JP3770608B2 - Halogen gas absorber, halogen gas removal method and halogen gas processing apparatus - Google Patents
Halogen gas absorber, halogen gas removal method and halogen gas processing apparatus Download PDFInfo
- Publication number
- JP3770608B2 JP3770608B2 JP2003319963A JP2003319963A JP3770608B2 JP 3770608 B2 JP3770608 B2 JP 3770608B2 JP 2003319963 A JP2003319963 A JP 2003319963A JP 2003319963 A JP2003319963 A JP 2003319963A JP 3770608 B2 JP3770608 B2 JP 3770608B2
- Authority
- JP
- Japan
- Prior art keywords
- halogen gas
- gas
- lithium
- halogen
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/041—Oxides or hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/06—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/2803—Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/32—Alkali metal silicates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G25/00—Compounds of zirconium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/0018—Mixed oxides or hydroxides
- C01G49/0027—Mixed oxides or hydroxides containing one alkali metal
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/20—Halogens or halogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/42—Materials comprising a mixture of inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明は、ハロゲンガスを含有する気体中からハロゲンガスを除去するハロゲンガス吸収材、このハロゲンガス吸収材を用いたハロゲンガスの吸収方法、ハロゲンガスを吸収したハロゲンガス吸収材からハロゲンガスを回収するハロゲンガス回収方法及び、ハロゲンガス処理装置に関する。 The present invention relates to a halogen gas absorbing material for removing halogen gas from a gas containing halogen gas, a halogen gas absorbing method using the halogen gas absorbing material, and recovering the halogen gas from the halogen gas absorbing material that has absorbed the halogen gas. The present invention relates to a halogen gas recovery method and a halogen gas processing apparatus.
現在、半導体製造プロセスのドライエッチング工程などでは、除去する膜の性質に応じて各種のドライエッチングガスが使用されており、例えばフッ化水素酸ガスや、三フッ化塩素などのハロゲンガスをエッチングガスとして不活性ガスと共に供給してドライエッチングが行われている。 Currently, various dry etching gases are used in the dry etching process of the semiconductor manufacturing process depending on the properties of the film to be removed. For example, hydrofluoric acid gas or halogen gas such as chlorine trifluoride is used as an etching gas. As described above, dry etching is performed by supplying together with an inert gas.
そして、これらのハロゲンガスは危険性や毒性が高いために、不活性ガス中から除去した後に排出する必要がある。 And since these halogen gases are highly dangerous and toxic, they must be discharged after being removed from the inert gas.
一方、ハロゲンガスの除去方法としては、湿式法と乾式法とが知られている。 On the other hand, wet methods and dry methods are known as methods for removing halogen gas.
湿式法は、アルカリ水溶液をハロゲンガスの吸収液として使用するもの方法であるが、この方法は微量のハロゲンガスに対して除去効率が低いという問題がある。 The wet method is a method in which an alkaline aqueous solution is used as a halogen gas absorbing solution. However, this method has a problem that the removal efficiency is low for a very small amount of halogen gas.
乾式法としては、二種類のアルカリ成分を含有する粒子をハロゲンガス吸収材として用いる方法があり、この方法では、ガスの回収も比較的簡便な方法で行える。例えば、ソーダライム(NaOH、Ca(OH)2、H2O)を吸収材として用いて塩化水素ガスを除去する場合、以下の化学式(1)乃至(3)に示す反応が順次生じて、塩化水素ガスを除去する。 As a dry method, there is a method in which particles containing two kinds of alkali components are used as a halogen gas absorber, and in this method, gas can be recovered by a relatively simple method. For example, when hydrogen chloride gas is removed using soda lime (NaOH, Ca (OH) 2 , H 2 O) as an absorbent, reactions shown in the following chemical formulas (1) to (3) occur sequentially, Remove hydrogen gas.
HCl+H2O → H3ClO・・・(1)
H3ClO+NaOH → NaCl+2H2O・・・(2)
NaCl+1/2Ca(OH)2→ 1/2CaCl2+NaOH・・・(3)
しかしながら、式(1)で示すように、ソーダライムでハロゲンガスを除去するためには水分が必要であり、ドライエッチングガスのように、乾燥したガス中でソーダライムを使用すると、水分が蒸発してしまうため、ドライエッチングガスに使用されるハロゲンガスを除去することは困難である。
HCl + H 2 O → H 3 ClO (1)
H 3 ClO + NaOH → NaCl + 2H 2 O (2)
NaCl + 1 / 2Ca (OH) 2 → 1 / 2CaCl 2 + NaOH (3)
However, as shown by the formula (1), moisture is required to remove halogen gas with soda lime, and when soda lime is used in a dry gas such as dry etching gas, the moisture evaporates. Therefore, it is difficult to remove the halogen gas used for the dry etching gas.
また、特開平9−99216号公報には、NaOHの代わりに水酸化ストロンチウムを使用することで水分量の低減によるハロゲンガス吸収能の低下を防止したハロゲンガス吸収材が開示されているが、この技術にしても反応に水分は必要であり、乾燥雰囲気下にけるハロゲンガスの吸収には限界があり、頻繁に吸収材を交換しなければならない。
上述したように、湿式法によるハロゲンガス除去はハロゲンガスの回収が困難であり、アルカリ成分を含有する粒子を用いた乾式法においては、乾燥したガス中からハロゲンガスを除去することに適していなかった。 As described above, the halogen gas removal by the wet method is difficult to recover the halogen gas, and the dry method using particles containing alkali components is not suitable for removing the halogen gas from the dried gas. It was.
本発明のハロゲンガス吸収材は、ハロゲンガスを含有する気体中からハロゲンガスを吸収するハロゲンガス吸収材であって、平均粒径50μm以上、3mm以下のリチウムシリケート、リチウムジルコネート、リチウムチタネートから選ばれる少なくとも一種からなる粒子を含有することを特徴とする。
前記粒子は、Li4SiO4またはLi2ZrO3であることが好ましい。
The halogen gas absorber of the present invention is a halogen gas absorber that absorbs a halogen gas from a gas containing a halogen gas, and is selected from lithium silicate, lithium zirconate, and lithium titanate having an average particle size of 50 μm or more and 3 mm or less. It is characterized by containing at least one kind of particles .
The particles are preferably Li 4 SiO 4 or Li 2 ZrO 3 .
また、本発明のハロゲンガス吸収材は、ハロゲンガスを含有する気体中からハロゲンガスを吸収するハロゲンガス吸収材であって、リチウムシリケート、リチウムジルコネート、リチウムチタネートから選ばれる少なくとも一種からなる粒子を含有する気孔率30%以上、70%以下の多孔質体からなる平均粒径50μm以上、30mm以下の粒子であることを特徴とする。 The halogen gas absorber of the present invention is a halogen gas absorber that absorbs a halogen gas from a gas containing a halogen gas, and particles comprising at least one selected from lithium silicate, lithium zirconate, and lithium titanate. It is characterized by being particles having an average particle diameter of 50 μm or more and 30 mm or less made of a porous material having a porosity of 30% or more and 70% or less.
本発明のハロゲンガスの除去方法は、ハロゲンガスを含有する気体を、平均粒径50μm以上、3mm以下のリチウムシリケート、リチウムジルコネート、リチウムチタネートから選ばれる少なくとも一種からなる粒子に接触させることを特徴とする。 The halogen gas removal method of the present invention is characterized in that a gas containing a halogen gas is brought into contact with particles composed of at least one selected from lithium silicate, lithium zirconate, and lithium titanate having an average particle size of 50 μm to 3 mm. And
また、本発明のハロゲンガスの除去方法は、ハロゲンガスを含有する気体を、リチウムシリケート、リチウムジルコネート、リチウムチタネートから選ばれる少なくとも一種からなる粒子を含有する気孔率30%以上、70%以下の多孔質体からなる平均粒径50μm以上、30mm以下の粒子に接触させることを特徴とする。 In the halogen gas removal method of the present invention, the gas containing the halogen gas has a porosity of 30% or more and 70% or less containing particles composed of at least one selected from lithium silicate, lithium zirconate, and lithium titanate . It is characterized by contacting with particles having an average particle diameter of 50 μm or more and 30 mm or less made of a porous material.
本発明のハロゲンガス処理装置は、ハロゲンガスを含有する気体を導入する導入口、及び排出口を有する容器と、前記容器内に充填された、平均粒径50μm以上、3mm以下のリチウムシリケート、リチウムジルコネート、リチウムチタネートから選ばれる少なくとも一種からなる粒子とを具備することを特徴とする。 The halogen gas treatment apparatus of the present invention includes a container having an inlet for introducing a gas containing a halogen gas and a discharge port, a lithium silicate having an average particle size of 50 μm or more and 3 mm or less filled in the container, lithium silicate, And particles comprising at least one selected from zirconate and lithium titanate .
また、本発明のハロゲンガス処理装置は、ハロゲンガスを含有する気体を導入する導入口、及び排出口を有する容器と、前記容器内に充填された、リチウムシリケート、リチウムジルコネート、リチウムチタネートから選ばれる少なくとも一種からなる粒子を含有する気孔率30%以上、70%以下の多孔質体からなる平均粒径50μm以上、30mm以下の粒子とを具備することを特徴とする。 Further, the halogen gas processing apparatus of the present invention is selected from a container having an inlet for introducing a gas containing a halogen gas and an outlet, and lithium silicate, lithium zirconate, and lithium titanate filled in the container. And particles having an average particle diameter of 50 μm or more and 30 mm or less made of a porous material having a porosity of 30% or more and 70% or less containing particles composed of at least one kind .
本発明によれば、乾燥したガス中からハロゲンガスを効率よく吸収することが可能になる。 According to the present invention, it is possible to efficiently absorb halogen gas from dried gas .
(第1の実施形態)
第1の実施形態に用いられるハロゲンガス吸収材は、リチウム化複合酸化物を含有している。
(First embodiment)
The halogen gas absorber used in the first embodiment contains a lithiated composite oxide.
リチウム化複合酸化物とは、具体的には、リチウムシリケート、リチウムジルコネート、リチウムフェライト、リチウムニッケレート、リチウムチタネート、リチウムアルミネートなどが挙げられ、これらの成分を複数含有していても構わない。 Specific examples of the lithiated composite oxide include lithium silicate, lithium zirconate, lithium ferrite, lithium nickelate, lithium titanate, lithium aluminate, and the like, and a plurality of these components may be contained. .
このようなリチウム複合酸化物の粉末は、酸化ケイ素は、酸化ジルコニウム、酸化鉄、酸化ニッケル、酸化チタン、酸化アルミニウムなどの金属酸化物粉末と、炭酸リチウム粉末とを反応させることで製造することができる。これらの原料紛は、例えば平均粒径0.1μm〜20μmのものを使用すればよい。具体的に、リチウムシリケート、リチウムジルコネートの生成反応を以下の式(4)、(5)に示す。 Such lithium composite oxide powder can be produced by reacting silicon oxide with lithium carbonate powder and metal oxide powder such as zirconium oxide, iron oxide, nickel oxide, titanium oxide, and aluminum oxide. it can. As these raw material powders, for example, those having an average particle diameter of 0.1 μm to 20 μm may be used. Specifically, the formation reaction of lithium silicate and lithium zirconate is shown in the following formulas (4) and (5).
SiO2+2Li2CO3→Li4SiO4+2CO2・・・(4)
ZrO2+Li2C O3→Li2ZrO3+CO2・・・(5)
リチウムシリケート、リチウムジルコネート、リチウムフェライト、リチウムニッケレート、リチウムチタネート、リチウムアルミネートの反応温度はそれぞれ、400℃以上、500℃以上、300℃以上、400℃以上、400℃以上、500℃以上である。なお、これらの反応は可逆的なものであって、前述した温度よりも低温になるとリチウム化複合酸化物は金属酸化物に戻ってしまう。そのため、製造されたリチウム化複合酸化物は、密閉容器など二酸化炭素を除去した環境で保存することが望ましい。
SiO 2 + 2Li 2 CO 3 → Li 4 SiO 4 + 2CO 2 (4)
ZrO 2 + Li 2 CO 3 → Li 2 ZrO 3 + CO 2 (5)
The reaction temperature of lithium silicate, lithium zirconate, lithium ferrite, lithium nickelate, lithium titanate, and lithium aluminate is 400 ° C or higher, 500 ° C or higher, 300 ° C or higher, 400 ° C or higher, 400 ° C or higher, 500 ° C or higher, respectively. is there. These reactions are reversible, and the lithiated composite oxide returns to the metal oxide when the temperature is lower than the above-described temperature. Therefore, it is desirable to store the manufactured lithiated composite oxide in an environment from which carbon dioxide has been removed, such as a sealed container.
次に、ハロゲンガスの吸収反応について説明する。 Next, the absorption reaction of the halogen gas will be described.
ハロゲンガスとして塩化水素ガスを使用した場合の、これらのリチウム複合酸化物の吸収反応を以下の化学式(6)〜(12)に示す。 The absorption reactions of these lithium composite oxides when hydrogen chloride gas is used as the halogen gas are shown in the following chemical formulas (6) to (12).
Li4SiO4(s)+4HCl→4LiCl(s)+SiO2(s)+2H2O・・・(6)
Li2SiO3(s)+2HCl→2LiCl(s)+SiO2(s)+H2O・・・(7)
Li2ZrO3(s)+2HCl→2LiCl(s)+ZrO2(s)+H2O・・・(8)
2LiFeO2(s)+2HCl→2LiCl(s)+Fe2O3(s)+H2O・・・(9)
2LiNiO2(s)+2HCl→2LiCl(s)+Ni2O3(s)+H2O・・・(10)
Li 2TiO3(s)+2HCl→2LiCl(s)+TiO2(s)+H2O・・・(11)
2LiAlO2(s)+2HCl→2LiCl(s)+Al2O3(s)+H2O・・・(12)
なお、リチウムシリケートは、式(6)、(7)で示すように2種類あるが、式(6)で示したリチウムシリケート(Li4SiO4)は、式(7)〜(12)で示すリチウム化複合酸化物に対して理論的に2倍(モル比)のハロゲンガスを回収することが可能である。
Li 4 SiO 4 (s) + 4HCl → 4LiCl (s) + SiO 2 (s) + 2H 2 O (6)
Li 2 SiO 3 (s) + 2HCl → 2LiCl (s) + SiO 2 (s) + H 2 O (7)
Li 2 ZrO 3 (s) + 2HCl → 2LiCl (s) + ZrO 2 (s) + H 2 O (8)
2LiFeO 2 (s) + 2HCl → 2LiCl (s) + Fe 2 O 3 (s) + H 2 O (9)
2LiNiO 2 (s) + 2HCl → 2LiCl (s) + Ni 2 O 3 (s) + H 2 O (10)
Li 2 TiO 3 (s) + 2HCl → 2LiCl (s) + TiO 2 (s) + H 2 O (11)
2LiAlO 2 (s) + 2HCl → 2LiCl (s) + Al 2 O 3 (s) + H 2 O (12)
There are two types of lithium silicate as shown in formulas (6) and (7), but the lithium silicate (Li 4 SiO 4 ) shown in formula (6) is shown in formulas (7) to (12). It is possible to recover a halogen gas that is theoretically twice (molar ratio) to the lithiated composite oxide.
本発明のハロゲンガス吸収材は、塩化水素ガスに限らず、フッ素ガス、塩素ガス、塩化水素ガス、フッ化塩素ガス、臭素ガス、臭化水素ガス、ヨウ素ガス、ヨウ化水素ガスなど、各種ハロゲンガスの吸収に使用することができる。 The halogen gas absorbent of the present invention is not limited to hydrogen chloride gas, but various halogens such as fluorine gas, chlorine gas, hydrogen chloride gas, chlorine fluoride gas, bromine gas, hydrogen bromide gas, iodine gas, and hydrogen iodide gas. Can be used for gas absorption.
Li4SiO4(s)+ClF3 →3LiF(s)+LiClO2(s)+SiO2 ・・・(13)
Li4SiO4(s)+4HF→4LiF(s)+SiO2(s)+2H2O ・・・(14)
第1の実施形態においては、このリチウム化複合酸化物は平均粒径50μm以上、3mm以下の顆粒として使用することを特徴としている。
Li 4 SiO 4 (s) + ClF 3 → 3LiF (s) + LiClO 2 (s) + SiO 2 (13)
Li 4 SiO 4 (s) + 4HF → 4LiF (s) + SiO 2 (s) + 2H 2 O (14)
In the first embodiment, the lithiated composite oxide is used as granules having an average particle size of 50 μm or more and 3 mm or less.
平均粒径が50μmよりも小さい粉末を使用すると、粒子同士が密に詰まり粒子間の隙間が小さくなるため、粉末中を流れる被処理ガス(前述したようなハロゲンガスを含有した気体)の流量を確保することが困難になり、ハロゲンガスを効率よく吸収することができなくなるおそれがある。一方、平均粒径が3mmを超える粒子を使用すると、リチウム化複合酸化物とハロゲンガスとの接触確率(接触面積/体積)が小さくなるため、ハロゲンガスの吸収効率が低下する。 When a powder having an average particle size smaller than 50 μm is used, the particles are closely packed and the gap between the particles is reduced, so that the flow rate of the gas to be processed (the gas containing the halogen gas as described above) flowing in the powder is reduced. It may be difficult to ensure, and the halogen gas may not be absorbed efficiently. On the other hand, when particles having an average particle size exceeding 3 mm are used, the probability of contact between the lithiated composite oxide and the halogen gas (contact area / volume) decreases, so the halogen gas absorption efficiency decreases.
従来のソーダライムのようなハロゲンガス吸収材は、式(1)で示したように反応するためには、水分を必須成分としているため、乾燥ガス中で使用する際には粒径5mm程度の粗大粒子を用いるなどして保湿性を高める必要があった。これに対してリチウム化複合酸化物は、式(6)〜(14)で示されるようにハロゲンガスとの反応に水分を必要としないため、平均粒径3mm以下とすることが可能になり、前述したようにハロゲンガスとの接触確率を高め、ハロゲンガスを効率よく吸収することが可能になる。 Conventional halogen gas absorbers such as soda lime have moisture as an essential component for the reaction as shown in the formula (1). Therefore, when used in a dry gas, the particle size is about 5 mm. It was necessary to improve the moisture retention by using coarse particles. On the other hand, since the lithiated composite oxide does not require moisture for the reaction with the halogen gas as shown by the formulas (6) to (14), the average particle size can be 3 mm or less. As described above, the contact probability with the halogen gas is increased, and the halogen gas can be efficiently absorbed.
リチウム化複合酸化物粉末を平均粒径50μm〜3mm程度の顆粒状にする方法としては、転動法やスプレードライ法などが挙げられる。 Examples of the method of making the lithiated composite oxide powder into granules having an average particle size of about 50 μm to 3 mm include a rolling method and a spray drying method.
転動法は平均粒径0.05〜3mm程度の比較的粒径の大きな顆粒を製造するのに適しており、例えば、0.1〜20μm程度のリチウム化複合酸化物粉末と、バインダ樹脂粉末とを重量比で1:0.005〜0.1の比率で混合した混合物を、傾斜回転皿の回転速度を50rpm〜500rpm程度で、1〜60min程度の処理を行うことで得ることができる。バインダ樹脂としては、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)、ワックス、パラフィン、CMC(カルボキシルメチルセルロース)等を使用することができる。PVA、CMCのような特性の樹脂を用いると比較的粒径が大きくなり、PVB、ワックスのような特性のバインダ樹脂を用いると比較的粒径の小さな顆粒が得られる。また、処理時間を長くする、あるいは回転速度を小さくするほど、平均粒径が大きくなる。 The rolling method is suitable for producing granules having an average particle size of about 0.05 to 3 mm and a relatively large particle size. For example, a lithiated composite oxide powder of about 0.1 to 20 μm and a binder resin powder Can be obtained by performing a treatment for about 1 to 60 minutes at a rotational speed of the inclined rotating pan of about 50 rpm to about 500 rpm. As the binder resin, PVA (polyvinyl alcohol), PVB (polyvinyl butyral), wax, paraffin, CMC (carboxyl methyl cellulose) and the like can be used. When a resin having characteristics such as PVA and CMC is used, a relatively large particle diameter is obtained. When a binder resin having characteristics such as PVB and wax is used, granules having a relatively small particle diameter are obtained. Further, the longer the processing time or the lower the rotation speed, the larger the average particle size.
スプレードライ法は10μm〜500μm程度の比較的粒径の小さな顆粒を製造するのに適しており、例えば、0.1〜20μm程度のリチウム化複合酸化物粉末に、水とバインダ樹脂とを添加してスラリーを調整し、このスラリーを熱風が循環している炉内に噴霧すれば良い。調整するスラリーの粘度を調整することで得られる顆粒のサイズを調整でき、スラリーの粘度が高くなるにしたがって、その粒径は大きくなる。具体的にはスラリーの粘度が10mPa・s〜500mPa・s程度となるように、バインダ樹脂や水の添加量を調整すれば良い。
(第2の実施形態)
第2の実施形態に用いられるハロゲンガス吸収材は、組成、製造工程における原料や反応式、被処理ガス中に含有されるハロゲンガスの種類、ハロゲンガスとの反応式、ハロゲンガスを吸収した吸収材からのハロゲンガスの回収・抽出方法等については、第1の実施形態と同様である。
The spray drying method is suitable for producing granules having a relatively small particle size of about 10 μm to 500 μm. For example, water and a binder resin are added to a lithiated composite oxide powder of about 0.1 to 20 μm. The slurry may be adjusted and sprayed into the furnace in which the hot air is circulating. The size of the granules obtained can be adjusted by adjusting the viscosity of the slurry to be adjusted, and the particle diameter increases as the viscosity of the slurry increases. Specifically, the amount of binder resin or water added may be adjusted so that the viscosity of the slurry is about 10 mPa · s to 500 mPa · s.
(Second Embodiment)
The halogen gas absorbing material used in the second embodiment includes the composition, the raw material and reaction formula in the manufacturing process, the type of halogen gas contained in the gas to be treated, the reaction formula with the halogen gas, and the absorption absorbed by the halogen gas. The method for recovering and extracting the halogen gas from the material is the same as in the first embodiment.
第2の実施形態においては、ハロゲンガス吸収材が、気孔率30%〜70%の多孔質体からなる平均粒径50μm以上、30mm以下の粒子であることを特徴としている。但し、粒径1mmに満たない多孔質の粒子を製造することは困難であり、製造面を考慮すると平均粒径1mm以上とすることが好ましい。なお、ここでいう気孔率とは、水銀圧入法で測定した結果得られる気孔率である。 The second embodiment is characterized in that the halogen gas absorbing material is particles having an average particle diameter of 50 μm or more and 30 mm or less made of a porous body having a porosity of 30% to 70%. However, it is difficult to produce porous particles having a particle diameter of less than 1 mm, and the average particle diameter is preferably 1 mm or more in consideration of the production surface. In addition, the porosity here is a porosity obtained as a result of measuring by the mercury intrusion method.
すなわち、平均粒径を50μm〜30mmと大きくすることで粒子間の間隔を大きくし、粒子間に流れる被処理ガスの圧損を低減することが可能となり、また、粒径が大きくなることによる、被処理ガスと炭酸ガス吸収材との接触率が低下するのを防止するために、多孔質の粒子を使用するものである。 That is, by increasing the average particle size to 50 μm to 30 mm, it is possible to increase the interval between the particles, to reduce the pressure loss of the gas to be processed flowing between the particles, and to increase the average particle size. In order to prevent the contact rate between the processing gas and the carbon dioxide absorbing material from decreasing, porous particles are used.
すなわち、平均粒径が50μmよりも小さくなると、被処理ガスが粒子間を通過するのが困難になり、被処理ガス中のハロゲンガスを効率よく吸収することができなくなり、30mmよりも大きくなると多孔質体の細孔を通過せずに粒子間を通過する被処理ガス量が多くなり、十分にハロゲンガスを吸収できなくなる恐れがある。 That is, if the average particle size is smaller than 50 μm, it becomes difficult for the gas to be treated to pass between the particles, and the halogen gas in the gas to be treated cannot be efficiently absorbed. There is a possibility that the amount of gas to be processed that passes between the particles without passing through the pores of the material increases, and the halogen gas cannot be sufficiently absorbed.
また、気孔率が30%よりも少ないとハロゲンガス吸収材と被処理ガスとの接触率が少なくなり、ハロゲンガスの吸収率が低下する恐れがある。気孔率が70%を超えるとハロゲンガス吸収材自体の量が少なくなり、ハロゲンガス吸収量が少なくなる。また、気孔率が70%を超えると粒子の強度が低下し、その形状を維持できなくなる恐れがある。 On the other hand, if the porosity is less than 30%, the contact rate between the halogen gas absorbent and the gas to be treated is decreased, and the absorption rate of the halogen gas may be lowered. When the porosity exceeds 70%, the amount of the halogen gas absorbing material itself decreases, and the halogen gas absorption amount decreases. Moreover, when the porosity exceeds 70%, the strength of the particles is lowered, and there is a possibility that the shape cannot be maintained.
また、第2の実施形態におけるハロゲンガス吸収材粒子は柱状体であってもよく、柱状体の場合の粒径は柱状体の長さとする。 In addition, the halogen gas absorbent particles in the second embodiment may be a columnar body, and the particle diameter in the case of the columnar body is the length of the columnar body.
次に、第2の実施形態のハロゲンガス吸収材の製造方法を説明する。 Next, a method for manufacturing the halogen gas absorbent according to the second embodiment will be described.
平均粒径0.1μm〜1mm程度のリチウム複合酸化物粉末を作製する際には、第1の実施形態に述べた転動法を採用すればよい。但し、リチウム複合酸化物粉末とバインダ樹脂粉末との比率を1:0.001〜0.05程度に少なくする必要がある。バインダ樹脂の量が0.05よりも多くなるとバインダ樹脂によって細孔が埋められ、気孔率が30%以下になる恐れがある。 When producing a lithium composite oxide powder having an average particle size of about 0.1 μm to 1 mm, the rolling method described in the first embodiment may be employed. However, it is necessary to reduce the ratio of the lithium composite oxide powder and the binder resin powder to about 1: 0.001 to 0.05. When the amount of the binder resin is more than 0.05, the pores are filled with the binder resin, and the porosity may be 30% or less.
平均粒径1mm〜30mm程度の炭酸ガス吸収材を作製するには、リチウム複合酸化物粉末を所定サイズの金型などによって圧縮成形すればよい。例えば500〜1000kg/m2程度の圧力をリチウム複合酸化物粉末にかけることで、気孔率30〜70%程度の粒子を作製することができる。 In order to produce a carbon dioxide absorbing material having an average particle size of about 1 mm to 30 mm, the lithium composite oxide powder may be compression-molded with a mold having a predetermined size. For example, particles having a porosity of about 30 to 70% can be produced by applying a pressure of about 500 to 1000 kg / m 2 to the lithium composite oxide powder.
図1にハロゲンガス処理装置の一例を示す。 FIG. 1 shows an example of a halogen gas processing apparatus.
処理容器1内には、前述した平均粒径50μm〜3mmのリチウム化複合酸化物粒子からなるハロゲンガス吸収材2が充填されている。また、処理容器1には導入口3と排出口4とが設けられている。
The processing container 1 is filled with the halogen gas absorbent 2 made of the lithiated composite oxide particles having an average particle diameter of 50 μm to 3 mm described above. Further, the processing container 1 is provided with an
ハロゲンガスを含有する被処理ガス5が導入口3から導入され、充填されたハロゲンガス吸収材2の粒子間を通過する。この時被処理ガス5中のハロゲンガスはハロゲンガス吸収材2によって吸収される。そして、ハロゲンガス吸収材2の粒子間を通過した被処理ガスは、排出口4から排出される。このような処理装置によって、被処理ガス中のハロゲンガス濃度を低減させることができる。
A gas to be treated 5 containing a halogen gas is introduced from the
実施例1
平均粒径1μmの金属酸化物(酸化ケイ素)粉末と平均粒径1μmの炭酸リチウム粉末とを1:2のモル比で混合して混合粉末を得た。この混合粉末を大気中900℃で焼成して平均粒径1μmのリチウム化複合酸化物(Li4SiO4)粉末を生成した。
Example 1
A metal oxide (silicon oxide) powder having an average particle diameter of 1 μm and a lithium carbonate powder having an average particle diameter of 1 μm were mixed at a molar ratio of 1: 2 to obtain a mixed powder. This mixed powder was fired at 900 ° C. in the atmosphere to produce a lithiated composite oxide (Li 4 SiO 4 ) powder having an average particle size of 1 μm.
このリチウム化複合酸化物粉末とバインダ樹脂(PVA)とを1:0.01の重量比で混合し、これを転動法により平均粒径500μmの顆粒にしてハロゲンガス吸収材を得た。 This lithiated composite oxide powder and binder resin (PVA) were mixed at a weight ratio of 1: 0.01, and this was made into granules having an average particle diameter of 500 μm by a rolling method to obtain a halogen gas absorbent.
次に、以下のようにして得られたハロゲンガス吸収材の特性評価を行った。 Next, the characteristics of the halogen gas absorbent obtained as described below were evaluated.
このハロゲンガス吸収材50gを直径5mmの円筒に充填し、円筒中に被処理ガスを流通させて、ハロゲンガス吸収材と被処理ガスとを接触させた。被処理ガスは窒素ガス99%、HClガス1%の混合ガスで水分を1000ppm含有したものを用い、ガス流量は1l/secで180分間流通させた。また、ガス温度は10℃とした。 The halogen gas absorbing material 50g was filled in a cylinder having a diameter of 5 mm, and the gas to be processed was circulated in the cylinder to bring the halogen gas absorbing material and the gas to be processed into contact with each other. The gas to be treated was a mixed gas of 99% nitrogen gas and 1% HCl gas containing 1000 ppm of water, and the gas flow rate was 1 l / sec for 180 minutes. The gas temperature was 10 ° C.
被処理ガスを通過させた後のハロゲンガス吸収材の構成相をX線回折装置で同定したところ酸化ケイ素と塩化リチウムの混合物であることが確認できた。また、ハロゲンガス吸収材の重量を測定したところ、50gの重量増加が認められた。すなわち、ハロゲンガス(塩素ガス)吸収量が50gのであることが分った。 When the constituent phase of the halogen gas absorbent after passing the gas to be treated was identified with an X-ray diffractometer, it was confirmed that it was a mixture of silicon oxide and lithium chloride. Further, when the weight of the halogen gas absorbent was measured, a weight increase of 50 g was observed. That is, it was found that the absorption amount of halogen gas (chlorine gas) was 50 g.
実施例2〜4、参考例1
転動法の条件を変えて、あるいは転動法に代えてスプレードライ法を採用することで、表1に示す平均粒径のハロゲンガス吸収材を作製した。また、作製したハロゲンガス吸収材の組成と、被処理ガスを接触させた前後のハロゲンガス吸収材の重量変化を表1に併記する。
Examples 2-4, Reference Example 1
A halogen gas absorbent having an average particle size shown in Table 1 was produced by changing the conditions of the rolling method or employing a spray drying method instead of the rolling method. Table 1 also shows the composition of the produced halogen gas absorbent and the change in the weight of the halogen gas absorbent before and after contacting the gas to be treated.
実施例5、6
実施例1同様にしてハロゲンガス吸収材を作製し、 被処理ガスとして、HClの変りに表1に示すハロゲンガスを使用したことを除き、実施例1と同様にしてハロゲンガス吸収材と被処理ガスとを接触させた。
Examples 5 and 6
A halogen gas absorbing material was produced in the same manner as in Example 1, and the halogen gas absorbing material and the material to be treated were treated in the same manner as in Example 1 except that the halogen gas shown in Table 1 was used instead of HCl as the gas to be treated. Contact with gas.
作製したハロゲンガス吸収材の組成と、被処理ガスを接触させた前後のハロゲンガス吸収材の重量変化を表1に示す。 Table 1 shows the composition of the produced halogen gas absorbent and the change in the weight of the halogen gas absorbent before and after contacting the gas to be treated.
実施例7〜12
金属酸化物の種類、及び(又は)、金属酸化物と炭酸リチウムとの比率を変えたことを除き、実施例1と同様にしてハロゲンガス吸収材を作製し、さらに実施例1と同様にしてハロゲンガス吸収材と被処理ガスとを接触させた。
Examples 7-12
A halogen gas absorbent was prepared in the same manner as in Example 1 except that the type of metal oxide and / or the ratio between the metal oxide and lithium carbonate was changed. The halogen gas absorber was brought into contact with the gas to be treated.
作製したハロゲンガス吸収材の組成と、被処理ガスを接触させた前後のハロゲンガス吸収材の重量変化を表1に示す。 Table 1 shows the composition of the produced halogen gas absorbent and the change in the weight of the halogen gas absorbent before and after contacting the gas to be treated.
比較例1
リチウム複合酸化物の代わりにソーダライムを使用したことを除き、実施例1と同様にして平均粒径1μmの炭酸ガス吸収材を作製した。また、この炭酸ガス吸収材を用いて実施例1と同様にして炭酸ガスの吸収量を測定した。その結果を表1に示す。
Comparative Example 1
A carbon dioxide absorbent having an average particle size of 1 μm was prepared in the same manner as in Example 1 except that soda lime was used instead of the lithium composite oxide. Further, the amount of carbon dioxide absorbed was measured in the same manner as in Example 1 using this carbon dioxide absorbent. The results are shown in Table 1.
実施例13
実施例1と同様にして平均粒径1μmのリチウム化複合酸化物(Li4SiO4)粉末を生成した。
Example 13
In the same manner as in Example 1, a lithium composite oxide (Li 4 SiO 4 ) powder having an average particle diameter of 1 μm was produced.
このリチウム複合酸化物粉末を金型に入れて圧縮成形して粒径15mmのハロゲンガス吸収材を得た。この気孔率を測定したところ40%であった。 This lithium composite oxide powder was put into a mold and compression molded to obtain a halogen gas absorber having a particle size of 15 mm. When this porosity was measured, it was 40%.
このハロゲンガス吸収材の特性評価を実施例1と同様にして行った。その結果を表2に示す。 The characteristics of this halogen gas absorber were evaluated in the same manner as in Example 1. The results are shown in Table 2.
実施例14〜17、参考例2〜4
金型を代えたこと、また圧縮力を変化させたことを除き、実施例13と同様にして、表2に示すサイズ、気孔率のハロゲンガス吸収材を作製した。
Examples 14-17, Reference Examples 2-4
A halogen gas absorbent having the size and porosity shown in Table 2 was produced in the same manner as in Example 13 except that the mold was changed and the compressive force was changed.
また、実施例1と同様にして特性評価を行った。その結果を表2に併記する。 The characteristics were evaluated in the same manner as in Example 1. The results are also shown in Table 2.
実施例18〜21
金属酸化物の種類、及び(又は)、金属酸化物と炭酸リチウムとの比率を変えて、表2に示すリチウム化複合酸化物粉末を生成した。
Examples 18-21
The lithiated composite oxide powder shown in Table 2 was produced by changing the kind of metal oxide and / or the ratio of metal oxide and lithium carbonate.
リチウム化複合酸化物の種類を変えたことを除き、実施例13と同様にしてハロゲンガス吸収材を作製した。 A halogen gas absorber was produced in the same manner as in Example 13 except that the type of lithiated composite oxide was changed.
また、実施例1と同様にして特性評価を行った。その結果を表2に併記する。 The characteristics were evaluated in the same manner as in Example 1. The results are also shown in Table 2.
表1、2から明らかなように実施例のハロゲンガス吸収材は、比較例であるソーダライムと異なり、乾燥したガス中から効率よくハロゲンガスを吸収できることがわかる。 As is clear from Tables 1 and 2, it can be seen that the halogen gas absorbing material of the example can efficiently absorb the halogen gas from the dried gas, unlike the soda lime which is the comparative example.
1・・・容器
2・・・炭酸ガス吸収材
3・・・導入口
4・・・排出口
5・・・導入ガス
6・・・排出ガス
DESCRIPTION OF SYMBOLS 1 ... Container 2 ... Carbon dioxide
Claims (7)
平均粒径50μm以上、3mm以下のリチウムシリケート、リチウムジルコネート、リチウムチタネートから選ばれる少なくとも一種からなる粒子を含有することを特徴とするハロゲンガス吸収材。 A halogen gas absorber that absorbs halogen gas from a gas containing halogen gas,
A halogen gas absorber comprising particles comprising at least one selected from lithium silicate, lithium zirconate, and lithium titanate having an average particle size of 50 μm or more and 3 mm or less.
リチウムシリケート、リチウムジルコネート、リチウムチタネートから選ばれる少なくとも一種からなる粒子を含有する気孔率30%以上、70%以下の多孔質体からなる平均粒径50μm以上、30mm以下の粒子であることを特徴とするハロゲンガス吸収材。 A halogen gas absorber that absorbs halogen gas from a gas containing halogen gas,
It is a particle having an average particle size of 50 μm or more and 30 mm or less composed of a porous material having a porosity of 30% or more and 70% or less containing particles composed of at least one selected from lithium silicate, lithium zirconate, and lithium titanate. Halogen gas absorber.
前記容器内に充填された、平均粒径50μm以上、3mm以下のリチウムシリケート、リチウムジルコネート、リチウムチタネートから選ばれる少なくとも一種からなる粒子とを具備することを特徴とするハロゲンガス処理装置。 A container having an inlet for introducing a gas containing a halogen gas and an outlet;
It filled in the container, an average particle diameter of 50μm or more, 3 mm or less of lithium silicate, lithium zirconate, halogen gas treatment apparatus characterized by comprising a particle element composed of at least one selected from lithium titanate.
前記容器内に充填された、リチウムシリケート、リチウムジルコネート、リチウムチタネートから選ばれる少なくとも一種からなる粒子を含有する気孔率30%以上、70%以下の多孔質体からなる平均粒径50μm以上、30mm以下の粒子とを具備することを特徴とするハロゲンガス処理装置。 A container having an inlet for introducing a gas containing a halogen gas and an outlet;
An average particle diameter of 50 μm or more and 30 mm consisting of a porous material having a porosity of 30% or more and 70% or less containing particles composed of at least one selected from lithium silicate, lithium zirconate and lithium titanate filled in the container. A halogen gas processing apparatus comprising the following particles.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003319963A JP3770608B2 (en) | 2003-09-11 | 2003-09-11 | Halogen gas absorber, halogen gas removal method and halogen gas processing apparatus |
US10/935,104 US20050106088A1 (en) | 2003-09-11 | 2004-09-08 | Halogen-containing gas absorbent, halogen-containing gas removal method,and halogen-containing gas processing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003319963A JP3770608B2 (en) | 2003-09-11 | 2003-09-11 | Halogen gas absorber, halogen gas removal method and halogen gas processing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005081328A JP2005081328A (en) | 2005-03-31 |
JP3770608B2 true JP3770608B2 (en) | 2006-04-26 |
Family
ID=34418752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003319963A Expired - Fee Related JP3770608B2 (en) | 2003-09-11 | 2003-09-11 | Halogen gas absorber, halogen gas removal method and halogen gas processing apparatus |
Country Status (2)
Country | Link |
---|---|
US (1) | US20050106088A1 (en) |
JP (1) | JP3770608B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4498183B2 (en) * | 2005-03-23 | 2010-07-07 | 株式会社東芝 | Hydrogen chloride gas absorbent and method for removing hydrogen chloride gas |
JP4435066B2 (en) * | 2005-09-29 | 2010-03-17 | 株式会社東芝 | Hydrogen halide gas detector and hydrogen halide gas absorber |
JPWO2007135823A1 (en) * | 2006-05-19 | 2009-10-01 | 旭硝子株式会社 | Halogen gas removal method and halogen gas removal agent |
CN103265038A (en) * | 2013-05-10 | 2013-08-28 | 安徽龙泉硅材料有限公司 | Water glass draining and filling apparatus |
PL3210244T3 (en) * | 2015-05-11 | 2018-06-29 | Saes Getters S.P.A. | Led system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6387845B1 (en) * | 1999-03-23 | 2002-05-14 | Kabushiki Kaisha Toshiba | Carbon dioxide gas absorbent containing lithium silicate |
JP2003326159A (en) * | 2002-03-06 | 2003-11-18 | Toshiba Corp | Carbon dioxide absorber, its manufacturing method, and its regeneration method |
-
2003
- 2003-09-11 JP JP2003319963A patent/JP3770608B2/en not_active Expired - Fee Related
-
2004
- 2004-09-08 US US10/935,104 patent/US20050106088A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
JP2005081328A (en) | 2005-03-31 |
US20050106088A1 (en) | 2005-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4002054B2 (en) | Pressure swing adsorption method for carbon dioxide adsorption | |
JPH07506048A (en) | HCl adsorbent and method for its manufacture and use | |
CN107787248B (en) | Method for preparing adsorbent material comprising step of precipitating boehmite under specific conditions and method for extracting lithium from salt solution using the same | |
WO2006001607A1 (en) | Oxygen generating composition | |
JP4648977B2 (en) | Halide scavenger for high temperature applications | |
TW201829049A (en) | Agent for removing halogen gas, method for producing same, method for removing halogen gas with use of same, and system for removing halogen gas | |
JP5145904B2 (en) | Halogen-based gas scavenger and halogen-based gas scavenging method using the same | |
CN103818939B (en) | Hydrogen peroxide fluid bed special aluminium oxide and production technology | |
JP3770608B2 (en) | Halogen gas absorber, halogen gas removal method and halogen gas processing apparatus | |
JP2010180086A (en) | Method for producing slaked lime | |
KR101297663B1 (en) | Adsorbent for removing acid gas in hydrocarbons or hydrogen, and its preparation method | |
KR101735174B1 (en) | Method of manufacturing dry sorbents for high-temperature carbon dioxide capture based lithium silicate and dry sorbents for high-temperature carbon dioxide capture | |
JP7555541B2 (en) | Fluorine adsorbent manufacturing method and fluorine removal and recovery method | |
JP2010137174A (en) | Detoxifying agent for halogen gas and method for detoxifying halogen gas using the same | |
KR100412982B1 (en) | Cleaning agent of harmful gas and purification method using it | |
RU2659256C1 (en) | Method for producing co2 high-temperature adsorbents | |
JP4498183B2 (en) | Hydrogen chloride gas absorbent and method for removing hydrogen chloride gas | |
JP4051399B2 (en) | Desiccant raw material and production method thereof | |
JP2011200750A (en) | Method for removing halogen-based gas | |
JP2981861B2 (en) | Method for producing metal oxide airgel | |
JP3244728B2 (en) | Method for producing zeolite for gas separation and concentration | |
JPH0999216A (en) | Harmful gas purifying agent | |
WO2017146130A1 (en) | Method for processing radioactive iodine-containing fluid | |
JP2733862B2 (en) | Method for producing spherical silica | |
Kim et al. | A study on removal of Pb 2+ ion using pellet-type red mud adsorbents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041228 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050415 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050606 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050819 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060206 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3770608 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100217 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100217 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110217 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130217 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |