
JP2003293844A (en) * 2002-04-05 2003-10-15 Toyota Motor Corp Deterioration diagnosing device for oxygen concentration sensor
JP2004019478A (en) * 2002-06-12 2004-01-22 Daihatsu Motor Co Ltd Rotation speed control method of internal combustion engine
JP2004190591A (en) * 2002-12-12 2004-07-08 Denso Corp Controller for internal combustion engine
JP2004360591A (en) * 2003-06-05 2004-12-24 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979069A (en) * 1995-09-11 1997-03-25 Nissan Motor Co Ltd Vaporized fuel processing device for internal combustion engine
JPH11173195A (en) * 1997-12-11 1999-06-29 Hitachi Ltd Air-fuel ratio control device and air-fuel ratio control method of engine
JP2003293844A (en) * 2002-04-05 2003-10-15 Toyota Motor Corp Deterioration diagnosing device for oxygen concentration sensor
JP2004019478A (en) * 2002-06-12 2004-01-22 Daihatsu Motor Co Ltd Rotation speed control method of internal combustion engine
JP2004190591A (en) * 2002-12-12 2004-07-08 Denso Corp Controller for internal combustion engine
JP2004360591A (en) * 2003-06-05 2004-12-24 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2929650A1 (en) * 2008-04-04 2009-10-09 Bosch Gmbh Robert METHOD AND DEVICE FOR ADAPTING A DYNAMIC MODEL OF AN EXHAUST GAS PROBE.
JP2009250238A (en) * 2008-04-04 2009-10-29 Robert Bosch Gmbh Adaptation method and device of dynamics model of exhaust gas sensor
DE102008001569B4 (en) * 2008-04-04 2021-03-18 Robert Bosch Gmbh Method and device for adapting a dynamic model of an exhaust gas probe
FR2981697A1 (en) * 2011-10-24 2013-04-26 Bosch Gmbh Robert METHOD AND DEVICE FOR ADAPTING A LAMBDA REGULATION
JP2020169587A (en) * 2019-04-02 2020-10-15 日本特殊陶業株式会社 Sensor control device
JP7232108B2 (en) 2019-04-02 2023-03-02 日本特殊陶業株式会社 sensor controller

Also Published As

Publication number Publication date
JP4492802B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP4487745B2 (en) Sensor response characteristic detector
JP4321411B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP4420288B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP2008121533A (en) Control device of internal combustion engine
JP4915526B2 (en) Air-fuel ratio control device for internal combustion engine
US20080114526A1 (en) Cylinder abnormality diagnosis unit of internal combustion engine and controller of internal combustion engine
JP4873378B2 (en) Abnormality diagnosis device for intake air volume sensor
JP4320778B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP2008144639A (en) Control device for internal combustion engine
JP2009115012A (en) Air-fuel ratio control device of internal combustion engine
JP2008128080A (en) Control device for internal combustion engine
JP2008152318A (en) Control device and failure determining device
CN111379636A (en) Method for distinguishing between model inaccuracies and lambda offsets for model-assisted control of the fill level of a catalytic converter
JP4492802B2 (en) Air-fuel ratio control device
JP2007211609A (en) Device for controlling air-fuel ratio per cylinder of internal combustion engine
JP2013253593A (en) Cylinder-by-cylinder air fuel ratio control device for internal combustion engine
JP4600699B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
JP4756382B2 (en) Deterioration judgment device for exhaust purification system
JP2008014178A (en) Cylinder-by-cylinder air-fuel ratio control device for internal combustion engine
JP2008095627A (en) Air-fuel ratio control device for internal combustion engine
JP2005337186A (en) Controller for internal combustion engine
US8903629B2 (en) Method for adapting a fuel/air mixture for an internal combustion engine
JP2010084671A (en) Air-fuel ratio control device of internal combustion engine
JP2006037921A (en) Exhaust system part temperature estimating device of internal combustion engine
JP5316103B2 (en) Control device for internal combustion engine and control method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees