JP2006263356A - 生体情報測定装置 - Google Patents

生体情報測定装置 Download PDF

Info

Publication number
JP2006263356A
JP2006263356A JP2005089589A JP2005089589A JP2006263356A JP 2006263356 A JP2006263356 A JP 2006263356A JP 2005089589 A JP2005089589 A JP 2005089589A JP 2005089589 A JP2005089589 A JP 2005089589A JP 2006263356 A JP2006263356 A JP 2006263356A
Authority
JP
Japan
Prior art keywords
information
measurement information
light
data
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005089589A
Other languages
English (en)
Inventor
Akihiro Ukai
晃宏 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2005089589A priority Critical patent/JP2006263356A/ja
Publication of JP2006263356A publication Critical patent/JP2006263356A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

【課題】 測定データの種類に応じて容量の限られたメモリを効果的に使用する。
【解決手段】 生体(被験者)に対して照射可能な複数の異なる波長の光を発光する発光部11と、発光部11により発光されて生体を透過又は反射した光を受光する受光部12と、受光部12により受光された受光信号に応じた受光測定情報(脈波データ等)に基づいて少なくとも酸素飽和度を算出する制御演算部29と、少なくとも制御演算部29により算出された酸素飽和度の情報と受光測定情報とを含む測定情報を記憶することが可能に構成された記憶部26と、測定情報のうちの記憶部26に記憶する測定情報の種類を選択する記憶データ選択部(制御演算部29)とを備える。
【選択図】 図1

Description

本発明は、生体に関する生体情報、特に動脈血の酸素飽和度や脈拍数等の生体情報を測定する生体情報測定装置に関するものである。
従来、生体情報測定装置の一つである例えば酸素飽和度測定装置は、血中の酸素飽和度を指先、耳朶、足首等において非侵襲に計測するものであるが、主な用途としては呼吸不全の患者の換気状態を検査するか、或いは睡眠時におけるSAS(Sleep Apnea Syndrome;睡眠時無呼吸症候群)のスクリーニング等において使用される(例えば特許文献1参照)。その際、測定したデータは、一旦装置本体に記憶しておき、測定後、当該データをPC(パーソナルコンピュータ)等の外部装置へ転送し、この外部装置により酸素飽和度の変化やODI(Oxygen Desaturation Index;単位時間あたりの酸素飽和度の低下の回数を表す指標)等の解析を行う。その際、データ量を増やすための、すなわちメモリ容量を節約して長時間に亘って測定データが記憶できるようにするための手法として、例えば、装置本体において酸素飽和度のデータを1秒毎に取得(演算)していた場合に、2秒毎にデータを保存するようにして該測定データを間引くものがある。この方法では、長時間に亘るデータ測定は可能であるものの、データの時間分解能が低下することになり、正確な解析ができないことがある。
一方、酸素飽和度測定装置では、赤色光及び赤外光のLEDを発光させて生体内を透過又は反射した光を測定することで光電脈波の測定を行うが、この脈波の測定情報は、自律神経の働きや血流の状態をモニタするための有効な指標となるためデータ保存することが望まれる。また、今後これら以外に関しても生体情報として重要な指標となる可能性を秘めていることから、研究用途としてもデータ保存しておくことが望まれる。
特開平5−200031号公報
しかしながら、上記LEDの発光周期は数十Hz〜数百Hz位のオーダーとなるため、脈波のデータ量は、1秒間に1データのみの酸素飽和度や脈拍数等のデータに比べて例えば10倍〜100倍のデータ量となり、それらのデータを同時にメモリに保存する場合にはメモリ容量が不足する。この場合、脈波データを解析に使用するユーザはともかく、脈波データを使用しないユーザまでもがメモリ容量の不足により保存するデータ時間を短くしてしまうことになる。
また、例えば上記SASのスクリーニングのために企業等で多人数の検診を行う場合では、脈波のデータは特に必要ないが、多人数分のデータを一度に保存することが求められる。一方、脈波の診断により自律神経の働きや血流の状態をモニタするような場合には脈波のデータを保存することが望まれる。
本発明は、上記事情に鑑みてなされたもので、精度の高い(時間分解能の高い)測定データが必要であるのに、間引かれた精度の低い(時間分解能の低い)測定データが保存されてしまったり、或いは精度は低くとも長時間分の測定データを保存したいのに、データ量の大きな精度の高い測定データが保存されてしまいメモリ容量が不足する(メモリ時間が短くなる)といったことなく、測定データの種類に応じて容量の限られたメモリを効果的に使用することができ、ひいては、各種測定データを有効に活用することができる生体情報測定装置を提供することを目的とする。
本発明の請求項1に係る生体情報測定装置は、所定の生体情報を測定する生体情報測定装置であって、生体に対して照射可能な複数の異なる波長の光を発光する発光手段と、前記発光手段により発光されて前記生体を透過又は反射した光を受光する受光手段と、前記受光手段により受光された受光信号に応じた受光測定情報に基づいて少なくとも酸素飽和度を算出する演算手段と、少なくとも前記演算手段により算出された酸素飽和度の情報と前記受光測定情報とを含む測定情報を記憶することが可能に構成された記憶手段と、前記測定情報のうちの記憶手段に記憶する測定情報の種類を選択する選択手段とを備えることを特徴とする。
上記構成によれば、発光手段によって、生体に対して照射可能な複数の異なる波長の光が発光され、受光手段によって、発光手段により発光されて生体を透過又は反射した光が受光される。そして、演算手段によって、受光手段により受光された受光信号に応じた受光測定情報に基づいて少なくとも酸素飽和度が算出され、記憶手段によって、少なくとも演算手段により算出された酸素飽和度の情報と受光測定情報とを含む測定情報が記憶される。そして、選択手段によって、測定情報のうちの記憶手段に記憶する測定情報の種類が選択される。このように、記憶手段に記憶される情報が選択手段によって選択されることから、記憶手段に記憶する測定情報として、例えば時間分解能の高い(所謂生データ又は生データに近いものとしての)受光測定情報と、該受光測定情報に基づいて算出した例えば時間分解の低い(受光測定情報と比べてデータが間引かれた)酸素飽和度とのいずれか又は両方を任意に選択することが可能となる。したがって、精度の高い(時間分解能の高い)測定情報が必要であるのに、間引かれた精度の低い(時間分解能の低い)測定情報が保存されてしまったり、或いは精度は低くとも長時間分の測定情報を保存したいのに、データ量の大きな精度の高い測定情報が保存されてしまいメモリ容量が不足する(メモリ時間が短くなる)といったことなく、すなわち、不必要なデータが記憶(保存)されないように設定できることで、メモリ容量が節約(削減)でき、より多くのデータを記憶する(メモリ時間を長くする)ことができるというように、測定情報の種類に応じて容量の限られたメモリを効果的に使用することができ、ひいては各種測定情報を有効に活用することができる。
請求項2に係る生体情報測定装置は、請求項1において、装置に対する所定の指示入力を行う操作手段をさらに備え、前記選択手段は、該操作手段からの指示入力情報に基づいて記憶手段に記憶する測定情報の種類を選択することを特徴とする。この構成によれば、選択手段によって、操作手段からの指示入力情報に基づいて記憶手段に記憶する測定情報の種類が選択されるため、ユーザは装置が備える操作手段から指示入力を行うという容易な方法且つ簡易な構成で、記憶手段に記憶する測定情報の種類を選択することができる。
請求項3に係る生体情報測定装置は、請求項1又は2において、外部装置と通信可能に構成された通信手段をさらに備え、前記選択手段は、該通信手段を介した外部装置からの指示入力情報に基づいて記憶手段に記憶する測定情報の種類を選択することを特徴とする。この構成によれば、選択手段によって、通信手段を介した外部装置からの指示入力情報に基づいて記憶手段に記憶する測定情報の種類が選択されるため、ユーザは記憶手段に記憶する測定情報の種類の選択を外部装置の操作によって行うことができ、当該選択操作の自由度が高くなる。
請求項4に係る生体情報測定装置は、請求項1〜3のいずれかにおいて、前記測定情報を表示する表示手段をさらに備えることを特徴とする。この構成によれば、装置が備える表示手段によって測定情報が表示されるため、ユーザは測定情報を視認することができ、ひいては当該測定情報を利用し易くなる。
請求項5に係る生体情報測定装置は、請求項4において、前記表示手段は、前記選択手段により選択された記憶手段に記憶する測定情報を表示することを特徴とする。この構成によれば、装置が備える表示手段によって、選択手段により選択された記憶手段に記憶する測定情報が表示されるため、ユーザはいずれの測定情報が記憶手段に記憶されるかを視認することができ、これにより、所望でない測定情報を間違って記憶させてしまうといった誤操作が防止されるなどして、より確実に所望の測定情報を記憶させることができる。
請求項6に係る生体情報測定装置は、請求項1〜5のいずれかにおいて、前記記憶手段に記憶された測定情報を外部に転送する転送手段をさらに備えることを特徴とする。この構成によれば、転送手段によって記憶手段に記憶された測定情報が外部に転送されるため、記憶手段に記憶した測定情報を装置外に取り出して利用(活用)することが可能となる。
請求項7に係る生体情報測定装置は、請求項6において、前記転送手段は、前記記憶手段に複数種類の測定情報が記憶される場合、該複数種類の測定情報をそれぞれ独立に転送することが可能に構成されていることを特徴とする。この構成によれば、転送手段によって、記憶手段に記憶されている複数種類の測定情報がそれぞれ独立に転送されるため、必要としない測定情報を転送(例えばダウンロード)することなく、所要の測定情報のみ取り出して利用するといったように、記憶した測定情報を選択的に且つ効率良く利用することが可能となる。
請求項8に係る生体情報測定装置は、請求項1〜7のいずれかにおいて、生体の動きに対する加速度検出用の加速度センサをさらに備え、前記記憶手段は、該加速度センサの出力情報に基づき演算手段により算出された生体の動き情報及び傾き情報のうちの少なくとも一方の情報を前記測定情報として記憶することを特徴とする。この構成によれば、記憶手段によって、加速度センサの出力情報に基づき演算手段により算出された生体の動き情報(体動情報)及び傾き情報のうちの少なくとも一方の情報が測定情報として記憶されるため、例えば受光測定情報や酸素飽和度情報等の測定情報と併せて、これら動き情報及び傾き情報を利用して、より効果的に測定情報の活用を図ることが可能となる。
請求項9に係る生体情報測定装置は、請求項1〜8のいずれかにおいて、前記記憶手段は、発光手段による所定の発光タイミングに応じて得られる前記受光測定情報及びユーザに対する所定の出力タイミングに応じて得られる出力測定情報からなる測定情報のうちの少なくとも1つの測定情報を記憶することを特徴とする。この構成によれば、記憶手段によって、発光手段による所定の発光タイミングに応じて得られる受光測定情報、すなわち時間分解能の高い測定情報(所謂生データ又は生データに近い測定情報)、及び、ユーザに対する所定の出力タイミングに応じて得られる出力測定情報、すなわち例えば表示用に異常データ除去処理や平均処理等がなされた(データが間引かれた)時間分解能の低い測定情報からなる測定情報のうちの少なくとも1つの測定情報が記憶されるため、記憶しておいて利用するための測定情報として、当該時間分解能の高い情報と時間分解能の低い情報との両方を扱うことが可能となり、ひいてはより効果的に測定情報の活用を図ることが可能となる。
請求項10に係る生体情報測定装置は、請求項9において、前記所定の発光タイミングに応じて得られる受光測定情報は、少なくとも、生体の脈波波形の情報、該脈波波形を微分して得られる微分脈波波形の情報、脈波波形を2階微分して得られる加速度脈波波形の情報、発光タイミングに応じた各測定点で算出される酸素飽和度としての瞬間酸素飽和度の情報、又は前記加速度センサの出力情報のいずれかの情報であることを特徴とする。この構成によれば、所定の発光タイミングに応じて得られる受光測定情報が、少なくとも、脈波波形、微分脈波波形、加速度脈波波形、瞬間酸素飽和度、又は加速度センサ出力のいずれかの情報となるため、これら脈波波形、微分脈波波形、加速度脈波波形、瞬間酸素飽和度、又は加速度センサ出力による時間分解能の高い情報を利用して、生体に関する、より高精度の解析を行うことが可能となる。
請求項11に係る生体情報測定装置は、請求項9において、前記所定の出力タイミングに応じて得られる出力測定情報は、少なくとも、発光タイミングに応じた各測定点で算出される酸素飽和度としての瞬間酸素飽和度に基づき算出される酸素飽和度の情報、該酸素飽和度とともに算出される脈拍数の情報若しくは脈の強さの情報、又は前記生体の加速度の情報若しくは加速度ゼロクロス回数の情報若しくは加速度出力の積分値の情報のいずれかの情報であることを特徴とする。この構成によれば、所定の出力タイミングに応じて得られる出力測定情報が、少なくとも、瞬間酸素飽和度に基づき算出される酸素飽和度、脈拍数、脈の強さ、生体の加速度、加速度ゼロクロス回数(加速度波形におけるゼロ基準座標との交差回数)、又は加速度出力の積分値(加速度積分値)のいずれかの情報となるため、これら酸素飽和度、脈拍数、脈の強さ、生体の加速度、加速度ゼロクロス回数、又は加速度積分値といった、異常データ除去処理や平均処理等(データ間引き)がなされた、ユーザに対して出力する(ユーザに報知するべく表示する)ための所謂測定結果情報を扱うことができ、これら測定結果の算出に用いられる元情報としての時間分解能の高い脈波情報などと供に、より効果的に測定情報の活用を図ることが可能となる。
請求項1に係る生体情報測定装置によれば、記憶手段に記憶される情報が選択手段によって選択されることから、記憶手段に記憶する測定情報として、例えば時間分解能の高い受光測定情報と、該受光測定情報に基づいて算出した例えば時間分解の低い酸素飽和度とのいずれか又は両方を任意に選択することが可能となる。したがって、精度の高い(時間分解能の高い)測定情報が必要であるのに、間引かれた精度の低い(時間分解能の低い)測定情報が保存されてしまったり、或いは精度は低くとも長時間分の測定情報を保存したいのに、データ量の大きな精度の高い測定情報が保存されてしまいメモリ容量が不足するといったことなく、すなわち、不必要なデータが記憶(保存)されないように設定できることで、メモリ容量が節約(削減)でき、より多くのデータを記憶することができるというように、測定情報の種類に応じて容量の限られたメモリを効果的に使用することができ、ひいては各種測定情報を有効に活用することができる。
請求項2に係る生体情報測定装置によれば、選択手段によって、操作手段からの指示入力情報に基づいて記憶手段に記憶する測定情報の種類が選択されるため、ユーザは装置が備える操作手段から指示入力を行うという容易な方法且つ簡易な構成で、記憶手段に記憶する測定情報の種類を選択することができる。
請求項3に係る生体情報測定装置によれば、選択手段によって、通信手段を介した外部装置からの指示入力情報に基づいて記憶手段に記憶する測定情報の種類が選択されるため、ユーザは記憶手段に記憶する測定情報の種類の選択を外部装置の操作によって行うことができ、当該選択操作の自由度が高くなる。
請求項4に係る生体情報測定装置によれば、装置が備える表示手段によって測定情報が表示されるため、ユーザは測定情報を視認することができ、ひいては当該測定情報を利用し易くなる。
請求項5に係る生体情報測定装置によれば、装置が備える表示手段によって、選択手段により選択された記憶手段に記憶する測定情報が表示されるため、ユーザはいずれの測定情報が記憶手段に記憶されるかを視認することができ、これにより、所望でない測定情報を間違って記憶させてしまうといった誤操作が防止されるなどして、より確実に所望の測定情報を記憶させることができる。
請求項6に係る生体情報測定装置によれば、転送手段によって記憶手段に記憶された測定情報が外部に転送されるため、記憶手段に記憶した測定情報を装置外に取り出して利用(活用)することが可能となる。
請求項7に係る生体情報測定装置によれば、転送手段によって、記憶手段に記憶されている複数種類の測定情報がそれぞれ独立に転送されるため、必要としない測定情報を転送(例えばダウンロード)することなく、所要の測定情報のみ取り出して利用するといったように、記憶した測定情報を選択的に且つ効率良く利用することが可能となる。
請求項8に係る生体情報測定装置によれば、記憶手段によって、加速度センサの出力情報に基づき演算手段により算出された生体の動き情報及び傾き情報のうちの少なくとも一方の情報が測定情報として記憶されるため、例えば受光測定情報や酸素飽和度情報等の測定情報と併せて、これら動き情報及び傾き情報を利用して、より効果的に測定情報の活用を図ることが可能となる。
請求項9に係る生体情報測定装置によれば、記憶手段によって、発光手段による所定の発光タイミングに応じて得られる受光測定情報、すなわち時間分解能の高い測定情報(所謂生データ又は生データに近い測定情報)、及び、ユーザに対する所定の出力タイミングに応じて得られる出力測定情報、すなわち例えば表示用に異常データ除去処理や平均処理等がなされた時間分解能の低い測定情報からなる測定情報のうちの少なくとも1つの測定情報が記憶されるため、記憶しておいて利用するための測定情報として、当該時間分解能の高い情報と時間分解能の低い情報との両方を扱うことが可能となり、ひいてはより効果的に測定情報の活用を図ることが可能となる。
請求項10に係る生体情報測定装置によれば、所定の発光タイミングに応じて得られる受光測定情報が、少なくとも、脈波波形、微分脈波波形、加速度脈波波形、瞬間酸素飽和度、又は加速度センサ出力のいずれかの情報となるため、これら脈波波形、微分脈波波形、加速度脈波波形、瞬間酸素飽和度、又は加速度センサ出力による時間分解能の高い情報を利用して、生体に関する、より高精度の解析を行うことが可能となる。
請求項11に係る生体情報測定装置によれば、所定の出力タイミングに応じて得られる出力測定情報が、少なくとも、瞬間酸素飽和度に基づき算出される酸素飽和度、脈拍数、脈の強さ、生体の加速度、加速度ゼロクロス回数、又は加速度積分値のいずれかの情報となるため、これら酸素飽和度、脈拍数、脈の強さ、生体の加速度、加速度ゼロクロス回数、又は加速度積分値といった、異常データ除去処理や平均処理等(データ間引き)がなされた、ユーザに対して出力する(ユーザに報知するべく表示する)ための所謂測定結果情報を扱うことができ、これら測定結果の算出に用いられる元情報としての時間分解能の高い脈波情報などと供に、より効果的に測定情報の活用を図ることが可能となる。
図1は、本実施形態に係る生体情報測定装置の一例である酸素飽和度測定装置の構成を示すブロック図である。図1に示すように酸素飽和度測定装置1は、測定対象、つまり生体(被験者)に装着して該生体から測定情報(生体情報)を取得するための測定部10と、測定装置本体としての本体部20とを備えている。
測定部10は、発光部11及び受光部12を備えている。発光部11は、赤色領域における波長λ1の赤色光R及び赤外線領域における波長λ2の赤外光IRを生体に対して交互に射出する光源であり、例えば、波長λ1の赤色光Rと波長λ2の赤外光IRとを発光する発光ダイオード(以降、LEDという)により構成される光源である。発光部11は、測定部10における図略の測定光制御回路により赤色光R及び赤外光IRの発光が制御される。
なお、本実施形態において、発光部11は、或る1つのLEDを用いて、交互に赤色光Rと赤外光IRとを発光させる構成としているが、特にこれに限定されず、波長λ1の赤色光Rを発光するLEDと波長λ2の赤外光IRを発光するLEDとを備え(ただし、この2つのLEDは同一基板上に近接して配置される)、赤色光R及び赤外光IRをそれぞれ個別のLEDから発光させる構成としてもよい。この場合、赤色光Rを発光するLEDと赤外光IRを発光するLEDとを同一基板上に近接させて配置することで、生体内を同一経路で透過或いは反射する2波長の光の測定が可能となる。
受光部12は、受光した光強度に応じた電流を生成する光電素子であり、少なくとも波長λ1及び波長λ2に対して感度を有する。この受光部12には、例えばシリコン・フォト・ダイオード(Silicon Photo Diode)が利用される。受光部12は、上記測定光制御回路により発光部11の発光に同期して制御される。受光部12は、受光した光を光強度に従って光電変換した電流信号を本体部20へ出力する。
発光部11及び受光部12は、所定の保持部材(図略)により保持されて相互の位置が固定されている。そして、発光部11及び受光部12は、生体組織(LB)を経由した発光部11からの波長λ1、λ2の光が受光部12で受光可能となる配置となっている。ここでは、発光部11及び受光部12は、生体を挟んで略対向するように配置されており、具体的には、例えば発光部11及び受光部12の一端側が互いに回動自在に支持されて他端側が開閉される所謂クリップのように構成されており、このクリップにより例えば手の指を挟持した状態で装着する構成となっている。ただし、当該クリップの形態で構成されておらずともよく、例えば所定の固定バンド(テープ)を用いて発光部11及び受光部12を生体に巻着させるような構成であってもよい。
なお、発光部11及び受光部12は上記対向した配置に限定されず、例えば同じ向きに配置つまり同一面上に並設されていてもよい。また、受光部12は、接続ライン13(ケーブル又はコード)によって本体部20(後述の接続部22)と接続されている。ただし、接続ライン13は測定部10に含むものとする。また、測定部10つまり発光部11及び受光部12が装着される部位(測定部位)は、装着の容易性やSN比(Signal - to - Noise ratio)の高い測定データが得られるなどの測定の容易性が考慮された、上述の手の指や耳朶などの生体部位、或いは乳幼児の場合には手の甲、手首、足の甲などの生体部位である。
本体部20は、電源部21、接続部22、I/V変換部23、A/D変換部24、表示部25、記憶部26、データ送受信部27、操作部28及び制御演算部29等を備えている。電源部21は、酸素飽和度測定装置1の各部に電源を供給するものであり、例えばAC電源や電池からなる。接続部22は、測定部10、具体的には受光部12の接続ライン13の基端部と本体部20とを電気的に接続する所謂コネクタである。I/V変換部23は、受光部12により出力され、接続部22を介して入力された電流信号を電圧信号に変換する(I/V変換処理を行う)ものである。I/V変換部23による変換で得られた電圧信号は、光電脈波信号としてA/D変換部24に出力される。A/D変換部24は、入力された光電脈波信号をアナログ信号からデジタル信号に変換する(A/D変換処理を行う)ものである。A/D変換によりデジタル信号に変換された光電脈波信号は、制御演算部29に出力される。
表示部25は、制御演算部29により処理されたデータを表示するものであり、例えば、液晶表示装置(LCD;Liquid Crystal Display)、7セグメントLED、有機フォトルミネセンス表示装置、CRT(Cathode Ray Tube)及びプラズマ表示装置等の表示装置である。表示部25は、具体的には、例えば脈波や酸素飽和度の生体情報等の各種測定情報、或いは、この各種測定情報における記憶部26に記憶するデータの種類又はデータ内容の情報を表示する。なお、表示部25は、これら各種測定データを全て表示する構成であってもよいし、全種類より少ない所定種類の組み合わせ(又は1種類)で表示する構成であってもよい。例えば各種データが酸素飽和度及び脈拍数であるとすると、酸素飽和度とともに脈拍数を表示してもよいし、酸素飽和度又は脈拍数のいずれか一方のみを表示してもよい。要は、表示部25は、必要に応じた任意の形態で測定データの表示が可能である。また、表示部25に表示される表示内容は、ユーザによる操作部28又は表示操作部32の指示入力に基づいて切り替えられてもよい。
記憶部26は、制御演算部29による算出データや各種設定データを保存(格納)するものであり、例えばEEPROM(Electronically Erasable and Programmable Read Only Memory)、SRAM(Static Random Access Memory)及びFeRAM(Ferroelectric Random Access Memory)等の記憶装置である。具体的には、記憶部26は、例えば脈波、酸素飽和度、該酸素飽和度とともに算出される脈拍数、後述の加速度センサによる生体の加速度等の生体情報といった各種測定情報、或いは測定部10(発光部11)による測定時の光量が仕様範囲外であったり、脈波の振幅が仕様範囲外であったり、プローブ(測定部10)が接続されていない又は外れたといった測定時に発生する警告に関するデータ(警告フラグ)、或いは電池残量等のデータを記憶する。これら警告フラグや電池残量等のデータも測定情報に含むものとする。なお、記憶部26は、上記測定情報の他に、例えば酸素飽和度測定装置1を複数台使用する際の互いの識別用としてのボディ番号や、電源投入時から一定時間が経過すると自動で電源オフさせるための所謂オートパワーオフ時間等の情報を記憶してもよい。記憶部26における脈波や酸素飽和度等の測定情報の記憶パターン(メモリの使用方法)については後述する。
データ送受信部27は、図1に示すように、PC等の外部装置30とのデータの送受信を行うものであり、例えばRS−232C、USB(Universal Serial Bus)、IrDA(Infrared Data Association )等の有線(LAN等のネットワーク)又は無線による通信規格によるデータ送受信装置である(I/Oインターフェース部と言うこともできる)。データ送受信部27は、絶縁部33を介して外部装置30と接続されている。この絶縁部33は、酸素飽和度測定装置1の内部又は外部に設られ、外部装置30とデータの送受信を行う信号を絶縁するものであり、例えばフォトカプラからなる。ここでは、絶縁部33は酸素飽和度測定装置1の外部に設けられており、外部装置30に含まれるものとする。
データ送受信部27は、上記送受信機能により、記憶部26に記憶されている各種データを酸素飽和度測定装置1の外部に、ここでは外部装置30に転送(ダウンロード)することができる。具体的には、データ送受信部27は、記憶部26に記憶されている各種データ(例えば後述の記憶パターン1〜5におけるR脈波データ、IR脈波データ或いは酸素飽和度データ)を転送する際、これら各種データを互いに独立して転送することが可能に構成されている。このデータ送受信部27による外部装置30へのデータ転送処理は、例えば操作部28又は外部操作部32からユーザにより入力された転送コマンドに基づく制御演算部29からの転送制御信号によって実行される。なお、当該保存データの転送は、所定の無線機能を備えた外部装置或いはLAN等のネットワークで接続された外部装置に対して行われてもよい。
ところで、本実施形態では、酸素飽和度測定装置1は外部装置30と(所定のコネクタによって)接続されているが、例えば当該(コネクタが)接続された状態で電源がオンされた場合、直ちに測定状態となるのではなく、先ず外部装置30との通信状態(通信可能状態)となり、外部装置30からの動作指示待ち状態となる構成であってもよい。この通信状態において外部装置30から酸素飽和度測定装置1へ向けてコマンド(指示情報)が送信されると、該コマンドに応じた酸素飽和度測定装置1による動作が実行される。具体的には、例えば、測定されたデータの送信を行うコマンドを外部装置30から酸素飽和度測定装置1に送信すると、酸素飽和度測定装置1は、記憶部26に保存されたデータを外部装置30に転送する。また、外部装置30から酸素飽和度測定装置1に保存データの種類を切り替えるコマンド(又は保存データの種類の情報)を送信すると、酸素飽和度測定装置1は、記憶部26に保存するデータの種類を切り替え、例えば次回の測定時には当該新たに設定した保存データの保存が行われるようになる。
なお、外部装置30は、該外部装置30の表示部としての外部表示部31、及び外部装置30の操作部としての例えばキーボードやマウスからなる外部操作部32等を備えている。この外部表示部31に、データ送受信部27によって本体部20側から送信されてきた脈波や酸素飽和度、脈拍数等の生体情報を、上記本体部20における表示部25での表示と同様に表示してもよい。この場合、例えば外部装置30が備える所定の記憶部(例えばRAMやROM)内に、外部表示部31での生体情報の表示を行うためのプログラムつまり生体情報表示ソフトが記憶されていてもよい。また、外部操作部32も後述の操作部28と同様の指示入力機能を備えており、電源のオン/オフや記憶部26に記憶するデータの種類を選択することが可能に構成されていてもよい。
操作部28は、各種スイッチ(入力ボタン)を備え、装置各部を操作するべく所定の指示入力を行うためのものである。操作部28は、各種スイッチとして、電源スイッチ、測定スイッチ、バックライトスイッチ及びメモリ切り替えスイッチ(いずれも図略)等を備えている。電源スイッチは、酸素飽和度測定装置1の電源部21のオン(ON)/オフ(OFF)切り替えを行うスイッチである。測定スイッチは、測定部10による生体情報(例えば脈波データ)の検出及びこの検出情報に基づく演算処理を開始又は終了するためのオン、オフ切り替えを行うスイッチである。バックライトスイッチは、例えば表示部25がLCDである場合に、暗所での視認性を向上させるためのLCDにおける照明(バックライト)のオン/オフ切り替えを行うスイッチである。また、メモリ切り替えスイッチは、記憶部26に記憶して保存しておくデータ(保存データ)の種類、換言すればデータの記憶形態(記憶パターン)を切り替える(選択又は指定する)ためのスイッチである。この場合、ユーザは、例えばメモリ切り替えスイッチと電源スイッチとを同時に押下することで、上記データの記憶形態の切り替えを行うメモリ切り替えモードで装置を立ち上げ(該モードに移行させ)、このメモリ切り替えモードにおいて、メモリ切り替えスイッチ或いは他のスイッチを操作して記憶部26に記憶するデータの種類を選択する指示入力を行う。なお、上記各種スイッチは、機械的に押下するプッシュボタンの形態、液晶表示装置等のタッチパネル内に表示される入力ボタンの形態など種々の形態が採用可能である。
制御演算部29は、各制御プログラム等を記憶するROM、一時的にデータを格納するRAM及び制御プログラム等をROMから読み出して実行する(中央演算処理装置:CPU)やDSP(Digital Signal Processor)からなり、酸素飽和度測定装置1全体の動作制御を司るものである。制御演算部29は、これらRAMやROMに記憶されたデータやプログラムに基づいて、制御演算部29に入力された光電脈波信号から動脈血中の酸素飽和度や脈拍数等の測定情報を算出(演算)する。図2は、制御演算部29の各機能を説明するための機能ブロック図である。同図に示すように、制御演算部29は、記憶データ選択部291、バンドパスフィルタ部292、記憶酸素飽和度演算部293及び表示酸素飽和度演算部294等を備えている。
記憶データ選択部291は、記憶部26に記憶するデータ(保存データ)の種類を選択するものである。記憶データ選択部291は、指示情報受付部2911及び選択情報設定部2912を備えている。指示情報受付部2911は、ユーザにより指示入力された操作部28又は外部操作部32からの、保存データの種類の選択に関する指示情報を受け付けるものである。選択情報設定部2912は、指示情報受付部2911により受け付けられた指示情報に基づいて、例えば後述の記憶パターン1〜5におけるいずれの記憶パターンを選択して記憶するかに関する情報(選択情報)を設定するものである。記憶データ選択部291は、選択情報設定部2912に設定された選択情報に基づいて、記憶部26に記憶するデータの種類の切り替え処理を行う。なお、上記操作部28又は外部操作部32からの指示情報は、保存するデータの種類(内容)そのものを示す所謂直接的な指示情報であってもよいし、いずれの記憶パターンを選択するかを示す所謂間接的な指示情報であってもよい。この場合、選択情報設定部2912は、例えば選択情報設定部2912内に複数種類の記憶パターン情報を予め記憶しておき、当該指示情報に応じてこれら各記憶パターンから選択した記憶パターン情報を設定する構成であってもよい。
バンドパスフィルタ部292は、所定のバンドパスフィルタ(以降、「BPF」と略記する)、例えばデジタルローパスフィルタ及びデジタルバイパスフィルタ(固定デジタルフィルタ)の組み合わせで構成されたBPFを用いて、上記A/D変換部24によるA/D変換により得られた光電脈波信号をフィルタリングするものである。バンドパスフィルタ部292は、当該光電脈波信号をフィルタリングすることにより、赤色光Rと赤外光IRとのそれぞれについて、生体の脈波信号の周波数領域である例えば0.3Hz〜4Hzの領域の信号(波形データ)を得る。なお、BPFとして、高次のFIR(Finite Impulse Response)フィルタを用いてもよい。
記憶酸素飽和度演算部293は、上記バンドパスフィルタ部292で得られた赤色光R及び赤外光Iの脈波データ等に基づいて、所定時間毎の酸素飽和度データを算出するものである。具体的には、記憶酸素飽和度演算部293は、先ず上記バンドパスフィルタ部292においてフィルタリングした信号に対する各点(各測定点)での酸素飽和度を算出する。すなわち、バンドパスフィルタ部292で得た赤色光R及び赤外光IRの波形データ(脈波波形データ)から、後述の(3)式を用いて、発光部11による発光タイミングに応じた即ち発光周波数(例えば30Hz〜40Hz)毎の酸素飽和度、具体的には発光周波数が例えば30Hzであるとすると、毎秒30個の各測定点での酸素飽和度を算出する。以降、この発光部11による発光タイミング(発光周波数)に対応する各測定点において算出した瞬時値としての酸素飽和度のことを瞬時SpO(瞬間酸素飽和度)と称する。なお、上記赤色光R及び赤外光IRの脈波波形データも、発光部11による発光タイミングに応じて得た測定データであると言える。
また、記憶酸素飽和度演算部293は、上記算出した各瞬時SpOデータから体動等の生体情報に関連するデータ以外のノイズと考えられるデータ(ノイズデータ)を除外した上で、所定単位時間、例えば1秒間における当該瞬時SpOのデータ平均値をとった酸素飽和度(以降、1秒間に取得した全瞬時SpOを平均化処理してなる酸素飽和度のことを1秒SpOと称する)を算出する。記憶酸素飽和度演算部293は、1秒毎にこの1秒SpOのデータを算出する。
表示酸素飽和度演算部294は、上記記憶酸素飽和度演算部293により算出した1秒SpOに対する所定の補正処理、例えば1秒SpOにおける異常データの除去処理、或いはスムージング処理を行い、表示部25等に表示すべき酸素飽和度(表示酸素飽和度;表示SpOという)を求めるものである。なお、表示酸素飽和度は、当該異常データの除去処理やスムージング処理が施された1秒SpOであってもよいし、例えば単位時間(1秒間)の所定倍数分の長さの所定時間、例えば3秒間に算出した3つの1秒SpOの平均値(3秒平均)をとったものとして算出してもよいし、より平均の精度を高めた例えば12秒平均値であってもよい。勿論、これら3秒平均値や12秒平均値に限定されず、任意の時間の平均値であってよい。
なお、酸素飽和度測定装置1は、上記各機能部の他に、例えば加速度センサ(図略)を備えていてもよい。この加速度センサは、被験者の体動として、例えば歩行に伴う腕の振りの繰り返し運動、すなわち腕の振りの加速度を検出するものである。このように加速度センサを備えて加速度を検出するのは、例えば被験者が運動等をしている場合、生体スペクトル信号(例えば脈波波形データ)に体動(腕の動き)に応じた周波数成分が含まれてしまうため、当該検出した加速度情報を利用して、より正確に生体情報(酸素飽和度や脈拍)の測定を行おうとすることにある。なお、加速度センサによる出力データも上述の発光タイミングに応じて得られる。
<メモリの使用方法>
ここで、記憶部26への各種データの記憶方法について説明する。図8は、記憶部26に記憶するデータの種類に応じた各種記憶パターンについて説明する図である。図8には、記憶パターン1〜5を示している。記憶部26の記憶容量(メモリ容量)が例えば32MBであるとすると、符号810に示す記憶パターン1では、例えば酸素飽和度データのみを記憶する。この場合のメモリ可能時間は例えば約300時間となる。符号820に示す記憶パターン2では、例えば赤外光IRの脈波データ(IR脈波データという)のみを記憶する。この場合のメモリ可能時間は例えば約24時間となる。符号830に示す記憶パターン3では、例えば赤色光Rの脈波データ(R脈波データという)とIR脈波データとを記憶する。この場合のメモリ可能時間はいずれも例えば約12時間となる。また、符号840に示す記憶パターン4では、例えば酸素飽和度データ及びIR脈波データを記憶する。この場合のメモリ可能時間はいずれも例えば約22時間となる。さらに、符号850に示す記憶パターン5では、例えば酸素飽和度データ、R脈波データ及びIR脈波データを記憶する。この場合のメモリ可能時間はいずれも例えば約11.5時間となる。
ただし、ここでの図8に示す各記憶パターンにおいて記憶される酸素飽和度データとは、上記瞬時SpOを示すものであるが、これに限らず、上記1秒SpO、或いは上記表示酸素飽和度(3秒平均値や12秒平均値)などの酸素飽和度に関連するデータであればいずれのデータでもよい。また、上記各メモリ可能時間は、記憶データに応じて異なるものとなる。すなわち、上述のように発光タイミングに応じて測定されるような所謂時間分解能が高いデータ(R脈波データやIR脈波データ)が多い場合には当該データを保存できる時間(メモリ時間)は短くなり、逆に、1秒SpO等の所謂時間分解能が低いデータが多い場合には当該データを保存することができる時間は長くなる。
ここでは記憶パターン1〜5において、R脈波データ、IR脈波データ及び酸素飽和度データの3種類のデータを記憶しているが、これに限らず、例えば脈拍数、脈の強さ(AC;交流又はDC;直流での2つの場合がある)、脈波(脈波波形)を微分してなる微分脈波波形や脈波(脈波波形)を2階微分(2次微分)して得られる加速度脈波波形、或いは、上述のように加速度センサを備える場合、該加速度センサによる検出情報(加速度センサ出力データ)や、この検出情報に基づく生体(被験者)の動き(体動)に対する動き情報(体動情報)、生体の傾き量(傾き角)に関する傾き情報、及び加速度情報(加速度波形や該加速度波形におけるゼロ基準座標との交差回数を示す加速度ゼロクロス回数、加速度出力の積分値(加速度積分値)の情報等)等、酸素飽和度測定装置1にて測定又は算出されたデータであれば、いずれの種類のデータ又は何種類のデータを記憶してもよい。このように、記憶部26の記憶エリアには、1種類のデータ或いは複数種類のデータ、換言すれば、発光タイミングに応じて測定されたデータ(所謂生データ又は生データに近いデータ)としての、R又はIR脈波波形データ(微分脈波や加速度脈波波形データを含む)、瞬時SpOデータや加速度センサを備える場合は加速度センサ出力データ等のデータ、或いは、ユーザに対して出力(表示)するべく算出された、1秒間隔又はこれ以外の所定時間間隔で測定(平均値算出)された酸素飽和度(例えば1秒SpO)データ、脈拍数データ、脈の強さのデータ、加速度データ、加速度ゼロクロス回数データや加速度積分値データといった、サンプリング周期や時間分解能(データサイズ)等の異なる各種データが、選択に応じた種々の組み合わせによる種々の記憶パターンで記憶される。
なお、記憶部26にいずれの種類のデータが記憶されているかについての情報は、例えば符号811に示す所定容量のメモリ管理エリアに保存されていてもよい(これ以外の記憶パターンについても同じ)。また、各種類のデータのメモリ使用割合も上記各パターンに示すものに限定されず、任意の割合としてもよい。また、上記のように或る1種類のデータを1つの領域に記憶せずともよく、1種類のデータを複数の領域に記憶してもよい。例えば記憶パターン3では、R脈波データ及びIR脈波データが各データに対応する2つの領域に記憶されているが、R脈波データ及びIR脈波データそれぞれを複数の領域に区分して記憶する、例えばメモリ管理エリアに近いものから、R脈波データ、IR脈波データ、R脈波データ、IR脈波データ…という並びで記憶してもよいし、これ以外の並びで記憶してもよい。
<測定原理>
ここで、光を用いて酸素飽和度を測定する原理について説明する。周知の通り、酸素は、ヘモグロビン(Hb)によって生体の各細胞に運ばれるが、ヘモグロビンは、肺で酸素と結合して酸化ヘモグロビン(HbO)となり、生体の細胞で酸素が消費されるとヘモグロビンに戻る。酸素飽和度(SpO)は、血中の酸化ヘモグロビンの割合を示すものであり、ヘモグロビン濃度をCHb、酸化ヘモグロビン濃度をCHbOで示すと、以下の(1)式のように定義される。
Figure 2006263356
一方、ヘモグロビンの吸光度及び酸化ヘモグロビンの吸光度は、波長依存性を有しており、各吸光係数α(λ)は、例えば図3に示すような吸光特性を有している。なお、図3の横軸は、nm単位で示す光の波長であり、縦軸は、×10−9cm/mole単位で示す吸光係数である。ヘモグロビン及び酸化ヘモグロビンは、図3に示すようにその吸光特性が異なる。ヘモグロビンは、赤色領域での赤色光Rにおいては、酸化ヘモグロビンよりも光を多く吸収するが、赤外線領域での赤外光IRにおいては、酸化ヘモグロビンよりも光の吸収が少なくなっている。すなわち、例えば、赤色光Rの波長λ1を酸化ヘモグロビンとヘモグロビンとの吸光係数の差が最も大きい例えば660nmとし、赤外光IRの波長λ2を酸化ヘモグロビンとヘモグロビンとの吸光係数の差が等しい例えば815nmとした場合、赤色光Rの透過光量はヘモグロビンが多くなるのに従って大きくなり、一方、酸化ヘモグロビンとヘモグロビンとの比率が変わったとしても、赤外光IRの透過光量は変わらないこととなる。これにより、赤色光Rと赤外光IRとの透過光量の比をとることで酸素飽和度を求めることが可能となる。酸素飽和度測定装置1は、このようなヘモグロビン及び酸化ヘモグロビンの赤色光Rと赤外光IRとに対する吸光特性の違いを利用して血中の酸素飽和度や脈拍数等を求める。
生体に光を照射すると、光の一部は吸収され、一部は透過する。生体は、動脈血層と、静脈血層と、動脈血層及び静脈血層以外の組織(血液以外の組織)とで構成される。この生体における光の吸収は、図4(a)に示すように、動脈血層による吸収と、静脈血層による吸収と、動脈血層及び静脈血層以外の組織による吸収とからなる。動脈血層及び静脈血層以外の組織と静脈血層とは経時的に変化しないため、この部分での光の吸収は略一定である。一方、動脈血は心拍動によって血管径が変化するため、動脈血層による光の吸収、すなわち透過光(図4(a)に示す透過光)の強度は、図4(b)に示すように脈拍により経時的に変化する。この透過光強度の変化分は、動脈血のみの情報によるものであり、静脈血や、動脈血及び静脈血以外の生体組織による影響を殆ど含まない。なお、図4(b)の横軸は時間、縦軸は透過光強度である。
ところで、赤色光R及び赤外光IRの光量変化を比較する場合、入射光量の差をキャンセル(補正)する必要がある。図5(a)〜(c)は、生体に対する入射光と透過光との関係を示す模式図である。図5(a)に示すように、生体への入射光量Iを赤色光Rと赤外光IRとで同じにすることは実質的に困難であり、仮に同じにしたとしても、組織や静脈血による吸光率は赤色光Rと赤外光IRとで異なるため、変化分のみでの比較を行うことはできない。
ここで、動脈が最も細い場合(透過光量が最も大きい場合)の透過光量をIとし、動脈が最も太い場合(透過光量が最も小さい場合)の透過光量をI−ΔIとする(記号「−」は減算を示す)。これは図5(a)又は図5(b)に示すように、厚さ(幅)ΔDの動脈血にIという光を照射したとき、I−ΔIの透過光が得られると考えられる。なお、このΔDの動脈血に応じた透過光量の変化の様子は、図5(c)(横軸は時間、縦軸は透過光量)に示される。
したがって、図6に示すように、符号610のグラフに示す赤色光Rの透過光量Iと、符号620のグラフに示す赤外光IRの透過光量IIRとが同じとなるように正規化する、つまり符号630のグラフに示すように、透過光量IIRに対応する透過光量IIR’=透過光量Iとなるように正規化することにより、動脈血による光量変化の比である(ΔI/I)/(ΔIIR/IIR)を求めて酸素飽和度を算出することができる(記号「/」は除算を示す)。
ところで、入射光と透過光との関係はランバート・ビアの法則により、下記の(2)式で表すことができる。
Figure 2006263356
但し、上記(2)式において、Eは吸光物の吸光係数を表し、Cは吸光物の濃度を表す。
赤色光R及び赤外光IRの2つの波長をそれぞれ上記(2)式に当てはめ((2)式中のIをI又はIIRに置き換える)比をとることによって下記の(3)式を得ることができる。
Figure 2006263356
但し、上記(3)式において、Iは赤色光Rの透過光量を表し、IIRは赤外光IRの透過光量を表し、Eは赤色光Rの吸光係数を表し、EIRは赤外光IRの吸光係数を表す。
図7は、吸光係数の比と酸素飽和度との関係を示す図である。図7の横軸は酸素飽和度であり、縦軸は吸光係数の比である。同図に示すように、例えば赤色光R及び赤外光IRの波長をそれぞれ約660nm及び約815nmとすると、吸光係数の比(E/EIR)と酸素飽和度との関係は右肩下がりの直線で表される。このような関係に基づいて、吸光係数の比から酸素飽和度を算出することができる。なお、酸素飽和度の算出方法としては、この方法に限らず、種々の方法が採用可能である。
図9は、酸素飽和度測定装置1による酸素飽和度の測定に関する動作の一例を示すフローチャートである。先ず操作部28の電源スイッチが押下されるなどして電源部21がオンされる。この際、電源スイッチとともにメモリ切り替えスイッチも同時に押下されることで、記憶部26に記憶するデータの切り替えが可能なメモリ切り替えモードにて装置が起動されるとともに(ステップS1)、当該装置が起動されるタイミングで装置各部が初期化される(ステップS2)。そして、指示情報受付部2911によって、ユーザにより指示入力された操作部28又は外部操作部32からの保存データの種類の選択に関する指示情報が受け付けられ、指示情報受付部2911によって当該指示情報に基づき選択情報が設定される(ステップS3)。次に、生体の測定対象部すなわち例えば被験者の指に測定部10(発光部11及び受光部12)が装着され、操作部28又は外部操作部32の測定スイッチがオンされる(ステップS4)。そして、受光部12からの出力信号がI/V変換部23によりI/V変換され、このI/V変換により得られた電圧信号がA/D変換部24によりA/D変換される(ステップS5)。
バンドパスフィルタ部292によって、上記A/D変換されて得られた光電脈波信号がフィルタリングされ、赤色光Rと赤外光IRとのそれぞれについて、生体の脈波信号の周波数領域である例えば0.3Hz〜4Hzの領域の信号(脈波波形データ)が取得される(ステップS6)。そして、記憶酸素飽和度演算部293によって、バンドパスフィルタ部292により得られた赤色光R及び赤外光IRの脈波波形データから、発光周波数(例えば約30Hz〜40Hz)毎の酸素飽和度(瞬時SpO)が算出される(ステップS7)。この瞬時SpOの算出は所定単位時間、例えば1秒間の間実行される。すなわち1秒経過していなければ(ステップS8のNO)、1秒経過するまで上記ステップS5〜S7の動作が繰り返される。1秒が経過して(ステップS8のYES)、該1秒間分の瞬時SpOが算出されると、同じく記憶酸素飽和度演算部293により、これら1秒間に得られた全ての瞬時SpOに対する平均化処理が行われて1秒SpOが算出される(ステップS9)。
次に、表示酸素飽和度演算部294によって、記憶酸素飽和度演算部293により算出された上記1秒SpOに対する所定の補正処理、例えば1秒SpOに対する異常データの除去処理、或いはスムージング処理が行われ(ステップS10)、当該補正処理が施された1秒SpO、或いは所定時間例えば3秒間に算出して得た各1秒SpOの平均値を算出するなどして表示SpOが算出される(ステップS11)。そして、表示部25又は外部表示部31に、ステップS11で算出した表示SpO或いは当該各酸素飽和度とともに算出した脈波数等の各測定値の情報が表示されるとともに(ステップS12)、上記ステップS3において指示情報受付部2911に設定された選択情報、例えば図8の各記憶パターンのうちのいずれかのパターンに対応する各種保存データ(例えば記憶パターン2ではIR脈波データ)が記憶部26に記憶される(ステップS13)。そして、上記ステップS4でオンした測定スイッチがオフされて(ステップS14のYES)、フロー終了となる。測定スイッチがオフされなければ(ステップS14のNO)、ステップS5に戻って以降のステップにおける動作が繰り返される。
以上のように、本実施形態の酸素飽和度測定装置1によれば、発光部11によって、生体(ユーザ、被験者)に対して照射可能な複数の異なる波長の光が発光(射出)され、受光部12によって、発光部11により発光されて生体を透過又は反射した光が受光される。そして、制御演算部29によって、受光部12により受光された受光信号に応じた受光測定情報に基づいて少なくとも酸素飽和度が算出され、記憶部26によって、少なくとも制御演算部29により算出された酸素飽和度の情報と受光測定情報とを含む測定情報が記憶される。そして、記憶データ選択部291によって、これら測定情報のうちの記憶部26に記憶する測定情報の種類が選択される。
このように、記憶部26に記憶される情報が記憶データ選択部291によって選択されることから、記憶部26に記憶する測定情報として、例えば時間分解能の高い(所謂生データ又は生データに近いものとしての)受光測定情報(脈波データ等)と、該受光測定情報に基づいて算出した例えば時間分解の低い(受光測定情報と比べてデータが間引かれた)酸素飽和度とのいずれか又は両方を任意に選択することが可能となる。したがって、精度の高い(時間分解能の高い)測定情報が必要であるのに、間引かれた精度の低い(時間分解能の低い)測定情報が保存されてしまったり、或いは精度は低くとも長時間分の測定情報を保存したいのに、データ量の大きな精度の高い測定情報が保存されてしまいメモリ容量が不足する(メモリ時間が短くなる)といったことなく、すなわち、不必要なデータが記憶(保存)されないように設定できることで、メモリ容量が節約(削減)でき、より多くのデータを記憶する(メモリ時間を長くする)ことができるというように、測定情報の種類に応じて容量の限られたメモリを効果的に使用することができ、ひいては各種測定情報を有効に活用することができる。なお、このように所望の保存データが選択されて、脈波のような原始的なデータから例えば1秒毎の酸素飽和度のデータまで幅広く任意に記憶することが可能となるため、当該データに対するユーザのニーズが広がる。
また、記憶データ選択部291によって、操作部28からの指示入力情報に基づいて記憶部26に記憶する測定情報の種類が選択されるため、ユーザは装置が備える操作部28から指示入力を行うという容易な方法且つ簡易な構成で、記憶部26に記憶する測定情報の種類を選択することができる。
また、記憶データ選択部291によって、データ送受信部27(通信手段)を介した外部装置30からの指示入力情報に基づいて記憶部26に記憶する測定情報の種類が選択されるため、ユーザは記憶部26に記憶する測定情報の種類の選択を外部装置30(外部操作部32)の操作によって行うことができ、当該選択操作の自由度が高くなる。
また、装置が備える表示部25によって測定情報が表示されるため、ユーザは測定情報を視認することができ、ひいては当該測定情報を利用し易くなる。
また、装置が備える表示部25によって、記憶データ選択部291により選択された、記憶部26に記憶する測定情報が表示されるため、ユーザはいずれの測定情報が記憶部26に記憶されるかを視認することができ、これにより、所望でない測定情報を間違って記憶させてしまうといった誤操作が防止されるなどして、より確実に所望の測定情報を記憶させることができる。
また、データ送受信部27(転送手段)によって、記憶部26に記憶された測定情報が外部に転送されるため、記憶部26に記憶した測定情報を装置外(例えば外部装置30)に例えばダウンロードして取り出して利用(活用)することが可能となる。
また、データ送受信部27(転送手段)によって、記憶部26に記憶されている複数種類の測定情報がそれぞれ独立に転送されるため、必要としない測定情報を転送(例えばダウンロード)することなく、所要の測定情報のみ取り出して利用するといったように、記憶した測定情報を選択的に且つ効率良く利用することが可能となる(転送時の操作性つまり使い勝手が向上するとも言える)。
また、例えば加速度センサを備える場合、記憶部26によって該加速度センサの出力情報に基づき制御演算部29により算出された生体の動き情報(体動情報)及び傾き情報のうちの少なくとも一方の情報が測定情報として記憶されるため、例えば受光測定情報や酸素飽和度情報等の測定情報と併せて、これら動き情報及び傾き情報を利用して、より効果的に測定情報の活用を図ることが可能となる。
また、記憶部26によって、発光部11による所定の発光タイミングに応じて得られる受光測定情報、すなわち時間分解能の高い測定情報(所謂生データ又は生データに近い測定情報)、及び、ユーザに対する所定の出力タイミングに応じて得られる出力測定情報、すなわち例えば表示部25(外部表示部31)への表示用に異常データ除去処理や平均処理等がなされた(データが間引かれた)時間分解能の低い測定情報からなる測定情報のうちの少なくとも1つの測定情報が記憶されるため、記憶しておいて利用するための測定情報として、当該時間分解能の高い情報と時間分解能の低い情報との両方を扱うことが可能となり、ひいてはより効果的に測定情報の活用を図ることが可能となる。
また、上記所定の発光タイミングに応じて得られる受光測定情報は、少なくとも、生体の脈波波形の情報、該脈波波形を微分して得られる微分脈波波形の情報、脈波波形を2階微分して得られる加速度脈波波形の情報、発光タイミングに応じた各測定点で算出される酸素飽和度としての瞬間酸素飽和度(瞬時SpO)の情報、又は加速度センサの出力情報のいずれかの情報となるため、これら脈波波形、微分脈波波形、加速度脈波波形、瞬間酸素飽和度、又は加速度センサ出力による時間分解能の高い情報を利用して、生体に関する研究等において、より高精度の解析を行うことが可能となる。
また、上記所定の出力タイミングに応じて得られる出力測定情報は、少なくとも、発光タイミングに応じた各測定点で算出される酸素飽和度としての瞬間酸素飽和度に基づき算出される酸素飽和度の情報、該酸素飽和度とともに算出される脈拍数の情報若しくは脈の強さの情報、又は生体の(体動による)加速度の情報若しくは加速度ゼロクロス回数の情報若しくは加速度出力の積分値(加速度積分値)の情報のいずれかの情報となるため、これら酸素飽和度、脈拍数、脈の強さ、生体の加速度、加速度ゼロクロス回数、又は加速度積分値といった、異常データ除去処理や平均処理等(データ間引き)がなされた、ユーザに対して出力する(ユーザに報知するべく表示部25等に表示する)ための所謂測定結果情報を扱うことができ、これら測定結果の算出に用いられる元情報(生データ)としての時間分解能の高い脈波情報などと供に、より効果的に測定情報の活用を図ることが可能となる。
なお、本発明は、以下の態様をとることができる。
(A)上記実施形態においては、1個のメモリ(記憶部26)に対して、選択した測定情報を記憶する構成としているが、複数個のメモリを備え、選択した測定情報の種類に応じて例えばこれら各メモリを切り替えて使用(記憶)する構成としてもよい。また、この記憶部26に相当する記憶部を外部装置30に備え、該記憶部に、選択した測定情報を記憶させる構成としてもよい。要は、記憶する測定情報がユーザによって任意に選択され、この選択された測定情報がメモリに記憶されるの構成であればいずれの態様でもよい。
(B)外部装置(上記外部装置30或いはその他の外部装置でもよい)から本体部20の操作部28を通信等によって操作することで、記憶部26に記憶する測定情報を選択する(保存データの種類の情報を設定する)構成であってもよい。
(C)記憶部26に記憶するときだけでなく、既に(選択されて)記憶されている測定情報を表示部25(外部表示部31)に表示可能な構成としてもよい。これにより、ユーザは、現在、記憶部26にどのような測定情報が記憶されているかを確認(視認)することができる。
本実施形態に係る生体情報測定装置の一例である酸素飽和度測定装置の構成を示すブロック図である。 上記酸素飽和度測定装置の制御演算部の各機能を説明するための機能ブロック図である。 ヘモグロビン及び酸化ヘモグロビンの吸光特性を示すグラフ図である。 生体による光の吸収について示す図であり、(a)は生体の各組織を示す模式図、(b)は(a)の生体に対する透過光強度を示すグラフ図を示す。 生体に対する入射光と透過光との関係を示す図であり、(a)は動脈血の各部における透過光の違いを示す模式図、(b)は(a)の動脈血部分の拡大図、(c)は透過光量の変化の様子を示すグラフ図である。 赤外光IRによる透過光量の正規化について説明するためのグラフ図である。 吸光係数の比と酸素飽和度との関係を示すグラフ図である。 記憶部(メモリ)の使用方法の一例を示す図である。 酸素飽和度測定装置による酸素飽和度の測定に関する動作の一例を示すフローチャートである。
符号の説明
1 酸素飽和度測定装置(生体情報測定装置)
10 測定部
11 発光部(発光手段)
12 受光部(受光手段)
25 表示部(表示手段)
26 記憶部(記憶手段)
27 データ送受信部(通信手段、転送手段)
28 操作部(操作手段)
29 制御演算部(演算手段)
291 記憶データ選択部(選択手段)
30 外部装置

Claims (11)

  1. 所定の生体情報を測定する生体情報測定装置であって、
    生体に対して照射可能な複数の異なる波長の光を発光する発光手段と、
    前記発光手段により発光されて前記生体を透過又は反射した光を受光する受光手段と、
    前記受光手段により受光された受光信号に応じた受光測定情報に基づいて少なくとも酸素飽和度を算出する演算手段と、
    少なくとも前記演算手段により算出された酸素飽和度の情報と前記受光測定情報とを含む測定情報を記憶することが可能に構成された記憶手段と、
    前記測定情報のうちの記憶手段に記憶する測定情報の種類を選択する選択手段とを備えることを特徴とする生体情報測定装置。
  2. 装置に対する所定の指示入力を行う操作手段をさらに備え、
    前記選択手段は、該操作手段からの指示入力情報に基づいて記憶手段に記憶する測定情報の種類を選択することを特徴とする請求項1記載の生体情報測定装置。
  3. 外部装置と通信可能に構成された通信手段をさらに備え、
    前記選択手段は、該通信手段を介した外部装置からの指示入力情報に基づいて記憶手段に記憶する測定情報の種類を選択することを特徴とする請求項1又は2記載の生体情報測定装置。
  4. 前記測定情報を表示する表示手段をさらに備えることを特徴とする請求項1〜3のいずれかに記載の生体情報測定装置。
  5. 前記表示手段は、前記選択手段により選択された記憶手段に記憶する測定情報を表示することを特徴とする請求項4記載の生体情報測定装置。
  6. 前記記憶手段に記憶された測定情報を外部に転送する転送手段をさらに備えることを特徴とする請求項1〜5のいずれかに記載の生体情報測定装置。
  7. 前記転送手段は、前記記憶手段に複数種類の測定情報が記憶される場合、該複数種類の測定情報をそれぞれ独立に転送することが可能に構成されていることを特徴とする請求項6記載の生体情報測定装置。
  8. 生体の動きに対する加速度検出用の加速度センサをさらに備え、
    前記記憶手段は、該加速度センサの出力情報に基づき演算手段により算出された生体の動き情報及び傾き情報のうちの少なくとも一方の情報を前記測定情報として記憶することを特徴とする請求項1〜7のいずれかに記載の生体情報測定装置。
  9. 前記記憶手段は、発光手段による所定の発光タイミングに応じて得られる前記受光測定情報及びユーザに対する所定の出力タイミングに応じて得られる出力測定情報からなる測定情報のうちの少なくとも1つの測定情報を記憶することを特徴とする請求項1〜8のいずれかに記載の生体情報測定装置。
  10. 前記所定の発光タイミングに応じて得られる受光測定情報は、少なくとも、生体の脈波波形の情報、該脈波波形を微分して得られる微分脈波波形の情報、脈波波形を2階微分して得られる加速度脈波波形の情報、発光タイミングに応じた各測定点で算出される酸素飽和度としての瞬間酸素飽和度の情報、又は前記加速度センサの出力情報のいずれかの情報であることを特徴とする請求項9記載の生体情報測定装置。
  11. 前記所定の出力タイミングに応じて得られる出力測定情報は、少なくとも、発光タイミングに応じた各測定点で算出される酸素飽和度としての瞬間酸素飽和度に基づき算出される酸素飽和度の情報、該酸素飽和度とともに算出される脈拍数の情報若しくは脈の強さの情報、又は前記生体の加速度の情報若しくは加速度ゼロクロス回数の情報若しくは加速度出力の積分値の情報のいずれかの情報であることを特徴とする請求項9記載の生体情報測定装置。
JP2005089589A 2005-03-25 2005-03-25 生体情報測定装置 Pending JP2006263356A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005089589A JP2006263356A (ja) 2005-03-25 2005-03-25 生体情報測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005089589A JP2006263356A (ja) 2005-03-25 2005-03-25 生体情報測定装置

Publications (1)

Publication Number Publication Date
JP2006263356A true JP2006263356A (ja) 2006-10-05

Family

ID=37199905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005089589A Pending JP2006263356A (ja) 2005-03-25 2005-03-25 生体情報測定装置

Country Status (1)

Country Link
JP (1) JP2006263356A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301934A (ja) * 2007-06-06 2008-12-18 Seiko Epson Corp 生体情報計測装置及びその制御方法
JP2009122181A (ja) * 2007-11-12 2009-06-04 Yamatake Corp データ処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001344352A (ja) * 2000-05-31 2001-12-14 Toshiba Corp 生活支援装置および生活支援方法および広告情報提供方法
JP2002282213A (ja) * 2001-03-22 2002-10-02 Olympus Optical Co Ltd 内視鏡画像ファイリングシステム
JP2003265446A (ja) * 2002-03-16 2003-09-24 Samsung Electronics Co Ltd 光を利用した診断方法及び装置
JP2005052385A (ja) * 2003-08-05 2005-03-03 Seiko Epson Corp 生体情報計測装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001344352A (ja) * 2000-05-31 2001-12-14 Toshiba Corp 生活支援装置および生活支援方法および広告情報提供方法
JP2002282213A (ja) * 2001-03-22 2002-10-02 Olympus Optical Co Ltd 内視鏡画像ファイリングシステム
JP2003265446A (ja) * 2002-03-16 2003-09-24 Samsung Electronics Co Ltd 光を利用した診断方法及び装置
JP2005052385A (ja) * 2003-08-05 2005-03-03 Seiko Epson Corp 生体情報計測装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008301934A (ja) * 2007-06-06 2008-12-18 Seiko Epson Corp 生体情報計測装置及びその制御方法
JP2009122181A (ja) * 2007-11-12 2009-06-04 Yamatake Corp データ処理装置

Similar Documents

Publication Publication Date Title
US20220409069A1 (en) Methods and systems for detecting physiology for monitoring cardiac health
US8353842B2 (en) Portable patient monitor
US8600468B2 (en) Biometric information measuring apparatus and biometric information measuring system
US8126526B2 (en) Pulse wave analyzing device
JP4639321B2 (ja) 生体情報測定装置
US20090171176A1 (en) Snapshot Sensor
US7680522B2 (en) Method and apparatus for detecting misapplied sensors
JP4710084B2 (ja) 生体情報測定装置
JP2006212161A (ja) 生体情報測定システム、生体情報測定装置及びデータ処理装置
KR101964025B1 (ko) 비침습적 혈당측정기
JP2014012072A (ja) 計測装置、計測方法、プログラム、記憶媒体及び計測システム
US10335087B2 (en) Biosignal processing apparatus and biosignal processing method
JP2006158974A (ja) 一体型生理学的信号評価装置
CN104181809B (zh) 集计步器、心电、血氧功能的智能腕表
KR100591239B1 (ko) 이동통신 단말기용 건강상태 측정장치 및 그 정보관리방법
US20180235489A1 (en) Photoplethysmographic wearable blood pressure monitoring system and methods
JP2008188216A (ja) 生体情報測定装置
US20140275825A1 (en) Methods and systems for light signal control in a physiological monitor
US11937923B2 (en) Non-invasive method to determine blood oxygen saturation level
JP5299079B2 (ja) 生体情報測定装置
JP2006263356A (ja) 生体情報測定装置
JP2007289462A (ja) 生体情報測定装置
KR101780061B1 (ko) 휴대형 생체 신호 측정 장치
US20140275882A1 (en) Methods and Systems for Determining a Probe-Off Condition in a Medical Device
US20190150839A1 (en) Material characteristic signal detection method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214