JP4017380B2 - Gas treatment method using water-resistant spherical silica as an adsorbent - Google Patents

Gas treatment method using water-resistant spherical silica as an adsorbent Download PDF

Info

Publication number
JP4017380B2
JP4017380B2 JP2001331185A JP2001331185A JP4017380B2 JP 4017380 B2 JP4017380 B2 JP 4017380B2 JP 2001331185 A JP2001331185 A JP 2001331185A JP 2001331185 A JP2001331185 A JP 2001331185A JP 4017380 B2 JP4017380 B2 JP 4017380B2
Authority
JP
Japan
Prior art keywords
adsorbent
water
gas
treated
spherical silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001331185A
Other languages
Japanese (ja)
Other versions
JP2003126646A (en
Inventor
毅 松岡
一男 佐藤
征行 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Silysia Chemical Ltd
Kureha Engineering Co Ltd
Original Assignee
Fuji Silysia Chemical Ltd
Kureha Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Silysia Chemical Ltd, Kureha Engineering Co Ltd filed Critical Fuji Silysia Chemical Ltd
Priority to JP2001331185A priority Critical patent/JP4017380B2/en
Publication of JP2003126646A publication Critical patent/JP2003126646A/en
Application granted granted Critical
Publication of JP4017380B2 publication Critical patent/JP4017380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、工場等から排出される水溶性化合物を含有する被処理ガスから水溶性化合物を除去するガス処理方法に関し、詳しくは、耐水性球状シリカを吸着剤として用いるガス処理方法に関する。
【0002】
【従来の技術】
工場等から排出される有機溶剤を含む排ガスから有機溶剤を除去・回収する装置としては、吸着塔、脱着塔及び回収器を備え、且つ、球状活性炭を吸着剤とする流動床式ガス処理装置が知られている。
【0003】
この従来装置においては、まず、有機溶剤を含む排ガスを吸着塔に導入し、流動する球状活性炭と向流接触させる。これにより、排ガス中の有機溶剤が球状活性炭に吸着し除去される。かようにして有機溶剤が除去された排ガスは吸着塔から排出される。一方、有機溶剤を吸着した球状活性炭を吸着塔から脱着塔へ移送する。脱着塔では、脱着ガスにより吸着されていた有機溶剤が脱着され、再生された球状活性炭を吸着塔に返送して再利用する。また、脱着された有機溶剤は、回収器で回収する。
【0004】
【発明が解決しようとする課題】
ところで、このような活性炭を吸着剤とする流動床式ガス処理装置を、メタノール等の水溶性化合物を含有する排ガスに適用しようとした場合、活性炭の水溶性化合物に対する吸着能が低いため、活性炭の使用量が増大し、装置が大規模となってしまう。
【0005】
一方、このような水溶性化合物に対する吸着能が高いものとして、シリカゲルが知られており、上記問題を解決すべく、例えば、流動性に優れる粒状シリカゲルを吸着剤として使用する方法が考えられる。しかし、この場合、シリカゲルには排ガスに含まれる水分も同時に吸着されてしまい、これによりシリカゲル粒子が破砕されるおそれがある。こうなると流動性が低下し、装置の安定した運転が困難となって処理効率が低下してしまう。また、シリカゲル粒子の破砕によって微粉や粉塵が発生し、その微粉等がガスに同伴して装置外へ排出されるといった問題が生じる。
【0006】
そこで、本発明はかかる事情に鑑みてなされたものであり、吸着剤を用いて被処理ガスに含まれるメタノール、エタノール等の水溶性化合物を除去する際に、吸着剤の破砕を防止でき、効率よく且つ安定した運転が可能なガス処理方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明によるガス処理方法は、水溶性化合物を含有する被処理ガスを吸着剤と接触させて該被処理ガス中の水溶性化合物を吸着剤に吸着せしめ、吸着剤に吸着された水溶性化合物を加熱により脱着して吸着剤を再生し、再生された吸着剤が再び被処理ガスと接触するように移動しながら被処理ガスを連続して処理する方法であって、流動床により前記吸着剤が移動しながら前記被処理ガスを連続して処理し、吸着剤として、比表面積が200〜900m 2 /gであり、粒子直径が0.5〜1.4mmであり、かつ下記式(1);
N=(W/W0)×100…(1)、
で定義される耐水性Nが45%以上である耐水性球状シリカを用いることを特徴とする。ここで、式中、Nは吸着剤の耐水性(%)を示し、W0は吸着剤を水に浸漬したものの粒子の全個数(個)を示し、WはW0のうち割れの発生しなかったものの個数(個)を示す。
【0008】
なお、本発明において、「吸着剤が球状である」とは、必ずしも真球状を意味するものではなく、表面が平滑な鋼板上に吸着剤粒子を重ならないように載置し、この鋼板を30度傾斜させたときに、吸着剤の90質量%以上が鋼板から転げ落ちる形状であることをいう。
【0009】
このようなガス処理方法においては、被処理ガスが吸着剤と接触することにより、被処理ガス中の水溶性化合物が有効に吸着除去される。本発明者らは、この吸着剤として、上記の耐水性Nが45%以上の耐水性球状シリカを用いると、被処理ガスに含まれる水分吸着の悪影響を抑えることができ、これによりシリカの破砕や微粉の発生を十分に防止できることを見出した。
【0010】
また、耐水性球状シリカとして、その比表面積が200〜900m2/gであるものを用いる。耐水性球状シリカの比表面積をこのような範囲内の値とすれば、水溶性化合物の吸着量の低下を抑止しつつ、十分な耐水性を付与できる。
【0011】
さらに、吸着剤として、球状活性炭を更に含むものを用いるとより好ましい。こうすれば、被処理ガスが疎水性化合物を含んでいても、これらの疎水性化合物を水溶性化合物と共に除去できる。
【0012】
より具体的には、本発明においては、流動床により吸着剤が移動しながら被処理ガスを連続して処理する。この場合、吸着剤として、粒子直径が0.5〜1.4mmであるものを用いると有用である。なお、本発明において、吸着剤の粒子直径が「下限値〜上限値」であるとの表現は、吸着剤をその下限値と上限値に相当する目開きの篩で篩い分けしたとき、上限値に相当する目開きの篩を通過し、下限値に相当する目開きの篩上に残るものの質量が、全体の質量に対して90%以上であることを意味する。
【0013】
粒子直径がこのような範囲内にある吸着剤を用いると、吸着剤と向流接触する被処理ガスの流速を好適な範囲に維持することが容易となり、被処理ガス中の被除去成分を十分に吸着除去しつつ、処理能力の低下を抑えることができる。
【0014】
【発明の実施の形態】
以下、本発明の実施形態について詳細に説明する。なお、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限られるものではない。
【0015】
本発明によるガス処理方法は、水溶性化合物を含有する被処理ガスを処理対象とする。ここで、水溶性化合物とは、25℃の水に対する溶解度(100gに溶解する溶質の最大質量(g))が50以上の化合物をいう。このような水溶性化合物としては、例えばメタノール、エタノール等の有機化合物を挙げることができる。
【0016】
また、本発明で使用する耐水性球状シリカは、上記式(1)で定義される耐水性Nが45%以上、好ましくは50%以上であることが必要である。この耐水性が45%未満であると、水分を含有する被処理ガスを処理する場合、水分吸着によってシリカが破砕され、安定な流動床の形成、シリカの移送等が困難となる。また、これに加え、微粉が発生し易くなり、この微粉が処理済ガスに同伴して処理装置の外部に排出される等の問題が生じるおそれがある。
【0017】
さらに、耐水性球状シリカの比表面積は、200〜900m2/gであり、好ましくは300〜800m2/gである。この被表面積が200m2/g未満となると、水溶性化合物の吸着量が不都合な程に減少する一方で、この比表面積が900m2/gを超えると、耐水性球状シリカの耐水性の低下が顕著となる傾向にある。
【0018】
このような耐水性球状シリカは、例えば特公平7−64543号公報に記載の方法で製造することができる。すなわち、本発明で使用する耐水性球状シリカは、ケイ酸アルカリ水溶液を中和することにより得たシリカヒドロゲルを、スーパーヒートスチームにより100〜1000℃の温度で乾燥した球状のシリカキセロゲルを500〜1000℃で焼成することによって製造可能である。
【0019】
また、被処理ガスが水溶性化合物と共にn−ヘキサン、トルエン等の耐水性球状シリカに吸着し難い疎水性化合物を含有する場合には、これらの疎水性化合物を水溶性化合物と同時に除去するために、耐水性球状シリカに球状活性炭を混合したものを吸着剤として用いること、つまり耐水性球状シリカと球状活性炭との混合吸着剤を使用することが好ましい。この場合、耐水性球状シリカと球状活性炭との混合比率は、除去対象成分の種類及び処理済ガス中の許容残存成分量等を勘案して適宜決定することができる。なお、ここで用いる球状活性炭としては、石油系ピッチを球状に造粒した後、水蒸気で賦活した球状活性炭を例示することができるが、これに限定されるものではない。
【0020】
また、本発明によるガス処理方法を有効に実施するためのガス処理装置としては、流動床式の吸着剤を移動させながら被処理ガスと接触させるガス処理装置を採用し、例えば、図1に示す流動床式連続ガス処理装置が好適である。
【0021】
図1において、ガス処理装置100は、多段流動床式の連続ガス処理装置であり、吸着塔10、脱着塔20、及び回収器30を備えるものである。吸着塔10は、内部に多孔板から成るトレイ12を複数有しており、水溶性化合物を含む被除去成分を含有する被処理ガス1が下部から供給されるようになっている。この被処理ガス1は、トレイ12上で流動層を形成しながら順次下段のトレイへ移動する吸着剤11(上述した耐水性球状シリカ、又は、これと球状活性炭との混合物)と向流接触する。このとき、被処理ガス1中の被除去成分が吸着剤11に吸着し除去される。被除去成分が除去された処理済ガス2は、吸着塔10の上部から排出される。一方、被除去成分Wを吸着した吸着剤11は、吸着塔10の下部から抜き出され、脱着塔20の上部に供給される。
【0022】
脱着塔20は、例えばスチーム、電気ヒーター等を熱源とする加熱手段で構成される加熱部21、及び、加熱部21の下方に配置され且つ例えば水等を冷媒とする冷却手段で構成される冷却部22を有するものである。脱着塔20の下部には、キャリアガスGが導入され、加熱部21の上部から送出されたキャリアガスGが回収器30に導入されるようになっている。
【0023】
この脱着塔20の上部より供給された被除去成分Wを吸着した吸着剤11は、重力により下方に移動し、加熱部21において、例えば100〜250℃に加熱され、被除去成分Wを脱離する。吸着剤11から脱離した被除去成分Wは、キャリアガスGによって回収器30に運ばれ、冷却装置40による冷却等の方法によってキャリアガスGと分離された後、回収系50へ送られて回収される。
【0024】
一方、加熱部21で被除去成分Wが脱着され再生された吸着剤11は、冷却部22で、例えば20〜60℃に冷却された後、脱着塔20の下部から抜き出され、再び吸着塔10の上部へ供給される。このようにして、吸着剤11は吸着塔10と脱着塔20とを循環移動し、被処理ガス1中の被除去成分の吸脱着を繰り返し、これにより被処理ガス1の連続処理が行われる。
【0025】
ここで、ガス処理装置100のような流動床式の装置を使用する場合には、吸着剤11の粒子直径は、0.5〜1.4mmである。
【0026】
吸着剤11の粒径が1.4mmを上回る場合には、吸着塔10において、流動層を形成するための被処理ガス1の流速を過度に増大させる必要があり、こうなると、被処理ガス1と吸着剤11との接触時間が不都合な程に短くなってしまう。また、これを回避して十分な接触時間を確保するためには、流動床の段数を増加させる、流動層の層高を大きくする等の処置が必要となる。
【0027】
【実施例】
以下、本発明に係る具体的な実施例について説明するが、本発明はこれらに限定されるものではない。
【0028】
〈吸着剤の耐水性評価方法〉
(1)吸着剤の試料100粒を10mlサンプル瓶に採取する。
(2)サンプル瓶に室温の水5mlを注入して試料を浸漬させ、蓋をして室温に30分間静置する。
(3)サンプル瓶を傾けて水を切り、80℃に設定した恒温乾燥機で3時間乾燥する。
(4)乾燥試料を取り出し、割れの発生していない試料の数を数える。
(5)吸着剤の耐水性を下記式(1)の関係により算出する。
N=(W/W0)×100…(1)
前述の如く、Nは吸着剤の耐水性(%)を示し、W0は手順(1)で最初に採取した試料の数(=水に浸漬した粒子の全個数;100粒)であり、Wは手順(4)で計数した割れの発生しなかったものの個数である。
【0029】
〈吸着剤の比表面積の測定〉
JIS K1150のt−プロット法によって測定した。
【0030】
以下の実施例及び比較例においては、気体の流量は標準状態に換算した値であり、ppmは体積基準である。
〈実施例1〉
被除去成分としてメタノール1000±100ppmを含有する温度30℃、相対湿度30%の空気を、図1に示す構成のガス処理装置100に、流量60m3/hで連続供給した。また、吸着塔10の内径を155mmとし、6段の多孔板トレイ12を有する多段流動床式の構成とした。ここで、吸着剤11としては、耐水性48%、比表面積550m2/g、粒子直径0.71〜1.18mmの耐水性球状シリカ(富士シリシア化学株式会社製 CARiACT Q−3)を使用し、循環量を2kg/hとした。
【0031】
一方、脱着塔20の内径を155mmとし、加熱部21には間接加熱源として電気ヒーターを使用した。このときの脱着温度は150℃であり、キャリアガスGとして窒素ガスを0.4m3/hで循環させた。また、冷却部22において、吸着剤11を40℃まで冷却した。さらに、回収器30には、冷媒として温度5℃のチラー水を流通させ、脱着された被除去成分Wを冷却して液化させた。
【0032】
その結果、吸着塔10の出口における処理済ガス2(処理済空気)中のメタノール濃度は約50ppmであった。このとき、回収器30では、メタノールが0.08kg/h、水が0.24kg/hの割合で回収された。また、ガス処理装置100は、40日間連続して安定に運転することができ、メタノール除去率は約95%と十分に高い除去効率を維持した。
【0033】
〈実施例2〉
吸着剤11として耐水性62%、比表面積300m2/g、粒子直径0.71〜1.18mmの耐水性球状シリカ(富士シリシア化学株式会社製 CARiACT Q−10)を用いたこと以外は、実施例1と同様にして排ガス処理を行った。
【0034】
その結果、吸着塔10の出口における処理済ガス2(処理済空気)中のメタノール濃度は約70ppmであった。このとき、回収器30では、メタノールが0.08kg/h、水が0.24kg/hの割合で回収された。また、ガス処理装置100は、40日間連続して安定に運転することができ、メタノール除去率は約93%と十分に高い除去効率を維持した。
【0035】
〈実施例3〉
被除去成分としてメタノール1000±100ppm、及びトルエン1000±100ppmを含有する温度30℃、相対湿度30%の空気を、実施例1で用いたのと同じ流動床式のガス処理装置100に連続して流量60m3/hで供給した。また、吸着剤11として、耐水性48%、比表面積550m2/g、粒子直径0.71〜1.18mmの耐水性球状シリカ(富士シリシア化学株式会社製CARiACT Q−3)と、粒子直径0.60〜1.00mmの石油ピッチ系球状活性炭(呉羽化学工業株式会社製;G−BAC)を質量比で50:50に混合した混合吸着剤を使用し、循環量を4kg/hとした。さらに、脱着塔20における脱着温度を150℃とし、キャリアガスGとして窒素ガスを0.8m3/hで循環させ、冷却部22では吸着剤を40℃まで冷却した。
【0036】
その結果、吸着塔10の出口における処理済ガス2(処理済空気)中のメタノール濃度は約100ppm、トルエン濃度は約2ppmであった。このとき、回収器30では、メタノールが0.07kg/h、トルエンが0.25kg/h、水が0.24kg/hの割合で回収された。また、ガス処理装置は、40日間連続して安定に運転することができ、メタノール除去率が約90%、及び、トルエンの除去率が約99.8%と十分に高い除去効率を維持した。このように、混合吸着剤を用いることにより、水溶性化合物と疎水性化合物との両方の化合物を含有する被処理ガス1から、これらの化合物を高い除去率で安定に除去することができることが確認された。
【0037】
〈比較例1〉
吸着剤として実施例2で使用した石油ピッチ系球状活性炭を単独で用いたこと以外は、実施例1と同様にして排ガス処理を行った。その結果、吸着塔10の出口における処理済ガス2(処理済空気)中のメタノール濃度は約900ppmであり、吸着塔10へ供給した空気中のメタノールが殆ど除去されなかったことがが判明した。
【0038】
〈比較例2〉
吸着剤として耐水性20%、比表面積650m2/g、粒子直径0.85〜1.70mmの汎用球状シリカゲル(富士シリシア化学株式会社製 フジシリカゲルA形)を用いたこと以外は、実施例1と同様にして排ガス処理を行った。
【0039】
その結果、吸着塔10の上部排気口から頻繁に粉塵の発生が確認されたが、吸着塔10の出口における処理済ガス2(処理済空気)中のメタノール濃度は約40ppmであった。また、ガス処理装置100を約7日間連続運転した時点で、吸着塔10の流動床の流動状態が不安定になると共に、吸着剤の定量循環が不能となったのでガス処理装置の運転を停止した。
【0040】
〈比較例3〉
吸着剤として、耐水性20%、比表面積650m2/g、粒子直径0.85〜1.70mmの汎用球状シリカゲル(富士シリシア化学株式会社製 フジシリカゲルA形)と、実施例1で使用した耐水性球状シリカを質量で40:60に混合した耐水性37%の混合吸着剤を用いたこと以外は、実施例1と同様にして排ガス処理を行った。
【0041】
その結果、吸着塔10の出口における処理済ガス2(処理済空気)中のメタノール濃度は約50ppmであった。しかし、ガス処理装置100を約15日間連続運転した時点で、吸着塔10の流動床の流動状態が不安定になると共に、吸着剤の定量循環が不能となったのでガス処理装置の運転を停止した。
【0042】
【発明の効果】
以上説明したように、本発明のガス処理方法によれば、耐水性が45%以上である耐水性球状シリカを吸着剤として使用し、水溶性化合物を含有する被処理ガスを流動床式の吸着剤を移動させながら処理するガス処理装置を用いて連続的に処理することにより、被処理ガス中の水分吸着による吸着剤の破砕を十分に抑制でき、被処理ガスに含まれるメタノール、エタノール等の水溶性化合物を長時間連続して高い除去率で除去することが可能となる。
【図面の簡単な説明】
【図1】本発明を実施するのに好適な流動床式ガス処理装置の一例を示す模式断面図である。
【符号の説明】
1…被処理ガス、2…処理済ガス、10…吸着塔、11…吸着剤、12…トレイ、20…脱着塔、21…加熱部、22…冷却部、30…回収器、100…ガス処理装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas treatment method for removing a water-soluble compound from a gas to be treated containing a water-soluble compound discharged from a factory or the like, and more particularly to a gas treatment method using water-resistant spherical silica as an adsorbent.
[0002]
[Prior art]
As an apparatus for removing and recovering an organic solvent from exhaust gas containing an organic solvent discharged from a factory, etc., there is a fluidized bed type gas processing apparatus having an adsorption tower, a desorption tower and a recovery device, and using spherical activated carbon as an adsorbent. Are known.
[0003]
In this conventional apparatus, first, exhaust gas containing an organic solvent is introduced into an adsorption tower and brought into countercurrent contact with flowing spherical activated carbon. Thereby, the organic solvent in the exhaust gas is adsorbed and removed by the spherical activated carbon. The exhaust gas from which the organic solvent has been removed is discharged from the adsorption tower. On the other hand, the spherical activated carbon adsorbing the organic solvent is transferred from the adsorption tower to the desorption tower. In the desorption tower, the organic solvent adsorbed by the desorption gas is desorbed, and the regenerated spherical activated carbon is returned to the adsorption tower for reuse. The desorbed organic solvent is recovered by a recovery device.
[0004]
[Problems to be solved by the invention]
By the way, when trying to apply such a fluidized bed type gas treatment device using activated carbon as an adsorbent to an exhaust gas containing a water-soluble compound such as methanol, the adsorption capability of activated carbon for water-soluble compounds is low. The amount of use increases and the apparatus becomes large-scale.
[0005]
On the other hand, silica gel is known as one having a high adsorbing ability for such water-soluble compounds. To solve the above problem, for example, a method of using granular silica gel having excellent fluidity as an adsorbent is conceivable. However, in this case, moisture contained in the exhaust gas is simultaneously adsorbed on the silica gel, which may cause the silica gel particles to be crushed. If it becomes like this, fluidity | liquidity will fall, the stable operation | movement of an apparatus will become difficult, and processing efficiency will fall. Further, there is a problem that fine powder and dust are generated by crushing silica gel particles, and the fine powder is discharged from the apparatus along with the gas.
[0006]
Therefore, the present invention has been made in view of such circumstances, and when the water-soluble compound such as methanol and ethanol contained in the gas to be treated is removed using the adsorbent, the adsorbent can be prevented from being crushed and efficiently An object of the present invention is to provide a gas treatment method capable of good and stable operation.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the gas treatment method according to the present invention comprises contacting a gas to be treated containing a water-soluble compound with an adsorbent to adsorb the water-soluble compound in the gas to be treated to the adsorbent. The water-soluble compound adsorbed on the catalyst is desorbed by heating to regenerate the adsorbent, and the treated gas is continuously treated while the regenerated adsorbent moves again to contact the treated gas. The gas to be treated is continuously processed while moving the adsorbent through a fluidized bed, and the adsorbent has a specific surface area of 200 to 900 m 2 / g and a particle diameter of 0.5 to 1.4 mm. And the following formula (1);
N = (W / W 0 ) × 100 (1),
It is characterized by using water-resistant spherical silica having a water resistance N defined by the formula of 45% or more. Here, in the formula, N represents the water resistance (%) of the adsorbent, W 0 represents the total number (particles) of the adsorbent immersed in water, and W represents cracking in W 0. The number of items that did not exist is shown.
[0008]
In the present invention, “the adsorbent is spherical” does not necessarily mean a true sphere, and the adsorbent particles are placed on a steel plate having a smooth surface so as not to overlap. It means that 90% by mass or more of the adsorbent is in a shape of falling from the steel sheet when it is tilted.
[0009]
In such a gas treatment method, when the gas to be treated comes into contact with the adsorbent, the water-soluble compounds in the gas to be treated are effectively adsorbed and removed. When the water-resistant spherical silica having a water resistance N of 45% or more is used as the adsorbent, the present inventors can suppress the adverse effect of moisture adsorption contained in the gas to be treated. And the generation of fine powder was found to be sufficiently prevented.
[0010]
In addition, as the water-resistant spherical silica, those having a specific surface area of 200 to 900 m 2 / g are used. If the specific surface area of the water-resistant spherical silica is set to a value within such a range, sufficient water resistance can be imparted while suppressing a decrease in the adsorption amount of the water-soluble compound.
[0011]
Furthermore, it is more preferable to use an adsorbent that further contains spherical activated carbon. In this way, even if the gas to be treated contains hydrophobic compounds, these hydrophobic compounds can be removed together with the water-soluble compounds.
[0012]
More specifically, in the present invention, the gas to be processed is continuously processed while the adsorbent is moved by the fluidized bed . In this case, it is useful to use an adsorbent having a particle diameter of 0.5 to 1.4 mm. In the present invention, the expression that the particle diameter of the adsorbent is “lower limit value to upper limit value” means that the upper limit value is obtained when the adsorbent is sieved with a sieve having openings corresponding to the lower limit value and the upper limit value. It means that the mass of the material that passes through the sieve with the mesh openings corresponding to and remains on the sieve with the mesh openings corresponding to the lower limit is 90% or more with respect to the total mass.
[0013]
When an adsorbent having a particle diameter in such a range is used, it becomes easy to maintain the flow velocity of the gas to be treated in countercurrent contact with the adsorbent within a suitable range, and the components to be removed in the gas to be treated are sufficient. It is possible to suppress a decrease in processing capacity while adsorbing and removing.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. The positional relationship such as up, down, left, and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
[0015]
The gas treatment method according to the present invention treats a gas to be treated containing a water-soluble compound. Here, the water-soluble compound refers to a compound having a solubility in water at 25 ° C. (the maximum mass (g) of a solute dissolved in 100 g) is 50 or more. Examples of such water-soluble compounds include organic compounds such as methanol and ethanol.
[0016]
The water resistant spherical silica used in the present invention needs to have a water resistance N defined by the above formula (1) of 45% or more, preferably 50% or more. When the water resistance is less than 45%, when a gas to be treated containing moisture is treated, silica is crushed by moisture adsorption, making it difficult to form a stable fluidized bed and to transfer silica. Further, in addition to this, fine powder is likely to be generated, and there is a risk that this fine powder is accompanied by the treated gas and discharged to the outside of the processing apparatus.
[0017]
Furthermore, the specific surface area of the water-resistant spherical silica is 200 to 900 m 2 / g , preferably 300 to 800 m 2 / g. When the surface area is less than 200 m 2 / g, the amount of water-soluble compound adsorbed is undesirably reduced. On the other hand, when the specific surface area exceeds 900 m 2 / g, the water resistance of the water-resistant spherical silica decreases. It tends to be prominent.
[0018]
Such water-resistant spherical silica can be produced, for example, by the method described in Japanese Patent Publication No. 7-64543. That is, the water-resistant spherical silica used in the present invention is a spherical silica xerogel obtained by drying a silica hydrogel obtained by neutralizing an alkali silicate aqueous solution at a temperature of 100 to 1000 ° C. with superheat steam, and a 500 to 1000 It can be produced by baking at a temperature of 0 ° C.
[0019]
In addition, when the gas to be treated contains a water-soluble compound and a hydrophobic compound that is difficult to adsorb on water-resistant spherical silica such as n-hexane, toluene, etc., in order to remove these hydrophobic compounds at the same time as the water-soluble compound It is preferable to use a mixture of water-resistant spherical silica and spherical activated carbon as an adsorbent, that is, use a mixed adsorbent of water-resistant spherical silica and spherical activated carbon. In this case, the mixing ratio of the water-resistant spherical silica and the spherical activated carbon can be appropriately determined in consideration of the type of the component to be removed, the allowable residual component amount in the treated gas, and the like. Examples of the spherical activated carbon used here include spherical activated carbon activated by steam after granulating petroleum pitch into a spherical shape, but are not limited thereto.
[0020]
In addition, as a gas processing apparatus for effectively carrying out the gas processing method according to the present invention, a gas processing apparatus that contacts a gas to be processed while moving a fluidized bed type adsorbent is adopted, for example, as shown in FIG. A fluidized bed continuous gas treatment device is preferred.
[0021]
In FIG. 1, a gas processing apparatus 100 is a multistage fluidized bed type continuous gas processing apparatus, and includes an adsorption tower 10, a desorption tower 20, and a recovery unit 30. The adsorption tower 10 has a plurality of trays 12 made of perforated plates inside, and a gas to be treated 1 containing a component to be removed including a water-soluble compound is supplied from below. The gas 1 to be treated is in countercurrent contact with an adsorbent 11 (water-resistant spherical silica described above or a mixture of this and spherical activated carbon) that sequentially moves to the lower tray while forming a fluidized bed on the tray 12. . At this time, the component to be removed in the gas to be treated 1 is adsorbed and removed by the adsorbent 11. The treated gas 2 from which the components to be removed are removed is discharged from the upper part of the adsorption tower 10. On the other hand, the adsorbent 11 that has adsorbed the component to be removed W is extracted from the lower part of the adsorption tower 10 and supplied to the upper part of the desorption tower 20.
[0022]
The desorption tower 20 is, for example, a heating unit 21 configured by a heating unit using steam, an electric heater or the like as a heat source, and a cooling unit disposed below the heating unit 21 and configured by a cooling unit using water or the like as a refrigerant. A portion 22 is provided. A carrier gas G is introduced into the lower part of the desorption tower 20, and the carrier gas G sent from the upper part of the heating unit 21 is introduced into the recovery unit 30.
[0023]
The adsorbent 11 that has adsorbed the component to be removed W supplied from the upper part of the desorption tower 20 moves downward by gravity and is heated to, for example, 100 to 250 ° C. in the heating unit 21 to desorb the component to be removed W. To do. The to-be-removed component W desorbed from the adsorbent 11 is conveyed to the recovery device 30 by the carrier gas G, separated from the carrier gas G by a method such as cooling by the cooling device 40, and then sent to the recovery system 50 for recovery. Is done.
[0024]
On the other hand, the adsorbent 11 from which the component W to be removed has been desorbed and regenerated by the heating unit 21 is cooled to, for example, 20 to 60 ° C. by the cooling unit 22, and then extracted from the lower part of the desorption tower 20. 10 is supplied to the top. In this way, the adsorbent 11 circulates and moves between the adsorption tower 10 and the desorption tower 20 and repeats the adsorption / desorption of the components to be removed in the gas to be treated 1, whereby the gas to be treated 1 is continuously treated.
[0025]
Here, when a fluidized bed type apparatus such as the gas processing apparatus 100 is used, the particle diameter of the adsorbent 11 is 0.5 to 1.4 mm .
[0026]
When the particle size of the adsorbent 11 exceeds 1.4 mm, it is necessary to excessively increase the flow rate of the gas to be processed 1 for forming the fluidized bed in the adsorption tower 10. And the adsorbent 11 contact time becomes inconveniently short. Moreover, in order to avoid this and to secure a sufficient contact time, measures such as increasing the number of fluidized bed stages and increasing the bed height of the fluidized bed are required.
[0027]
【Example】
Specific examples according to the present invention will be described below, but the present invention is not limited thereto.
[0028]
<Method for evaluating water resistance of adsorbent>
(1) Collect 100 samples of adsorbent in a 10 ml sample bottle.
(2) Inject 5 ml of room temperature water into the sample bottle to immerse the sample, cover it and leave it at room temperature for 30 minutes.
(3) Tilt the sample bottle to drain the water, and dry for 3 hours in a constant temperature dryer set at 80 ° C.
(4) Take out the dried sample and count the number of samples with no cracks.
(5) The water resistance of the adsorbent is calculated according to the relationship of the following formula (1).
N = (W / W 0 ) × 100 (1)
As described above, N represents the water resistance (%) of the adsorbent, and W 0 is the number of samples first collected in the procedure (1) (= total number of particles immersed in water; 100 particles). Is the number of cracks that did not occur as counted in step (4).
[0029]
<Measurement of specific surface area of adsorbent>
It was measured by the t-plot method of JIS K1150.
[0030]
In the following examples and comparative examples, the gas flow rate is a value converted to a standard state, and ppm is based on volume.
<Example 1>
Air having a temperature of 30 ° C. and a relative humidity of 30% containing 1000 ± 100 ppm of methanol as a component to be removed was continuously supplied at a flow rate of 60 m 3 / h to the gas processing apparatus 100 having the configuration shown in FIG. Further, the inner diameter of the adsorption tower 10 was set to 155 mm, and a multistage fluidized bed type configuration having six stages of perforated plate trays 12 was adopted. Here, as the adsorbent 11, water-resistant spherical silica (CA RiACT Q-3 manufactured by Fuji Silysia Chemical Co., Ltd.) having a water resistance of 48%, a specific surface area of 550 m 2 / g, and a particle diameter of 0.71 to 1.18 mm is used. The circulation rate was 2 kg / h.
[0031]
On the other hand, the inner diameter of the desorption tower 20 was 155 mm, and an electric heater was used as the indirect heating source for the heating unit 21. The desorption temperature at this time was 150 ° C., and nitrogen gas was circulated as a carrier gas G at 0.4 m 3 / h. Further, the adsorbent 11 was cooled to 40 ° C. in the cooling unit 22. Further, chiller water having a temperature of 5 ° C. was circulated through the collector 30 as a refrigerant, and the desorbed component W to be removed was cooled and liquefied.
[0032]
As a result, the methanol concentration in the treated gas 2 (treated air) at the outlet of the adsorption tower 10 was about 50 ppm. At this time, the recovery device 30 recovered methanol at a rate of 0.08 kg / h and water at a rate of 0.24 kg / h. Further, the gas treatment apparatus 100 was able to operate stably for 40 days continuously, and the methanol removal rate maintained a sufficiently high removal efficiency of about 95%.
[0033]
<Example 2>
Except for using water-resistant spherical silica having a water resistance of 62%, a specific surface area of 300 m 2 / g, and a particle diameter of 0.71 to 1.18 mm (CAriACT Q-10, manufactured by Fuji Silysia Chemical Co., Ltd.) as the adsorbent 11. Exhaust gas treatment was performed in the same manner as in Example 1.
[0034]
As a result, the methanol concentration in the treated gas 2 (treated air) at the outlet of the adsorption tower 10 was about 70 ppm. At this time, the recovery device 30 recovered methanol at a rate of 0.08 kg / h and water at a rate of 0.24 kg / h. Moreover, the gas treatment apparatus 100 was able to operate stably for 40 days continuously, and the methanol removal rate maintained a sufficiently high removal efficiency of about 93%.
[0035]
<Example 3>
Air having a temperature of 30 ° C. and a relative humidity of 30% containing 1000 ± 100 ppm of methanol and 1000 ± 100 ppm of toluene as components to be removed is continuously supplied to the same fluidized bed type gas treatment apparatus 100 as used in Example 1. It was supplied at a flow rate of 60 m 3 / h. Further, as the adsorbent 11, water-resistant spherical silica having a water resistance of 48%, a specific surface area of 550 m 2 / g, and a particle diameter of 0.71 to 1.18 mm (CA RiACT Q-3 manufactured by Fuji Silysia Chemical Ltd.) and a particle diameter of 0 A mixed adsorbent in which a petroleum pitch-based spherical activated carbon (manufactured by Kureha Chemical Industry Co., Ltd .; G-BAC) of 60 to 1.00 mm was mixed at a mass ratio of 50:50 was used, and the circulation rate was 4 kg / h. Further, the desorption temperature in the desorption tower 20 was set to 150 ° C., nitrogen gas was circulated at 0.8 m 3 / h as the carrier gas G, and the adsorbent was cooled to 40 ° C. in the cooling unit 22.
[0036]
As a result, the methanol concentration in the treated gas 2 (treated air) at the outlet of the adsorption tower 10 was about 100 ppm, and the toluene concentration was about 2 ppm. At this time, the recovery unit 30 recovered methanol at a rate of 0.07 kg / h, toluene at 0.25 kg / h, and water at 0.24 kg / h. Moreover, the gas treatment apparatus was able to operate stably for 40 days continuously, maintaining a sufficiently high removal efficiency with a methanol removal rate of about 90% and a toluene removal rate of about 99.8%. As described above, it is confirmed that by using the mixed adsorbent, these compounds can be stably removed at a high removal rate from the gas to be treated 1 containing both the water-soluble compound and the hydrophobic compound. It was done.
[0037]
<Comparative example 1>
Exhaust gas treatment was performed in the same manner as in Example 1 except that the petroleum pitch-based spherical activated carbon used in Example 2 was used alone as the adsorbent. As a result, it was found that the methanol concentration in the treated gas 2 (treated air) at the outlet of the adsorption tower 10 was about 900 ppm, and methanol in the air supplied to the adsorption tower 10 was hardly removed.
[0038]
<Comparative example 2>
Example 1 except that general-purpose spherical silica gel (Fuji Silica Chemical Co., Ltd. Fuji Silica Silica A type) having a water resistance of 20%, a specific surface area of 650 m 2 / g, and a particle diameter of 0.85 to 1.70 mm was used as the adsorbent. Exhaust gas treatment was performed in the same manner as described above.
[0039]
As a result, generation of dust was frequently confirmed from the upper exhaust port of the adsorption tower 10, but the methanol concentration in the treated gas 2 (treated air) at the outlet of the adsorption tower 10 was about 40 ppm. In addition, when the gas processing apparatus 100 is continuously operated for about 7 days, the fluidized state of the fluidized bed of the adsorption tower 10 becomes unstable, and the quantitative circulation of the adsorbent becomes impossible, so the operation of the gas processing apparatus is stopped. did.
[0040]
<Comparative Example 3>
As an adsorbent, general-purpose spherical silica gel (Fuji Silica Chemical A type manufactured by Fuji Silysia Chemical Ltd.) having a water resistance of 20%, a specific surface area of 650 m 2 / g, and a particle diameter of 0.85 to 1.70 mm, and the water resistance used in Example 1 were used. Exhaust gas treatment was performed in the same manner as in Example 1 except that a water-resistant 37% mixed adsorbent in which spherical spherical silica was mixed at a mass ratio of 40:60 was used.
[0041]
As a result, the methanol concentration in the treated gas 2 (treated air) at the outlet of the adsorption tower 10 was about 50 ppm. However, when the gas processing apparatus 100 is continuously operated for about 15 days, the fluidized state of the fluidized bed of the adsorption tower 10 becomes unstable and the quantitative circulation of the adsorbent becomes impossible, so the operation of the gas processing apparatus is stopped. did.
[0042]
【The invention's effect】
As described above, according to the gas treatment method of the present invention, water-resistant spherical silica having a water resistance of 45% or more is used as an adsorbent, and a gas to be treated containing a water-soluble compound is adsorbed in a fluidized bed type. By continuously processing using a gas processing device that moves while moving the agent, it is possible to sufficiently suppress crushing of the adsorbent due to moisture adsorption in the gas to be processed, such as methanol, ethanol, etc. contained in the gas to be processed It becomes possible to remove the water-soluble compound continuously for a long time with a high removal rate.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a fluidized bed gas processing apparatus suitable for carrying out the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Processed gas, 2 ... Processed gas, 10 ... Adsorption tower, 11 ... Adsorbent, 12 ... Tray, 20 ... Desorption tower, 21 ... Heating part, 22 ... Cooling part, 30 ... Recovery machine, 100 ... Gas treatment apparatus.

Claims (2)

水溶性化合物を含有する被処理ガスを吸着剤と接触させて該被処理ガス中の該水溶性化合物を該吸着剤に吸着せしめ、該吸着剤に吸着された該水溶性化合物を加熱により脱着して該吸着剤を再生し、再生された吸着剤が再び被処理ガスと接触するように移動しながら該被処理ガスを連続して処理するガス処理方法であって、
流動床により前記吸着剤が移動しながら前記被処理ガスを連続して処理し、
前記吸着剤として、
比表面積が200〜900m 2 /gであり、
粒子直径が0.5〜1.4mmであり、かつ
下記式(1);
N=(W/W0)×100…(1)、
N:当該吸着剤の耐水性(%)、
0:当該吸着剤を水に浸漬したものの粒子の全個数(個)、
W:W0のうち割れの発生しなかったものの個数(個)、
で定義される耐水性Nが45%以上である耐水性球状シリカを用いる
ことを特徴とするガス処理方法。
A treated gas containing a water-soluble compound is brought into contact with an adsorbent to adsorb the water-soluble compound in the treated gas to the adsorbent, and the water-soluble compound adsorbed on the adsorbent is desorbed by heating. The adsorbent is regenerated, and the treated gas is continuously treated while moving so that the regenerated adsorbent comes into contact with the treated gas again.
The gas to be treated is continuously processed while the adsorbent is moved by a fluidized bed,
As the adsorbent,
The specific surface area is 200 to 900 m 2 / g,
The particle diameter is 0.5 to 1.4 mm, and the following formula (1);
N = (W / W 0 ) × 100 (1),
N: water resistance (%) of the adsorbent,
W 0 : the total number (particles) of particles of the adsorbent immersed in water,
W: Number of W 0 that did not crack (number),
A gas treatment method characterized by using a water-resistant spherical silica having a water resistance N defined by (1) of 45% or more.
前記吸着剤として、球状活性炭を更に含むものを用いる、請求項記載のガス処理方法。Examples adsorbent used and further comprising a spherical activated carbon, gas processing method according to claim 1, wherein.
JP2001331185A 2001-10-29 2001-10-29 Gas treatment method using water-resistant spherical silica as an adsorbent Expired - Fee Related JP4017380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001331185A JP4017380B2 (en) 2001-10-29 2001-10-29 Gas treatment method using water-resistant spherical silica as an adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331185A JP4017380B2 (en) 2001-10-29 2001-10-29 Gas treatment method using water-resistant spherical silica as an adsorbent

Publications (2)

Publication Number Publication Date
JP2003126646A JP2003126646A (en) 2003-05-07
JP4017380B2 true JP4017380B2 (en) 2007-12-05

Family

ID=19146803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331185A Expired - Fee Related JP4017380B2 (en) 2001-10-29 2001-10-29 Gas treatment method using water-resistant spherical silica as an adsorbent

Country Status (1)

Country Link
JP (1) JP4017380B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101161334A (en) * 2006-10-11 2008-04-16 张大伟 A method for recovering waste gas during regenerative process of filtering adsorption material

Also Published As

Publication number Publication date
JP2003126646A (en) 2003-05-07

Similar Documents

Publication Publication Date Title
CN1154536C (en) Zeolite adsorbents, method for obtaining them and their use for removing carbonates from gas stream
CN106563428A (en) A solid adsorbent regenerating device and an adsorption device applying the regenerating device
CA1070620A (en) Apparatus for the continuous purification of exhaust gas containing solvent vapours
JP3237795U (en) Integrated desulfurization and denitration system for flue gas based on low temperature adsorption principle
JP7055556B2 (en) Activated carbon performance recovery possibility judgment method, activated carbon regeneration method, and activated carbon reuse system
CN107126816A (en) The method that heavy metal in high-temperature flue gas is removed using active boron nitride
JP2008161743A (en) Low temperature liquefied voc recovery method for performing removal of moisture and recovery of cold using adsorbent
JP4913271B2 (en) Halogen gas treatment agent
JPH06319947A (en) Toxicity-removing agent for etching exhaust gas and method for using the same
JP4017380B2 (en) Gas treatment method using water-resistant spherical silica as an adsorbent
US4861578A (en) Method of treating waste gas
JP5499816B2 (en) Halogen gas removal method
CN105854510B (en) A kind of VOCs processing equipment and method
JP2543364B2 (en) Low temperature regeneration method of activated carbon
CN205700032U (en) Exhaust-gas treatment activated carbon adsorption and regenerating unit
JPS5820224A (en) Removal of mercury in gas
JP3871127B2 (en) Vent gas removal method and treatment agent
JP6908820B2 (en) Formic acid treatment method and formic acid treatment equipment
JP3922449B2 (en) Organic solvent recovery system
KR100684201B1 (en) Method for the abatement of waste gas comprising fluorine and its adsorption column device
JP6812612B2 (en) Ethylene oxide removal method
WO2021199564A1 (en) Method and apparatus for processing tritium-containing aqueous solution
TWI554474B (en) Mesoporous adsorption material manufactured by waste calcium fluoride and glass, the manufacturing method and the method for processing acetone
JP2004230270A (en) Method for treating gas using precoated spherical silica gel as adsorbent
CN219399545U (en) Flue gas advanced treatment system based on carbon capture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

R150 Certificate of patent or registration of utility model

Ref document number: 4017380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees