JP2006261508A - Plasma cvd device - Google Patents

Plasma cvd device Download PDF

Info

Publication number
JP2006261508A
JP2006261508A JP2005079039A JP2005079039A JP2006261508A JP 2006261508 A JP2006261508 A JP 2006261508A JP 2005079039 A JP2005079039 A JP 2005079039A JP 2005079039 A JP2005079039 A JP 2005079039A JP 2006261508 A JP2006261508 A JP 2006261508A
Authority
JP
Japan
Prior art keywords
antenna element
flat plate
antenna
plasma cvd
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005079039A
Other languages
Japanese (ja)
Other versions
JP4594770B2 (en
Inventor
Naomasa Miyatake
直正 宮武
Yasunari Mori
康成 森
Masuo Konishi
益生 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005079039A priority Critical patent/JP4594770B2/en
Publication of JP2006261508A publication Critical patent/JP2006261508A/en
Application granted granted Critical
Publication of JP4594770B2 publication Critical patent/JP4594770B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the non-uniformity of space density of plasma in an axial direction of an antenna element. <P>SOLUTION: This plasma CVD device comprises a holder which is provided in a vacuum envelope into which a material gas is introduced, and to which a plate member to form a film is fixed; and an antenna disposed opposing to a plane surface of the plane member. As for the antenna, a plurality of antenna elements composed of a bar-shaped electric conductor having a surface covered with a dielectric are arranged at spaces, and proximal ends which supply a high frequency power to one end of each of the neighboring antenna elements are arranged on an alternatingly different side. A support which variably supports an angle against the plane surface of the plane member of each antenna element is provided at the proximal end of each antenna element. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プラズマCVD装置に係り、特に、大面積の基板上に薄膜を形成するのに好適なプラズマCVD装置に関する。   The present invention relates to a plasma CVD apparatus, and more particularly to a plasma CVD apparatus suitable for forming a thin film on a large-area substrate.

プラズマを利用したCVD(化学的気相成長法)装置を用いて、基板の表面に薄膜を形成する技術が知られている。例えば、薄膜トランジスタの製造においては、基板上にアモルファスシリコンや結晶シリコンなどの薄膜(ゲート絶縁膜)を均一に形成するプラズマCVD装置が用いられている。このプラズマCVD装置は、減圧された容器内でプラズマを発生させ、プラズマ中で原料ガスを分解させて生成されるラジカルを基板面に付着させて成膜するものである。   A technique for forming a thin film on the surface of a substrate using a CVD (chemical vapor deposition) apparatus using plasma is known. For example, in the manufacture of a thin film transistor, a plasma CVD apparatus that uniformly forms a thin film (gate insulating film) such as amorphous silicon or crystalline silicon on a substrate is used. In this plasma CVD apparatus, plasma is generated in a decompressed container, and radicals generated by decomposing a source gas in the plasma are deposited on a substrate surface to form a film.

従来から用いられているプラズマCVD装置は、励起方式として、容量結合方式と誘導結合方式がある。容量結合方式は、例えば、平板状の高周波電極と接地電極を平行に配置して、接地電極側に基板を配置して構成される。   Conventionally used plasma CVD apparatuses include a capacitive coupling method and an inductive coupling method as excitation methods. The capacitive coupling method is configured, for example, by arranging a plate-like high-frequency electrode and a ground electrode in parallel, and a substrate on the ground electrode side.

しかし、この構成によれば、例えば、成膜速度と膜特性の向上のため、高周波の周波数を高くすると、電極間に形成されるプラズマの空間密度が不均一となり、膜品質が低下するという問題がある。また、大面積の基板を成膜する場合は、電極面積が大きくなるため、電極間の隙間を均一な距離に保つことが難しくなる。   However, according to this configuration, for example, if the frequency of the high frequency is increased in order to improve the film forming speed and film characteristics, the spatial density of the plasma formed between the electrodes becomes non-uniform, and the film quality deteriorates. There is. Further, when a large-area substrate is formed, the electrode area becomes large, so that it is difficult to keep the gap between the electrodes at a uniform distance.

これに対し、誘導結合方式として、例えば、U字型の導電性電極を基板に対向させて平面状に配置し、電極を折り曲げた中央点を高周波の給電点とする構成が開示されている(例えば、特許文献1参照)。この構成によれば、電極を複数回折り曲げて平面状に延在させ、定在波を発生させることで、大面積の成膜に適したプラズマを発生させることができる。   On the other hand, as an inductive coupling method, for example, a configuration is disclosed in which a U-shaped conductive electrode is arranged in a plane so as to face a substrate, and a central point where the electrode is bent is a high-frequency feeding point ( For example, see Patent Document 1). According to this configuration, it is possible to generate plasma suitable for film formation of a large area by bending a plurality of electrodes and extending them in a planar shape to generate a standing wave.

しかし、このような電極構造においては、電極が導電性のプラズマ中に直接曝されると、電極から安定した電磁波が放射されず、放電が不均一となり、膜厚が均一に形成されないおそれがある。   However, in such an electrode structure, when the electrode is directly exposed to the conductive plasma, stable electromagnetic waves are not emitted from the electrode, and the discharge becomes non-uniform and the film thickness may not be formed uniformly. .

そこで、基板に対向させて、導電体からなる直線状のアンテナ素子を交互に給電方向を反対にして、平行かつ平面状に所定の間隔で複数配列し、各アンテナ素子の表面を誘電体で覆ったプラズマCVD装置が知られている(例えば、特許文献2参照)。   Therefore, a plurality of linear antenna elements made of a conductor are alternately arranged opposite to each other in the direction opposite to the feeding direction in parallel and at a predetermined interval, and the surface of each antenna element is covered with a dielectric. A known plasma CVD apparatus is known (see, for example, Patent Document 2).

この構成によれば、各アンテナ素子に独立して電力を供給することができ、かつ容量結合方式や誘導結合方式ではプラズマの均一性が困難となる高周波領域(例えば、100MHz)を使用することができる。このような高周波を用いることで、プラズマポテンシャルが低くなり、例えば、容量結合方式と比べてイオンによる基板へのダメージを小さくできる。また、各アンテナ素子から電磁波エネルギーを効率的に周囲のガス中に放出できるため、空間的に均一なプラズマを形成することができ、アンテナ素子の長さや本数を増やすことで、大面積基板への成膜に対応できる。   According to this configuration, it is possible to supply power to each antenna element independently, and to use a high frequency region (for example, 100 MHz) in which plasma uniformity is difficult in the capacitive coupling method and the inductive coupling method. it can. By using such a high frequency, the plasma potential is lowered, and for example, damage to the substrate by ions can be reduced as compared with the capacitive coupling method. In addition, electromagnetic energy can be efficiently released from each antenna element into the surrounding gas, so that a spatially uniform plasma can be formed. By increasing the length and number of antenna elements, Applicable to film formation.

特開2000−345351号公報JP 2000-345351 A 特開2003−86581号公報JP 2003-86581 A

ところで、特許文献2の構成においては、隣り合う各アンテナ素子の定在波の振幅が互いに逆の関係となるため、各アンテナ素子から放射された電磁波が合成されて、平面方向に広く分布する比較的均一なプラズマが形成される。   By the way, in the structure of patent document 2, since the amplitude of the standing wave of each adjacent antenna element becomes a mutually reverse relationship, the electromagnetic waves radiated | emitted from each antenna element are synthesize | combined and compared widely in a plane direction. Uniform plasma is formed.

つまり、各アンテナ素子から放射される電磁波エネルギーは、アンテナ素子の軸方向に沿って定在波の振幅の2乗に比例して変化するが、隣り合うアンテナ素子の高周波の給電端が異なるように配置されるため、軸方向の電磁波エネルギーが重なり合って相互に補完され、アンテナ軸方向の電磁波エネルギー分布を比較的均一にすることができる。   That is, the electromagnetic wave energy radiated from each antenna element changes in proportion to the square of the amplitude of the standing wave along the axial direction of the antenna element, but the high-frequency feed ends of adjacent antenna elements are different. Therefore, the electromagnetic wave energy in the axial direction overlaps and complements each other, and the electromagnetic wave energy distribution in the antenna axial direction can be made relatively uniform.

しかしながら、特許文献2によれば、正弦波の定常波(例えば、1/4波長)の電磁波エネルギーを合成することになるから、アンテナ素子によって形成されるプラズマの空間密度は、アンテナ素子の軸方向で不均一となり、特に、この軸方向の中央付近はプラズマの空間密度が高くなりやすい。   However, according to Patent Document 2, since the electromagnetic energy of a sinusoidal standing wave (for example, a quarter wavelength) is synthesized, the spatial density of the plasma formed by the antenna element is in the axial direction of the antenna element. In particular, the spatial density of the plasma tends to be high near the center in the axial direction.

このため、基板上の膜厚は、例えば、原料ガスの濃度分布など他のパラメータにもよるが、プラズマの空間密度分布の影響を受けて十分な均一性を保てないおそれがある。   For this reason, although the film thickness on the substrate depends on other parameters such as the concentration distribution of the source gas, for example, there is a possibility that sufficient uniformity cannot be maintained due to the influence of the spatial density distribution of the plasma.

本発明は、アンテナ素子の軸方向におけるプラズマの空間密度の不均一を抑制することを課題とする。   An object of the present invention is to suppress non-uniformity in plasma spatial density in the axial direction of an antenna element.

上記課題を解決するため、本発明は、原料ガスが導入される真空容器と、真空容器内に設けられ成膜対象の平板部材が固定されるホルダーと、平板部材の平板面に対向させて配置されたアンテナとを備え、アンテナは、表面を誘電体で覆った棒状の導電体からなる複数のアンテナ素子を、間隔を開けて、かつ隣り合う各アンテナ素子の一端に高周波電力を供給する基端部を交互に異なる側に配列してなるプラズマCVD装置において、各アンテナ素子は、その先端側に向かって平板面との距離が大きく又は小さくなるように配置することを特徴とする。   In order to solve the above problems, the present invention provides a vacuum vessel into which a source gas is introduced, a holder provided in the vacuum vessel to which a flat plate member to be deposited is fixed, and a flat plate surface of the flat plate member. The antenna has a base end that supplies a plurality of antenna elements made of a rod-shaped conductor whose surface is covered with a dielectric, and supplies high-frequency power to one end of each adjacent antenna element at intervals. In the plasma CVD apparatus in which the portions are alternately arranged on different sides, each antenna element is arranged so that the distance from the flat plate surface increases or decreases toward the tip side.

このように、例えば、アンテナ素子を平板面に対し所定の角度をもたせて配列することにより、各アンテナ素子から放射される電磁波エネルギーの重なり合いによって生じる、アンテナ素子の軸方向の中央付近における電磁波エネルギーの強度を小さくすることができ、プラズマの空間密度の不均一を抑制することができる。   Thus, for example, by arranging the antenna elements at a predetermined angle with respect to the flat plate surface, the electromagnetic wave energy near the center in the axial direction of the antenna elements caused by the overlap of electromagnetic wave energy radiated from each antenna element is obtained. The intensity can be reduced, and the nonuniformity of the plasma spatial density can be suppressed.

また、各アンテナ素子の平板部材の平板面に対する角度を可変に支持する支持部を、各アンテナ素子の基端部に設けるようにしてもよい。これによれば、例えば、装置構成、外部パラメータ又は平板面の成膜結果などに応じて、アンテナ素子の角度を適宜調節することができる。これにより、アンテナ素子の軸方向における電磁波エネルギーの分布の不均一を抑制することができ、プラズマの空間密度の分布を小さくして、膜厚を安定化させることができる。   Moreover, you may make it provide the support part which supports the angle with respect to the flat surface of the flat plate member of each antenna element variably at the base end part of each antenna element. According to this, the angle of the antenna element can be appropriately adjusted according to, for example, the apparatus configuration, external parameters, or the film formation result on the flat plate surface. Thereby, the non-uniform distribution of electromagnetic energy in the axial direction of the antenna element can be suppressed, the spatial density distribution of plasma can be reduced, and the film thickness can be stabilized.

この場合において、アンテナ素子は、基端部から延在するアンテナ素子の長さを、アンテナ素子の一端に供給する高周波電力の波長の(2n+1)/4倍(nはゼロ又は正の整数)とすることが好ましい。このように、各アンテナ素子において、高周波の定在波が立つように高周波電力を設定することにより、各アンテナ素子において電磁波の不要な反射を減少させ、プラズマの励起効率を高くすることができる。   In this case, the antenna element has the length of the antenna element extending from the base end portion as (2n + 1) / 4 times the wavelength of the high-frequency power supplied to one end of the antenna element (n is zero or a positive integer). It is preferable to do. Thus, by setting the high frequency power so that a high frequency standing wave is generated in each antenna element, unnecessary reflection of electromagnetic waves can be reduced in each antenna element, and the plasma excitation efficiency can be increased.

本発明によれば、アンテナ素子の軸方向におけるプラズマの空間密度の不均一を抑制することができる。   According to the present invention, it is possible to suppress the nonuniformity of the plasma spatial density in the axial direction of the antenna element.

以下、本発明に係るプラズマCVD装置について図面を参照して実施の形態について説明するが、本発明はこれに限定されるものではない。   Hereinafter, embodiments of the plasma CVD apparatus according to the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

図1は、本発明の実施形態のプラズマCVD装置の一例を示す平面図である。図2は、図1の側断面図である。   FIG. 1 is a plan view showing an example of a plasma CVD apparatus according to an embodiment of the present invention. FIG. 2 is a sectional side view of FIG.

本実施形態のプラズマCVD装置は、図に示すように、チャンバ1内に直線状のアンテナ素子、すなわち、棒状の電極3(電磁波結合型電極ともいう)を複数本配列した構成になっている。電極3の下側には、成膜対象となる基板5を載せる基板ホルダー7があり、例えば、基板5を加熱するための発熱体(図示せず)が設けられている。なお、基板ホルダー7は、チャンバ1とともに電気的に接地されている。   As shown in the figure, the plasma CVD apparatus of this embodiment has a configuration in which a plurality of linear antenna elements, that is, rod-shaped electrodes 3 (also referred to as electromagnetic coupling electrodes) are arranged in a chamber 1. Below the electrode 3, there is a substrate holder 7 on which a substrate 5 to be deposited is placed. For example, a heating element (not shown) for heating the substrate 5 is provided. The substrate holder 7 is electrically grounded together with the chamber 1.

チャンバ1の上方側壁には、原料ガスを導入するガス供給口9が設けられ、対向する側壁の下方には原料ガスを排気するガス排気口11が設けられている。本実施形態では、原料ガスとしてTEOS(テトラエトキシシラン)と酸素を用いるが、成膜目的に応じて適宜設定することができる。ガス排気口11は、図示しない真空ポンプと接続され、チャンバ1内の排気を行って設定圧力に調節する機能を備えている。   A gas supply port 9 for introducing a source gas is provided on the upper side wall of the chamber 1, and a gas exhaust port 11 for exhausting the source gas is provided below the opposite side wall. In this embodiment, TEOS (tetraethoxysilane) and oxygen are used as source gases, but can be set as appropriate according to the purpose of film formation. The gas exhaust port 11 is connected to a vacuum pump (not shown), and has a function of exhausting the chamber 1 and adjusting it to a set pressure.

電極3は、給電方向が交互に異なるように複数配置され、各電極3の給電部となる基端部は、例えば、同軸ケーブルなどの電送線路13により、図示しない整合器を介して高周波電源15に接続されている。そして、高周波電源15から出力された高周波電力は、各電極3の給電部に分配されて供給されるようになっている。各電極3に供給される高周波電力は、例えば、30〜300MHzに設定される。   A plurality of electrodes 3 are arranged so that the feeding directions are alternately different, and a base end portion serving as a feeding portion of each electrode 3 is, for example, a transmission line 13 such as a coaxial cable, and a high-frequency power source 15 via a matching unit (not shown). It is connected to the. The high-frequency power output from the high-frequency power supply 15 is distributed and supplied to the power feeding portion of each electrode 3. The high frequency power supplied to each electrode 3 is set to 30 to 300 MHz, for example.

各電極3の基端部には、電極を支持する支持部17が設けられ、この支持部17には、チャンバ1の側壁を電気的に絶縁させて気密に貫通する電送線路13が接続されている。そして、支持部17には、チャンバ1内において、基板5の平板面に対する電極3の角度を調整可能とする角度調整機構が備えられている。また、支持部17は、図示しないが電極3の角度をチャンバ1の外側から自在に調整できるようになっている。支持部17は、基板5の平板面から同一高さ位置に配置され、電極3の先端側に向かって基板5の平板面に対する高さ(距離)が大きくなるように、平板面に対し上向きの所定角度で設定されている。   A support portion 17 that supports the electrode is provided at the base end portion of each electrode 3, and a power transmission line 13 that is electrically insulated from the side wall of the chamber 1 and connected to the support portion 17 is connected to the support portion 17. Yes. The support portion 17 is provided with an angle adjustment mechanism that enables adjustment of the angle of the electrode 3 with respect to the flat surface of the substrate 5 in the chamber 1. Further, although not shown, the support portion 17 can freely adjust the angle of the electrode 3 from the outside of the chamber 1. The support portion 17 is disposed at the same height position from the flat plate surface of the substrate 5 and is directed upward with respect to the flat plate surface so that the height (distance) with respect to the flat plate surface of the substrate 5 increases toward the distal end side of the electrode 3. It is set at a predetermined angle.

電極3は、例えば、銅、アルミニウム、白金などの非磁性の電気良導体によって棒状又はパイプ状に形成され、その表面を石英などの誘電体で被覆して形成されている。電極3の先端から支持部17にかけての長さは、電極3に供給される高周波電力の波長λに対して(2n+1)/4倍(nは0又は正の整数)となり、少なくとも基板5の幅寸法よりも長めに設定されている。そして、電極3の角度を水平にしたとき、一方の電極3の先端が隣り合う電極3の支持部17の手前付近の位置まで達しているように、横並びで平行に配置されている。なお、電極3は、支持部17が反対向きに配置された隣り合う電極3と一対の電極単位を構成し、これを複数並列に配置して設けられている。   The electrode 3 is formed in a rod shape or a pipe shape by a nonmagnetic good electrical conductor such as copper, aluminum or platinum, and its surface is formed by covering with a dielectric such as quartz. The length from the tip of the electrode 3 to the support portion 17 is (2n + 1) / 4 times (n is 0 or a positive integer) with respect to the wavelength λ of the high-frequency power supplied to the electrode 3, and at least the width of the substrate 5 It is set longer than the dimension. And when the angle of the electrode 3 is made horizontal, the tip of one electrode 3 is arranged side by side in parallel so that the tip of the electrode 3 reaches a position near the front of the support portion 17 of the adjacent electrode 3. In addition, the electrode 3 constitutes a pair of electrode units with the adjacent electrode 3 in which the support portion 17 is arranged in the opposite direction, and a plurality of these are arranged in parallel.

次に、本実施形態のプラズマCVD装置を用いて基板5表面に薄膜を形成する動作について説明する。先ず、チャンバ1を開放して基板5を基板ホルダー7の上に載せた後、ガス排気口11に接続される真空ポンプを作動させ、例えば、1mmTorr〜1Torr程度の真空にチャンバ1内を減圧する。ここで、基板5は、基板ホルダー7上の発熱体により所定温度に加熱される。   Next, the operation of forming a thin film on the surface of the substrate 5 using the plasma CVD apparatus of this embodiment will be described. First, after the chamber 1 is opened and the substrate 5 is placed on the substrate holder 7, a vacuum pump connected to the gas exhaust port 11 is operated to depressurize the chamber 1 to a vacuum of about 1 mmTorr to 1 Torr, for example. . Here, the substrate 5 is heated to a predetermined temperature by a heating element on the substrate holder 7.

次に、原料ガスとして、TEOSと酸素の混合ガスをガス供給口9からチャンバ1内に供給する。この状態でチャンバ1内の圧力が安定したのち、各電極3に高周波電力を供給して、電極3から高周波の電磁波を放射させることにより、混合ガスが電離して、基板5と電極3との間にプラズマ19が発生する。プラズマ19は、導電性を有し、チャンバ1内にプラズマが充満して全体の導電性が増すと、放射された電磁波はプラズマ19によって反射されるため、電極3の周囲に閉じ込められ、この部分にプラズマ加熱領域が限定されるようになる。なお、図2に示すプラズマ19は、発生領域を模式的に表したものである。   Next, a mixed gas of TEOS and oxygen is supplied into the chamber 1 from the gas supply port 9 as a source gas. In this state, after the pressure in the chamber 1 is stabilized, high-frequency power is supplied to each electrode 3 to emit high-frequency electromagnetic waves from the electrodes 3, whereby the mixed gas is ionized, and the substrate 5 and the electrode 3 are separated. In the meantime, plasma 19 is generated. The plasma 19 has conductivity. When the plasma is filled in the chamber 1 and the overall conductivity is increased, the emitted electromagnetic wave is reflected by the plasma 19 and is confined around the electrode 3. However, the plasma heating region is limited. Note that the plasma 19 shown in FIG. 2 schematically represents the generation region.

本実施形態では、基板5の平板面に対し、電極3を所定の角度で持ち上げて配置することで、各電極3から放出される電磁波エネルギーの重なり合いによって生じる水平方向のエネルギー分布を緩和するようにしている。これにより、例えば、水平方向の中央付近において高くなる電磁波エネルギーの空間密度を小さくすることができ、軸方向におけるプラズマの空間密度の不均一を抑制することができる。   In this embodiment, the electrode 3 is lifted and arranged at a predetermined angle with respect to the flat surface of the substrate 5 so that the horizontal energy distribution caused by the overlap of electromagnetic wave energy emitted from each electrode 3 is relaxed. ing. Thereby, for example, the spatial density of electromagnetic wave energy that increases in the vicinity of the center in the horizontal direction can be reduced, and unevenness of the spatial density of plasma in the axial direction can be suppressed.

また、本実施形態では、基板5の平板面に対する電極3の設置角度を、支持部17を介して、外部操作により自在に調整できるため、例えば、チャンバ1内の成膜環境や成膜結果などに応じて、適宜設置角度を調整することができる。   Further, in the present embodiment, the installation angle of the electrode 3 with respect to the flat surface of the substrate 5 can be freely adjusted by an external operation via the support portion 17. The installation angle can be appropriately adjusted according to the above.

また、本実施形態では、基板5の平板面に対し、両側から電極3を所定の角度で持ち上げて、向かい合う電極3の中央部が山状に盛り上がるように配置しているが、この配置に限定されるものではなく、例えば、中央部を谷状に窪ませて配置、つまり、基板5の平板面に対し、電極3を所定角度で下方に傾けて配置するようにしてもよい。   In the present embodiment, the electrode 3 is lifted from both sides with a predetermined angle with respect to the flat surface of the substrate 5 so that the central portion of the facing electrode 3 is raised in a mountain shape. For example, the central portion may be arranged in a valley shape, that is, the electrode 3 may be arranged so as to be inclined downward at a predetermined angle with respect to the flat surface of the substrate 5.

また、本実施形態では、電極3の調整範囲を基板5の平板面に対する角度に限定しているが、例えば、必要に応じて水平方向の角度を調整可能となるように構成してもよい。   Further, in the present embodiment, the adjustment range of the electrode 3 is limited to the angle with respect to the flat surface of the substrate 5, but for example, it may be configured such that the horizontal angle can be adjusted as necessary.

更に、本実施形態では、電極3を直線状の棒状電極に限定しているが、この電極形状に限定されるものではなく、例えば、電極3をR状又は所定の角度で折り曲げて用いるようにしてもよい。   Further, in the present embodiment, the electrode 3 is limited to a straight rod-shaped electrode, but is not limited to this electrode shape. For example, the electrode 3 is bent in an R shape or a predetermined angle. May be.

以上述べたように、本実施形態によれば、基板面と平行な水平面の方向に空間的に均一なプラズマを形成することができるため、大面積基板の膜厚を安定化させることができる。したがって、本実施形態のプラズマCVD装置は、例えば、電極供給用として利用可能な薄膜太陽電池の製造、液晶薄膜の製造、薄膜トランジスタの製造、半導体などのエッチングその他の工業的用途に適用することができる。   As described above, according to the present embodiment, it is possible to form spatially uniform plasma in the direction of the horizontal plane parallel to the substrate surface, so that the film thickness of the large area substrate can be stabilized. Therefore, the plasma CVD apparatus of this embodiment can be applied to, for example, the manufacture of thin film solar cells that can be used for supplying electrodes, the manufacture of liquid crystal thin films, the manufacture of thin film transistors, the etching of semiconductors, and other industrial uses. .

また、上記実施形態における電極3の配置に代えて、例えば、電極3をチャンバ1の上方から給電方向が下方、つまり基板側となるように、所定間隔で鉛直に複数吊るして配設するようにしてもよい。これによれば、電極3の軸方向における電磁波エネルギーの強度分布の影響を受けることがないため、水平方向において均一なプラズマを形成することができ、大面積基板の膜厚を安定化させることができる。   Further, instead of the arrangement of the electrodes 3 in the above embodiment, for example, a plurality of the electrodes 3 are vertically suspended at a predetermined interval so that the feeding direction is from the upper side of the chamber 1 to the lower side, that is, the substrate side. May be. According to this, since it is not influenced by the intensity distribution of the electromagnetic wave energy in the axial direction of the electrode 3, it is possible to form a uniform plasma in the horizontal direction and to stabilize the film thickness of the large area substrate. it can.

本発明の実施形態のプラズマCVD装置の一例を示す平面図である。It is a top view which shows an example of the plasma CVD apparatus of embodiment of this invention. 図1の側断面図である。It is a sectional side view of FIG.

符号の説明Explanation of symbols

1 チャンバ
3 電極
5 基板
7 基板ホルダー
9 ガス供給口
11 ガス排気口
13 電送線路
15 高周波電源
17 支持部
DESCRIPTION OF SYMBOLS 1 Chamber 3 Electrode 5 Substrate 7 Substrate holder 9 Gas supply port 11 Gas exhaust port 13 Transmission line 15 High frequency power supply 17 Support part

Claims (3)

原料ガスが導入される真空容器と、該真空容器内に設けられ成膜対象の平板部材が固定されるホルダーと、前記平板部材の平板面に対向させて配置されたアンテナとを備え、前記アンテナは、表面を誘電体で覆った棒状の導電体からなる複数のアンテナ素子を、間隔を開けて、かつ隣り合う前記各アンテナ素子の一端に高周波電力を供給する基端部を交互に異なる側に配列してなるプラズマCVD装置において、
前記アンテナ素子は、該アンテナ素子の先端側に向かって前記平板面との距離が大きく又は小さくなるように配置することを特徴とするプラズマCVD装置。
A vacuum vessel into which a source gas is introduced; a holder provided in the vacuum vessel to which a flat plate member to be formed is fixed; and an antenna arranged to face the flat plate surface of the flat plate member, A plurality of antenna elements composed of rod-shaped conductors whose surfaces are covered with a dielectric, and base ends that supply high-frequency power to one end of each of the adjacent antenna elements are alternately arranged on different sides. In an arrayed plasma CVD apparatus,
The plasma CVD apparatus, wherein the antenna element is disposed so that a distance from the flat plate surface increases or decreases toward a tip side of the antenna element.
原料ガスが導入される真空容器と、該真空容器内に設けられ成膜対象の平板部材が固定されるホルダーと、前記平板部材の平板面に対向させて配置されたアンテナとを備え、前記アンテナは、表面を誘電体で覆った棒状の導電体からなる複数のアンテナ素子を、間隔を開けて、かつ隣り合う前記各アンテナ素子の一端に高周波電力を供給する基端部を交互に異なる側に配列してなるプラズマCVD装置において、
前記各アンテナ素子の前記平板部材の平板面に対する角度を可変に支持する支持部を前記各アンテナ素子の前記基端部に設けたことを特徴とするプラズマCVD装置。
A vacuum vessel into which a source gas is introduced; a holder provided in the vacuum vessel to which a flat plate member to be deposited is fixed; and an antenna arranged to face the flat plate surface of the flat plate member. A plurality of antenna elements composed of rod-shaped conductors whose surfaces are covered with a dielectric, and base ends that supply high-frequency power to one end of each of the adjacent antenna elements are alternately arranged on different sides. In an arrayed plasma CVD apparatus,
A plasma CVD apparatus, wherein a support portion for variably supporting an angle of each antenna element with respect to a flat plate surface of the flat plate member is provided at the base end portion of each antenna element.
前記アンテナ素子は、前記基端部から延在する該アンテナ素子の長さを、前記アンテナ素子の一端に供給する高周波電力の波長の(2n+1)/4倍(nはゼロ又は正の整数)とすることを特徴とする請求項1又は2に記載のプラズマCVD装置。
In the antenna element, the length of the antenna element extending from the base end is (2n + 1) / 4 times the wavelength of the high-frequency power supplied to one end of the antenna element (n is zero or a positive integer). The plasma CVD apparatus according to claim 1, wherein:
JP2005079039A 2005-03-18 2005-03-18 Plasma CVD equipment Expired - Fee Related JP4594770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005079039A JP4594770B2 (en) 2005-03-18 2005-03-18 Plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005079039A JP4594770B2 (en) 2005-03-18 2005-03-18 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JP2006261508A true JP2006261508A (en) 2006-09-28
JP4594770B2 JP4594770B2 (en) 2010-12-08

Family

ID=37100389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079039A Expired - Fee Related JP4594770B2 (en) 2005-03-18 2005-03-18 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JP4594770B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661153A (en) * 1992-08-05 1994-03-04 Hitachi Ltd Microwave plasma treatment device
JPH1012396A (en) * 1996-06-18 1998-01-16 Nec Corp Plasma generator and surface treatment device using this plasma generator
JP2001126899A (en) * 1999-10-26 2001-05-11 Ulvac Japan Ltd Antenna unit and plasma processing apparatus
JP2003086581A (en) * 2001-09-14 2003-03-20 Mitsui Eng & Shipbuild Co Ltd Antenna for generating large-area plasma
JP2004055614A (en) * 2002-07-16 2004-02-19 Tokyo Electron Ltd Plasma processing apparatus
JP2006237469A (en) * 2005-02-28 2006-09-07 Toray Eng Co Ltd Plasma cvd apparatus and method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661153A (en) * 1992-08-05 1994-03-04 Hitachi Ltd Microwave plasma treatment device
JPH1012396A (en) * 1996-06-18 1998-01-16 Nec Corp Plasma generator and surface treatment device using this plasma generator
JP2001126899A (en) * 1999-10-26 2001-05-11 Ulvac Japan Ltd Antenna unit and plasma processing apparatus
JP2003086581A (en) * 2001-09-14 2003-03-20 Mitsui Eng & Shipbuild Co Ltd Antenna for generating large-area plasma
JP2004055614A (en) * 2002-07-16 2004-02-19 Tokyo Electron Ltd Plasma processing apparatus
JP2006237469A (en) * 2005-02-28 2006-09-07 Toray Eng Co Ltd Plasma cvd apparatus and method therefor

Also Published As

Publication number Publication date
JP4594770B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
TWI362901B (en)
JP4029615B2 (en) Internal electrode type plasma processing apparatus and plasma processing method
JP5631088B2 (en) Plasma processing apparatus and plasma processing method
US20100074807A1 (en) Apparatus for generating a plasma
TWI539868B (en) Plasma processing device
EP1918965A1 (en) Method and apparatus for forming a film by deposition from a plasma
US20090152243A1 (en) Plasma processing apparatus and method thereof
JP4564213B2 (en) Plasma generating antenna and CVD apparatus
JP4185483B2 (en) Plasma processing equipment
JP4554380B2 (en) Plasma generating apparatus and plasma generating method
JP4452061B2 (en) Method of matching antenna for plasma generator and plasma generator
JP4471589B2 (en) Antenna device for plasma generation and plasma processing apparatus
US8635972B2 (en) Device for forming a film by deposition from a plasma
TW200804618A (en) Microwave plasma treatment apparatus and its manufacturing method, and plasma treatment method
JP2006286883A (en) Plasma film forming method and plasma cvd apparatus
JP2006286705A (en) Plasma deposition method and deposition structure
TW201840247A (en) Plasma processing apparatus
TWI469695B (en) Plasma processing device
TWI524387B (en) Film forming apparatus
JP5329796B2 (en) Plasma processing equipment
JPWO2008123295A1 (en) Plasma processing equipment
JP4594770B2 (en) Plasma CVD equipment
JP2007258570A (en) Plasma processing device
JP5052537B2 (en) Plasma generating apparatus and plasma generating method
KR20100008052A (en) Chemical vapor deposition apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140924

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees