JP4913271B2 - Halogen gas treatment agent - Google Patents

Halogen gas treatment agent Download PDF

Info

Publication number
JP4913271B2
JP4913271B2 JP19278699A JP19278699A JP4913271B2 JP 4913271 B2 JP4913271 B2 JP 4913271B2 JP 19278699 A JP19278699 A JP 19278699A JP 19278699 A JP19278699 A JP 19278699A JP 4913271 B2 JP4913271 B2 JP 4913271B2
Authority
JP
Japan
Prior art keywords
halogen gas
agent
treating agent
weight
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19278699A
Other languages
Japanese (ja)
Other versions
JP2001017831A (en
Inventor
靖 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sued Chemie Catalysts Japan Inc
Original Assignee
Sued Chemie Catalysts Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sued Chemie Catalysts Japan Inc filed Critical Sued Chemie Catalysts Japan Inc
Priority to JP19278699A priority Critical patent/JP4913271B2/en
Publication of JP2001017831A publication Critical patent/JP2001017831A/en
Application granted granted Critical
Publication of JP4913271B2 publication Critical patent/JP4913271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は半導体製造時に使用するハロゲン原子含有ガス等の製造工程時や半導体製造工程で排出される排ガス中のハロゲンガスを効率的に除去するに適した処理剤に関する。
【0002】
【従来の技術】
従来、ガス中に含まれるハロゲンガスを除去する手段としては、スクラバ−、スプレー塔、回転式微細気泡発生装置などを用い、これらのガスを水酸化ナトリウムなどのアルカリ水溶液と接触させて吸収させる湿式法や、塩素等のハロゲンガスを活性炭、ゼオライト、アルミナなどに吸着させたり、カルシウム化合物などと接触させて反応除去する乾式法が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら湿式法は、一般に後処理に難点がある上装置が複雑で大型になるばかりではなく、設備、保守ともに多額の費用を要するという欠点がある。一方乾式法も、活性炭、ゼオライト、アルミナのような吸着を利用して排ガス中の塩素等のハロゲンガスを除去する方法では、吸着と同時に脱離も起こるので有害成分が下流側にリ−クするという欠点がある。更に、活性炭の場合には、フッ素などの反応性のきわめて高いガスを処理する場合には火災の危険性もある。
【0004】
また、カルシウム化合物などを主成分とした処理剤の場合は、ハロゲンガスを除去する能力は十分ではない。従って、半導体製造プロセスから排出されるようなハロゲンガスに対して除去能力が高いだけでなく、脱離して下流側にリークするということがない上、除去の際における火災などの危険性がない除去剤の出現が望まれていた。
【0005】
そこで本発明者等は、安全で除去効率が良い上、下流側にリークする恐れのないハロゲンガスの除去剤について種種検討した結果、硫黄系還元剤を、特定の固体金属の酸化物、水酸化物、又は炭酸塩と共に使用する処理剤が、ハロゲンガスに対して脱離を起こすことのない、化学反応によってハロゲンを固定化することができる上除去能力が高いことを見出し、本発明を完成した。
従って本発明の目的は、安全で除去効率が高いだけでなく、下流側にリークする恐れのない、ハロゲンガスの除去剤を提供することにある。
【0006】
【課題を解決するための手段】
本発明の上記の目的は、亜鉛の酸化物、水酸化物及び炭酸塩の中から選択された少なくとも1種の無機化合物並びに成形助剤とからなる基材に、硫黄原子を含有する還元剤を含有せしめてなる処理剤であって、該処理剤中の前記還元剤の含有量が、前記無機化合物100重量部に対して1〜120重量部であることを特徴とするハロゲンガス用処理剤によって達成された。
【0007】
【発明の実施の形態】
本発明においては、亜鉛の酸化物、水酸化物、炭酸塩の中から選択される無機化合物を使用し、これらの無機化合物に、更にクレイ等の成形助剤を混合して成形する。このような、前記無機化合物と成形助剤からなる基材中における前記無機化合物の含有量は、5〜80重量%であることが好ましく特に20〜80重量%であることが好ましい。
前記成形助剤は本業界で公知のものの中から適宜選択することができるが、例えば、ベントナイトやカオリンなどのクレイが使用できる。
【0008】
本発明における硫黄原子を含有する還元剤の例としては、亜硫酸塩、亜二チオン酸塩、四チオン酸塩、チオ硫酸塩を挙げることができる。これらの還元剤は単独で使用することも、2種以上を併用することができる。還元剤の使用量は、成形助剤を除く、前記基材の中の無機化合物100重量部に対して1から120重量部、好ましくは10から80重量部である。この還元剤は、X+HO→HX+HXOの反応で発生するHXOを還元してXを生成させることにより、上記反応の進行を促進させるものである。
【0009】
本発明の処理剤の形状やサイズはその使用形態により適宜選択することができるが、一般的には直径が1〜6mmで長さが3〜20mm程度の円柱状ペレットが好適に用いられる。しかしながら、当然これに限定されるわけではなく、種々の異形状のペレット、錠剤形状、顆粒状及び破砕粒状、または噴霧乾燥による微粒子状などとすることもできる。
【0010】
例えば、一般的な押出円柱状ペレットを製造する場合には、所定量の酸化亜鉛とベントナイト粉末をニ−ダ−等の混合混練装置で十分に乾式混合した後に、混合粉末1重量部に対して0.2〜0.5重量部の、好ましくは0.3〜0.4重量部の水を添加して混練する。水を添加する際には混合物が不均一とならないように分割投入することが望ましい。
【0011】
得られた混合物を押出成形機あるいはペレタイザ−で、所定の形状のダイスを用いて円柱状ペレットに成形する。これを通常の空気雰囲気下の80〜400℃、好ましくは100〜300℃の温度で乾燥する。次いで、亜硫酸ナトリウム等の還元剤を少なくとも1種溶解した水溶液をペレットに含浸させて、再度、100℃で乾燥する。
【0012】
本発明の処理剤の製造方法は、上記の方法に限定されるわけではなく、例えば、必要に応じて添加した成形助剤と固体金属酸化物等の乾燥均一混合物に、硫黄原子含有還元剤の適当な濃度の水溶液を添加混錬した後、120℃以下で乾燥し、乾燥物を粉砕して製造することもできる。
【0013】
本発明の処理剤の使用方法は特に限定されるものではなく、移動床や流動床に使用することもできるが通常は固定床に使用する。例えば円筒内に充填し、これにハロゲンガスを含有する排気ガスを流通させ、排気ガス中のハロゲンガスを安全且つ効率良く除去することができる。
【0014】
【発明の効果】
本発明の処理剤は、低濃度の乾燥ガス中から安全且つ効率良くハロゲンガスを除去することができるので、大気中に排出する直前の排気ガスの処理に特に有用である。以下、本発明を実施例によって更に詳述するが、本発明はこれによって限定されるものではない。
【0015】
【実施例】
排ガス中の塩素除去試験
後記する各処理剤10mlを直径15mmの容器に充填し、塩素ガスを1%含有する乾燥窒素を、20℃の常圧下にて、35ml/分の流速で流通させ、除去能力が低下して下流側の塩素が1ppmに達するに至るまでの時間を測定した。ガス中の塩素濃度をガス検知管(ガステック(株)製)及びガス検知器(ガステック製、GCL−1A)で測定した。測定終了後に窒素でパ−ジした後の、処理剤の初期重量に対する重量変化率から吸収した塩素量を求めると共に、吸収した塩素が脱離するか否かを確認した。
【0016】
実施例1.
市販の酸化亜鉛300g、ベントナイト50g及びイオン交換水150gを混練機でよく混合した後、得られたウェットケ−キを1.6mmφのペレット状に押出成形し、乾燥機中で、270℃で8時間乾燥を行って基材のペレットを調製した。次いで、得られたペレットに30重量%の亜硫酸ナトリウム水溶液を含浸させ、乾燥機中で、100℃で8時間乾燥を行って本発明の処理剤を調製した。
【0017】
比較例1.
市販のモレキュラ−シ−ブ13X(2から3mmの球状)を処理剤として用いた。
比較例2.
市販の活性炭(2から3mmの顆粒)を処理剤として用いた。
比較例3.
亜硫酸水溶液を含浸させなかった他は実施例1と全く同様にして作製した基材ペレットを処理剤として用いた。
【0018】
各処理剤を用いて排ガス中の塩素処理能力試験を行った結果は表1に示した通りである。
【表1】

Figure 0004913271
表1の結果から明らかな如く、本発明の処理剤が、安全且つ確実に塩素を除去することができること、及び、処理剤としての寿命が長いことが実証された。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a treating agent suitable for efficiently removing a halogen gas in an exhaust gas discharged during a manufacturing process of a halogen atom-containing gas or the like used during semiconductor manufacturing or during a semiconductor manufacturing process.
[0002]
[Prior art]
Conventionally, as a means for removing the halogen gas contained in the gas, a scrubber, a spray tower, a rotating fine bubble generator, etc. are used, and these gases are wet contacted with an aqueous alkali solution such as sodium hydroxide. There is known a dry method in which halogen gas such as chlorine is adsorbed on activated carbon, zeolite, alumina or the like, or is contacted with a calcium compound or the like to remove the reaction.
[0003]
[Problems to be solved by the invention]
However, the wet method generally has a drawback in that post-treatment is difficult and the apparatus is not only complicated and large, but also requires a large amount of cost for both equipment and maintenance. On the other hand, in the dry method, a method of removing halogen gas such as chlorine in exhaust gas using adsorption such as activated carbon, zeolite, and alumina causes desorption at the same time as adsorption, so that harmful components leak downstream. There is a drawback. Further, in the case of activated carbon, there is a risk of fire when processing a highly reactive gas such as fluorine.
[0004]
Moreover, in the case of the processing agent which has a calcium compound etc. as a main component, the capability to remove a halogen gas is not enough. Therefore, not only does it have a high removal capability against halogen gases that are emitted from the semiconductor manufacturing process, but it does not detach and leak to the downstream side, and there is no risk of fire during removal. The appearance of the agent was desired.
[0005]
Accordingly, the present inventors have examined various types of halogen gas removal agents that are safe and have good removal efficiency and that do not leak to the downstream side. As a result, sulfur-based reducing agents have been converted into specific solid metal oxides, hydroxides. The present invention was completed by finding that the treatment agent used together with the product or carbonate can immobilize halogen by chemical reaction without causing desorption to the halogen gas and has high removal ability. .
Accordingly, an object of the present invention is to provide a halogen gas removing agent that is not only safe and has high removal efficiency but also does not leak to the downstream side.
[0006]
[Means for Solving the Problems]
The object of the present invention is to provide a reducing agent containing a sulfur atom on a base material comprising at least one inorganic compound selected from an oxide, hydroxide and carbonate of zinc and a molding aid. According to the halogen gas treating agent, wherein the treating agent is contained, and the content of the reducing agent in the treating agent is 1 to 120 parts by weight with respect to 100 parts by weight of the inorganic compound. Achieved.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, an inorganic compound selected from zinc oxide, hydroxide, and carbonate is used, and a molding aid such as clay is further mixed with these inorganic compounds for molding. The content of the inorganic compound in the base material composed of the inorganic compound and the molding aid is preferably 5 to 80% by weight, and more preferably 20 to 80% by weight.
The molding aid can be appropriately selected from those known in the art. For example, clays such as bentonite and kaolin can be used.
[0008]
Examples of the reducing agent containing a sulfur atom in the present invention include sulfites, dithionites, tetrathionates, and thiosulfates. These reducing agents can be used alone or in combination of two or more. The amount of the reducing agent used is 1 to 120 parts by weight, preferably 10 to 80 parts by weight, based on 100 parts by weight of the inorganic compound in the base material excluding the molding aid. This reducing agent promotes the progress of the above reaction by reducing HXO generated by the reaction of X 2 + H 2 O → HX + HXO to produce X .
[0009]
The shape and size of the treatment agent of the present invention can be appropriately selected depending on the usage form, but generally, cylindrical pellets having a diameter of 1 to 6 mm and a length of about 3 to 20 mm are preferably used. However, it is of course not limited to this, and various irregular shaped pellets, tablet shapes, granular and crushed particles, or fine particles by spray drying may be used.
[0010]
For example, in the case of producing a general extruded cylindrical pellet, a predetermined amount of zinc oxide and bentonite powder are sufficiently dry-mixed with a mixing and kneading apparatus such as a kneader and then mixed with 1 part by weight of the mixed powder. 0.2 to 0.5 parts by weight, preferably 0.3 to 0.4 parts by weight of water is added and kneaded. When adding water, it is desirable to divide the mixture so that the mixture does not become non-uniform.
[0011]
The obtained mixture is formed into cylindrical pellets using a die having a predetermined shape by an extruder or a pelletizer. This is dried at a temperature of 80 to 400 ° C., preferably 100 to 300 ° C. under a normal air atmosphere. Next, the pellet is impregnated with an aqueous solution in which at least one reducing agent such as sodium sulfite is dissolved, and dried again at 100 ° C.
[0012]
The method for producing the treating agent of the present invention is not limited to the above-mentioned method. For example, a sulfur atom-containing reducing agent is added to a dry homogeneous mixture such as a forming aid and a solid metal oxide added as necessary. An aqueous solution having an appropriate concentration can be added and kneaded, and then dried at 120 ° C. or lower, and the dried product can be pulverized.
[0013]
The method of using the treatment agent of the present invention is not particularly limited and can be used for a moving bed or a fluidized bed, but is usually used for a fixed bed. For example, it is possible to fill the inside of a cylinder and circulate an exhaust gas containing a halogen gas in the cylinder to remove the halogen gas in the exhaust gas safely and efficiently.
[0014]
【Effect of the invention】
The treatment agent of the present invention can remove halogen gas from low-concentration dry gas safely and efficiently, and thus is particularly useful for treatment of exhaust gas immediately before being discharged into the atmosphere. EXAMPLES Hereinafter, although an Example demonstrates this invention further in full detail, this invention is not limited by this.
[0015]
【Example】
Chlorine removal test in exhaust gas 10 ml of each treatment agent described later is filled in a container having a diameter of 15 mm, and dry nitrogen containing 1% of chlorine gas is flown at a flow rate of 35 ml / min under a normal pressure of 20C. The time until the removal capacity decreased and the downstream chlorine reached 1 ppm was measured. The chlorine concentration in the gas was measured with a gas detector tube (manufactured by Gastec Corporation) and a gas detector (manufactured by Gastec Corporation, GCL-1A). The amount of absorbed chlorine was determined from the weight change rate with respect to the initial weight of the treating agent after purging with nitrogen after the measurement was completed, and it was confirmed whether or not the absorbed chlorine was desorbed.
[0016]
Example 1.
After mixing 300 g of commercially available zinc oxide , 50 g of bentonite and 150 g of ion-exchanged water with a kneader, the resulting wet cake was extruded into 1.6 mmφ pellets and dried in a dryer at 270 ° C. for 8 hours. The substrate pellets were prepared by drying. Next, the obtained pellets were impregnated with 30% by weight sodium sulfite aqueous solution, and dried at 100 ° C. for 8 hours in a dryer to prepare the treatment agent of the present invention.
[0017]
Comparative Example 1
A commercially available molecular sieve 13X (2 to 3 mm sphere) was used as the treating agent.
Comparative Example 2
Commercial activated carbon (2 to 3 mm granules) was used as a treating agent.
Comparative Example 3
Substrate pellets produced in exactly the same manner as in Example 1 except that the aqueous sulfurous acid solution was not impregnated were used as treatment agents.
[0018]
The results of the chlorine treatment capacity test in exhaust gas using each treatment agent are as shown in Table 1.
[Table 1]
Figure 0004913271
As is apparent from the results in Table 1, it was demonstrated that the treatment agent of the present invention can remove chlorine safely and reliably and has a long life as a treatment agent.

Claims (4)

亜鉛の酸化物、水酸化物及び炭酸塩の中から選択された少なくとも1種の無機化合物並びに成形助剤とからなる基材に、硫黄原子を含有する還元剤を含有せしめてなる処理剤であって、該処理剤中の前記還元剤の含有量が、前記無機化合物100重量部に対して1〜120重量部であることを特徴とするハロゲンガス用処理剤。A treating agent comprising a base material comprising at least one inorganic compound selected from zinc oxide, hydroxide and carbonate, and a molding aid, and a reducing agent containing a sulfur atom. The halogen gas treating agent, wherein the content of the reducing agent in the treating agent is 1 to 120 parts by weight with respect to 100 parts by weight of the inorganic compound. 前記還元剤が、亜硫酸塩、亜二チオン酸塩、四チオン酸塩、及びチオ硫酸塩の中から選択された少なくとも1種である、請求項1に記載されたハロゲンガス用処理剤。  The processing agent for halogen gas according to claim 1, wherein the reducing agent is at least one selected from sulfites, dithionites, tetrathionates, and thiosulfates. 前記基材における亜鉛の酸化物、水酸化物、炭酸塩の総含有量が、該基材の5〜80重量%である、請求項1又は2に記載されたハロゲンガス用処理剤。The halogen gas treating agent according to claim 1 or 2, wherein the total content of zinc oxide, hydroxide, and carbonate in the substrate is 5 to 80% by weight of the substrate. 前記処理剤が、前記基材に前記還元剤を溶解した水溶液を含浸させて得られた処理剤である、請求項1〜3の何れかに記載されたハロゲンガス用処理剤。  The halogen gas treating agent according to any one of claims 1 to 3, wherein the treating agent is a treating agent obtained by impregnating the base material with an aqueous solution in which the reducing agent is dissolved.
JP19278699A 1999-07-07 1999-07-07 Halogen gas treatment agent Expired - Lifetime JP4913271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19278699A JP4913271B2 (en) 1999-07-07 1999-07-07 Halogen gas treatment agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19278699A JP4913271B2 (en) 1999-07-07 1999-07-07 Halogen gas treatment agent

Publications (2)

Publication Number Publication Date
JP2001017831A JP2001017831A (en) 2001-01-23
JP4913271B2 true JP4913271B2 (en) 2012-04-11

Family

ID=16296984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19278699A Expired - Lifetime JP4913271B2 (en) 1999-07-07 1999-07-07 Halogen gas treatment agent

Country Status (1)

Country Link
JP (1) JP4913271B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11033878B2 (en) * 2017-02-07 2021-06-15 Clariant Catalysts (Japan) K.K. Agent for removing halogen gas, method for producing same, method for removing halogen gas with use of same, and system for removing halogen gas

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4564242B2 (en) * 2003-05-30 2010-10-20 株式会社荏原製作所 Treatment method, treatment agent and treatment apparatus for exhaust gas containing inorganic halogenated gas containing chlorine trifluoride
WO2006064645A1 (en) * 2004-12-13 2006-06-22 Asahi Glass Company, Limited Method for removing halogen based gas and agent for removing halogen based gas
JPWO2007135823A1 (en) 2006-05-19 2009-10-01 旭硝子株式会社 Halogen gas removal method and halogen gas removal agent
JP5217819B2 (en) * 2008-09-12 2013-06-19 旭硝子株式会社 Halogen gas removal agent and halogen gas removal method
JP6252153B2 (en) * 2013-12-12 2017-12-27 宇部興産株式会社 Gas processing apparatus and gas processing cartridge
JP2015112545A (en) * 2013-12-12 2015-06-22 宇部興産株式会社 Gas treatment device and gas treatment cartridge
JP2015112544A (en) * 2013-12-12 2015-06-22 宇部興産株式会社 Gas treatment device and gas treatment cartridge
JP2015112546A (en) * 2013-12-12 2015-06-22 宇部興産株式会社 Gas treatment device and gas treatment cartridge
JP6992527B2 (en) * 2018-01-15 2022-01-13 宇部興産株式会社 Gas processing equipment
JP7253132B2 (en) * 2018-07-30 2023-04-06 クラリアント触媒株式会社 Halogen gas remover, method for producing same, and method for monitoring consumption of remover

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217217A (en) * 1990-01-19 1991-09-25 Central Glass Co Ltd Treatment of waste gas containing chlorine trifluoride
JP2688620B2 (en) * 1990-05-02 1997-12-10 エフテーウー ゲーエムベーハー フオルシュング ウント テヒニッシエ エントヴィックルングイム ウムヴェルトシュッツ Purifying agent for toxic substances from gas and waste gas, purification method and method for producing the agent
JPH09234336A (en) * 1996-02-29 1997-09-09 Japan Pionics Co Ltd Purification of harmful gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11033878B2 (en) * 2017-02-07 2021-06-15 Clariant Catalysts (Japan) K.K. Agent for removing halogen gas, method for producing same, method for removing halogen gas with use of same, and system for removing halogen gas

Also Published As

Publication number Publication date
JP2001017831A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
CN1064861C (en) Sorbent compositions
JP4913271B2 (en) Halogen gas treatment agent
EP0277706B1 (en) Toxic gas absorbent and process for making and using same
KR102552855B1 (en) Halogen gas remover, manufacturing method thereof, method for removing halogen gas using the same, and system for removing halogen gas
JPH07308538A (en) Cleaner for harmful gas
US4721582A (en) Toxic gas absorbent and processes for making same
JP3716030B2 (en) How to clean harmful gases
JPH05237324A (en) Method for purifying harmful gas
JP2581642B2 (en) Etching exhaust gas abatement agent and exhaust gas treatment method
US5882615A (en) Cleaning agent and cleaning process for harmful gas
CN108079737A (en) A kind of preparation method of multi-stage porous formaldehyde adsorbent
JP3571095B2 (en) Method for producing acid gas absorbent
JPS6135849A (en) Treatment agent of dry etching exhaust gas
JPH09234336A (en) Purification of harmful gas
JP2004073974A (en) Halogen gas removing agent and method for producing the same
JP3871127B2 (en) Vent gas removal method and treatment agent
KR20200135655A (en) Adsorbent for removing acidic gas and Method for preparing the same
JPH07275646A (en) Harmful gas purifying agent
JPS61101244A (en) Carbon dioxide adsorber
JP3362918B2 (en) Exhaust gas purification method
JP2001190965A (en) Purifying agent for poisonous gas and purification method
JPH07275645A (en) Harmful gas purifying agent
JP4017380B2 (en) Gas treatment method using water-resistant spherical silica as an adsorbent
JPH09267027A (en) Purifying agent for harmful gas
JPH057044B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100224

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R150 Certificate of patent or registration of utility model

Ref document number: 4913271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term