JPH0661153A - Microwave plasma treatment device - Google Patents
Microwave plasma treatment deviceInfo
- Publication number
- JPH0661153A JPH0661153A JP20877492A JP20877492A JPH0661153A JP H0661153 A JPH0661153 A JP H0661153A JP 20877492 A JP20877492 A JP 20877492A JP 20877492 A JP20877492 A JP 20877492A JP H0661153 A JPH0661153 A JP H0661153A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- gas
- microwave
- antenna
- gas discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、マイクロ波と磁場の相
互作用を利用してプラズマを発生させ、プラズマにより
基板のエッチングや薄膜形成等の表面処理を行うマイク
ロ波プラズマ処理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave plasma processing apparatus for generating a plasma by utilizing an interaction between a microwave and a magnetic field and performing a surface treatment such as etching of a substrate or thin film formation by the plasma.
【0002】[0002]
【従来の技術】従来のマイクロプラズマ処理装置は、特
開平2−156526 号公報に記載のように、原料ガスの供給
方法については特に考慮されておらず、アンテナは単に
直線状電極を用いている。2. Description of the Related Art In a conventional microplasma processing apparatus, as described in Japanese Patent Application Laid-Open No. 2-156526, no particular consideration is given to a method of supplying a raw material gas, and an antenna simply uses a linear electrode. .
【0003】[0003]
【発明が解決しようとする課題】従来の装置によれば、
原料ガスの供給がプラズマ発生領域の周辺にあるため、
高密度プラズマを発生させて処理の高速化を行う場合
に、基板中央部の原料ガスが供給不足になりプラズマ密
度が周辺で高く中央で低い分布になり基板上の処理が不
均一になる。また、アンテナ構造が単に直線状電極であ
るためにマイクロ波の放射効率が低く、マイクロ波の利
用効率が必ずしも良くなかった。According to the conventional device,
Since the supply of raw material gas is around the plasma generation area,
When high-density plasma is generated to increase the processing speed, the supply of the source gas in the central portion of the substrate becomes insufficient, the plasma density is high in the periphery and low in the center, and the treatment on the substrate becomes non-uniform. Further, since the antenna structure is simply a linear electrode, the microwave radiation efficiency is low and the microwave utilization efficiency is not always good.
【0004】本発明の目的は、前述の課題を解決したマ
イクロ波プラズマ処理装置を提供することにある。An object of the present invention is to provide a microwave plasma processing apparatus which solves the above problems.
【0005】[0005]
【課題を解決するための手段】前記目的を達成するため
に、本発明はマイクロ波をプラズマへ放射する平面状ア
ンテナと磁場を発生させる電磁石または永久磁石を備
え、電子サイクロトロン共鳴の効果を利用して電子を加
速して中性ガスを衝突電離することによりプラズマを発
生させるプラズマ処理装置において、平面アンテナとプ
ラズマ発生領域との境界に中性ガスを放出する孔を面状
に多数配置したガス放出構造を設け、平面アンテナの後
方に反射板を設け、アンテナの特徴的寸法をマイクロ波
の半波長の整数倍とした。In order to achieve the above object, the present invention comprises a planar antenna for radiating microwaves to plasma and an electromagnet or permanent magnet for generating a magnetic field, and utilizes the effect of electron cyclotron resonance. In a plasma processing device that generates plasma by accelerating electrons to impact ionize neutral gas, a large number of holes for emitting neutral gas are arranged in a plane at the boundary between the planar antenna and the plasma generation region. A structure is provided, a reflector is provided behind the planar antenna, and the characteristic dimension of the antenna is an integral multiple of a half wavelength of the microwave.
【0006】[0006]
【作用】処理の高速化のためには高密度プラズマを発生
させることが重要であるが、従来のように処理に必要な
ガスをプラズマ発生領域の周辺から供給するとプラズマ
密度分布が不均一になる。本発明の方法では、ガスを基
板上で面状に放出するためガスの分布及びプラズマ密度
分布が一様になり、処理の均一性が向上する。また、平
面アンテナの電極長をマイクロ波の半波長の整数倍にす
ることにより、マイクロ波が電極部に共振しマイクロ波
放射効率が良くなる。また、平面アンテナの後方に反射
板を設け、アンテナと反射板との距離を調整することで
アンテナから後方に放射されたマイクロ波を効率良くプ
ラズマ側に反射できマイクロ波の利用効率が改善され
る。It is important to generate a high-density plasma in order to speed up the process, but when the gas required for the process is supplied from the periphery of the plasma generation region as in the conventional case, the plasma density distribution becomes nonuniform. . In the method of the present invention, the gas is discharged in a planar manner on the substrate, so that the gas distribution and the plasma density distribution are uniform, and the uniformity of processing is improved. Further, by making the electrode length of the planar antenna an integral multiple of the half wavelength of the microwave, the microwave resonates with the electrode portion and the microwave radiation efficiency improves. Further, by providing a reflector behind the planar antenna and adjusting the distance between the antenna and the reflector, microwaves radiated backward from the antenna can be efficiently reflected to the plasma side, and microwave utilization efficiency is improved. .
【0007】[0007]
【実施例】以下、本発明の一実施例を図1に従って説明
する。本実施例の装置は真空容器2と磁場を発生させる
ための磁場コイル4とからなり、真空容器2の内部には
基板ホルダ9で保持された基板8のある処理領域と平面
アンテナ1と反射板10のあるアンテナ領域からなる。
プラズマ6を発生させる処理領域とアンテナ領域とは、
誘電体板3と誘電体ガス放出板7で分離されている。誘
電体板3と誘電体ガス放出板7とは間隔が数mm以下の隙
間を持って真空容器2に気密に固定されており、隙間に
は真空容器2外部よりガス導入口5を通じて処理に必要
なガスが供給され、供給されたガスは誘電体ガス放出板
7に多数開けられた直径数mm以下の孔を通してプラズマ
発生領域に放出される。プラズマの発生は磁場コイル4
と平面アンテナ1から放射されるマイクロ波との電子サ
イクロトロン共鳴の効果により、共鳴を起こす磁場強度
875ガウス(マイクロ波周波数が4.45GHz の場
合)の位置で効果的にガスが電離され高密度のプラズマ
6が生成される。この場合、処理に必要なガスが誘電体
ガス放出板7の多数の孔を通してプラズマ6に供給され
るので、プラズマ密度が空間的に一様であり均一な処理
が可能になる。また、反射板10を上下方向に操作して
平面アンテナ1との距離を調節することで、プラズマ6
方向へのマイクロ波の強度を増加させることができるた
め、ガスの電離が活発になりプラズマの生成効率が改善
される。平面アンテナ1の構造は、例えば、図4及び図
5のようにアンテナの電極の長さをマイクロ波波長λに
対して(n+1/2)λ倍(n:整数)にすることで、
マイクロ波が共鳴的に電極部に定在波が形成され放射効
率が向上する。また、大面積基板を処理する場合は図6
の実施例のように、本実施例の装置を直線状または平面
上に複数個連結させることで、処理すべき基板の大きさ
に合わせてプラズマの大きさを変えられる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. The apparatus of this embodiment comprises a vacuum container 2 and a magnetic field coil 4 for generating a magnetic field. Inside the vacuum container 2, a processing area where a substrate 8 held by a substrate holder 9 is located, a planar antenna 1 and a reflector. It consists of 10 antenna areas.
The processing area for generating the plasma 6 and the antenna area are
It is separated by a dielectric plate 3 and a dielectric gas discharge plate 7. The dielectric plate 3 and the dielectric gas discharge plate 7 are hermetically fixed to the vacuum container 2 with a gap of several mm or less, and the gap is required for processing through the gas inlet 5 from outside the vacuum container 2. Various gases are supplied, and the supplied gas is discharged to the plasma generation region through a large number of holes having a diameter of several mm or less formed in the dielectric gas discharge plate 7. Generation of plasma is done by magnetic field coil 4
Due to the effect of electron cyclotron resonance with the microwave radiated from the plane antenna 1 and the microwave, the gas is effectively ionized at a magnetic field strength of 875 gauss (when the microwave frequency is 4.45 GHz) that causes resonance, and the high density Plasma 6 is generated. In this case, the gas required for processing is supplied to the plasma 6 through a large number of holes in the dielectric gas discharge plate 7, so that the plasma density is spatially uniform and uniform processing is possible. Further, by operating the reflector 10 in the vertical direction to adjust the distance from the planar antenna 1, the plasma 6
Since the intensity of the microwave in the direction can be increased, the ionization of the gas becomes active and the plasma generation efficiency is improved. The structure of the planar antenna 1 is, for example, as shown in FIGS. 4 and 5, by setting the length of the antenna electrode to (n + 1/2) λ times (n: integer) with respect to the microwave wavelength λ,
A standing wave is formed in the electrode portion by the resonance of the microwave, and the radiation efficiency is improved. Further, when processing a large-area substrate, FIG.
As in the above embodiment, by connecting a plurality of the devices of this embodiment in a straight line or on a plane, the size of plasma can be changed according to the size of the substrate to be processed.
【0008】次に本発明の第2の実施例を図2により説
明する。本実施例は、第1の実施例の磁場発生手段であ
る磁場コイル4に加えて永久磁石11を併用したもので
ある。永久磁石11は平面アンテナ1近くに取付けプラ
ズマ6の発生領域に数百ガウスの磁場を発生し、近接す
る磁石の極性N,Sを逆にすることで局所的にカスプ磁
場を形成する。本実施例では、電子サイクロトロン共鳴
に必要な磁場強度を磁場コイル4と永久磁石11を併用
して発生させるため、磁場コイル4に給電される電力を
低くできる。Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, a permanent magnet 11 is used in addition to the magnetic field coil 4 which is the magnetic field generating means of the first embodiment. The permanent magnet 11 is mounted near the planar antenna 1 to generate a magnetic field of several hundred Gauss in the generation region of the plasma 6, and the polarities N and S of the adjacent magnets are reversed to locally form a cusp magnetic field. In the present embodiment, the magnetic field strength necessary for electron cyclotron resonance is generated by using the magnetic field coil 4 and the permanent magnet 11 together, so that the electric power supplied to the magnetic field coil 4 can be reduced.
【0009】次に本発明の第3の実施例を図3により説
明する。本実施例は、第1の実施例の磁場発生手段であ
る磁場コイル4の代わりに永久磁石11を用いたもので
ある。永久磁石11は平面アンテナ1近くに取付けプラ
ズマ6の発生領域に数百ガウスの磁場を発生し、近接す
る磁石の極性N,Sを逆にすることで局所的にカスプ磁
場を形成する。本実施例では、永久磁石11のみで磁場
を発生させるため、装置寸法が小型化され経済的であ
る。Next, a third embodiment of the present invention will be described with reference to FIG. In the present embodiment, a permanent magnet 11 is used instead of the magnetic field coil 4 which is the magnetic field generating means of the first embodiment. The permanent magnet 11 is mounted near the planar antenna 1 to generate a magnetic field of several hundred Gauss in the generation region of the plasma 6, and the polarities N and S of the adjacent magnets are reversed to locally form a cusp magnetic field. In this embodiment, since the magnetic field is generated only by the permanent magnet 11, the size of the device is reduced and it is economical.
【0010】次に本発明の第4の実施例を図7により説
明する。本実施例は、第1の実施例の平面アンテナ1の
取付け位置を誘電体板3と誘電体ガス放出板7との間に
変えたものである。本実施例では、中性ガスの流路内に
平面アンテナ1があるためガスの流れを多少妨げるが、
平面アンテナ1をプラズマ6の発生領域近くに平面アン
テナ1があるためマイクロ波のプラズマ6への吸収効率
が良くなる。Next, a fourth embodiment of the present invention will be described with reference to FIG. In this embodiment, the mounting position of the planar antenna 1 of the first embodiment is changed between the dielectric plate 3 and the dielectric gas discharge plate 7. In the present embodiment, the flat antenna 1 is provided in the flow path of the neutral gas, which hinders the gas flow to some extent.
Since the plane antenna 1 is located near the plasma 6 generation region, the efficiency of microwave absorption in the plasma 6 is improved.
【0011】[0011]
【発明の効果】本発明によれば、処理に必要なガスが基
板上に均一に放射されプラズマを効率良く一様に発生で
きるので、基板への成膜やエッチング等の処理が均一に
高効率で行えるという効果がある。さらに、大面積基板
を処理する場合においても、本発明の装置を複数個連結
することにより任意の面積でプラズマを発生させ処理を
行える。According to the present invention, the gas required for the processing is uniformly radiated onto the substrate and the plasma can be efficiently and uniformly generated. Therefore, the processing such as film formation and etching on the substrate is uniformly and highly efficient. There is an effect that can be done in. Further, even when processing a large-area substrate, it is possible to generate plasma in an arbitrary area and perform the processing by connecting a plurality of devices of the present invention.
【図1】本発明の第1の実施例を示す説明図。FIG. 1 is an explanatory diagram showing a first embodiment of the present invention.
【図2】本発明の第2の実施例を示す説明図。FIG. 2 is an explanatory diagram showing a second embodiment of the present invention.
【図3】本発明の第3の実施例を示す説明図。FIG. 3 is an explanatory diagram showing a third embodiment of the present invention.
【図4】本発明の平面アンテナ構造例を示す説明図。FIG. 4 is an explanatory view showing an example of a planar antenna structure of the present invention.
【図5】本発明の平面アンテナ構造例を示す説明図。FIG. 5 is an explanatory view showing an example of a planar antenna structure of the present invention.
【図6】本発明の装置の連結方法を示す説明図。FIG. 6 is an explanatory view showing a method for connecting the devices of the present invention.
【図7】本発明の第4の実施例を示す説明図。FIG. 7 is an explanatory diagram showing a fourth embodiment of the present invention.
1…平面アンテナ、2…真空容器、3…誘電体板、4…
磁場コイル、5…ガス導入口、6…プラズマ、7…誘電
体ガス放出板、8…基板、9…基板ホルダ、10…反射
板、11…永久磁石。1 ... Planar antenna, 2 ... Vacuum container, 3 ... Dielectric plate, 4 ...
Magnetic field coil, 5 ... Gas inlet, 6 ... Plasma, 7 ... Dielectric gas discharge plate, 8 ... Substrate, 9 ... Substrate holder, 10 ... Reflector, 11 ... Permanent magnet.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 数見 秀之 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 白川 真司 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 樋口 佳也 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 (72)発明者 鈴木 和夫 茨城県日立市幸町三丁目2番2号 株式会 社日立エンジニアリングサービス内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideyuki Kazumi, Inventor, 1168 Moriyama-cho, Hitachi, Hitachi, Ibaraki Energy Research Institute, Hitachi, Ltd. (72) Shinji Shirakawa, 1168, Moriyama-cho, Hitachi, Ibaraki, Hitachi, Ltd. Energy Research Institute, Ltd. (72) Yoshiya Higuchi, Inventor Yoshiya Higuchi, 1168 Moriyama-cho, Hitachi, Ibaraki Prefecture Energy Research Institute, Hitachi, Ltd. (72) Inventor, Kazuo Suzuki, 3-2, 2-3, Saiwaicho, Hitachi, Ibaraki Stock Company Within Hitachi Engineering Services
Claims (6)
テナと磁場を発生させる電磁石または永久磁石とを備
え、電子サイクロトロンの効果を利用して電子を加速し
て中性ガスを衝突電離することによりプラズマを発生さ
せるプラズマ処理装置において、前記平面アンテナとプ
ラズマ発生領域との間に前記マイクロ波が透過可能で前
記中性ガスを放出する多数の孔を面状に配置したガス放
出機構を設けたことを特徴とするマイクロ波プラズマ処
理装置。1. A plasma comprising a plane antenna for radiating microwaves to plasma and an electromagnet or a permanent magnet for generating a magnetic field, wherein electrons are accelerated by utilizing the effect of an electron cyclotron to collide and ionize neutral gas. In the plasma processing apparatus for generating a gas, a gas discharge mechanism is provided between the planar antenna and the plasma generation region, in which a large number of holes through which the microwaves can be transmitted and which discharge the neutral gas are arranged in a plane. Characteristic microwave plasma processing device.
2枚の誘電体板を数mm以下の間隔で取付けて、前記誘電
体板のうち前記プラズマ発生領域側に直径数mm以下の孔
を多数開けたことを特徴とするマイクロ波プラズマ処理
装置。2. The gas discharge mechanism according to claim 1,
A microwave plasma processing apparatus, characterized in that two dielectric plates are attached at intervals of several mm or less, and a large number of holes having a diameter of several mm or less are opened on the side of the plasma generation region of the dielectric plates.
記プラズマ発生領域と反対側にマイクロ波反射板を設
け、前記マイクロ波反射板と前記平面アンテナとの距離
を可変としたマイクロ波プラズマ処理装置。3. The microwave plasma processing apparatus according to claim 1, wherein a microwave reflector is provided on the side of the plane antenna opposite to the plasma generation region, and the distance between the microwave reflector and the plane antenna is variable. .
て電磁石と永久磁石を併用するマイクロ波プラズマ処理
装置。4. The microwave plasma processing apparatus according to claim 1, wherein an electromagnet and a permanent magnet are used together as the magnetic field generating means.
造が櫛の歯状で前記櫛の歯の間隔が前記マイクロ波の半
波長程度で、前記歯の長さが半波長の整数倍程度である
マイクロ波プラズマ処理装置。5. The structure according to claim 1, wherein the structure of the planar antenna is comb-teeth-shaped, the intervals between the teeth of the comb are about a half wavelength of the microwave, and the length of the teeth is an integral multiple of a half-wavelength. A microwave plasma processing device.
造が放射状に二つ以上の電極が並び該電極の長さが前記
マイクロ波の半波長の整数倍程度であるマイクロ波プラ
ズマ処理装置。6. The microwave plasma processing apparatus according to claim 1, wherein the planar antenna has a structure in which two or more electrodes are arranged in a radial pattern and the length of the electrodes is approximately an integral multiple of a half wavelength of the microwave.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20877492A JP3132599B2 (en) | 1992-08-05 | 1992-08-05 | Microwave plasma processing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20877492A JP3132599B2 (en) | 1992-08-05 | 1992-08-05 | Microwave plasma processing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0661153A true JPH0661153A (en) | 1994-03-04 |
JP3132599B2 JP3132599B2 (en) | 2001-02-05 |
Family
ID=16561877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20877492A Expired - Fee Related JP3132599B2 (en) | 1992-08-05 | 1992-08-05 | Microwave plasma processing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3132599B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10321399A (en) * | 1997-05-22 | 1998-12-04 | Matsushita Electric Ind Co Ltd | Plasma processing method and device |
JP2000208496A (en) * | 1999-01-19 | 2000-07-28 | Hitachi Ltd | Dry etching apparatus and fabrication of semiconductor device |
US6286454B1 (en) | 1999-05-31 | 2001-09-11 | Tadahiro Ohmi | Plasma process device |
WO2003052807A1 (en) * | 2001-12-14 | 2003-06-26 | Tokyo Electron Limited | Plasma processor |
KR100389799B1 (en) * | 1999-12-07 | 2003-07-02 | 샤프 가부시키가이샤 | Plasma process apparatus |
JP2006261508A (en) * | 2005-03-18 | 2006-09-28 | Mitsui Eng & Shipbuild Co Ltd | Plasma cvd device |
US7819082B2 (en) | 1999-05-26 | 2010-10-26 | Tadahiro Ohmi | Plasma processing apparatus |
JP2012033803A (en) * | 2010-08-02 | 2012-02-16 | Osaka Univ | Plasma processing apparatus |
US20180374685A1 (en) * | 2017-06-22 | 2018-12-27 | Applied Materials, Inc. | Plasma reactor with electrode array in ceiling |
US10510515B2 (en) | 2017-06-22 | 2019-12-17 | Applied Materials, Inc. | Processing tool with electrically switched electrode assembly |
US11355321B2 (en) | 2017-06-22 | 2022-06-07 | Applied Materials, Inc. | Plasma reactor with electrode assembly for moving substrate |
US11424104B2 (en) | 2017-04-24 | 2022-08-23 | Applied Materials, Inc. | Plasma reactor with electrode filaments extending from ceiling |
-
1992
- 1992-08-05 JP JP20877492A patent/JP3132599B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10321399A (en) * | 1997-05-22 | 1998-12-04 | Matsushita Electric Ind Co Ltd | Plasma processing method and device |
JP2000208496A (en) * | 1999-01-19 | 2000-07-28 | Hitachi Ltd | Dry etching apparatus and fabrication of semiconductor device |
US7819082B2 (en) | 1999-05-26 | 2010-10-26 | Tadahiro Ohmi | Plasma processing apparatus |
US6286454B1 (en) | 1999-05-31 | 2001-09-11 | Tadahiro Ohmi | Plasma process device |
US6446573B2 (en) | 1999-05-31 | 2002-09-10 | Tadahiro Ohmi | Plasma process device |
KR100389799B1 (en) * | 1999-12-07 | 2003-07-02 | 샤프 가부시키가이샤 | Plasma process apparatus |
US6638392B2 (en) | 1999-12-07 | 2003-10-28 | Sharp Kabushiki Kaisha | Plasma process apparatus |
US7226524B2 (en) | 2001-12-14 | 2007-06-05 | Tokyo Electron Limited | Plasma processing apparatus |
CN1322559C (en) * | 2001-12-14 | 2007-06-20 | 东京毅力科创株式会社 | Plasma processor |
WO2003052807A1 (en) * | 2001-12-14 | 2003-06-26 | Tokyo Electron Limited | Plasma processor |
JP2006261508A (en) * | 2005-03-18 | 2006-09-28 | Mitsui Eng & Shipbuild Co Ltd | Plasma cvd device |
JP2012033803A (en) * | 2010-08-02 | 2012-02-16 | Osaka Univ | Plasma processing apparatus |
CN103155103A (en) * | 2010-08-02 | 2013-06-12 | 国立大学法人大阪大学 | Plasma treatment device |
CN103155103B (en) * | 2010-08-02 | 2016-06-08 | Emd株式会社 | Plasma processing apparatus |
US11424104B2 (en) | 2017-04-24 | 2022-08-23 | Applied Materials, Inc. | Plasma reactor with electrode filaments extending from ceiling |
US20180374685A1 (en) * | 2017-06-22 | 2018-12-27 | Applied Materials, Inc. | Plasma reactor with electrode array in ceiling |
US10510515B2 (en) | 2017-06-22 | 2019-12-17 | Applied Materials, Inc. | Processing tool with electrically switched electrode assembly |
US11114284B2 (en) * | 2017-06-22 | 2021-09-07 | Applied Materials, Inc. | Plasma reactor with electrode array in ceiling |
US11355321B2 (en) | 2017-06-22 | 2022-06-07 | Applied Materials, Inc. | Plasma reactor with electrode assembly for moving substrate |
Also Published As
Publication number | Publication date |
---|---|
JP3132599B2 (en) | 2001-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2822103B2 (en) | An improved resonant radio frequency wave coupler device. | |
KR100188076B1 (en) | Method and apparatus for producing magnetically-coupled planar plasma | |
US6899054B1 (en) | Device for hybrid plasma processing | |
US20070026161A1 (en) | Magnetic mirror plasma source and method using same | |
JP4671313B2 (en) | Electron cyclotron resonant plasma source with coaxial microwave applicator and plasma generation method | |
KR970058391A (en) | Plasma processing equipment | |
US20100074807A1 (en) | Apparatus for generating a plasma | |
US5666023A (en) | Device for producing a plasma, enabling microwave propagation and absorption zones to be dissociated having at least two parallel applicators defining a propogation zone and an exciter placed relative to the applicator | |
JP3132599B2 (en) | Microwave plasma processing equipment | |
EP0591975B1 (en) | Two parallel plate electrode type dry etching apparatus | |
KR910005733B1 (en) | Plasma treating method and apparatus | |
JPH10270430A (en) | Plasma treating device | |
US6909086B2 (en) | Neutral particle beam processing apparatus | |
JP3156622B2 (en) | Plasma generator | |
JP3085021B2 (en) | Microwave plasma processing equipment | |
JPS61194174A (en) | Sputtering device | |
JP2004221087A (en) | Plasma generation system | |
JP3314514B2 (en) | Negative ion generator | |
JPH05182785A (en) | Microwave discharge reaction device and electrode device | |
JP4384295B2 (en) | Plasma processing equipment | |
JPH06267863A (en) | Microwave plasma treatment device | |
JP2920852B2 (en) | Microwave plasma device | |
JPH0578849A (en) | High magnetic field microwave plasma treating device | |
JP2621728B2 (en) | Sputtering method and apparatus | |
JPH09260097A (en) | Plasma generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |