JP2006262619A - Switched-capacitor type dc/dc converter device - Google Patents

Switched-capacitor type dc/dc converter device Download PDF

Info

Publication number
JP2006262619A
JP2006262619A JP2005076372A JP2005076372A JP2006262619A JP 2006262619 A JP2006262619 A JP 2006262619A JP 2005076372 A JP2005076372 A JP 2005076372A JP 2005076372 A JP2005076372 A JP 2005076372A JP 2006262619 A JP2006262619 A JP 2006262619A
Authority
JP
Japan
Prior art keywords
semiconductor switching
voltage side
terminal
capacitor
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005076372A
Other languages
Japanese (ja)
Other versions
JP2006262619A5 (en
JP4546296B2 (en
Inventor
Takahiro Urakabe
隆浩 浦壁
Tatsuya Okuda
達也 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005076372A priority Critical patent/JP4546296B2/en
Publication of JP2006262619A publication Critical patent/JP2006262619A/en
Publication of JP2006262619A5 publication Critical patent/JP2006262619A5/ja
Application granted granted Critical
Publication of JP4546296B2 publication Critical patent/JP4546296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters

Abstract

<P>PROBLEM TO BE SOLVED: To increase the transition electrical energy, using a compact and simple circuit configuration, in a switched capacitor type DC/DC converter device constituted of a capacitor and a plurality of switching transistors. <P>SOLUTION: The switched capacitor type DC/DC converter device comprises a serial body, consisting of a capacitor Ce and an inductor Lr and a plurality of semiconductor switching elements Sw1-Sw4 between a low-voltage side DC power supply VL and a high-voltage side DC power supply VH, alternately switches the simultaneous continuity of the switches Sw2, Sw3 and that of the switches Sw1, Sw4 with the resonance frequency for resonating the capacitor Ce and the inductor Lr, in series as a drive frequency, and alternately switches a mode, in which the serial body is connected in parallel with the low-voltage side DC power supply VL and a mode, in which the series connection of the serial body and the low-voltage side DC power supply VL is connected in parallel with the high-voltage side DC power supply VH, thus increasing the amount of power transferred at each switching. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、直流電圧を昇圧あるいは降圧した直流電圧に変換する、スイッチドキャパシタ形DC/DCコンバータ装置に関するものである。 The present invention relates to a switched capacitor type DC / DC converter device that converts a DC voltage into a DC voltage obtained by stepping up or down a DC voltage.

従来のスイッチドキャパシタ形DC/DCコンバータ装置は、m(mは2以上の整数)個の並列接続されたスイッチドキャパシタ変成器からなり、各変成器は、コンデンサと複数のスイッチングトランジスタとで構成される。各スイッチドキャパシタ変成器は、コンデンサへの充放電を交互に切り換えるスイッチングトランジスタを、それぞれ所定の入力電圧に応じて2π/m(rad)ずつ位相のずれたクロック信号あるいは常時オンまたは常時オフ状態とする信号で駆動するように構成した(例えば、特許文献1参照)。   A conventional switched capacitor type DC / DC converter device includes m (m is an integer of 2 or more) switched capacitor transformers connected in parallel, and each transformer includes a capacitor and a plurality of switching transistors. Is done. Each switched capacitor transformer switches a switching transistor that alternately switches between charging and discharging the capacitor to a clock signal that is shifted in phase by 2π / m (rad) according to a predetermined input voltage, or a normally on or a normally off state. (See, for example, Patent Document 1).

実開平1−147685号公報Japanese Utility Model Publication No. 1-147785

このような従来のスイッチドキャパシタ形DC/DCコンバータ装置では、コンデンサの充放電を交互に切り換えて電力移行するが、移行する電力量を大きくしようとすると、コンデンサの容量を増加させるか、スイッチ素子のスイッチング周波数を増加させることになる。コンデンサ容量の増加はコンバータ装置が大形化するという問題がある。また、スイッチング周波数の増加は、高周波に対応した高速で高精度な制御回路素子が必要であり、またスイッチ素子を高速に駆動するために駆動力の高いゲート駆動回路が必要となることから、コンバータ装置の高コスト化という問題がある。   In such a conventional switched capacitor type DC / DC converter device, the power is transferred by alternately switching the charge and discharge of the capacitor. However, if the amount of power to be transferred is increased, the capacity of the capacitor is increased or the switch element is switched. This increases the switching frequency. The increase in the capacitor capacity has a problem that the converter device becomes large. In addition, an increase in switching frequency requires a high-speed and high-precision control circuit element corresponding to a high frequency, and a gate drive circuit having a high driving force is required to drive the switch element at a high speed. There is a problem of high cost of the apparatus.

この発明は、上記のような問題点を解消するために成されたものであって、小型で簡略な回路構成で移行する電力量を増大できるスイッチドキャパシタ形DC/DCコンバータ装置を得ることを目的としている。   The present invention has been made to solve the above problems, and is to obtain a switched capacitor type DC / DC converter device capable of increasing the amount of power to be transferred with a small and simple circuit configuration. It is aimed.

この発明によるスイッチドキャパシタ形DC/DCコンバータ装置は、低電圧側直流電源と高電圧側直流電源との間に、コンデンサと複数の半導体スイッチング素子とを備え、該半導体スイッチング素子のスイッチング動作により上記コンデンサの充放電を交互に切り換えて上記2つの電源間でエネルギの移行を行う。そして、上記コンデンサの充電経路と放電経路とが重なる経路区間にインダクタを挿入して、上記コンデンサの充放電時に該コンデンサと上記インダクタとが直列に接続されるものである。   A switched capacitor type DC / DC converter device according to the present invention comprises a capacitor and a plurality of semiconductor switching elements between a low voltage side DC power supply and a high voltage side DC power supply, and the switching operation of the semiconductor switching element causes the above-described operation. The energy is transferred between the two power sources by alternately switching between charging and discharging of the capacitor. Then, an inductor is inserted in a path section where the charging path and discharging path of the capacitor overlap, and the capacitor and the inductor are connected in series when the capacitor is charged and discharged.

このようなスイッチドキャパシタ形DC/DCコンバータ装置では、コンデンサの充電経路および放電経路にインダクタを配置したため、半導体スイッチング素子のスイッチング周波数を適切に設定することで、コンデンサとインダクタとの共振現象を利用することが可能になる。これにより、1回のスイッチング動作により移行できるエネルギ量を増大することができ、コンデンサの容量を増加させたり、半導体スイッチング素子のスイッチング周波数を増加させたりすることなく、移行する電力量を増大できる。   In such a switched capacitor type DC / DC converter device, since the inductor is arranged in the charging path and discharging path of the capacitor, the resonance phenomenon between the capacitor and the inductor is utilized by appropriately setting the switching frequency of the semiconductor switching element. It becomes possible to do. Thus, the amount of energy that can be transferred by one switching operation can be increased, and the amount of power to be transferred can be increased without increasing the capacitance of the capacitor or increasing the switching frequency of the semiconductor switching element.

実施の形態1.
以下、この発明の実施の形態1によるスイッチドキャパシタ形DC/DCコンバータ装置(以下、コンバータ装置と称す)を図について説明する。
図1は、この発明の実施の形態1によるコンバータ装置の主回路構成を示す図である。
図に示すように、低電圧側(VL側)直流電源と高電圧側(VH側)直流電源との間に1つのSC形(スイッチドキャパシタ形)コンバータブロック1が接続される。低電圧側直流電源の両端子2、2a間、および高電圧側直流電源の両端子3、3a間には、電圧を平滑するための平滑コンデンサCL、CHが接続され、低電圧側直流電源の負極端子2aおよび高電圧側直流電源の負極端子3aは接地される。
Embodiment 1 FIG.
Hereinafter, a switched capacitor type DC / DC converter device (hereinafter referred to as a converter device) according to Embodiment 1 of the present invention will be described with reference to the drawings.
1 is a diagram showing a main circuit configuration of a converter apparatus according to Embodiment 1 of the present invention.
As shown, one SC type (switched capacitor type) converter block 1 is connected between a low voltage side (VL side) DC power source and a high voltage side (VH side) DC power source. Smoothing capacitors CL and CH for smoothing the voltage are connected between both terminals 2 and 2a of the low voltage side DC power source and between both terminals 3 and 3a of the high voltage side DC power source. The negative terminal 2a and the negative terminal 3a of the high voltage side DC power supply are grounded.

コンバータブロック1は、4個の半導体スイッチング素子としてのMOSFET(以下スイッチと称す)Sw1〜Sw4、コンデンサCeおよびインダクタLrを備える。
第1の半導体スイッチング素子としてのスイッチSw1のドレイン端子は高電圧側直流電源の正極端子3に接続される。第2の半導体スイッチング素子としてのスイッチSw2は、ドレイン端子がスイッチSw1のソース端子に、ソース端子が低電圧側直流電源の正極端子2に接続される。第3の半導体スイッチング素子としてのスイッチSw3のソース端子は、高電圧側直流電源の負極端子3aおよび低電圧側直流電源の負極端子2aに接続される。第4の半導体スイッチング素子としてのスイッチSw4は、ソース端子がスイッチSw3のドレイン端子に、ドレイン端子が低電圧側直流電源の正極端子2に接続される。また、コンデンサCeとインダクタLrとは直列接続されて、スイッチSw1、Sw2の接続点とスイッチSw3、Sw4の接続点との間に接続される。
The converter block 1 includes MOSFETs (hereinafter referred to as switches) Sw1 to Sw4 as four semiconductor switching elements, a capacitor Ce, and an inductor Lr.
The drain terminal of the switch Sw1 as the first semiconductor switching element is connected to the positive terminal 3 of the high voltage side DC power supply. The switch Sw2 as the second semiconductor switching element has a drain terminal connected to the source terminal of the switch Sw1 and a source terminal connected to the positive terminal 2 of the low-voltage DC power supply. The source terminal of the switch Sw3 as the third semiconductor switching element is connected to the negative terminal 3a of the high voltage side DC power source and the negative terminal 2a of the low voltage side DC power source. The switch Sw4 as the fourth semiconductor switching element has a source terminal connected to the drain terminal of the switch Sw3 and a drain terminal connected to the positive terminal 2 of the low-voltage side DC power supply. The capacitor Ce and the inductor Lr are connected in series, and are connected between the connection point of the switches Sw1 and Sw2 and the connection point of the switches Sw3 and Sw4.

各スイッチSw1〜Sw4には、図示しない制御回路部により生成されたゲート駆動信号(以下、ゲート信号と称す)が入力され、そのゲート信号の電圧レベルに応じてオンオフ動作を行う。なお、低電圧側直流電源の端子2、2a間の電圧をVL、高電圧側直流電源の端子3、3a間の電圧をVHとする。
スイッチSw2、Sw3の同時導通とスイッチSw1、Sw4の同時導通とを交互に切り換えることにより、2VL>VHの場合には、低電圧側から高電圧側に電力移行し、2VL<VHの場合には、高電圧側から低電圧側に電力移行する。それぞれの場合におけるコンバータ装置の基本動作について、以下に説明する。なお、後述するようにインダクタLrとコンデンサCeとの直列共振現象を利用するが、ここでは電力移行の基本動作を説明するため、便宜上、インダクタLrの作用を無視して説明する。
A gate drive signal (hereinafter referred to as a gate signal) generated by a control circuit unit (not shown) is input to each of the switches Sw1 to Sw4, and an on / off operation is performed according to the voltage level of the gate signal. It is assumed that the voltage between the terminals 2 and 2a of the low voltage side DC power supply is VL, and the voltage between the terminals 3 and 3a of the high voltage side DC power supply is VH.
By switching between simultaneous conduction of switches Sw2 and Sw3 and simultaneous conduction of switches Sw1 and Sw4, when 2VL> VH, power is transferred from the low voltage side to the high voltage side, and when 2VL <VH The power is transferred from the high voltage side to the low voltage side. The basic operation of the converter device in each case will be described below. As will be described later, the series resonance phenomenon of the inductor Lr and the capacitor Ce is used, but here, for the sake of convenience, the operation of the inductor Lr will be ignored in order to explain the basic operation of power transfer.

2VL>VHの場合、スイッチSw2、Sw3がオンのときスイッチSw1、Sw4はオフであり、電流は、平滑コンデンサCL(低電圧側正極端子2)〜スイッチSw2〜インダクタLr〜コンデンサCe〜スイッチSw3〜接地端子2aの経路を流れる。これにより、低電圧側の平滑コンデンサCLとコンデンサCeは並列に接続され、コンデンサCeは低電圧側の端子間電圧VLによりVLに充電される。次いで、スイッチSw2、Sw3がオフになり、スイッチSw1、Sw4がオンになると、電流は、平滑コンデンサCL(低電圧側正極端子2)〜スイッチSw4〜コンデンサCe〜インダクタLr〜スイッチSw1〜平滑コンデンサCH〜接地端子3a、2aの経路を流れる。これにより、平滑コンデンサCLとコンデンサCeとは直列接続されて、その直列体は平滑コンデンサCHと並列接続される。平滑コンデンサCLおよびコンデンサCeは電圧VLであるため、その直列体の電圧は2VLとなる。高電圧側の端子電圧VHは2VLよりも小さいため、エネルギは低電圧側から高電圧側に移行する。   When 2VL> VH, when the switches Sw2 and Sw3 are on, the switches Sw1 and Sw4 are off, and the current is the smoothing capacitor CL (low voltage side positive terminal 2) to the switch Sw2 to the inductor Lr to the capacitor Ce to the switch Sw3 to It flows through the path of the ground terminal 2a. Thereby, the smoothing capacitor CL on the low voltage side and the capacitor Ce are connected in parallel, and the capacitor Ce is charged to VL by the inter-terminal voltage VL on the low voltage side. Next, when the switches Sw2 and Sw3 are turned off and the switches Sw1 and Sw4 are turned on, the current is changed from the smoothing capacitor CL (low voltage side positive terminal 2) to the switch Sw4 to the capacitor Ce to the inductor Lr to the switch Sw1 to the smoothing capacitor CH. Flows through the path of the ground terminals 3a and 2a. Thereby, the smoothing capacitor CL and the capacitor Ce are connected in series, and the series body is connected in parallel with the smoothing capacitor CH. Since the smoothing capacitor CL and the capacitor Ce are at the voltage VL, the voltage of the series body is 2VL. Since the terminal voltage VH on the high voltage side is smaller than 2VL, the energy shifts from the low voltage side to the high voltage side.

2VL<VHの場合、スイッチSw1、Sw4がオンのときスイッチSw2、Sw3はオフであり、電流は、平滑コンデンサCH(高電圧側正極端子3)〜スイッチSw1〜インダクタLr〜コンデンサCe〜スイッチSw4〜平滑コンデンサCL〜接地端子2a、3aの経路を流れる。これにより、平滑コンデンサCLとコンデンサCeとは直列接続されて、その直列体は平滑コンデンサCHと並列接続される。平滑コンデンサCL、CHの各電圧は、VL、VHであるため、コンデンサCeにはVH−VLの電圧が充電される。次いで、スイッチSw1、Sw4がオフになり、スイッチSw2、Sw3がオンになると、電流は、コンデンサCe〜インダクタLr〜スイッチSw2〜平滑コンデンサCL〜スイッチSw3の経路を流れる。これにより、低電圧側の平滑コンデンサCLとコンデンサCeは並列に接続される。平滑コンデンサCL、コンデンサCeの各電圧は、VL、VH−VLであり、VL<VH−VLであるため、コンデンサCeの電圧が低電圧側の端子間電圧VLと等しくなるように、エネルギは高電圧側から低電圧側に移行する。   When 2VL <VH, when the switches Sw1 and Sw4 are on, the switches Sw2 and Sw3 are off, and the current is the smoothing capacitor CH (high voltage side positive terminal 3) to the switch Sw1 to the inductor Lr to the capacitor Ce to the switch Sw4 to It flows through the path from the smoothing capacitor CL to the ground terminals 2a and 3a. Thereby, the smoothing capacitor CL and the capacitor Ce are connected in series, and the series body is connected in parallel with the smoothing capacitor CH. Since the voltages of the smoothing capacitors CL and CH are VL and VH, the capacitor Ce is charged with the voltage VH−VL. Next, when the switches Sw1 and Sw4 are turned off and the switches Sw2 and Sw3 are turned on, the current flows through a path from the capacitor Ce to the inductor Lr to the switch Sw2 to the smoothing capacitor CL to the switch Sw3. As a result, the smoothing capacitor CL and the capacitor Ce on the low voltage side are connected in parallel. Since the voltages of the smoothing capacitor CL and the capacitor Ce are VL and VH−VL, and VL <VH−VL, the energy is high so that the voltage of the capacitor Ce is equal to the voltage VL between the terminals on the low voltage side. Transition from the voltage side to the low voltage side.

このように、このコンバータ装置では、VH/VLが概2の関係で双方向に電力移行するように動作する。
いずれの方向でも、スイッチSw2、Sw3の同時導通とスイッチSw1、Sw4の同時導通とを交互に切り換え、スイッチSw2、Sw3のゲート信号とスイッチSw1、Sw4のゲート信号とは同形状である。このスイッチング動作の切り換えによりコンデンサCeの充電と放電とを切り換えて電力移行を行うが、充電時の電流経路と放電時の電流経路とが重なる区間にインダクタLrが挿入されているため、充電時および放電時の双方の電流経路が、インダクタLr、コンデンサCe、および電流が流れる経路の抵抗が直列に接続された経路となる。このため、スイッチSw2、Sw3のゲート信号およびスイッチSw1、Sw4のゲート信号のスイッチング周波数を、インダクタLrとコンデンサCeとが直列共振状態となる共振周波数に一致させる。
Thus, in this converter device, VH / VL operates so as to transfer power bidirectionally in a relation of approximately two.
In either direction, the simultaneous conduction of the switches Sw2 and Sw3 and the simultaneous conduction of the switches Sw1 and Sw4 are alternately switched, and the gate signals of the switches Sw2 and Sw3 and the gate signals of the switches Sw1 and Sw4 have the same shape. By switching the switching operation, the capacitor Ce is switched between charging and discharging to perform power transfer.However, since the inductor Lr is inserted in a section where the current path during charging and the current path during discharging overlap, Both current paths during discharge are paths in which the inductor Lr, the capacitor Ce, and the resistance of the path through which the current flows are connected in series. For this reason, the switching frequency of the gate signals of the switches Sw2 and Sw3 and the gate signals of the switches Sw1 and Sw4 is made to coincide with the resonance frequency at which the inductor Lr and the capacitor Ce are in a series resonance state.

コンデンサCeの容量値をCe、インダクタLrのインダクタンス値をLr、電流が流れる経路の抵抗、即ち、スイッチSw2、Sw3またはスイッチSw1、Sw4のオン抵抗とコンデンサCe、インダクタLrの抵抗成分との合計をRとすると、ゲート信号の周期Tは、以下の式(1)で表せる。   The capacitance value of the capacitor Ce is Ce, the inductance value of the inductor Lr is Lr, the resistance of the path through which the current flows, that is, the sum of the on-resistance of the switch Sw2, Sw3 or the switch Sw1, Sw4 and the resistance component of the capacitor Ce, the inductor Lr. Assuming R, the period T of the gate signal can be expressed by the following equation (1).

Figure 2006262619
Figure 2006262619

このように、インダクタLrとコンデンサCeとが直列共振状態となるとき、各スイッチSw1〜Sw4のゲート信号および各部の電圧、電流波形を図2に示す。図2(a)は、2VL>VHの場合を示し、図2(b)は、2VL<VHの場合を示す。なお、低電圧側直流電源の正極端子2からコンバータブロック1に流れる電流をIL、コンバータブロック1から高電圧側直流電源の正極端子3に流れる電流をIH、コンデンサCeに流れる電流をIce、コンデンサCeの電圧をVceとする。また、図2中に示した電流、電圧の矢印の方向を正とする。
図に示すように、コンデンサCeに流れる電流IceがゼロになるタイミングでスイッチSw2、Sw3とスイッチSw1、Sw4とのオンオフが切り換えられ、コンデンサCeに流れる電流Iceは図2で示したように連続した正弦波状の電流となる。また、電流ILは電流Iceを絶対値変換して正負いずれかの一方向とした電流波形、電流IHは電流ILのスイッチSw1、Sw4のオン期間のみを取り出した電流波形になる。
As described above, when the inductor Lr and the capacitor Ce are in a series resonance state, the gate signals of the switches Sw1 to Sw4 and the voltage and current waveforms of the respective parts are shown in FIG. FIG. 2A shows the case of 2VL> VH, and FIG. 2B shows the case of 2VL <VH. The current flowing from the positive terminal 2 of the low voltage side DC power supply to the converter block 1 is IL, the current flowing from the converter block 1 to the positive terminal 3 of the high voltage side DC power supply is IH, the current flowing to the capacitor Ce is Ice, and the capacitor Ce. Is Vce. Also, the direction of the current and voltage arrows shown in FIG. 2 is positive.
As shown in the figure, the switches Sw2, Sw3 and the switches Sw1, Sw4 are turned on and off at the timing when the current Ice flowing through the capacitor Ce becomes zero, and the current Ice flowing through the capacitor Ce is continuous as shown in FIG. It becomes a sinusoidal current. Further, the current IL has a current waveform in which the current Ice is converted into an absolute value in either a positive or negative direction, and the current IH has a current waveform obtained by taking out only the ON periods of the switches SW1 and Sw4 of the current IL.

また、コンデンサCeの電圧Vceは、電圧VLを中心とし正弦波状に振動する電圧となり、その電圧は、各ゲート信号の切り換えタイミングで最大値、最小値を示す。
この電圧Vceの波形が示すように、コンデンサCeの電圧Vceは、エネルギ移行時にVL+ΔVからVL−ΔVに変化している。仮に共振現象を利用しないとすると、(2VL−VH)分の電荷量しかエネルギが移行しないのに対して、この実施の形態では(2VL−VH)より大きな電荷量でエネルギ移行が可能となる。
Further, the voltage Vce of the capacitor Ce is a voltage that oscillates in a sine wave shape centered on the voltage VL, and the voltage shows the maximum value and the minimum value at the switching timing of each gate signal.
As shown by the waveform of the voltage Vce, the voltage Vce of the capacitor Ce changes from VL + ΔV to VL−ΔV at the time of energy transfer. If the resonance phenomenon is not used, energy is transferred only by the amount of charge of (2VL−VH), whereas in this embodiment, energy can be transferred with a larger amount of charge than (2VL−VH).

このように、この実施の形態では、インダクタLrとコンデンサCeとの直列共振現象を利用するため、コンデンサCeに流れる電流Iceを連続した正弦波状の電流にでき、1スイッチング当りに利用するコンデンサCeの蓄積エネルギ量を大きくできる。このため、コンデンサ容量の増加やスイッチング周波数を高くすることなく、小型で簡略な回路構成で移行する電力量を増大できる。   In this way, in this embodiment, since the series resonance phenomenon of the inductor Lr and the capacitor Ce is used, the current Ice flowing through the capacitor Ce can be made a continuous sinusoidal current, and the capacitor Ce used per switching The amount of stored energy can be increased. For this reason, it is possible to increase the amount of power transferred with a small and simple circuit configuration without increasing the capacitor capacity or increasing the switching frequency.

次に、図1に示す回路構成でインダクタLrのないコンバータ装置を比較例に用いて、この実施の形態における実施例(インダクタLrあり)と比較例(インダクタLrなし)とで、特性比較を行った結果を、図3に示す。
図3(a)は、コンデンサCeの容量値Ceと、低電圧側から高電圧側への1スイッチング当りの移行電力量との関係を演算して示したもので、演算条件は、図3(b)に示すように、VL/VH=144V/284V、コンデンサCeの充電、放電経路の抵抗値Rを40mΩ、インダクタLrのインダクタンス値Lrを1μH、最大駆動周波数を100kHzとした。
また、コンデンサCeに流れる電流Iceがゼロになるタイミングでのスイッチングを前提とし、インダクタLrとコンデンサCeとの直列共振現象を利用する実施例(インダクタLrあり)の駆動周波数(ゲート信号の周波数)は、式(1)に基づいて求められ、以下のどちらか小さい方となる。
Next, using a converter device having the circuit configuration shown in FIG. 1 and having no inductor Lr as a comparative example, a characteristic comparison is made between the example (with inductor Lr) and the comparative example (without inductor Lr) in this embodiment. The results are shown in FIG.
FIG. 3A shows the relationship between the capacitance value Ce of the capacitor Ce and the amount of power transferred per switching from the low voltage side to the high voltage side. The calculation conditions are as shown in FIG. As shown in b), VL / VH = 144V / 284V, capacitor Ce charging and discharging path resistance value R was 40 mΩ, inductor Lr inductance value Lr was 1 μH, and the maximum drive frequency was 100 kHz.
In addition, the driving frequency (the frequency of the gate signal) of the embodiment using the series resonance phenomenon of the inductor Lr and the capacitor Ce (with the inductor Lr) is premised on switching at a timing when the current Ice flowing through the capacitor Ce becomes zero. , Based on the formula (1), whichever is smaller.

Figure 2006262619
Figure 2006262619

比較例(インダクタLrなし)の駆動周波数は、時定数に基づいて求められ、以下のどちらか小さい方となる。   The drive frequency of the comparative example (without the inductor Lr) is obtained based on the time constant, and is the smaller one of the following.

Figure 2006262619
Figure 2006262619

図3に示すように、この発明による実施例(インダクタLrあり)は、比較例(インダクタLrなし)に比べ、小さなコンデンサ容量で大きな電力を移行するものである。   As shown in FIG. 3, the embodiment according to the present invention (with inductor Lr) shifts a large amount of power with a small capacitor capacity as compared with the comparative example (without inductor Lr).

なお、上記実施の形態では、インダクタLrは、コンデンサCeと直列接続して、スイッチSw1、Sw2の接続点とスイッチSw3、Sw4の接続点との間に接続したが、スイッチSw1、Sw2の接続点とスイッチSw3、Sw4の接続点との間にはコンデンサCeのみを接続して、インダクタLrは、低電圧側正極端子2とスイッチSw1、Sw2の接続点との間に挿入しても良い。この場合も、充電時の電流経路と放電時の電流経路とが重なる区間にインダクタLrが挿入されているため、上記実施の形態と同様に、インダクタLrとコンデンサCeとの直列共振現象を利用でき、同様の効果が得られる。   In the above embodiment, the inductor Lr is connected in series with the capacitor Ce and connected between the connection point of the switches Sw1 and Sw2 and the connection point of the switches Sw3 and Sw4, but the connection point of the switches Sw1 and Sw2 Further, only the capacitor Ce may be connected between the connection points of the switches Sw3 and Sw4, and the inductor Lr may be inserted between the low voltage side positive terminal 2 and the connection points of the switches Sw1 and Sw2. Also in this case, since the inductor Lr is inserted in the section where the current path during charging and the current path during discharging overlap, the series resonance phenomenon of the inductor Lr and the capacitor Ce can be used as in the above embodiment. A similar effect can be obtained.

実施の形態2.
上記実施の形態1において、小型化のために小形の磁性体を用い、多少の磁性体の磁気飽和を許容して製作したインダクタLrを用いた場合、流れる電流レベル(移行電力レベル)によりインダクタLrのインダクタンス値が変化する。インダクタLrに流れる電流量に依存する移行電力量と、インダクタLrのインダクタンス値・電流値との関係を、図4(a)に示す。図に示すように、電力量(電流量)の増加に伴ってインダクタンス値は減少する。
このため、この実施の形態では、駆動周波数を可変として、インダクタンス値の変化に応じて変化する共振周波数に駆動周波数を略一致するように設定する。ここでは図4(b)に示すように、移行電力領域を4つに分け、その領域毎に駆動周波数を変化させる。11は移行電力量により変化する共振周波数で、12は、共振周波数11に応じて切り換え設定される駆動周波数(設定周波数)である。例えば、図示しない記憶部を備え、予め、4種類の周波数の異なったクロック信号を記憶部に記憶しておき、低電圧側の直流電流値を検出し、その電流値に応じて記憶部からクロック信号を呼び出し、それを用いて各スイッチSw1〜Sw4のゲート信号を生成する。
Embodiment 2. FIG.
In the first embodiment, when an inductor Lr manufactured using a small magnetic body for miniaturization and allowing a certain amount of magnetic saturation of the magnetic body is used, the inductor Lr depends on the flowing current level (transition power level). The inductance value changes. FIG. 4A shows the relationship between the amount of transition power depending on the amount of current flowing through the inductor Lr and the inductance value / current value of the inductor Lr. As shown in the figure, the inductance value decreases as the amount of electric power (current amount) increases.
For this reason, in this embodiment, the drive frequency is made variable, and the drive frequency is set to substantially coincide with the resonance frequency that changes in accordance with the change in the inductance value. Here, as shown in FIG. 4B, the transition power region is divided into four, and the drive frequency is changed for each region. 11 is a resonance frequency that varies depending on the amount of power transferred, and 12 is a drive frequency (set frequency) that is switched according to the resonance frequency 11. For example, a storage unit (not shown) is provided, and four types of clock signals having different frequencies are stored in the storage unit in advance, a DC current value on the low voltage side is detected, and a clock is generated from the storage unit according to the current value. The signal is called, and the gate signal of each switch Sw1 to Sw4 is generated by using the signal.

このように、この実施の形態では駆動周波数を可変として、共振周波数が変化する場合でも駆動周波数を共振周波数に略一致するように設定したため、小形の磁性体で多少の磁気飽和を許容して製作したインダクタLrを用いることができ、回路構成を安価で小型にできる。   As described above, in this embodiment, the drive frequency is variable, and the drive frequency is set so as to substantially match the resonance frequency even when the resonance frequency changes. Therefore, a small magnetic body is allowed to allow some magnetic saturation. The inductor Lr can be used, and the circuit configuration can be made inexpensive and small.

実施の形態3.
上記実施の形態1では、低電圧側(VL側)直流電源と高電圧側(VH側)直流電源との間に接続されたSC形コンバータブロック1を、4個のスイッチSw1〜Sw4、コンデンサCeおよびインダクタLrで構成したが、この実施の形態3では、コンバータブロック1を、第1、第2のダイオードとしてのダイオードDi1、Di2、第1、第2の半導体スイッチング素子としてのスイッチ(MOSFET)Sw3a、Sw4a、コンデンサCeおよびインダクタLrで構成する。
図5は、この発明の実施の形態3によるコンバータ装置の主回路構成を示す図である。
図に示すように、上記実施の形態1で示したスイッチSw3、Sw4の替わりに、同様のスイッチSw3a、Sw4aを用いる。また上記実施の形態1で示したスイッチSw1、Sw2の替わりに、カソード端子が高電圧側正極端子3に接続されたダイオードDi1と、カソード端子がダイオードDi1のアノード端子に接続され、アノード端子がスイッチSw4aに接続されたダイオードDi2とを用いる。また、ダイオードDi1、Di2の接続点とスイッチSw3a、Sw4aの接続点との間にはコンデンサCeのみを接続し、ダイオードDi2、スイッチSw4aの接続点はインダクタLrを介して低電圧側正極端子2に接続する。
なお、インダクタLrの位置は、コンデンサCeの充放電時にコンデンサCeと直列に接続されればよいので、実施の形態1(図1)と同じ位置でもよい。
Embodiment 3 FIG.
In the first embodiment, the SC converter block 1 connected between the low voltage side (VL side) DC power source and the high voltage side (VH side) DC power source is composed of four switches Sw1 to Sw4 and a capacitor Ce. In the third embodiment, the converter block 1 is composed of diodes Di1 and Di2 as first and second diodes, and a switch (MOSFET) Sw3a as first and second semiconductor switching elements. , Sw4a, capacitor Ce and inductor Lr.
FIG. 5 is a diagram showing a main circuit configuration of a converter device according to Embodiment 3 of the present invention.
As shown in the figure, similar switches Sw3a and Sw4a are used instead of the switches Sw3 and Sw4 shown in the first embodiment. Also, instead of the switches Sw1 and Sw2 shown in the first embodiment, the diode Di1 whose cathode terminal is connected to the positive terminal 3 on the high voltage side, the cathode terminal is connected to the anode terminal of the diode Di1, and the anode terminal is the switch A diode Di2 connected to Sw4a is used. Further, only the capacitor Ce is connected between the connection point of the diodes Di1 and Di2 and the connection point of the switches Sw3a and Sw4a, and the connection point of the diode Di2 and the switch Sw4a is connected to the positive terminal 2 on the low voltage side via the inductor Lr. Connecting.
Note that the position of the inductor Lr only needs to be connected in series with the capacitor Ce when the capacitor Ce is charged and discharged, and therefore may be the same position as that of the first embodiment (FIG. 1).

次に動作について説明する。
スイッチSw3aのゲート信号およびスイッチSw4aのゲート信号のスイッチング周波数を、インダクタLrとコンデンサCeとが直列共振状態となる共振周波数に一致させ、スイッチSw3aとスイッチSw4aとを交互に切り換えることにより、2VL>VHの時に、低電圧側から高電圧側に電力移行する。ここでは、低電圧側から高電圧側へのエネルギ移行のみが行われ、上記実施の形態1の図2(a)で示した同様の電流、電圧波形が得られる。
ダイオードDi1は、スイッチSw4aがオンして高電圧側正極端子3に向かって電流が流れている間、インダクタLrの起電圧とコンデンサCeの電圧によりオン状態となる。ダイオードDi2は、スイッチSw3aがオンして低電圧側正極端子2から電流が流れている間、インダクタLrの起電圧および低電圧側正極端子2とコンデンサCe電圧との差電圧によりオン状態となる。両ダイオードDi1、Di2とも電流の向きが逆になれば自動的にオフする。
Next, the operation will be described.
By switching the switching frequency of the gate signal of the switch Sw3a and the gate signal of the switch Sw4a to the resonance frequency at which the inductor Lr and the capacitor Ce are in a series resonance state, and alternately switching the switch Sw3a and the switch Sw4a, 2VL> VH At this time, power is transferred from the low voltage side to the high voltage side. Here, only energy transfer from the low voltage side to the high voltage side is performed, and the same current and voltage waveforms shown in FIG. 2A of the first embodiment are obtained.
The diode Di1 is turned on by the electromotive voltage of the inductor Lr and the voltage of the capacitor Ce while the switch Sw4a is turned on and the current flows toward the high-voltage side positive terminal 3. While the switch Sw3a is turned on and a current flows from the low voltage side positive terminal 2, the diode Di2 is turned on by an electromotive voltage of the inductor Lr and a voltage difference between the low voltage side positive terminal 2 and the capacitor Ce voltage. Both diodes Di1 and Di2 are automatically turned off when the current direction is reversed.

この実施の形態においても、インダクタLrとコンデンサCeとの直列共振現象を利用するため、コンデンサCeに流れる電流Iceを連続した正弦波状の電流にでき、1スイッチング当りに利用するコンデンサCeの蓄積エネルギ量を大きくできる。このため、コンデンサ容量の増加やスイッチング周波数を高くすることなく、小型で簡略な回路構成で移行する電力量を増大できる。また、複数の半導体スイッチング素子を2つのスイッチSw3a、Sw4aとしたため、ゲート駆動回路が簡略化できる。   Also in this embodiment, since the series resonance phenomenon of the inductor Lr and the capacitor Ce is used, the current Ice flowing through the capacitor Ce can be changed to a continuous sinusoidal current, and the amount of energy stored in the capacitor Ce used per switching. Can be increased. For this reason, it is possible to increase the amount of power transferred with a small and simple circuit configuration without increasing the capacitor capacity or increasing the switching frequency. Further, since the plurality of semiconductor switching elements are two switches Sw3a and Sw4a, the gate drive circuit can be simplified.

実施の形態4.
上記実施の形態1では、低電圧側(VL側)直流電源と高電圧側(VH側)直流電源との間に接続されたSC形コンバータブロック1を、4個のスイッチSw1〜Sw4、コンデンサCeおよびインダクタLrで構成したが、この実施の形態4では、コンバータブロック1を、第1、第2の半導体スイッチング素子としてのスイッチ(MOSFET)Sw1a、Sw2a、第1、第2のダイオードとしてのダイオードDi3、Di4、コンデンサCeおよびインダクタLrで構成する。
図6は、この発明の実施の形態4によるコンバータ装置の主回路構成を示す図である。
図に示すように、上記実施の形態1で示したスイッチSw1、Sw2の替わりに、同様のスイッチSw1a、Sw2aを用いる。また上記実施の形態1で示したスイッチSw3、Sw4の替わりに、アノード端子が接地端子2a、3aに接続されたダイオードDi3と、アノード端子がダイオードDi3のカソード端子に接続され、カソード端子がスイッチSw2aに接続されたダイオードDi4とを用いる。また、ダイオードDi3、Di4の接続点とスイッチSw1a、Sw2aの接続点との間にはコンデンサCeのみを接続し、ダイオードDi4、スイッチSw2aの接続点はインダクタLrを介して低電圧側正極端子2に接続する。
なおこの場合も、インダクタLrの位置は、コンデンサCeの充放電時にコンデンサCeと直列に接続されればよいので、実施の形態1(図1)と同じ位置でもよい。
Embodiment 4 FIG.
In the first embodiment, the SC converter block 1 connected between the low voltage side (VL side) DC power source and the high voltage side (VH side) DC power source is composed of four switches Sw1 to Sw4 and a capacitor Ce. In the fourth embodiment, the converter block 1 is composed of switches (MOSFETs) Sw1a and Sw2a as first and second semiconductor switching elements, and a diode Di3 as first and second diodes. , Di4, capacitor Ce and inductor Lr.
FIG. 6 is a diagram showing a main circuit configuration of a converter device according to Embodiment 4 of the present invention.
As shown in the figure, similar switches Sw1a and Sw2a are used instead of the switches Sw1 and Sw2 shown in the first embodiment. Further, instead of the switches Sw3 and Sw4 shown in the first embodiment, the diode Di3 whose anode terminal is connected to the ground terminals 2a and 3a, the anode terminal is connected to the cathode terminal of the diode Di3, and the cathode terminal is the switch Sw2a. And a diode Di4 connected to. Further, only the capacitor Ce is connected between the connection point of the diodes Di3 and Di4 and the connection point of the switches Sw1a and Sw2a, and the connection point of the diode Di4 and the switch Sw2a is connected to the positive terminal 2 on the low voltage side via the inductor Lr. Connecting.
In this case as well, the position of the inductor Lr only needs to be connected in series with the capacitor Ce when the capacitor Ce is charged / discharged, and therefore may be the same position as in the first embodiment (FIG. 1).

次に動作について説明する。
スイッチSw1aのゲート信号およびスイッチSw2aのゲート信号のスイッチング周波数を、インダクタLrとコンデンサCeとが直列共振状態となる共振周波数に一致させ、スイッチSw1aとスイッチSw2aとを交互に切り換えることにより、2VL<VHの時に、高電圧側から低電圧側に電力移行する。ここでは、高電圧側から低電圧側へのエネルギ移行のみが行われ、上記実施の形態1の図2(b)で示した同様の電流、電圧波形が得られる。
ダイオードDi3は、スイッチSw2aがオンしてコンデンサCeから低電圧側正極端子2に電流が流れている間、インダクタLrの起電圧とコンデンサCeの電圧によりオン状態となる。ダイオードDi4は、スイッチSw1aがオンして高電圧側正極端子3から低電圧側に電流が流れている間、インダクタLrの起電圧および低電圧側正極端子2に重畳されたコンデンサCe電圧と高電圧側端子3との差電圧によりオン状態となる。両ダイオードとも電流の向きが逆になれば自動的にオフする。
Next, the operation will be described.
By switching the switching frequency of the gate signal of the switch Sw1a and the gate signal of the switch Sw2a to the resonance frequency at which the inductor Lr and the capacitor Ce are in a series resonance state, and switching the switch Sw1a and the switch Sw2a alternately, 2VL <VH At this time, power is transferred from the high voltage side to the low voltage side. Here, only energy transfer from the high voltage side to the low voltage side is performed, and the same current and voltage waveforms shown in FIG. 2B of the first embodiment are obtained.
The diode Di3 is turned on by the electromotive voltage of the inductor Lr and the voltage of the capacitor Ce while the switch Sw2a is turned on and current flows from the capacitor Ce to the low-voltage side positive terminal 2. While the switch Sw1a is turned on and a current flows from the high-voltage side positive terminal 3 to the low-voltage side, the diode Di4 generates the voltage generated by the inductor Lr and the capacitor Ce voltage superimposed on the low-voltage side positive terminal 2 and the high voltage. The differential voltage with respect to the side terminal 3 is turned on. Both diodes are automatically turned off when the current direction is reversed.

この実施の形態においても、インダクタLrとコンデンサCeとの直列共振現象を利用するため、コンデンサCeに流れる電流Iceを連続した正弦波状の電流にでき、1スイッチング当りに利用するコンデンサCeの蓄積エネルギ量を大きくできる。このため、コンデンサ容量の増加やスイッチング周波数を高くすることなく、小型で簡略な回路構成で移行する電力量を増大できる。また、複数の半導体スイッチング素子を2つのスイッチSw1a、Sw2aとしたため、ゲート駆動回路が簡略化できる。   Also in this embodiment, since the series resonance phenomenon of the inductor Lr and the capacitor Ce is used, the current Ice flowing through the capacitor Ce can be changed to a continuous sinusoidal current, and the amount of energy stored in the capacitor Ce used per switching. Can be increased. For this reason, it is possible to increase the amount of power transferred with a small and simple circuit configuration without increasing the capacitor capacity or increasing the switching frequency. Further, since the plurality of semiconductor switching elements are two switches Sw1a and Sw2a, the gate drive circuit can be simplified.

実施の形態5.
上記実施の形態1〜4では、低電圧側(VL側)直流電源と高電圧側(VH側)直流電源との間にSC形コンバータブロック1を1つ接続したが、この実施の形態では、このようなSC形コンバータブロックを複数個、並列に接続する。
図7は、この発明の実施の形態4によるコンバータ装置の主回路構成を示す図である。
図に示すように、上記実施の形態1で示したコンバータブロック1と同様のSC形コンバータブロックから成る4個のSCセル1a〜1dを、低電圧側(VL側)直流電源と高電圧側(VH側)直流電源との間に並列に接続する。また、上記実施の形態1と同様に、低電圧側両端子2、2a間、および高電圧側両端子3、3a間には、電圧を平滑するための平滑コンデンサCL、CHが接続され、低電圧側負極端子2aおよび高電圧側負極端子3aは接地される。
Embodiment 5. FIG.
In the first to fourth embodiments, one SC converter block 1 is connected between the low voltage side (VL side) DC power source and the high voltage side (VH side) DC power source. In this embodiment, A plurality of such SC converter blocks are connected in parallel.
FIG. 7 is a diagram showing a main circuit configuration of a converter device according to Embodiment 4 of the present invention.
As shown in the figure, four SC cells 1a to 1d comprising SC converter blocks similar to the converter block 1 shown in the first embodiment are connected to a low voltage side (VL side) DC power source and a high voltage side ( VH side) Connect in parallel with the DC power supply. Similarly to the first embodiment, smoothing capacitors CL and CH for smoothing the voltage are connected between the low voltage side terminals 2 and 2a and between the high voltage side terminals 3 and 3a. The voltage side negative terminal 2a and the high voltage side negative terminal 3a are grounded.

各SCセル1a〜1dを駆動する基準となるクロック信号を、2π/4(rad)ずつずらす。このように、基準クロック信号を2π/4(rad)ずつずらすことにより、各1a〜1dを構成するスイッチSw1〜Sw4のゲート信号も各SCセル1a〜1d間で2π/4ずつずれる。また、このクロック信号の周波数を、インダクタLrとコンデンサCeとが直列共振状態となる共振周波数に一致させて、各SCセル1a〜1d内のスイッチのスイッチング周波数を上記共振周波数に一致させ、各SCセル1a〜1d内の動作は、上記実施の形態1と同様とする。
これにより、4個のSCセル1a〜1dにて4倍の電力量を移行でき、また、平滑コンデンサCL、CHのリップル電流を小さくすることができる。平滑コンデンサCL、CHの容量値(サイズ)は、リップル電流値の大きさに依存して決まるので、リップル電流を低減することにより平滑コンデンサCL、CHの容量(サイズ)を小さくすることができる。
The reference clock signal for driving each of the SC cells 1a to 1d is shifted by 2π / 4 (rad). In this way, by shifting the reference clock signal by 2π / 4 (rad), the gate signals of the switches Sw1 to Sw4 constituting the 1a to 1d are also shifted by 2π / 4 between the SC cells 1a to 1d. Further, the frequency of the clock signal is made to coincide with the resonance frequency at which the inductor Lr and the capacitor Ce are in a series resonance state, and the switching frequency of the switch in each of the SC cells 1a to 1d is made to coincide with the resonance frequency. The operations in the cells 1a to 1d are the same as those in the first embodiment.
As a result, four times the amount of power can be transferred in the four SC cells 1a to 1d, and the ripple current of the smoothing capacitors CL and CH can be reduced. Since the capacitance values (size) of the smoothing capacitors CL and CH are determined depending on the magnitude of the ripple current value, the capacitance (size) of the smoothing capacitors CL and CH can be reduced by reducing the ripple current.

なお、この実施の形態では、4個のSCセル1a〜1dを用いたが、それ以外の複数個(n個)でも良く、基準クロック信号を2π/n(rad)ずつずらすことで、同様に動作する。この場合、SCセルの個数が多いほど、平滑コンデンサCL、CHのリップル電流を小さくする効果は大きくなり、平滑コンデンサCL、CHのサイズを小さくできる。
また、各SCセル1a〜1dには、上記実施の形態1を適用したが、上記実施の形態2〜4を適用しても良い。
In this embodiment, four SC cells 1a to 1d are used. However, other plural (n) cells may be used, and the reference clock signal is similarly shifted by 2π / n (rad). Operate. In this case, the larger the number of SC cells, the greater the effect of reducing the ripple current of the smoothing capacitors CL and CH, and the size of the smoothing capacitors CL and CH can be reduced.
Moreover, although the said Embodiment 1 was applied to each SC cell 1a-1d, you may apply the said Embodiments 2-4.

実施の形態6.
上記実施の形態1〜5では、低電圧側(VL側)直流電源と高電圧側(VH側)直流電源との間で、VH/VLが概2の関係で電力移行するコンバータ装置を示したが、この実施の形態では、VHが約4VLとなる電圧比4の場合について説明する。
図8は、この発明の実施の形態6によるコンバータ装置の主回路構成を示す図である。
図に示すように、低電圧側(VL側)直流電源と高電圧側(VH側)直流電源との間にSC形コンバータ装置10が接続される。低電圧側両端子2、2a間、および高電圧側両端子3、3a間には、電圧を平滑するための平滑コンデンサCL、CHが接続され、低電圧側負極端子2aおよび高電圧側負極端子3aは接地される。
図に示すように、コンバータ装置10は、4個のスイッチSw100、Sw203、Sw303、Sw404、コンデンサCe3およびインダクタLr3を、上記実施の形態1のコンバータブロック1と同様の構成で備える。そして、これらの素子構成の中で、3個のスイッチSw203、Sw303、Sw404、コンデンサCe3およびインダクタLr3で構成されるユニットと同様のユニットである、3個のスイッチSw202、Sw302、Sw402、コンデンサCe2およびインダクタLr2と、3個のスイッチSw201、Sw301、Sw401、コンデンサCe1およびインダクタLr1とを、備える。
Embodiment 6 FIG.
In the above-described first to fifth embodiments, the converter device in which VH / VL shifts power in the relationship of approximately 2 between the low voltage side (VL side) DC power source and the high voltage side (VH side) DC power source is shown. However, in this embodiment, a case where the voltage ratio is 4 where VH is about 4VL will be described.
FIG. 8 shows a main circuit configuration of the converter apparatus according to the sixth embodiment of the present invention.
As shown in the figure, an SC converter device 10 is connected between a low voltage side (VL side) DC power source and a high voltage side (VH side) DC power source. Smoothing capacitors CL and CH for smoothing the voltage are connected between the low voltage side terminals 2 and 2a and between the high voltage side terminals 3 and 3a. The low voltage side negative terminal 2a and the high voltage side negative terminal 3a is grounded.
As shown in the figure, the converter device 10 includes four switches Sw100, Sw203, Sw303, Sw404, a capacitor Ce3, and an inductor Lr3 in the same configuration as the converter block 1 of the first embodiment. Among these element configurations, the three switches Sw202, Sw302, Sw402, the capacitor Ce2 and the unit similar to the unit composed of the three switches Sw203, Sw303, Sw404, the capacitor Ce3, and the inductor Lr3 An inductor Lr2 and three switches Sw201, Sw301, Sw401, a capacitor Ce1, and an inductor Lr1 are provided.

なお、図8では、低電圧側正極端子2にスイッチSw201のソース端子を接続し、スイッチSw201のドレイン端子にスイッチSw202のソース端子を接続し、スイッチSw202のドレイン端子にスイッチSw203のソース端子を接続したが、図9に示すコンバータ装置10aのように、低電圧側正極端子2に各スイッチSw201〜Sw203のソース端子を接続しても良く、後述する同様の動作が得られる。   In FIG. 8, the source terminal of the switch Sw201 is connected to the positive terminal 2 on the low voltage side, the source terminal of the switch Sw202 is connected to the drain terminal of the switch Sw201, and the source terminal of the switch Sw203 is connected to the drain terminal of the switch Sw202. However, like the converter device 10a shown in FIG. 9, the source terminals of the switches Sw201 to Sw203 may be connected to the low-voltage side positive terminal 2, and the same operation described later can be obtained.

各スイッチSw100、Sw201〜203、Sw301〜303、Sw401〜403には、図示しない制御回路部により生成されたゲート信号が入力され、そのゲート信号の電圧レベルに応じてオンオフ動作を行う。
各スイッチのゲート信号および各部の電圧、電流波形を図10に示す。なお、VL、VH、IL、IHについては上記実施の形態1と同様の部分についての電圧、電流であり、各コンデンサCe1〜Ce3に流れる電流、および各コンデンサCe1〜Ce3の電圧も示す。さらに、図8中に示した電流、電圧の矢印の方向を正とする。
スイッチSw201〜203、Sw301〜303の同時導通とスイッチSw100、Sw401〜403の同時導通とを交互に切り換えることにより、4VL>VHの場合には、低電圧側から高電圧側に電力移行し、4VL<VHの場合には、高電圧側から低電圧側に電力移行する。それぞれの場合におけるコンバータ装置の動作について、図10(a)、図10(b)に基づいて以下に説明する。
Each of the switches Sw100, Sw201 to 203, Sw301 to 303, and Sw401 to 403 receives a gate signal generated by a control circuit unit (not shown), and performs an on / off operation according to the voltage level of the gate signal.
FIG. 10 shows the gate signal of each switch and the voltage and current waveforms of each part. Note that VL, VH, IL, and IH are voltages and currents for the same parts as in the first embodiment, and currents that flow through the capacitors Ce1 to Ce3 and voltages of the capacitors Ce1 to Ce3 are also shown. Further, the directions of the current and voltage arrows shown in FIG. 8 are positive.
By alternately switching the simultaneous conduction of the switches Sw201 to 203 and Sw301 to 303 and the simultaneous conduction of the switches Sw100 and Sw401 to 403, when 4VL> VH, the power is transferred from the low voltage side to the high voltage side. In the case of <VH, power is transferred from the high voltage side to the low voltage side. The operation of the converter device in each case will be described below with reference to FIGS. 10 (a) and 10 (b).

図10(a)に示すように、4VL>VHの場合、スイッチSw201〜203、Sw301〜303がオンのときスイッチSw100、Sw401〜403はオフであり、このとき、各コンデンサCe1〜Ce3と各インダクタLr1〜Lr3とが直列接続された3つの直列体(Ce1,Lr1)、(Ce2,Lr2)、(Ce3,Lr3)は低電圧側直流電源の両端子2、2a間に同時に並列接続される。これにより、各コンデンサCe1〜Ce3の電圧はVL+ΔVに充電される。
次いで、スイッチSw201〜203、Sw301〜303がオフになり、スイッチSw100、Sw401〜403がオンになると、上記直列接続された3つの直列体(Ce1,Lr1)、(Ce2,Lr2)、(Ce3,Lr3)と平滑コンデンサCLとは直列接続され、これら直列接続された複合直列体CL−(Ce1,Lr1)−(Ce2,Lr2)−(Ce3,Lr3)は高電圧側直流電源の両端子3、3a間に並列接続される。エネルギは低電圧側から高電圧側に移行し、各コンデンサCe1〜Ce3は放電して電圧はVL−ΔVになる。
As shown in FIG. 10A, when 4VL> VH, when the switches Sw201 to 203 and Sw301 to 303 are on, the switches Sw100 and Sw401 to 403 are off. At this time, the capacitors Ce1 to Ce3 and the inductors Three series bodies (Ce1, Lr1), (Ce2, Lr2), and (Ce3, Lr3) in which Lr1 to Lr3 are connected in series are simultaneously connected in parallel between both terminals 2 and 2a of the low voltage side DC power supply. As a result, the voltages of the capacitors Ce1 to Ce3 are charged to VL + ΔV.
Next, when the switches Sw201 to 203 and Sw301 to 303 are turned off and the switches Sw100 and Sw401 to 403 are turned on, the three series-connected bodies (Ce1, Lr1), (Ce2, Lr2), (Ce3, Lr3) and the smoothing capacitor CL are connected in series. These series-connected composite series CL- (Ce1, Lr1)-(Ce2, Lr2)-(Ce3, Lr3) are both terminals 3 of the high-voltage side DC power supply, 3a are connected in parallel. The energy shifts from the low voltage side to the high voltage side, the capacitors Ce1 to Ce3 are discharged, and the voltage becomes VL−ΔV.

図10(b)に示すように、4VL<VHの場合、スイッチSw201〜203、Sw301〜303がオンのときスイッチSw100、Sw401〜403はオフであり、このとき、上記3つの直列体(Ce1,Lr1)、(Ce2,Lr2)、(Ce3,Lr3)は低電圧側直流電源の両端子2、2a間に同時に並列接続される。エネルギは高電圧側から低電圧側に移行し、各コンデンサCe1〜Ce3は放電して電圧はVL−ΔVになる。
次いで、スイッチSw201〜203、Sw301〜303がオフになり、スイッチSw100、Sw401〜403がオンになると、上記3つの直列体(Ce1,Lr1)、(Ce2,Lr2)、(Ce3,Lr3)と平滑コンデンサCLとは直列接続され、これら直列接続された複合直列体CL−(Ce1,Lr1)−(Ce2,Lr2)−(Ce3,Lr3)は高電圧側直流電源の両端子3、3a間に並列接続される。これにより、各コンデンサCe1〜Ce3の電圧はVL+ΔVに充電される。
As shown in FIG. 10B, in the case of 4VL <VH, when the switches Sw201 to 203 and Sw301 to 303 are on, the switches Sw100 and Sw401 to 403 are off. At this time, the three series bodies (Ce1, Lr1), (Ce2, Lr2), and (Ce3, Lr3) are simultaneously connected in parallel between both terminals 2 and 2a of the low voltage side DC power supply. The energy shifts from the high voltage side to the low voltage side, the capacitors Ce1 to Ce3 are discharged, and the voltage becomes VL−ΔV.
Next, when the switches Sw201 to 203 and Sw301 to 303 are turned off and the switches Sw100 and Sw401 to 403 are turned on, the three series bodies (Ce1, Lr1), (Ce2, Lr2), and (Ce3, Lr3) are smoothed. The capacitor CL is connected in series, and these series-connected composite series bodies CL- (Ce1, Lr1)-(Ce2, Lr2)-(Ce3, Lr3) are parallel between the terminals 3 and 3a of the high-voltage side DC power supply. Connected. As a result, the voltages of the capacitors Ce1 to Ce3 are charged to VL + ΔV.

このように、一対のコンデンサCe(Ce1〜Ce3)とインダクタLr(Lr1〜Lr3)とが直列接続された直列体(Ce,Lr)を複数個(この場合、3個)備えて、この複数の直列体(Ce,Lr)を低電圧側直流電源の両端子2、2a間に同時に並列接続する第1のモードと、この複数の直列体(Ce,Lr)を低電圧側直流電源(平滑コンデンサCL)に同時に直列接続するとともに、直列接続された複合直列体を高電圧側直流電源の両端子3、3a間に並列接続する第2のモードとを交互に切り換えて、複数のコンデンサCe1〜Ce3の充放電を同時に切り換える。充放電経路の抵抗分は、ほぼ無視できるレベルであり、上記第1のモードにおいて、各インダクタLrと各コンデンサCeとが直列共振状態となる共振周期Taは、各Lrのインダクタンス値をLr、各Ceの容量値をCeとすると、以下の式(2)で表せる。   As described above, a plurality of (in this case, three) series bodies (Ce, Lr) in which a pair of capacitors Ce (Ce1 to Ce3) and inductors Lr (Lr1 to Lr3) are connected in series are provided. A first mode in which a series body (Ce, Lr) is simultaneously connected in parallel between both terminals 2 and 2a of the low voltage side DC power supply, and a plurality of series bodies (Ce, Lr) are connected to the low voltage side DC power supply (smoothing capacitor). CL) are simultaneously connected in series, and a plurality of capacitors Ce1 to Ce3 are alternately switched to the second mode in which the series connected composite series body is connected in parallel between both terminals 3 and 3a of the high voltage side DC power source. Switching between charging and discharging at the same time. The resistance component of the charge / discharge path is almost negligible. In the first mode, the resonance period Ta in which each inductor Lr and each capacitor Ce is in a series resonance state has the inductance value of each Lr as Lr, When the capacitance value of Ce is Ce, it can be expressed by the following formula (2).

Figure 2006262619
Figure 2006262619

また、上記第2のモードにおいて、各インダクタLrと各コンデンサCeとが直列共振状態となる共振周期Tbは、各Lrのインダクタンス値をLr、各Ceの容量値をCeとすると、以下の式(3)で表せる。   Further, in the second mode, the resonance period Tb in which each inductor Lr and each capacitor Ce is in a series resonance state is represented by the following formula (where Lr is the inductance value of each Lr and Ce is the capacitance value of each Ce): It can be expressed by 3).

Figure 2006262619
Figure 2006262619

上記式(2)(3)よりTa=Tbとなり、第1、第2のモードに用いる2種のゲート信号は、上記実施の形態1と同様に、単純なデューティ比50%の矩形パルス信号となる。
このように、電圧比4で電圧変換する場合においても、インダクタLrとコンデンサCeとの直列共振現象を利用し、1スイッチング当りに利用するコンデンサCeの蓄積エネルギ量を大きくできる。このため、コンデンサ容量の増加やスイッチング周波数を高くすることなく、小型で簡略な回路構成で移行する電力量を増大できる。
From the above equations (2) and (3), Ta = Tb, and the two types of gate signals used in the first and second modes are a rectangular pulse signal with a simple duty ratio of 50%, as in the first embodiment. Become.
In this way, even when voltage conversion is performed at a voltage ratio of 4, the stored energy amount of the capacitor Ce used per switching can be increased by utilizing the series resonance phenomenon of the inductor Lr and the capacitor Ce. For this reason, it is possible to increase the amount of power transferred with a small and simple circuit configuration without increasing the capacitor capacity or increasing the switching frequency.

なお、実施の形態1の図1で示した回路構成を2段設けても、同様な電圧比4のコンバータ装置が構成できる。その場合、1段目と2段目の間に平滑コンデンサを設ける必要があるが、図8、図9で示した構成では、低電圧側両端子2、2a間、および高電圧側両端子3、3a間に接続される平滑コンデンサCL、CHのみでよい。
また、電圧比4の直流電圧変換の形態について述べたが、電圧比は2以上整数であれば良く、コンデンサCeとインダクタLrとが直列接続された直列体と複数のスイッチとを含む上記ユニットをさらに増やすことにより、さらに大きな電圧比で電力移行することができる。
Even if the circuit configuration shown in FIG. 1 of the first embodiment is provided in two stages, a converter device having a similar voltage ratio of 4 can be configured. In this case, it is necessary to provide a smoothing capacitor between the first stage and the second stage. However, in the configuration shown in FIGS. 8 and 9, both the low voltage side terminals 2 and 2a and the high voltage side terminals 3 are provided. Only the smoothing capacitors CL and CH connected between 3a are sufficient.
In addition, although the DC voltage conversion mode with a voltage ratio of 4 has been described, the voltage ratio may be an integer of 2 or more, and the above unit including a series body in which a capacitor Ce and an inductor Lr are connected in series and a plurality of switches is included. By further increasing the power, it is possible to transfer power at a larger voltage ratio.

また、上記実施の形態1〜6において、半導体スイッチング素子はMOSFETを用いたが、IGBT等の他の半導体スイッチング素子を用いても同様の効果が得られる。   In the first to sixth embodiments, MOSFETs are used as the semiconductor switching elements. However, similar effects can be obtained by using other semiconductor switching elements such as IGBTs.

この発明の実施の形態1によるコンバータ装置の主回路構成を示す図である。It is a figure which shows the main circuit structure of the converter apparatus by Embodiment 1 of this invention. この発明の実施の形態1によるコンバータ装置の動作を説明する図である。It is a figure explaining operation | movement of the converter apparatus by Embodiment 1 of this invention. この発明の実施の形態1によるコンバータ装置の効果を比較例を用いて説明する図である。It is a figure explaining the effect of the converter device by Embodiment 1 of this invention using a comparative example. この発明の実施の形態2によるコンバータ装置の動作を説明する図である。It is a figure explaining operation | movement of the converter apparatus by Embodiment 2 of this invention. この発明の実施の形態3によるコンバータ装置の主回路構成を示す図である。It is a figure which shows the main circuit structure of the converter apparatus by Embodiment 3 of this invention. この発明の実施の形態4によるコンバータ装置の主回路構成を示す図である。It is a figure which shows the main circuit structure of the converter apparatus by Embodiment 4 of this invention. この発明の実施の形態5によるコンバータ装置の主回路構成を示す図である。It is a figure which shows the main circuit structure of the converter apparatus by Embodiment 5 of this invention. この発明の実施の形態6によるコンバータ装置の主回路構成を示す図である。It is a figure which shows the main circuit structure of the converter apparatus by Embodiment 6 of this invention. この発明の実施の形態6の別例によるコンバータ装置の主回路構成を示す図である。It is a figure which shows the main circuit structure of the converter apparatus by another example of Embodiment 6 of this invention. この発明の実施の形態6によるコンバータの動作を説明する図である。It is a figure explaining the operation | movement of the converter by Embodiment 6 of this invention.

符号の説明Explanation of symbols

1 SC形(スイッチドキャパシタ形)コンバータブロック、
1a〜1d SC形コンバータブロック(SC形セル)、
2 低電圧側直流電源正極端子、2a 低電圧側直流電源負極端子(接地端子)、
3 高電圧側直流電源正極端子、3a 高電圧側直流電源負極端子(接地端子)、
10,10a SC形コンバータ装置、12 設定周波数、
Ce,Ce1〜Ce3 コンデンサ、Di1,Di2 第1、第2のダイオード、
Di3,Di4 第1、第2のダイオード、
Sw1〜Sw4 第1〜第4の半導体スイッチング素子としてのスイッチ、
Sw1a,Sw2a 第1、第2の半導体スイッチング素子としてのスイッチ、
Sw3a,Sw4a 第1、第2の半導体スイッチング素子としてのスイッチ、
Sw100,Sw201〜Sw203,Sw301〜Sw303,Sw401〜Sw403 半導体スイッチング素子としてのスイッチ、
Lr,Lr1〜Lr3 インダクタ。
1 SC type (switched capacitor type) converter block,
1a to 1d SC type converter block (SC type cell),
2 Low voltage side DC power supply positive terminal, 2a Low voltage side DC power supply negative terminal (grounding terminal),
3 High voltage side DC power supply positive terminal, 3a High voltage side DC power supply negative terminal (ground terminal),
10, 10a SC converter device, 12 set frequency,
Ce, Ce1 to Ce3 capacitors, Di1, Di2 first and second diodes,
Di3, Di4 first and second diodes,
Sw1 to Sw4 Switches as first to fourth semiconductor switching elements,
Sw1a, Sw2a Switches as first and second semiconductor switching elements,
Sw3a, Sw4a Switches as first and second semiconductor switching elements,
Sw100, Sw201 to Sw203, Sw301 to Sw303, Sw401 to Sw403 Switches as semiconductor switching elements,
Lr, Lr1 to Lr3 Inductors.

Claims (11)

低電圧側直流電源と高電圧側直流電源との間に、コンデンサと複数の半導体スイッチング素子とを備え、該半導体スイッチング素子のスイッチング動作により上記コンデンサの充放電を交互に切り換えて上記2つの電源間でエネルギの移行を行うスイッチドキャパシタ形DC/DCコンバータ装置において、
上記コンデンサの充電経路と放電経路とが重なる経路区間にインダクタを挿入して、上記コンデンサの充放電時に該コンデンサと上記インダクタとが直列に接続されることを特徴とするスイッチドキャパシタ形DC/DCコンバータ装置。
A capacitor and a plurality of semiconductor switching elements are provided between the low voltage side DC power source and the high voltage side DC power source, and charging and discharging of the capacitor are alternately switched between the two power sources by the switching operation of the semiconductor switching element. In a switched capacitor type DC / DC converter device that performs energy transfer at
A switched capacitor type DC / DC, wherein an inductor is inserted in a path section where a charging path and a discharging path of the capacitor overlap, and the capacitor and the inductor are connected in series when the capacitor is charged and discharged. Converter device.
上記複数の半導体スイッチング素子を駆動する駆動信号の周期を、上記コンデンサと上記インダクタとの共振周期と略一致させたことを特徴とする請求項1記載のスイッチドキャパシタ形DC/DCコンバータ装置。 2. The switched capacitor type DC / DC converter device according to claim 1, wherein a period of a drive signal for driving the plurality of semiconductor switching elements is made substantially coincident with a resonance period of the capacitor and the inductor. 上記インダクタに流れる電流量により変化する該インダクタのインダクタンス値に応じて上記駆動信号の周期を可変としたことを特徴とする請求項2に記載のスイッチドキャパシタ形DC/DCコンバータ装置。 3. The switched capacitor type DC / DC converter device according to claim 2, wherein a cycle of the drive signal is variable in accordance with an inductance value of the inductor which varies depending on an amount of current flowing through the inductor. 上記低電圧側直流電源と上記高電圧側直流電源との間に、上記コンデンサ、上記インダクタおよび上記複数の半導体スイッチング素子とを備えて上記2つの電源間でエネルギの移行を行うセルを、n(nは2以上の整数)個並列に接続し、各セル内の上記複数の半導体スイッチング素子を駆動する駆動信号を、該セル間で2π/nずつ位相をずらせたものとすることを特徴とする請求項1〜3のいずれかに記載のスイッチドキャパシタ形DC/DCコンバータ装置。 A cell that includes the capacitor, the inductor, and the plurality of semiconductor switching elements between the low-voltage side DC power source and the high-voltage side DC power source and performs energy transfer between the two power sources, n ( n is an integer of 2 or more) connected in parallel, and driving signals for driving the semiconductor switching elements in each cell are shifted in phase by 2π / n between the cells. The switched capacitor type DC / DC converter device according to claim 1. 上記複数の半導体スイッチング素子は、
一方の端子が上記高電圧側直流電源の正極端子に接続された第1の半導体スイッチング素子と、該第1の半導体スイッチング素子の他方の端子と上記低電圧側直流電源の正極端子とに両端子が接続された第2の半導体スイッチング素子と、一方の端子が上記高電圧側直流電源の負極端子および上記低電圧側直流電源の負極端子に接続された第3の半導体スイッチング素子と、該第3の半導体スイッチング素子の他方の端子と上記低電圧側直流電源の正極端子とに両端子が接続された第4の半導体スイッチング素子と、を有し、
上記コンデンサと上記インダクタとを直列接続した直列体を構成して、上記第1、第2の半導体スイッチング素子間の接続点と上記第3、第4の半導体スイッチング素子間の接続点とを上記直列体を介して接続し、
上記第2、第3の半導体スイッチング素子の同時導通と、上記第1、第4の半導体スイッチング素子の同時導通とを交互に行って、上記コンデンサの充放電を交互に切り換えることを特徴とする請求項1〜4のいずれかに記載のスイッチドキャパシタ形DC/DCコンバータ装置。
The plurality of semiconductor switching elements are:
Both terminals are connected to the first semiconductor switching element having one terminal connected to the positive terminal of the high-voltage side DC power supply, the other terminal of the first semiconductor switching element and the positive terminal of the low-voltage side DC power supply. , A third semiconductor switching element having one terminal connected to the negative terminal of the high-voltage DC power supply and the negative terminal of the low-voltage DC power supply, the third A fourth semiconductor switching element having both terminals connected to the other terminal of the semiconductor switching element and a positive terminal of the low-voltage DC power source,
A series body in which the capacitor and the inductor are connected in series is configured, and a connection point between the first and second semiconductor switching elements and a connection point between the third and fourth semiconductor switching elements are connected in series. Connect through the body,
The simultaneous conduction of the second and third semiconductor switching elements and the simultaneous conduction of the first and fourth semiconductor switching elements are alternately performed, and charging and discharging of the capacitor are alternately switched. Item 5. The switched capacitor type DC / DC converter device according to any one of Items 1 to 4.
上記複数の半導体スイッチング素子は、
一方の端子が上記高電圧側直流電源の正極端子に接続された第1の半導体スイッチング素子と、該第1の半導体スイッチング素子の他方の端子と上記低電圧側直流電源の正極端子とに両端子が接続された第2の半導体スイッチング素子と、一方の端子が上記高電圧側直流電源の負極端子および上記低電圧側直流電源の負極端子に接続された第3の半導体スイッチング素子と、該第3の半導体スイッチング素子の他方の端子と上記第2の半導体スイッチング素子の上記低電圧側直流電源側の端子とに両端子が接続された第4の半導体スイッチング素子と、を有し、
上記第1、第2の半導体スイッチング素子間の接続点と上記第3、第4の半導体スイッチング素子間の接続点とを上記コンデンサを介して接続し、
上記インダクタを、上記低電圧側直流電源の正極端子と、上記第2、第4の半導体スイッチング素子間の接続点との間に挿入し、
上記第2、第3の半導体スイッチング素子の同時導通と、上記第1、第4の半導体スイッチング素子の同時導通とを交互に行って、上記コンデンサの充放電を交互に切り換えることを特徴とする請求項1〜4のいずれかに記載のスイッチドキャパシタ形DC/DCコンバータ装置。
The plurality of semiconductor switching elements are:
Both terminals are connected to the first semiconductor switching element having one terminal connected to the positive terminal of the high-voltage side DC power supply, the other terminal of the first semiconductor switching element and the positive terminal of the low-voltage side DC power supply. , A third semiconductor switching element having one terminal connected to the negative terminal of the high-voltage DC power supply and the negative terminal of the low-voltage DC power supply, the third A fourth semiconductor switching element having both terminals connected to the other terminal of the semiconductor switching element and a terminal on the low-voltage side DC power supply side of the second semiconductor switching element,
Connecting the connection point between the first and second semiconductor switching elements and the connection point between the third and fourth semiconductor switching elements via the capacitor;
Inserting the inductor between the positive terminal of the low-voltage DC power supply and the connection point between the second and fourth semiconductor switching elements;
The simultaneous conduction of the second and third semiconductor switching elements and the simultaneous conduction of the first and fourth semiconductor switching elements are alternately performed, and charging and discharging of the capacitor are alternately switched. Item 5. The switched capacitor type DC / DC converter device according to any one of Items 1 to 4.
カソード端子が上記高電圧側直流電源の正極端子に接続された第1のダイオードと、カソード端子が該第1のダイオードのアノード端子に接続され、アノード端子が上記低電圧側直流電源の正極端子に接続された第2のダイオードとを備え、
上記複数の半導体スイッチング素子は、
一方の端子が上記高電圧側直流電源の負極端子および上記低電圧側直流電源の負極端子に接続された第1の半導体スイッチング素子と、該第1の半導体スイッチング素子の他方の端子と上記低電圧側直流電源の正極端子とに両端子が接続された第2の半導体スイッチング素子と、を有し、
上記コンデンサと上記インダクタとを直列接続した直列体を構成して、上記第1、第2のダイオード間の接続点と上記第1、第2の半導体スイッチング素子間の接続点とを上記直列体を介して接続し、
上記第1の半導体スイッチング素子と上記第2の半導体スイッチング素子とを交互に導通させて上記コンデンサの充放電を交互に切り換え、上記低電圧側直流電源から上記高電圧側直流電源へエネルギ移行を行うことを特徴とする請求項1〜4のいずれかに記載のスイッチドキャパシタ形DC/DCコンバータ装置。
A first diode connected to the positive terminal of the high-voltage side DC power source, a cathode terminal connected to the anode terminal of the first diode, and an anode terminal connected to the positive terminal of the low-voltage side DC power source A connected second diode;
The plurality of semiconductor switching elements are:
A first semiconductor switching element having one terminal connected to the negative terminal of the high-voltage side DC power supply and the negative terminal of the low-voltage side DC power supply; the other terminal of the first semiconductor switching element; and the low voltage A second semiconductor switching element having both terminals connected to the positive electrode terminal of the side DC power supply,
A series body in which the capacitor and the inductor are connected in series is configured, and a connection point between the first and second diodes and a connection point between the first and second semiconductor switching elements are connected to the series body. Connect through
The first semiconductor switching element and the second semiconductor switching element are alternately turned on to alternately switch the charge and discharge of the capacitor, and energy is transferred from the low voltage side DC power source to the high voltage side DC power source. The switched capacitor type DC / DC converter device according to any one of claims 1 to 4.
カソード端子が上記高電圧側直流電源の正極端子に接続された第1のダイオードと、カソード端子が該第1のダイオードのアノード端子に接続され、アノード端子が上記低電圧側直流電源の正極端子に接続された第2のダイオードとを備え、
上記複数の半導体スイッチング素子は、
一方の端子が上記高電圧側直流電源の負極端子および上記低電圧側直流電源の負極端子に接続された第1の半導体スイッチング素子と、該第1の半導体スイッチング素子の他方の端子と上記第2のダイオードのアノード端子とに両端子が接続された第2の半導体スイッチング素子と、を有し、
上記第1、第2のダイオード間の接続点と上記第1、第2の半導体スイッチング素子間の接続点とを上記コンデンサを介して接続し、
上記インダクタを、上記低電圧側直流電源の正極端子と、上記第2のダイオード、上記第2の半導体スイッチング素子間の接続点との間に挿入し、
上記第1の半導体スイッチング素子と上記第2の半導体スイッチング素子とを交互に導通させて上記コンデンサの充放電を交互に切り換え、上記低電圧側直流電源から上記高電圧側直流電源へエネルギ移行を行うことを特徴とする請求項1〜4のいずれかに記載のスイッチドキャパシタ形DC/DCコンバータ装置。
A first diode connected to the positive terminal of the high-voltage side DC power source, a cathode terminal connected to the anode terminal of the first diode, and an anode terminal connected to the positive terminal of the low-voltage side DC power source A connected second diode;
The plurality of semiconductor switching elements are:
A first semiconductor switching element having one terminal connected to the negative terminal of the high-voltage side DC power source and the negative terminal of the low-voltage side DC power source; the other terminal of the first semiconductor switching element; and the second terminal A second semiconductor switching element having both terminals connected to the anode terminal of the diode,
A connection point between the first and second diodes and a connection point between the first and second semiconductor switching elements are connected via the capacitor;
Inserting the inductor between the positive terminal of the low-voltage side DC power source and the connection point between the second diode and the second semiconductor switching element;
The first semiconductor switching element and the second semiconductor switching element are alternately turned on to alternately switch the charge and discharge of the capacitor, and energy is transferred from the low voltage side DC power source to the high voltage side DC power source. The switched capacitor type DC / DC converter device according to any one of claims 1 to 4.
アノード端子が上記高電圧側直流電源の負極端子および上記低電圧側直流電源の負極端子に接続された第1のダイオードと、アノード端子が該第1のダイオードのカソード端子に接続され、カソード端子が上記低電圧側直流電源の正極端子に接続された第2のダイオードとを備え、
上記複数の半導体スイッチング素子は、
一方の端子が上記高電圧側直流電源の正極端子に接続された第1の半導体スイッチング素子と、該第1の半導体スイッチング素子の他方の端子と上記低電圧側直流電源の正極端子とに両端子が接続された第2の半導体スイッチング素子と、を有し、
上記コンデンサと上記インダクタとを直列接続した直列体を構成して、上記第1、第2のダイオード間の接続点と上記第1、第2の半導体スイッチング素子間の接続点とを上記直列体を介して接続し、
上記第1の半導体スイッチング素子と上記第2の半導体スイッチング素子とを交互に導通させて上記コンデンサの充放電を交互に切り換え、上記高電圧側直流電源から上記低電圧側直流電源へエネルギ移行を行うことを特徴とする請求項1〜4のいずれかに記載のスイッチドキャパシタ形DC/DCコンバータ装置。
The anode terminal is connected to the negative terminal of the high voltage side DC power source and the negative terminal of the low voltage side DC power source, the anode terminal is connected to the cathode terminal of the first diode, and the cathode terminal is A second diode connected to the positive terminal of the low voltage side DC power supply,
The plurality of semiconductor switching elements are:
Both terminals are connected to the first semiconductor switching element having one terminal connected to the positive terminal of the high-voltage side DC power supply, the other terminal of the first semiconductor switching element and the positive terminal of the low-voltage side DC power supply. A second semiconductor switching element connected to
A series body in which the capacitor and the inductor are connected in series is configured, and a connection point between the first and second diodes and a connection point between the first and second semiconductor switching elements are connected to the series body. Connect through
The first semiconductor switching element and the second semiconductor switching element are alternately turned on to alternately switch charging and discharging of the capacitor, and energy is transferred from the high voltage side DC power source to the low voltage side DC power source. The switched capacitor type DC / DC converter device according to any one of claims 1 to 4.
アノード端子が上記高電圧側直流電源の負極端子および上記低電圧側直流電源の負極端子に接続された第1のダイオードと、アノード端子が該第1のダイオードのカソード端子に接続され、カソード端子が上記低電圧側直流電源の正極端子に接続された第2のダイオードとを備え、
上記複数の半導体スイッチング素子は、
一方の端子が上記高電圧側直流電源の正極端子に接続された第1の半導体スイッチング素子と、該第1の半導体スイッチング素子の他方の端子と上記第2のダイオードのカソード端子とに両端子が接続された第2の半導体スイッチング素子と、を有し、
上記第1、第2のダイオード間の接続点と上記第1、第2の半導体スイッチング素子間の接続点とを上記コンデンサを介して接続し、
上記インダクタを、上記低電圧側直流電源の正極端子と、上記第2のダイオード、上記第2の半導体スイッチング素子間の接続点との間に挿入し、
上記第1の半導体スイッチング素子と上記第2の半導体スイッチング素子とを交互に導通させて上記コンデンサの充放電を交互に切り換え、上記高電圧側直流電源から上記低電圧側直流電源へエネルギ移行を行うことを特徴とする請求項1〜4のいずれかに記載のスイッチドキャパシタ形DC/DCコンバータ装置。
The anode terminal is connected to the negative terminal of the high voltage side DC power source and the negative terminal of the low voltage side DC power source, the anode terminal is connected to the cathode terminal of the first diode, and the cathode terminal is A second diode connected to the positive terminal of the low voltage side DC power supply,
The plurality of semiconductor switching elements are:
Both terminals are connected to the first semiconductor switching element having one terminal connected to the positive terminal of the high-voltage side DC power supply, the other terminal of the first semiconductor switching element, and the cathode terminal of the second diode. A second semiconductor switching element connected,
A connection point between the first and second diodes and a connection point between the first and second semiconductor switching elements are connected via the capacitor;
Inserting the inductor between the positive terminal of the low-voltage side DC power source and the connection point between the second diode and the second semiconductor switching element;
The first semiconductor switching element and the second semiconductor switching element are alternately turned on to alternately switch charging and discharging of the capacitor, and energy is transferred from the high voltage side DC power source to the low voltage side DC power source. The switched capacitor type DC / DC converter device according to any one of claims 1 to 4.
上記低電圧側直流電源と上記高電圧側直流電源との間に、上記コンデンサと上記インダクタとを直列接続した直列体を複数個備え、上記複数の半導体スイッチング素子のスイッチング動作により、上記複数の直列体を上記低電圧側直流電源の両端子間に同時に並列接続する第1のモードと、上記複数の直列体を上記低電圧側直流電源に同時に直列接続するとともに、該直列接続された複合直列体を上記高電圧側直流電源の両端子間に並列接続する第2のモードとを交互に切り換えて、上記複数のコンデンサの充放電を同時に切り換えることを特徴とする請求項1〜3のいずれかに記載のスイッチドキャパシタ形DC/DCコンバータ装置。 A plurality of series bodies in which the capacitor and the inductor are connected in series are provided between the low-voltage side DC power source and the high-voltage side DC power source, and the plurality of series switching units are switched by the switching operation of the plurality of semiconductor switching elements. A first mode in which a body is simultaneously connected in parallel between both terminals of the low voltage side DC power supply, and the plurality of series bodies are simultaneously connected in series to the low voltage side DC power supply, and the series connected composite series body 4. The charging and discharging of the plurality of capacitors are simultaneously switched by alternately switching to a second mode in which the two are connected in parallel between both terminals of the high-voltage side DC power source. The switched capacitor type DC / DC converter device described.
JP2005076372A 2005-03-17 2005-03-17 DC / DC converter device Expired - Fee Related JP4546296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076372A JP4546296B2 (en) 2005-03-17 2005-03-17 DC / DC converter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005076372A JP4546296B2 (en) 2005-03-17 2005-03-17 DC / DC converter device

Publications (3)

Publication Number Publication Date
JP2006262619A true JP2006262619A (en) 2006-09-28
JP2006262619A5 JP2006262619A5 (en) 2007-02-08
JP4546296B2 JP4546296B2 (en) 2010-09-15

Family

ID=37101233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076372A Expired - Fee Related JP4546296B2 (en) 2005-03-17 2005-03-17 DC / DC converter device

Country Status (1)

Country Link
JP (1) JP4546296B2 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032424A1 (en) * 2006-09-15 2008-03-20 Mitsubishi Electric Corporation Dc/dc power converter
WO2008032362A1 (en) * 2006-09-12 2008-03-20 Mitsubishi Electric Corporation Dc/dc converter device
WO2008032425A1 (en) * 2006-09-15 2008-03-20 Mitsubishi Electric Corporation Dc/dc power converting apparatus
JP2009183093A (en) * 2008-01-31 2009-08-13 Mitsubishi Electric Corp Dc-dc power converter
JP2009201231A (en) * 2008-02-21 2009-09-03 Mitsubishi Electric Corp Dc/dc power conversion apparatus
JP2009219250A (en) * 2008-03-11 2009-09-24 Mitsubishi Electric Corp Dc-dc power converter
JP2010068585A (en) * 2008-09-09 2010-03-25 Mitsubishi Electric Corp Power conversion device
US7729144B2 (en) 2007-04-12 2010-06-01 Mitsubishi Electric Corporation DC/DC power conversion device
JP2010178447A (en) * 2009-01-28 2010-08-12 Mitsubishi Electric Corp Semiconductor circuit device
JP2010246322A (en) * 2009-04-09 2010-10-28 Mitsubishi Electric Corp Dc/dc power converter
JP2011061900A (en) * 2009-09-07 2011-03-24 Mitsubishi Electric Corp Dc/dc power converter
WO2012001828A1 (en) * 2010-06-29 2012-01-05 三菱電機株式会社 Dc-dc power conversion apparatus
US20130163302A1 (en) * 2011-12-23 2013-06-27 Abb Inc. Dc-dc converter systems
JP2014072917A (en) * 2012-09-27 2014-04-21 Taiyo Yuden Co Ltd Bidirectional dc-dc converter
EP2637292A3 (en) * 2012-03-05 2017-11-29 Solaredge Technologies Ltd. Direct current link circuit
CN107482903A (en) * 2017-06-01 2017-12-15 中山大学 A kind of efficient switch capacitive power converter
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
WO2019217577A1 (en) * 2018-05-09 2019-11-14 The University Of Texas At Austin Modular high step-down dc/dc converter
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
EP2814158B1 (en) * 2013-05-03 2021-12-22 Samsung Electronics Co., Ltd. Power supply
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
WO2022107424A1 (en) * 2020-11-19 2022-05-27 株式会社村田製作所 Charge pump circuit
WO2022236825A1 (en) * 2021-05-14 2022-11-17 华为数字能源技术有限公司 Dc/dc converter
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
WO2023226452A1 (en) * 2022-05-27 2023-11-30 华为技术有限公司 Direct-current-direct-current converter and electronic device
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11962243B2 (en) 2021-06-10 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012216691A1 (en) * 2012-09-18 2014-03-20 Bombardier Transportation Gmbh Converter circuit and method for controlling the converter circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59106876A (en) * 1982-11-30 1984-06-20 ウエスターン・エレクトリック・カムパニー,インコーポレーテッド Dc/dc converter
JPH07130484A (en) * 1993-10-29 1995-05-19 Toshiba Lighting & Technol Corp Power supply device, discharge lamp lighting device, and illumination device
WO2003063327A2 (en) * 2002-01-22 2003-07-31 Johnson Controls Automotive Electronics Multicellular dc/dc voltage converter with protection switches
US20040141345A1 (en) * 2003-01-17 2004-07-22 The Hong Kong Polytechnic University DC to DC converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59106876A (en) * 1982-11-30 1984-06-20 ウエスターン・エレクトリック・カムパニー,インコーポレーテッド Dc/dc converter
JPH07130484A (en) * 1993-10-29 1995-05-19 Toshiba Lighting & Technol Corp Power supply device, discharge lamp lighting device, and illumination device
WO2003063327A2 (en) * 2002-01-22 2003-07-31 Johnson Controls Automotive Electronics Multicellular dc/dc voltage converter with protection switches
US20040141345A1 (en) * 2003-01-17 2004-07-22 The Hong Kong Polytechnic University DC to DC converter

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
WO2008032362A1 (en) * 2006-09-12 2008-03-20 Mitsubishi Electric Corporation Dc/dc converter device
WO2008032425A1 (en) * 2006-09-15 2008-03-20 Mitsubishi Electric Corporation Dc/dc power converting apparatus
WO2008032424A1 (en) * 2006-09-15 2008-03-20 Mitsubishi Electric Corporation Dc/dc power converter
JP4819902B2 (en) * 2006-09-15 2011-11-24 三菱電機株式会社 DC / DC power converter
US8040702B2 (en) 2006-09-15 2011-10-18 Mitsubishi Electric Corporation DC/DC power converting apparatus
JPWO2008032424A1 (en) * 2006-09-15 2010-01-21 三菱電機株式会社 DC / DC power converter
US8036008B2 (en) 2006-09-15 2011-10-11 Mitsubishi Electric Corporation DC/DC power converting apparatus
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US7729144B2 (en) 2007-04-12 2010-06-01 Mitsubishi Electric Corporation DC/DC power conversion device
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
JP2009183093A (en) * 2008-01-31 2009-08-13 Mitsubishi Electric Corp Dc-dc power converter
JP4675983B2 (en) * 2008-02-21 2011-04-27 三菱電機株式会社 DC / DC power converter
JP2009201231A (en) * 2008-02-21 2009-09-03 Mitsubishi Electric Corp Dc/dc power conversion apparatus
JP2009219250A (en) * 2008-03-11 2009-09-24 Mitsubishi Electric Corp Dc-dc power converter
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
JP2010068585A (en) * 2008-09-09 2010-03-25 Mitsubishi Electric Corp Power conversion device
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
JP2010178447A (en) * 2009-01-28 2010-08-12 Mitsubishi Electric Corp Semiconductor circuit device
JP2010246322A (en) * 2009-04-09 2010-10-28 Mitsubishi Electric Corp Dc/dc power converter
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
JP2011061900A (en) * 2009-09-07 2011-03-24 Mitsubishi Electric Corp Dc/dc power converter
US9007040B2 (en) 2010-06-29 2015-04-14 Mitsubishi Electric Corporation DC-DC power conversion apparatus
WO2012001828A1 (en) * 2010-06-29 2012-01-05 三菱電機株式会社 Dc-dc power conversion apparatus
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US9397548B2 (en) * 2011-12-23 2016-07-19 Abb Research Ltd. DC-DC converter systems
US20130163302A1 (en) * 2011-12-23 2013-06-27 Abb Inc. Dc-dc converter systems
US9362814B2 (en) 2011-12-23 2016-06-07 North Carolina State University Switched-capacitor DC-DC converter
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
EP2637292A3 (en) * 2012-03-05 2017-11-29 Solaredge Technologies Ltd. Direct current link circuit
JP2014072917A (en) * 2012-09-27 2014-04-21 Taiyo Yuden Co Ltd Bidirectional dc-dc converter
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP2814158B1 (en) * 2013-05-03 2021-12-22 Samsung Electronics Co., Ltd. Power supply
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
CN107482903A (en) * 2017-06-01 2017-12-15 中山大学 A kind of efficient switch capacitive power converter
WO2019217577A1 (en) * 2018-05-09 2019-11-14 The University Of Texas At Austin Modular high step-down dc/dc converter
US11671011B2 (en) 2018-05-09 2023-06-06 Board Of Regents, The University Of Texas System Modular high step-down DC/DC converter
WO2022107424A1 (en) * 2020-11-19 2022-05-27 株式会社村田製作所 Charge pump circuit
WO2022236825A1 (en) * 2021-05-14 2022-11-17 华为数字能源技术有限公司 Dc/dc converter
US11962243B2 (en) 2021-06-10 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
WO2023226452A1 (en) * 2022-05-27 2023-11-30 华为技术有限公司 Direct-current-direct-current converter and electronic device
US11961922B2 (en) 2023-05-05 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources

Also Published As

Publication number Publication date
JP4546296B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4546296B2 (en) DC / DC converter device
CN106664020B (en) Shared bootstrap capacitor and method for multi-phase buck converter circuit
US10476390B2 (en) High efficiency multi-level buck-boost converter
JP5590124B2 (en) DC-DC converter
JP6209744B2 (en) DC / DC converter
US7151364B2 (en) DC/DC converter and program
US9806616B2 (en) Control circuit for multiple high side switches
US7729144B2 (en) DC/DC power conversion device
US7619907B2 (en) DC/DC power conversion device
JP2012050330A (en) Dc/dc power conversion device
JP5278298B2 (en) Control device for power conversion circuit
CN111726003B (en) Method for operating an electronic power converter and electronic power converter
US20200119635A1 (en) Resonant switched capacitor dc/dc converter
WO2008032362A1 (en) Dc/dc converter device
JP5130542B2 (en) Step-down switching DC / DC converter
JP2008072856A (en) Dc/dc power conversion system
US8199540B2 (en) High voltage gain power converter
JP4619769B2 (en) Power supply
JP4358277B2 (en) DC / DC power converter
JP6711449B2 (en) DC-DC converter
Hamo et al. High-Conversion Ratio Multi-Phase VRM Realized with Stacking of Generic Series-Capacitor-Buck Converter Cells
US20230037874A1 (en) Inverting Buck-Boost Converter
JP4383946B2 (en) Power supply
JP2023070632A (en) Power conversion device, and program
Hanser Comprehensive analysis of a DC/DC half-bridge bidirectional boost converter with ZVS opportunity

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees