JP2006263545A - Hydrogen chloride gas absorbing material and method for removing hydrogen chloride gas - Google Patents

Hydrogen chloride gas absorbing material and method for removing hydrogen chloride gas Download PDF

Info

Publication number
JP2006263545A
JP2006263545A JP2005083669A JP2005083669A JP2006263545A JP 2006263545 A JP2006263545 A JP 2006263545A JP 2005083669 A JP2005083669 A JP 2005083669A JP 2005083669 A JP2005083669 A JP 2005083669A JP 2006263545 A JP2006263545 A JP 2006263545A
Authority
JP
Japan
Prior art keywords
hydrogen chloride
chloride gas
gas
absorbent
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005083669A
Other languages
Japanese (ja)
Other versions
JP4498183B2 (en
Inventor
Kenji Koshizaki
健司 越崎
Masanori Kato
雅礼 加藤
Yasuhiro Kato
康博 加藤
Toshihiro Imada
敏弘 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005083669A priority Critical patent/JP4498183B2/en
Publication of JP2006263545A publication Critical patent/JP2006263545A/en
Application granted granted Critical
Publication of JP4498183B2 publication Critical patent/JP4498183B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen chloride gas absorbing material capable of efficiently absorbing hydrogen chloride gas in dried gas to be treated. <P>SOLUTION: The hydrogen chloride gas absorbing material is characterized by containing a lithium compound oxide and a water absorptive substance. Preferably, the hydrogen chloride gas absorbing material is characterized by that a water content is ≤25 wt.%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、塩化水素ガスを含む被処理ガス中から塩化水素ガスを吸収する塩化水素ガス吸収材および塩化水素ガスの除去方法に関する。   The present invention relates to a hydrogen chloride gas absorbent that absorbs hydrogen chloride gas from a gas to be treated containing hydrogen chloride gas, and a method for removing hydrogen chloride gas.

半導体製造プロセスにおいては洗浄等で毒性や危険性の高い塩化水素ガスが使用されている。これらの塩化水素ガスは人体に危険のない濃度に低下させてから大気中に排出する必要があり、排ガス処理装置で塩化水素ガスが除去されている。   In the semiconductor manufacturing process, hydrogen chloride gas, which is highly toxic and dangerous due to cleaning or the like, is used. These hydrogen chloride gases need to be discharged to the atmosphere after being reduced to a concentration that is not dangerous to the human body, and the hydrogen chloride gas is removed by an exhaust gas treatment device.

塩化水素ガスの除去方法としては、湿式法と乾式法とが知られている。   As a method for removing hydrogen chloride gas, a wet method and a dry method are known.

湿式法は、アルカリ水溶液を塩化水素ガスの吸収液として使用する方法である。しかしながら、この湿式法では単独で塩化水素ガスを許容濃度以下まで除去することが困難である。また、湿式法は廃液処理に手間がかかるという問題がある。   The wet method is a method in which an alkaline aqueous solution is used as an absorbing solution for hydrogen chloride gas. However, it is difficult to remove hydrogen chloride gas to an allowable concentration or less by this wet method alone. Further, the wet method has a problem that it takes time to process the waste liquid.

乾式法としては、二種類のアルカリ成分を含有する粒子を塩化水素ガス吸収材として用いる方法があり、この方法では、ガスの回収も比較的簡便な方法で行える。例えば、ソーダライム(NaOH、Ca(OH)2、H2O)を吸収材として用いて塩化水素ガスを除去する場合、以下の化学式(1)乃至(3)に示す反応が順次生じて、塩化水素ガスを除去する。 As a dry method, there is a method in which particles containing two kinds of alkali components are used as a hydrogen chloride gas absorbent, and in this method, gas can be recovered by a relatively simple method. For example, when hydrogen chloride gas is removed using soda lime (NaOH, Ca (OH) 2 , H 2 O) as an absorbent, reactions shown in the following chemical formulas (1) to (3) occur sequentially, Remove hydrogen gas.

HCl+H2O → H3ClO …(1)
3ClO+NaOH → NaCl+2H2O …(2)
NaCl+1/2Ca(OH)2→ 1/2CaCl2+NaOH …(3)
しかしながら、ソーダライムで塩化水素ガスを除去するには前記式(1)で示すように水分が必要である。その結果、塩化水素ガスを含む被処理ガスがドライエッチングガスのような乾燥したガスである場合には、吸収反応場の水分が蒸発してしまうため、ソーダライムによりドライエッチングガスに含まれる塩化水素ガスを吸収、除去することは困難になる。
HCl + H 2 O → H 3 ClO (1)
H 3 ClO + NaOH → NaCl + 2H 2 O (2)
NaCl + 1 / 2Ca (OH) 2 → 1 / 2CaCl 2 + NaOH (3)
However, in order to remove hydrogen chloride gas with soda lime, moisture is required as shown in the above formula (1). As a result, when the gas to be treated containing hydrogen chloride gas is a dry gas such as a dry etching gas, the water in the absorption reaction field evaporates, so hydrogen chloride contained in the dry etching gas by soda lime. It becomes difficult to absorb and remove the gas.

また、特許文献1にはNaOHの代わりに水酸化ストロンチウムを使用することで水分量の低減による塩化水素ガス吸収能の低下を改善したハロゲンガス吸収材が開示されている。しかしながら、この発明にしても反応に水分は必要であり、乾燥雰囲気下における塩化水素ガスの吸収には限界がある。その結果、吸収材を頻繁に交換しなければならない。   Further, Patent Document 1 discloses a halogen gas absorbent that uses strontium hydroxide instead of NaOH to improve the decrease in hydrogen chloride gas absorption capacity due to the reduction in water content. However, even in the present invention, water is necessary for the reaction, and there is a limit to absorption of hydrogen chloride gas in a dry atmosphere. As a result, the absorbent material must be changed frequently.

さらに、特許文献2にはソーダライム(NaOH、Ca(OH)2、H2O)に保湿性を付与するための吸水性高分子物質を混合した塩化水素ガスのようなハロゲンガス除去材が開示されている。しかしながら、この発明にしても実際の装置での長期間に渡る使用では塩化水素ガスの吸収に限界がある。
特開平9−99216号公報 特開2004−73974
Further, Patent Document 2 discloses a halogen gas removing material such as hydrogen chloride gas in which water-absorbing polymer substance for imparting moisture retention to soda lime (NaOH, Ca (OH) 2 , H 2 O) is mixed. Has been. However, even in the present invention, there is a limit to the absorption of hydrogen chloride gas when used for a long time in an actual apparatus.
JP-A-9-99216 JP-A-2004-73974

上述したように、湿式法による塩化水素ガス除去は塩化水素ガスの回収が困難である。また、アルカリ成分を含む粒子を用いた乾式法においては、乾燥したガス中から塩化水素ガスを除去することに適していなかった。   As described above, it is difficult to remove hydrogen chloride gas by the wet method. Moreover, the dry method using particles containing an alkali component is not suitable for removing hydrogen chloride gas from the dried gas.

本発明は、乾燥した被処理ガス中の塩化水素ガスを効率よく吸収することが可能な塩化水素ガス吸収材を提供する。
本発明は、乾燥した被処理ガス中の塩化水素ガスを効率よく吸収、除去する塩化水素ガスの除去方法を提供する。
The present invention provides a hydrogen chloride gas absorbent that can efficiently absorb hydrogen chloride gas in a dried gas to be treated.
The present invention provides a method for removing hydrogen chloride gas that efficiently absorbs and removes hydrogen chloride gas in a dried gas to be treated.

本発明によると、リチウム複合酸化物および吸水性物質を含有することを特徴とする塩化水素ガス吸収材が提供される。   According to the present invention, there is provided a hydrogen chloride gas absorbent comprising a lithium composite oxide and a water absorbing material.

また本発明によると、リチウム複合酸化物および吸水性物質を含む塩化水素ガス吸収材に塩化水素ガスを含む被処理ガスを接触させることを特徴とする塩化水素ガスの除去方法が提供される。   According to the present invention, there is also provided a method for removing hydrogen chloride gas, characterized in that a gas to be treated containing hydrogen chloride gas is brought into contact with a hydrogen chloride gas absorbent containing lithium composite oxide and a water-absorbing substance.

本発明によれば、乾燥した被処理ガス中から塩化水素ガスを比較的長期間に渡って効率よく吸収することが可能な塩化水素ガス吸収材を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the hydrogen chloride gas absorber which can absorb hydrogen chloride gas efficiently from a dry to-be-processed gas over a comparatively long period can be provided.

また本発明によれば、乾燥した被処理ガス中から塩化水素ガスを比較的長期間に渡って効率よく除去することが可能な塩化水素ガスの除去方法を提供できる。   Furthermore, according to the present invention, it is possible to provide a method for removing hydrogen chloride gas that can efficiently remove hydrogen chloride gas from a dried gas to be treated over a relatively long period of time.

以下、本発明に係る塩化水素ガス吸収材および塩化水素ガスの除去方法を詳細に説明する。   Hereinafter, the hydrogen chloride gas absorbent and the method for removing hydrogen chloride gas according to the present invention will be described in detail.

実施形態に係る塩化水素ガス吸収材は、リチウム複合酸化物および吸水性物質を含有する。   The hydrogen chloride gas absorbent according to the embodiment contains a lithium composite oxide and a water-absorbing substance.

前記リチウム複合酸化物としては、例えばリチウムシリケート、リチウムジルコネート、リチウムフェライト、リチウムニッケレート、リチウムチタネート、リチウムアルミネート等が挙げられ、単独もしくは混合して用いることができる。
前記リチウム複合酸化物は、市販品を用いてもよいし、または特開平11−90219号公報に開示されているように酸化ケイ素、酸化ジルコニウム、酸化鉄、酸化ニッケル、酸化チタン、酸化アルミニウムから選ばれる金属酸化物粉末と、炭酸リチウム粉末とを反応させることで製造することもできる。リチウム複合酸化物は、室温で二酸化炭素と反応する虞がある。特に、特開2003−126688に開示されているようにリチウムシリケートは二酸化炭素との反応速度が速いため、製造されたリチウム複合酸化物は密閉容器などの二酸化炭素を除去した雰囲気中で保存することが望ましい。
Examples of the lithium composite oxide include lithium silicate, lithium zirconate, lithium ferrite, lithium nickelate, lithium titanate, and lithium aluminate, and these can be used alone or in combination.
The lithium composite oxide may be a commercially available product or selected from silicon oxide, zirconium oxide, iron oxide, nickel oxide, titanium oxide, and aluminum oxide as disclosed in JP-A-11-90219. It can also be produced by reacting the obtained metal oxide powder with lithium carbonate powder. Lithium composite oxide may react with carbon dioxide at room temperature. In particular, since lithium silicate has a high reaction rate with carbon dioxide as disclosed in JP-A-2003-126688, the manufactured lithium composite oxide should be stored in an atmosphere from which carbon dioxide has been removed, such as a sealed container. Is desirable.

前記リチウム複合酸化物は、塩化水素ガスと以下の式(4)〜(10)のように反応して吸収する。   The lithium composite oxide reacts with and absorbs hydrogen chloride gas as in the following formulas (4) to (10).

Li4SiO4(s)+4HCl→4LiCl(s)+SiO2(s)+2H2O …(4)
Li2SiO3(s)+2HCl→2LiCl(s)+SiO2(s)+H2O …(5)
Li2ZrO3(s)+2HCl→2LiCl(s)+ZrO2(s)+H2O …(6)
2LiFeO2(s)+2HCl→2LiCl(s)+Fe23(s)+H2O…(7)
2LiNiO2(s)+2HCl→2LiCl(s)+Ni23(s)+H2O…(8)
Li2TiO3(s)+2HCl→2LiCl(s)+TiO2(s)+H2O …(9)
2LiAlO2(s)+2HCl→2LiCl(s)+Al23(s)+H2O …(10)
前記リチウム複合酸化物は、この塩化水素ガスを含む乾燥状態の被処理ガスに対して前記式に従ってその塩化水素ガスを効率よく吸収することが可能である。
なお、リチウムシリケートは、式(4)、(5)で示すように2種類あるが、式(4)で示したリチウムシリケート(Li4SiO4)は、式(5)〜(10)で示すリチウム複合酸化物に比べて理論的に2倍(モル比)の塩化水素ガスを回収することが可能である。このため、リチウムシリケート(Li4SiO4)は塩化水素ガスの吸収に好適である。
Li 4 SiO 4 (s) + 4HCl → 4LiCl (s) + SiO 2 (s) + 2H 2 O (4)
Li 2 SiO 3 (s) + 2HCl → 2LiCl (s) + SiO 2 (s) + H 2 O (5)
Li 2 ZrO 3 (s) + 2HCl → 2LiCl (s) + ZrO 2 (s) + H 2 O (6)
2LiFeO 2 (s) + 2HCl → 2LiCl (s) + Fe 2 O 3 (s) + H 2 O (7)
2LiNiO 2 (s) + 2HCl → 2LiCl (s) + Ni 2 O 3 (s) + H 2 O (8)
Li 2 TiO 3 (s) + 2HCl → 2LiCl (s) + TiO 2 (s) + H 2 O (9)
2LiAlO 2 (s) + 2HCl → 2LiCl (s) + Al 2 O 3 (s) + H 2 O (10)
The lithium composite oxide can efficiently absorb the hydrogen chloride gas in accordance with the above equation with respect to the dry gas to be treated containing the hydrogen chloride gas.
There are two types of lithium silicate as shown in formulas (4) and (5). The lithium silicate (Li 4 SiO 4 ) shown in formula (4) is shown in formulas (5) to (10). It is possible to recover hydrogen chloride gas which is theoretically twice (molar ratio) as compared with lithium composite oxide. For this reason, lithium silicate (Li 4 SiO 4 ) is suitable for absorption of hydrogen chloride gas.

本発明者らは、リチウム複合酸化物を含む吸収材に前記塩化水素ガスを反応、吸収する際、前記式に示すように水が生成するために吸収材が泥状、さらに液状化する現象を生じることを発見した。このような吸収材の泥状化は、リチウム複合酸化物を含む吸収材間のガス通路が部分的に閉塞する。その結果、塩化水素ガスを含む被処理ガスはこの吸収材に局在して流通する等の不均一な流れになるため、吸収材の一部のみで塩化水素ガスの吸収がなされて吸収効率が低下する。さらに、吸収材が液状化すると、前記被処理ガスの流通が阻害されて被処理ガスを吸収材に供給すことが困難になる。
このような塩化水素ガスの反応、吸収過程において、リチウム複合酸化物を含む吸収材が泥状になり、さらに液状化を防ぐために前述のように吸水性物質をリチウム複合酸化物に並存させることによって、比較的乾燥した状態で塩化水素ガスの吸収効率を向上できることを発見した。このような吸水性物質の並存は、吸収材内部を適切な乾燥状態に保ち、余剰の水分を減少させることができために吸収材が泥状、さらに液状になるのを防止して、その形状を維持することが可能になる。
前記吸水性物質は、有機物でも無機物でもよい。有機系吸水性物質としては、例えばポリアクリル酸エステル、ポリアルキレンオキサイド、アルキルセルロースエーテル等を挙げることができる。また、無機系吸水性物質としては例えばゼオライトやシリカゲル等を挙げることができる。
When reacting and absorbing the hydrogen chloride gas to an absorbent containing a lithium composite oxide, the present inventors have a phenomenon that the absorbent is mud and further liquefied because water is generated as shown in the above formula. I have found that it happens. Such muddying of the absorber partially closes the gas passage between the absorbers containing the lithium composite oxide. As a result, the gas to be treated containing hydrogen chloride gas becomes a non-uniform flow such as localized in this absorbent material, so that only a part of the absorbent material absorbs the hydrogen chloride gas and the absorption efficiency is improved. descend. Furthermore, when the absorbent material is liquefied, the flow of the gas to be treated is hindered and it becomes difficult to supply the gas to be treated to the absorbent material.
In such a reaction and absorption process of hydrogen chloride gas, the absorbent material containing the lithium composite oxide becomes mud, and in order to prevent liquefaction, the water absorbing material coexists in the lithium composite oxide as described above. It was discovered that the absorption efficiency of hydrogen chloride gas can be improved in a relatively dry state. The coexistence of such water-absorbing substances keeps the inside of the absorbent material in an appropriate dry state, and can reduce excess moisture, thereby preventing the absorbent material from becoming muddy and liquid, and its shape Can be maintained.
The water absorbing material may be organic or inorganic. Examples of the organic water-absorbing substance include polyacrylic acid esters, polyalkylene oxides, and alkyl cellulose ethers. Examples of inorganic water-absorbing substances include zeolite and silica gel.

前記吸水性物質は、前記リチウム複合酸化物に対して0.1〜30重量%の量で含有されることが好ましい。前記吸水性物質の含有量を0.1重量%未満にすると、吸水性物質を含有させる効果を十分に発現させることが困難になる。一方、前記吸水性物質の含有量が30重量%を超えると、塩化水素ガスの主たる吸収材であるリチウム複合酸化物の吸収材中に占める割合が低下して塩化水素ガスの吸収性能(吸収効率)が低下する虞がある。なお、前記吸水性物質の含有量はリチウム複合酸化物の種類および密度、塩化水素ガス濃度等に応じて前記範囲(0.1〜30重量%)内で調整される。   The water-absorbing substance is preferably contained in an amount of 0.1 to 30% by weight with respect to the lithium composite oxide. When the content of the water-absorbing substance is less than 0.1% by weight, it becomes difficult to sufficiently develop the effect of containing the water-absorbing substance. On the other hand, when the content of the water-absorbing substance exceeds 30% by weight, the proportion of the lithium composite oxide, which is the main absorbent of hydrogen chloride gas, in the absorbent decreases and the absorption performance of hydrogen chloride gas (absorption efficiency) ) May be reduced. The content of the water-absorbing substance is adjusted within the above range (0.1 to 30% by weight) according to the type and density of the lithium composite oxide, the hydrogen chloride gas concentration, and the like.

本実施形態に係る塩化水素ガス吸収材は、前述したように塩化水素と反応、吸収する際に泥状などの要因になる水を生成することから、使用時において可能な限り水分を含まない乾燥した状態であることが好ましい。このような吸収材は、使用時の含水量が25重量%以下であることが好ましい。前記吸収材の使用時の含水量が25重量%を超えると、1時間以上使用する条件下にて生成した水分が吸収材中の水分に加算され、吸収材に吸水性物質が共存したとしても泥状、さらに液状になる虞がある。吸収材の使用時のより好ましい含水量は、20重量%以下、最も好ましい含水量は15重量%以下である。ただし、被処理ガス中の塩化水素濃度が10ppm以下のような低濃度である場合、つまり塩化水素との反応、吸収時に相当量の水の生成を伴わない塩化水素濃度である場合、吸収材の使用時の含水量が25重量%を超えてもよい。   As described above, the hydrogen chloride gas absorbent according to the present embodiment generates water that becomes a factor such as mud when reacting with and absorbing hydrogen chloride as described above. It is preferable that it is in the state. Such an absorbent material preferably has a water content of 25% by weight or less during use. When the moisture content during use of the absorbent material exceeds 25% by weight, the moisture generated under the condition of using for 1 hour or more is added to the moisture content in the absorbent material, and even if the absorbent material coexists in the absorbent material There is a risk of becoming muddy and liquid. A more preferable water content at the time of use of the absorbent material is 20% by weight or less, and a most preferable water content is 15% by weight or less. However, when the concentration of hydrogen chloride in the gas to be treated is as low as 10 ppm or less, that is, when the concentration of hydrogen chloride is not accompanied by the generation of a considerable amount of water during reaction and absorption with hydrogen chloride, The water content during use may exceed 25% by weight.

本実施形態に係る塩化水素ガス吸収材の形状やサイズは、その使用条件により適宜選択することが可能である。この吸収材は、特に平均粒径50μm以上、3mm以下の粒状であることが好ましい。この粒状吸収材の平均粒径を50μm未満にすると、例えば反応器に吸収材を充填した場合、粒子同士が密に詰まり粒子間の隙間が小さくなる。このため、塩化水素ガスを含む被処理ガスを粒子間に十分な量で流通させることが困難になり、塩化水素ガスの効率的な吸収が困難になる虞がある。一方、粒状吸収材の平均粒径が3mmを超えると、リチウム化複合酸化物と塩化水素ガスとの接触確率(接触面積/体積)が小さくなって、塩化水素ガスの吸収効率が低下する虞がある。   The shape and size of the hydrogen chloride gas absorbent according to the present embodiment can be appropriately selected depending on the use conditions. This absorbent material is particularly preferably in the form of particles having an average particle size of 50 μm or more and 3 mm or less. When the average particle diameter of the granular absorbent material is less than 50 μm, for example, when the reactor is filled with the absorbent material, the particles are closely packed and the gap between the particles is reduced. For this reason, it becomes difficult to distribute the gas to be treated containing hydrogen chloride gas in a sufficient amount between the particles, and it may be difficult to efficiently absorb the hydrogen chloride gas. On the other hand, when the average particle diameter of the granular absorbent material exceeds 3 mm, the contact probability (contact area / volume) between the lithiated composite oxide and hydrogen chloride gas is decreased, and the absorption efficiency of hydrogen chloride gas may be reduced. is there.

なお、従来のソーダライムのような塩化水素ガス吸収材において前述した式(1)に示す反応を実現するには、水分を必須成分としているため、乾燥した被処理ガス中で使用する際、粒径5mm程度の粗大粒子にして保湿性を高める措置を採用していた。本実施形態に係る塩化水素ガス吸収材における吸収材成分であるリチウム化複合酸化物は、前述した式(4)〜(10)で示されるように塩化水素ガスとの反応、吸収過程で水分を必要としない。このため、粒状塩化水素ガス吸収材は平均粒径3mm以下とすることが可能になり、前述したように塩化水素ガスとの接触確率を高め、塩化水素ガスの吸収効率を向上することが可能になる。   In addition, in order to implement | achieve the reaction shown in Formula (1) mentioned above in the hydrogen chloride gas absorber like conventional soda lime, since water | moisture content is an essential component, when using it in dry to-be-processed gas, Measures were taken to increase the moisture retention by using coarse particles having a diameter of about 5 mm. The lithiated composite oxide, which is an absorbent component in the hydrogen chloride gas absorbent according to the present embodiment, absorbs moisture in the reaction and absorption processes with the hydrogen chloride gas as shown by the above-described formulas (4) to (10). do not need. Therefore, the granular hydrogen chloride gas absorbent can have an average particle size of 3 mm or less, and as described above, it is possible to increase the contact probability with hydrogen chloride gas and improve the absorption efficiency of hydrogen chloride gas. Become.

本実施形態に係る平均粒径50μm〜3mmの粒状塩化水素ガス吸収材は、例えば以下に説明する転動法や押出し法等により作ることが可能である。
転動法は、例えば平均粒径0.1〜20μmのリチウム複合酸化物粉末と吸水性物質を混合し、傾斜回転皿上で回転させながら液体を加える方法で、これによって平均粒径50μm〜3mmの粒状(球状)の塩化水素ガス吸収材を得ることができる。
The granular hydrogen chloride gas absorbent having an average particle diameter of 50 μm to 3 mm according to the present embodiment can be made by, for example, a rolling method or an extrusion method described below.
The rolling method is a method in which, for example, a lithium composite oxide powder having an average particle size of 0.1 to 20 μm and a water-absorbing substance are mixed, and a liquid is added while rotating on an inclined rotating dish, whereby the average particle size is 50 μm to 3 mm. The granular (spherical) hydrogen chloride gas absorbent can be obtained.

押出し法は、例えば平均粒径0.1〜20μm程度のリチウム複合酸化物粉末と吸水性物質を湿式で混合し、スクリュー回転の力により目的の径を有する孔を通して押出した後、所定の長さに切断し篩い分けする方法で、これによって平均粒径50μm〜3mmの粒状(円柱状)の塩化水素ガス吸収材を得ることができる。   In the extrusion method, for example, a lithium composite oxide powder having an average particle size of about 0.1 to 20 μm and a water-absorbing substance are wet mixed, and extruded through holes having a desired diameter by the force of screw rotation, and then a predetermined length. In this way, a granular (cylindrical) hydrogen chloride gas absorbent having an average particle diameter of 50 μm to 3 mm can be obtained.

一般的に押出し法で作製した粒状の吸収材は、転動法で作製した粒状の吸収材に比べて気孔率が高い構造になるため、実際の装置に充填するときに要求される吸収材の強度、性能などに応じていずれかの方法を選択すればよい。   In general, the granular absorbent material produced by the extrusion method has a structure having a higher porosity than the granular absorbent material produced by the rolling method, so that the absorbent material required when filling an actual device is used. Any method may be selected according to strength, performance, and the like.

前記転動法および押出し法では、リチウム複合酸化物粉末および吸水性物質にバインダ樹脂粉末を混合してもよい。このバインダ樹脂としては、例えばPVA、PVB、ワックス、パラフィン、CMC等を使用することができる。また、いずれの方法でも粒状に成形するときにリチウム複合酸化物粉末および吸水性物質に液体と混合される。この液体としては、例えば水、エタノールのようなアルコール、またはそれらの混合物を用いることができる。作製された吸収材は、強度維持のために乾燥される。この乾燥は、使用される液体の種類に応じて温度および時間が決められる。   In the rolling method and the extrusion method, a binder resin powder may be mixed with the lithium composite oxide powder and the water-absorbing substance. As this binder resin, for example, PVA, PVB, wax, paraffin, CMC and the like can be used. In any method, the lithium composite oxide powder and the water-absorbing substance are mixed with a liquid when formed into a granular form. As this liquid, for example, water, alcohol such as ethanol, or a mixture thereof can be used. The produced absorbent material is dried to maintain strength. This drying is determined in temperature and time depending on the type of liquid used.

次に、前述した塩化水素ガス吸収材による塩化水素ガス(HCl)の除去方法を説明する。
リチウム複合酸化物および吸水性物質を含む塩化水素ガス吸収材に塩化水素ガスを含む乾燥した被処理ガスを接触させることにより、前記リチウム複合酸化物が被処理ガス中の塩化水素ガスと前述した式(4)〜式(10)に従って反応して吸収する。このときの反応は、水を必要としないため、乾燥した被処理ガスからハロゲン含有ガスを効率よく吸収、除去することが可能になる。
また、リチウム複合酸化物および吸水性物質を含む塩化水素ガス吸収材は塩化水素ガスの吸収過程で泥状、液状化するのを抑えて被処理ガスをその吸収材(例えば粒状の吸収材)における個々の粒子間に良好に流通させることができ、塩化水素ガスを効率よく吸収して除去することが可能になる。特に、塩化水素ガス吸収材において、使用時の含水量を40重量%以下にすることによって、吸収材の泥状、液状化を防止して被処理ガスをその吸収材(例えば粒状の吸収材)における個々の粒子間に良好に流通させることができ、塩化水素ガスをより一層効率よく吸収して除去することが可能になる。
このような塩化水素ガスの除去は、例えば図1に示す反応器が用いられる。この反応器1は、両端にフランジ2a,2bを有する円筒状本体3と、この本体3の一端(上端)のフランジ2aに当接され、ガス導入管4を有する上部円板状蓋体5と、前記本体3の他端(下端)のフランジ2bに当接され、ガス排出管6を有する下部円板状蓋体7とを備えている。前記円筒状本体3のフランジ2a,2bには、複数のボルト挿通穴(図示せず)が開口され、前記各円板状蓋体5、7にもこれら挿通穴に対応してボルト挿通穴(図示せず)が開口され、円筒状本体3上端のフランジ2aと上部円板状蓋体5の合致したボルト挿通穴、および円筒状本体3下端のフランジ2bと下部円板状蓋体7の合致したボルト挿通穴にボルトをそれぞれ挿入し、ナットで締め付けることによって、各円板状蓋体5、7が円筒状本体3に固定される。前記上部円板状蓋体5におけるガス導入管4の開口部および前記下部円板状蓋体7におけるガス排出管6の開口部には、メッシュ8,9がそれぞれ取り付けられている。
このような図1に示す反応器1において、上部円板状蓋体5を円筒状本体3から外して、下部円板状蓋体7を有する円筒状本体3内にリチウム複合酸化物および吸水性物質を含む例えば粒状の塩化水素ガス吸収材10を充填した後、再び上部円板状蓋体5を円筒状本体3に取り付ける。つづいて、塩化水素ガスを含む乾燥した被処理ガスを上部円板状蓋体5のガス導入管4を通して円筒状本体3内に充填された粒状の塩化水素ガス吸収材10を流通、接触させ、吸収材10中のリチウム複合酸化物を被処理ガス中の塩化水素ガスと前述した式(4)〜式(10)に従って反応させて吸収する。吸収材10と反応させた後の被処理ガスは、下部円板状蓋体7のガス排出管6を通して排出される。
前記被処理ガスは、任意の量の塩化水素ガス、例えば0.5〜10%の塩化水素ガスを含むガスを用いることができる。
前記乾燥した被処理ガスは、積極的に含水率を低減させたガスに限らず、例えば水分量が0.5%以下、場合によって0.1%以下含むものである。このような水分量の乾燥した被処理ガスとしては、例えば洗浄工程後の廃ガスとして排出される塩化水素ガスおよび窒素のような不活性ガスを含む乾燥した洗浄ガス等を挙げることができる。
本実施形態に係る塩化水素ガスの除去方法において、吸収材中のリチウム複合酸化物が塩化水素ガスと前述した式(4)〜式(10)に従って反応し、塩化リチウムとシリコン酸化物のような酸化物に変換されると、反応系(例えば反応器)から取り出されて廃棄される。この反応器からの取出しにおいて、吸収材がその中の吸水性物質による泥状、液状化を防止してその形状(例えば粒状)を維持することが可能であるため、取り出し操作を簡便化できる。すなわち、塩化水素ガスと反応、吸収することにより変換された吸収材が泥状、液状化されると、反応器の内面に付着して、取り出しが煩雑になり、しかも面倒なメンテナンスを強いられる。本実施形態に係る塩化水素ガスの除去方法において、塩化水素ガス吸収材(特に吸水性物質をリチウム複合酸化物に対して0.1〜30重量%の量で含有させた塩化水素ガス吸収材)は充填時の形状(例えば粒状)を維持できるため、取り出し操作を簡便化で、面倒なメンテナンス作業を回避することが可能になる。
以下、本発明の実施例を説明する。
(実施例1)
平均粒径1μmの金属酸化物(酸化ケイ素)粉末と平均粒径1μmの炭酸リチウム粉末とを1:2のモル比で混合して混合粉末を得た。この混合粉末を大気中900℃で焼成して平均粒径1μmのリチウムシリケート(Li4SiO4)粉末を生成した。
Next, a method for removing hydrogen chloride gas (HCl) using the above-described hydrogen chloride gas absorbent will be described.
The lithium composite oxide is brought into contact with the hydrogen chloride gas in the gas to be treated by bringing the dry gas to be treated containing hydrogen chloride gas into contact with the hydrogen chloride gas absorbent containing the lithium composite oxide and the water-absorbing substance. (4)-It reacts and absorbs according to Formula (10). Since the reaction at this time does not require water, the halogen-containing gas can be efficiently absorbed and removed from the dried gas to be treated.
In addition, the hydrogen chloride gas absorbent containing the lithium composite oxide and the water-absorbing substance suppresses the gas to be treated in the absorbent (for example, a granular absorbent) while suppressing the mud and liquefaction during the hydrogen chloride gas absorption process. It can be made to circulate well between individual particles, and hydrogen chloride gas can be efficiently absorbed and removed. In particular, in a hydrogen chloride gas absorbent, the moisture content during use is reduced to 40% by weight or less to prevent the absorbent from becoming muddy and liquefied, and to treat the gas to be treated (for example, a granular absorbent). Can be circulated favorably between the individual particles, and hydrogen chloride gas can be absorbed and removed more efficiently.
For the removal of such hydrogen chloride gas, for example, a reactor shown in FIG. 1 is used. The reactor 1 includes a cylindrical main body 3 having flanges 2a and 2b at both ends, and an upper disk-shaped lid 5 having a gas introduction pipe 4 in contact with a flange 2a at one end (upper end) of the main body 3. And a lower disc-shaped lid 7 having a gas discharge pipe 6 in contact with the flange 2b at the other end (lower end) of the main body 3. A plurality of bolt insertion holes (not shown) are opened in the flanges 2 a and 2 b of the cylindrical body 3, and bolt insertion holes (corresponding to these insertion holes) are also formed in the disc-like lid bodies 5 and 7. (Not shown) is opened, the bolt insertion hole of the upper end of the cylindrical body 3 and the upper disc-shaped lid 5 are matched, and the lower end of the cylindrical body 3 of the flange 2b and the lower disc-shaped lid 7 are matched. The disc-shaped lids 5 and 7 are fixed to the cylindrical main body 3 by inserting bolts into the bolt insertion holes and tightening them with nuts. Meshes 8 and 9 are respectively attached to the opening of the gas introduction pipe 4 in the upper disk-shaped lid 5 and the opening of the gas discharge pipe 6 in the lower disk-shaped lid 7.
In the reactor 1 shown in FIG. 1, the upper disk-shaped lid body 5 is removed from the cylindrical body 3, and the lithium composite oxide and the water absorbing property are placed in the cylindrical body 3 having the lower disk-shaped lid body 7. After filling, for example, the granular hydrogen chloride gas absorbent 10 containing the substance, the upper disk-shaped lid 5 is attached to the cylindrical body 3 again. Subsequently, a granular hydrogen chloride gas absorbent 10 filled in the cylindrical main body 3 through the gas introduction pipe 4 of the upper disc-shaped lid 5 is circulated and brought into contact with the dried gas to be treated containing hydrogen chloride gas, The lithium composite oxide in the absorbent 10 is absorbed by reacting with the hydrogen chloride gas in the gas to be treated according to the above-described formulas (4) to (10). The gas to be treated after reacting with the absorbent 10 is discharged through the gas discharge pipe 6 of the lower disk-shaped lid 7.
As the gas to be treated, a gas containing an arbitrary amount of hydrogen chloride gas, for example, 0.5 to 10% hydrogen chloride gas can be used.
The dried gas to be treated is not limited to a gas whose water content has been actively reduced, but includes, for example, a water content of 0.5% or less, and in some cases 0.1% or less. Examples of the dry gas to be treated having such a moisture amount include a dry cleaning gas containing an inert gas such as hydrogen chloride gas and nitrogen discharged as a waste gas after the cleaning step.
In the method for removing hydrogen chloride gas according to the present embodiment, the lithium composite oxide in the absorbent reacts with the hydrogen chloride gas according to the above-described formulas (4) to (10), and lithium chloride and silicon oxide are used. Once converted to oxide, it is removed from the reaction system (eg, reactor) and discarded. In the removal from the reactor, the absorbent can prevent the mud and liquefaction due to the water-absorbing substance therein and maintain its shape (for example, granular), so that the removal operation can be simplified. That is, when the absorbent material converted by reacting with and absorbing hydrogen chloride gas is mud or liquefied, it adheres to the inner surface of the reactor, making it difficult to take out and forcing troublesome maintenance. In the method of removing hydrogen chloride gas according to the present embodiment, a hydrogen chloride gas absorbent (particularly a hydrogen chloride gas absorbent containing a water-absorbing substance in an amount of 0.1 to 30% by weight with respect to the lithium composite oxide). Since the shape (for example, granular shape) at the time of filling can be maintained, the take-out operation can be simplified and troublesome maintenance work can be avoided.
Examples of the present invention will be described below.
Example 1
A metal oxide (silicon oxide) powder having an average particle diameter of 1 μm and a lithium carbonate powder having an average particle diameter of 1 μm were mixed at a molar ratio of 1: 2 to obtain a mixed powder. This mixed powder was fired at 900 ° C. in the atmosphere to produce a lithium silicate (Li 4 SiO 4 ) powder having an average particle diameter of 1 μm.

前記リチウムシリケート粉末とポリアルキレンオキサイドを1:0.005の重量比で混合し、これを転動法により水を用いて平均粒径500μmの顆粒にした。この顆粒を80℃で1時間乾燥し、平均粒径500μmの粒状塩化水素ガス吸収材を得た。この吸収材の含水量をTG−MASS(MAC Science社製商標名:TG−DTA2500およびThermo ONIX社製商標名:Thermolab)により分析したところ、15重量%であった。   The lithium silicate powder and the polyalkylene oxide were mixed at a weight ratio of 1: 0.005, and the mixture was made into granules having an average particle diameter of 500 μm using water by a rolling method. The granules were dried at 80 ° C. for 1 hour to obtain a granular hydrogen chloride gas absorbent having an average particle size of 500 μm. The moisture content of this absorbent material was analyzed by TG-MASS (trade name: TG-DTA2500, manufactured by MAC Science, and the brand name: Thermolab, manufactured by Thermo ONIX) and found to be 15% by weight.

(実施例2)
実施例1と同様なリチウムシリケート粉末とポリアルキレンオキサイドを1:0.25の重量比で混合した以外、実施例1と同様な方法で500μmの粒状塩化水素ガス吸収材を得た。得られた吸収材を実施例1と同様な方法で含水量を分析したところ、17重量%であった。
(Example 2)
A 500 μm granular hydrogen chloride gas absorbent was obtained in the same manner as in Example 1 except that the same lithium silicate powder as in Example 1 and polyalkylene oxide were mixed at a weight ratio of 1: 0.25. When the water content of the obtained absorbent was analyzed in the same manner as in Example 1, it was 17% by weight.

(実施例3)
実施例1と同様なリチウムシリケート粉末とゼオライト粉末を1:0.1の重量比で混合した以外、実施例1と同様な方法で500μmの粒状塩化水素ガス吸収材を得た。得られた吸収材を実施例1と同様な方法で含水量を分析したところ、10重量%であった。
(Example 3)
A 500 μm granular hydrogen chloride gas absorbent was obtained in the same manner as in Example 1 except that the same lithium silicate powder and zeolite powder as in Example 1 were mixed at a weight ratio of 1: 0.1. When the water content of the obtained absorbent was analyzed in the same manner as in Example 1, it was 10% by weight.

(実施例4)
実施例1と同様なリチウムシリケート粉末とポリアルキレンオキサイドを1:0.0005の重量比で混合した以外、実施例1と同様な方法で500μmの粒状塩化水素ガス吸収材を得た。得られた吸収材を実施例1と同様な方法で含水量を分析したところ、10重量%であった。
Example 4
A 500 μm granular hydrogen chloride gas absorbent was obtained in the same manner as in Example 1 except that the same lithium silicate powder as in Example 1 and polyalkylene oxide were mixed at a weight ratio of 1: 0.0005. When the water content of the obtained absorbent was analyzed in the same manner as in Example 1, it was 10% by weight.

(実施例5)
実施例1と同様なリチウムシリケート粉末とポリアルキレンオキサイドを1:0.40の重量比で混合した以外、実施例1と同様な方法で500μmの粒状塩化水素ガス吸収材を得た。得られた吸収材を実施例1と同様な方法で含水量を分析したところ、27重量%であった。
(Example 5)
A 500 μm granular hydrogen chloride gas absorbent was obtained in the same manner as in Example 1 except that the same lithium silicate powder as in Example 1 and polyalkylene oxide were mixed at a weight ratio of 1: 0.40. The water content of the obtained absorbent was analyzed in the same manner as in Example 1. As a result, it was 27% by weight.

(比較例1)
平均粒径1μmの金属酸化物(酸化ケイ素)粉末と平均粒径1μmの炭酸リチウム粉末とを1:2のモル比で混合して混合粉末を得た。この混合粉末を大気中900℃で焼成して平均粒径1μmのリチウムシリケート(Li4SiO4)粉末を生成した。
(Comparative Example 1)
A mixed powder was obtained by mixing a metal oxide (silicon oxide) powder having an average particle diameter of 1 μm and a lithium carbonate powder having an average particle diameter of 1 μm at a molar ratio of 1: 2. This mixed powder was fired at 900 ° C. in the atmosphere to produce lithium silicate (Li 4 SiO 4 ) powder having an average particle diameter of 1 μm.

前記リチウムシリケート粉末を転動法により水およびバインダとしてのPVAを用いて平均粒径500μmの顆粒にした。この顆粒を80℃で1時間乾燥し、500μmの粒状塩化水素ガス吸収材を得た。この吸収材の含水量をTG−MASS(MAC Science社製商標名:TG−DTA2500およびThermo ONIX社製商標名:Thermolab)により分析したところ、12重量%であった。   The lithium silicate powder was made into granules having an average particle diameter of 500 μm by water and PVA as a binder by a rolling method. This granule was dried at 80 ° C. for 1 hour to obtain a 500 μm granular hydrogen chloride gas absorbent. The water content of this absorbent material was analyzed by TG-MASS (trade name: TG-DTA2500, manufactured by MAC Science, and the brand name: Thermolab, manufactured by Thermo ONIX) and found to be 12% by weight.

得られた実施例1〜5および比較例1の粒状塩化水素ガス吸収材について、以下の特性評価を行った。   The following characteristics evaluation was performed about the obtained granular hydrogen chloride gas absorber of Examples 1-5 and Comparative Example 1.

粒状塩化水素ガス吸収材5gを前述した図1に示す反応器1の円筒状本体3(直径10mm)内に充填し、被処理ガスをガス導入管4を通して円筒状本体3内の吸収材10を流通させ、塩化水素ガス吸収材と被処理ガスとを接触させた。被処理ガスは窒素ガス95%、HClガス5%の混合ガスで、乾燥(水分量:1000ppm含有)したものを用い、ガス流量は0.5L/分で180分間流通させた。また、ガス温度は10℃とした。   The cylindrical hydrogen chloride gas absorbing material 5g is filled in the cylindrical main body 3 (diameter 10 mm) of the reactor 1 shown in FIG. 1 described above, and the gas to be treated is passed through the gas introduction pipe 4 and the absorbent 10 in the cylindrical main body 3 is filled. The hydrogen chloride gas absorbent and the gas to be treated were brought into contact with each other. The gas to be treated was a mixed gas of 95% nitrogen gas and 5% HCl gas, dried (water content: containing 1000 ppm), and allowed to flow for 180 minutes at a gas flow rate of 0.5 L / min. The gas temperature was 10 ° C.

前記反応器1のガス排出管6から排出された被処理ガスを採取し、その中の塩化水素ガス濃度を電気化学方式のセンサで測定し、その経時変化から塩化水素ガス吸収量を算出した。   The gas to be treated discharged from the gas discharge pipe 6 of the reactor 1 was collected, the hydrogen chloride gas concentration therein was measured with an electrochemical sensor, and the hydrogen chloride gas absorption amount was calculated from the change over time.

また、前記被処理ガスの流通後に反応器から吸収材を取り出す際の、取り出し易さ(メンテナンスの良否)を調べた。   Further, the easiness of taking out (the quality of maintenance) when taking out the absorbent from the reactor after the flow of the gas to be treated was examined.

これらの結果を下記表1に示す。なお、比較例1については被処理ガスの流通途中で吸収材が液状化し、差圧が上昇したため実験を中止した。

Figure 2006263545
These results are shown in Table 1 below. In Comparative Example 1, the experiment was stopped because the absorbent material liquefied during the flow of the gas to be treated and the differential pressure increased.
Figure 2006263545

前記表1から明らかなように実施例1〜5の塩化水素ガス吸収材は、乾燥した被処理ガスから塩化水素を効率的に吸収、除去できることがわかる。特に、ポリアルキレンオキサイド、ゼオライトのような吸水性物質をリチウムシリケートに対して0.1〜30重量%の量で含有させた実施例1〜3の塩化水素ガス吸収材は乾燥した被処理ガスから塩化水素を一層効率的に吸収、除去できることがわかる。
なお、ポリアルキレンオキサイド(吸水性物質)をリチウムシリケートに対して0.1重量%未満の量で含有させた実施例4の塩化水素ガス吸収材は、多少の泥状化が進んだために被処理ガスの流通後に反応器から吸収材を取り出し難く、面倒なメンテナンスを強いられた。
As apparent from Table 1, it can be seen that the hydrogen chloride gas absorbents of Examples 1 to 5 can efficiently absorb and remove hydrogen chloride from the dried gas to be treated. In particular, the hydrogen chloride gas absorbents of Examples 1 to 3 containing a water-absorbing substance such as polyalkylene oxide and zeolite in an amount of 0.1 to 30% by weight with respect to lithium silicate were obtained from a dried gas to be treated. It can be seen that hydrogen chloride can be absorbed and removed more efficiently.
Note that the hydrogen chloride gas absorbent of Example 4 containing polyalkylene oxide (water-absorbing substance) in an amount of less than 0.1% by weight with respect to lithium silicate was subjected to some muddy formation. It was difficult to take out the absorbent material from the reactor after the processing gas was circulated, and it was difficult to perform maintenance.

本発明の実施形態に係る塩化水素ガスの除去方法に用いられる反応器を示す断面図。Sectional drawing which shows the reactor used for the removal method of the hydrogen chloride gas which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1…反応器、3…円筒状本体、4…ガス導入管、6…ガス排気管、10…粒状塩化水素ガス吸収材。   DESCRIPTION OF SYMBOLS 1 ... Reactor, 3 ... Cylindrical main body, 4 ... Gas introduction pipe, 6 ... Gas exhaust pipe, 10 ... Granular hydrogen chloride gas absorber.

Claims (6)

リチウム複合酸化物および吸水性物質を含有することを特徴とする塩化水素ガス吸収材。   A hydrogen chloride gas absorbent comprising a lithium composite oxide and a water-absorbing substance. 含水量が25重量%以下であることを特徴とする請求項1記載の塩化水素ガス吸収材。   2. The hydrogen chloride gas absorbent according to claim 1, wherein the water content is 25% by weight or less. 前記吸水性物質は、前記リチウム複合酸化物に対して0.1〜30重量%の量で含有されることを特徴とする請求項1または2記載の塩化水素ガス吸収材。   3. The hydrogen chloride gas absorbent according to claim 1, wherein the water-absorbing substance is contained in an amount of 0.1 to 30% by weight with respect to the lithium composite oxide. リチウム複合酸化物および吸水性物質を含む塩化水素ガス吸収材に塩化水素ガスを含む被処理ガスを接触させることを特徴とする塩化水素ガスの除去方法。   A method for removing hydrogen chloride gas, comprising bringing a gas to be treated containing hydrogen chloride gas into contact with a hydrogen chloride gas absorbent containing lithium composite oxide and a water-absorbing substance. 前記被処理ガスは、塩化水素ガスを0.5〜10%含むことを特徴とする請求項4記載の塩化水素ガスの除去方法。   The method for removing hydrogen chloride gas according to claim 4, wherein the gas to be treated contains 0.5 to 10% of hydrogen chloride gas. 前記被処理ガスは、洗浄工程後の廃ガスとして排出される塩化水素ガスおよび不活性ガスを含む乾燥した洗浄ガスであることを特徴とする請求項4の塩化水素ガスの除去方法。   5. The method of removing hydrogen chloride gas according to claim 4, wherein the gas to be treated is a dry cleaning gas containing hydrogen chloride gas and inert gas discharged as waste gas after the cleaning step.
JP2005083669A 2005-03-23 2005-03-23 Hydrogen chloride gas absorbent and method for removing hydrogen chloride gas Expired - Fee Related JP4498183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005083669A JP4498183B2 (en) 2005-03-23 2005-03-23 Hydrogen chloride gas absorbent and method for removing hydrogen chloride gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083669A JP4498183B2 (en) 2005-03-23 2005-03-23 Hydrogen chloride gas absorbent and method for removing hydrogen chloride gas

Publications (2)

Publication Number Publication Date
JP2006263545A true JP2006263545A (en) 2006-10-05
JP4498183B2 JP4498183B2 (en) 2010-07-07

Family

ID=37200072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083669A Expired - Fee Related JP4498183B2 (en) 2005-03-23 2005-03-23 Hydrogen chloride gas absorbent and method for removing hydrogen chloride gas

Country Status (1)

Country Link
JP (1) JP4498183B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086088A (en) * 2011-10-24 2013-05-13 Taiyo Nippon Sanso Corp Detoxifying method of gas including halide particle
WO2022085618A1 (en) 2020-10-19 2022-04-28 ニッタ株式会社 Filter unit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210236A (en) * 1990-12-05 1992-07-31 Showa Denko Kk Treating agent for dry etching exhaust gas
JPH11253738A (en) * 1998-03-13 1999-09-21 Toshiba Corp Sulfide gas-absorbing material
JP2000015091A (en) * 1998-07-03 2000-01-18 Central Res Inst Of Electric Power Ind Absorbent for halide
JP2000300938A (en) * 1999-02-18 2000-10-31 Yasuo Fukutani Purifier for exhaust gas and incineration ash and purifying method using the same
JP2003126688A (en) * 2001-10-26 2003-05-07 Toshiba Corp Carbon dioxide absorbing material, usage thereof and regeneration method therefor
JP2004073974A (en) * 2002-08-14 2004-03-11 Sud-Chemie Catalysts Inc Halogen gas removing agent and method for producing the same
JP2005013952A (en) * 2003-06-27 2005-01-20 Toshiba Ceramics Co Ltd Carbon dioxide absorber
JP2005081328A (en) * 2003-09-11 2005-03-31 Toshiba Corp Halogen gas absorbing material, removal method of halogen gas and apparatus for treating halogen gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04210236A (en) * 1990-12-05 1992-07-31 Showa Denko Kk Treating agent for dry etching exhaust gas
JPH11253738A (en) * 1998-03-13 1999-09-21 Toshiba Corp Sulfide gas-absorbing material
JP2000015091A (en) * 1998-07-03 2000-01-18 Central Res Inst Of Electric Power Ind Absorbent for halide
JP2000300938A (en) * 1999-02-18 2000-10-31 Yasuo Fukutani Purifier for exhaust gas and incineration ash and purifying method using the same
JP2003126688A (en) * 2001-10-26 2003-05-07 Toshiba Corp Carbon dioxide absorbing material, usage thereof and regeneration method therefor
JP2004073974A (en) * 2002-08-14 2004-03-11 Sud-Chemie Catalysts Inc Halogen gas removing agent and method for producing the same
JP2005013952A (en) * 2003-06-27 2005-01-20 Toshiba Ceramics Co Ltd Carbon dioxide absorber
JP2005081328A (en) * 2003-09-11 2005-03-31 Toshiba Corp Halogen gas absorbing material, removal method of halogen gas and apparatus for treating halogen gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013086088A (en) * 2011-10-24 2013-05-13 Taiyo Nippon Sanso Corp Detoxifying method of gas including halide particle
WO2022085618A1 (en) 2020-10-19 2022-04-28 ニッタ株式会社 Filter unit
KR20230051554A (en) 2020-10-19 2023-04-18 니타 가부시키가이샤 filter unit

Also Published As

Publication number Publication date
JP4498183B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JPH07506048A (en) HCl adsorbent and method for its manufacture and use
US11033878B2 (en) Agent for removing halogen gas, method for producing same, method for removing halogen gas with use of same, and system for removing halogen gas
JP5145904B2 (en) Halogen-based gas scavenger and halogen-based gas scavenging method using the same
EP3556729B1 (en) Use of a composition comprising silicotitanate having sitinakite structure and niobium
JP4498183B2 (en) Hydrogen chloride gas absorbent and method for removing hydrogen chloride gas
JP5309945B2 (en) Halogen-based gas scavenger and halogen-based gas scavenging method using the same
JP4913271B2 (en) Halogen gas treatment agent
EP1967254B1 (en) Use of a faujasite and method for the adsorption of halogen-containing gases
JP5499816B2 (en) Halogen gas removal method
JP2008505750A (en) Purification method of nitrogen trifluoride gas using zeolite ion exchanged with alkaline earth metal
JP3770608B2 (en) Halogen gas absorber, halogen gas removal method and halogen gas processing apparatus
JP3701741B2 (en) Hazardous gas purification agent
WO2017146137A1 (en) Silver-carrying zeolite molded article
JP4051399B2 (en) Desiccant raw material and production method thereof
JPH09234336A (en) Purification of harmful gas
JP2016102053A (en) Silicotitanate compact
KR100564359B1 (en) Method for preparing adsorbents for removing acid gases and method for removing acid gases with the adsorbent prepared by the same
JP2005177576A (en) Agent for detoxifying halogen-based gas and acidic gas
CN106512659A (en) Inorganic absorbent for CO2 and method for purifying CO2 in air
JP2009072669A (en) Ethylene gas-adsorptive inorganic composition and its manufacturing method
JP2008119628A (en) Cleaning agent and cleaning method of toxic gas
JP2004073974A (en) Halogen gas removing agent and method for producing the same
KR100577956B1 (en) Process for refining nitrogen trifluoride gas using alkali earth metal exchanged zeolite 4A
JPH06327931A (en) Purifying method of waste gas
JPH0412010A (en) Purification of nitrogen trifluoride gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4498183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees