JP2003086581A - Antenna for generating large-area plasma - Google Patents

Antenna for generating large-area plasma

Info

Publication number
JP2003086581A
JP2003086581A JP2001280285A JP2001280285A JP2003086581A JP 2003086581 A JP2003086581 A JP 2003086581A JP 2001280285 A JP2001280285 A JP 2001280285A JP 2001280285 A JP2001280285 A JP 2001280285A JP 2003086581 A JP2003086581 A JP 2003086581A
Authority
JP
Japan
Prior art keywords
antenna
plasma
antenna element
equation
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001280285A
Other languages
Japanese (ja)
Other versions
JP4564213B2 (en
Inventor
Noriaki Kimura
憲明 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2001280285A priority Critical patent/JP4564213B2/en
Publication of JP2003086581A publication Critical patent/JP2003086581A/en
Application granted granted Critical
Publication of JP4564213B2 publication Critical patent/JP4564213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an antenna for generating large-area plasma which can be applied to the film production of a large-area solar battery, liquid crystal, etc., or etching of a semiconductor and others by generating high-density and uniformizing plasma across a large area. SOLUTION: The antenna is composed of an array antenna 2 obtained by arranging a plurality of antenna elements 6, composed of columnar conductors in parallel and in a planar state with power feed directions set alternately opposite. All of the antenna elements 6 have their surfaces covered with dielectrics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、大面積プラズマ生
成用アンテナに関し、更に詳細には、例えば1m×1m
のような大きな面積に対して均一、且つ高い効率でプラ
ズマを発生させ、プラズマを用いた化学蒸着(CV
D)、液晶製膜、半導体エッチングなどに適用できるプ
ラズマ発生用アンテナに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large area plasma generating antenna, and more specifically, for example, 1 m × 1 m.
Plasma is generated uniformly and with high efficiency over a large area such as
D), a plasma generation antenna applicable to liquid crystal film formation, semiconductor etching, and the like.

【0002】[0002]

【従来の技術】アモルファスタイプや結晶タイプの薄膜
太陽電池は、既に様々な分野で利用されるに至っている
が、クリーンエネルギー源として今後電力供給用として
早期実用化が望まれていることは周知である。電力用薄
膜太陽電池は、少なくとも1m×1mという大きな面積
の薄膜太陽電池が必要とされている。このような大面積
のプラズマをアンテナを用いて生成するためには、従来
は導体柱状アンテナをガス中に直接挿入して行うとして
いたが、空間的に均一なプラズマを生成することが困難
であり、高速且つ高品質で製造することのできる新たな
プラズマ生成用アンテナの開発が必要とされている。
2. Description of the Prior Art Amorphous type and crystalline type thin film solar cells have already been used in various fields, but it is well known that early application as a clean energy source for power supply is desired. is there. The thin film solar cell for electric power is required to have a large area of at least 1 m × 1 m. In order to generate such a large-area plasma using an antenna, conventionally, a conductor columnar antenna was directly inserted into gas, but it is difficult to generate spatially uniform plasma. It is necessary to develop a new plasma generation antenna that can be manufactured at high speed and with high quality.

【0003】[0003]

【発明が解決しようとする課題】ところで、例えば大型
の薄膜太陽電池を製造する装置としてECR(erectron
cyclotron reasonance)プラズマCVD装置を用いるこ
とが考えられる。しかしながら、大きな面積の蒸着面を
得るプラズマを発生させるには、サイクロトロンに使用
する磁場発生用のコイルと放射電波用のアンテナの配置
が互に干渉するようになり実現困難であるという問題が
ある。
By the way, as an apparatus for manufacturing a large-sized thin film solar cell, for example, an ECR (erectron) is used.
cyclotron reasonance) It is possible to use a plasma CVD apparatus. However, in order to generate plasma for obtaining a vapor deposition surface having a large area, there is a problem that the arrangement of the magnetic field generating coil used in the cyclotron and the arrangement of the radiated radio wave antenna interfere with each other, which is difficult to realize.

【0004】プラズマを発生させる別な手段としてアン
テナだけでプラズマを発生させることが考えられる。し
かしながらこの方法は、プラズマが電気の良導体である
ことから、アンテナに高周波を給電しても、給電口から
先にエネルギーが伝播しないという現象(遮蔽効果)が
生じる。しかも製造コストを下げるために製膜速度を向
上させようとすればプラズマ密度を上げる必要がある
が、そうすればますます前記遮蔽効果が大きくなる。
As another means for generating plasma, it is possible to generate plasma only by the antenna. However, in this method, since plasma is a good conductor of electricity, even if high frequency power is fed to the antenna, a phenomenon (shielding effect) that energy does not propagate from the power feed port first occurs. Moreover, in order to increase the film forming speed in order to reduce the manufacturing cost, it is necessary to increase the plasma density, and then the shielding effect is further increased.

【0005】また、前記のような大型の蒸着面やエッチ
ング面を得るには、使用周波数も従来のECRプラズマ
CVD装置に使用されていた約13MHzから、1m×
1m程度の面積とすると約100MHzと高くする必要
がある。かかる高周波は波長がチャンバーサイズと同等
あるいはそれ以下となるので、均一な電波強度を得るこ
とが従来より困難となる。
Further, in order to obtain a large-sized vapor deposition surface or etching surface as described above, the operating frequency is about 13 MHz which is used in the conventional ECR plasma CVD apparatus and 1 m ×
If the area is about 1 m, it needs to be as high as about 100 MHz. Since such a high frequency has a wavelength equal to or smaller than the chamber size, it becomes more difficult than before to obtain a uniform radio wave intensity.

【0006】本発明は、以上の問題に着目してなされた
ものであり、遮蔽効果の発生を防止し、大面積にわたり
高密度且つより均一なプラズマを発生させ、例えば大面
積の太陽電池、液晶のどの製膜や半導体その他のエッチ
ングなどに適用することのできる大面積プラズマ生成用
アンテナを提供することを目的としている。
The present invention has been made by paying attention to the above problems and prevents the occurrence of the shielding effect and generates a high density and more uniform plasma over a large area. For example, a large area solar cell or liquid crystal. It is an object of the present invention to provide a large-area plasma generation antenna that can be applied to throat film formation, etching of semiconductors and the like.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明の大面積プラズマ生成用アンテナは、柱状の導
電体からなる複数のアンテナ素子を、交互に給電方向を
逆にして平行的且つ面状に配置したアレイアンテナから
なり、前記アンテナ素子は、いずれも表面を誘電体で覆
ったものである。
In order to achieve the above object, a large-area plasma generating antenna according to the present invention has a plurality of antenna elements made of columnar conductors, which are arranged in parallel with the feed directions reversed. Each of the antenna elements has a surface covered with a dielectric material and is composed of an array antenna arranged in a plane.

【0008】前記誘電体の素材としては、例えば石英や
セラミックスなどである。但し本発明はこれらの例示材
料に限定されない。
The dielectric material is, for example, quartz or ceramics. However, the present invention is not limited to these exemplified materials.

【0009】以下前記アンテナ素子についてに添付の図
1により説明する。図1(A)は、対向する導電体壁W
(いずれも接地されている)のそれぞれから同一長さの
アンテナ素子Rを所定間隔だけ離し、反対方向に、且つ
それぞれの自由端が対向する導電体壁Wから所定間隔h
を開けて、導電体壁Wの壁面との干渉を避けるようにし
て配置したアンテナを形成した場合を図示したものであ
る。
The antenna element will be described below with reference to the attached FIG. FIG. 1A shows the opposing conductor wall W.
The antenna elements R having the same length are separated from each other (both are grounded) by a predetermined distance, and the free ends of the antenna elements R are separated from the facing conductor wall W by a predetermined distance h.
The figure shows a case where the antenna is formed by opening the antenna to avoid interference with the wall surface of the conductor wall W.

【0010】なお図1に示す符合wは、アンテナ素子R
の根元部を覆った金属部材(接地されている)であり、
前記所定間隔hに対応するが部分から電波が放射されな
いようにした、アンテナ素子Rの長さ調整用部材であ
る。但し本発明にとって本質的ではなく、省略すること
ができる。
The symbol w shown in FIG. 1 indicates the antenna element R.
It is a metal member (grounded) that covers the base of
It is a member for adjusting the length of the antenna element R, which corresponds to the above-mentioned predetermined interval h, but prevents radio waves from being radiated from the part. However, it is not essential to the present invention and can be omitted.

【0011】図1(A)に示したアンテナにおいて、ア
ンテナ素子Rに長さの4/3倍の波長の高周波電流を供
給し、定在波を形成させた場合を図示したものである。
図1(B)の上段はアンテナ素子Rの自由端側が開放さ
れている場合に形成される定在波であり、下段は、アン
テナ素子Rの自由端側に電波を反射する導電体壁Wがあ
る場合である。製膜、エッチングなどは通常減圧下に行
われるので、図1(B)の下段、即ち図1(A)に示し
た構成によって実施される。
In the antenna shown in FIG. 1A, a high frequency current having a wavelength of 4/3 times the length is supplied to the antenna element R to form a standing wave.
The upper part of FIG. 1B shows a standing wave formed when the free end side of the antenna element R is open, and the lower part shows a conductor wall W that reflects radio waves on the free end side of the antenna element R. In some cases. Since film formation, etching, etc. are usually performed under reduced pressure, they are performed by the configuration shown in the lower stage of FIG. 1B, that is, FIG.

【0012】以上の説明から理解されるようにアンテナ
素子の長さZは、アレイアンテナに供給する高周波の波
長に対して、〔数1〕式によって与えられる。
As can be understood from the above description, the length Z of the antenna element is given by the formula [1] with respect to the wavelength of the high frequency supplied to the array antenna.

【0013】[0013]

【数1】 なお〔数1〕式中、nはゼロまたは正の整数を表す。[Equation 1] In the formula [1], n represents zero or a positive integer.

【0014】〔数1〕式で与えられるアンテナ素子の長
さは、この長さを基準にアンテナ素子上に高周波の定在
波が得らるよう、実際に即して決定すればよく、幾何学
的に厳密な長さを指定するものではなく、実質的にこの
値を満たすようにすればよい。
The length of the antenna element given by the equation (1) may be determined in practice so that a high-frequency standing wave can be obtained on the antenna element based on this length. It does not specify a strictly strict length, and it suffices to satisfy this value substantially.

【0015】前記アンテナ素子の配置を面状にする場
合、通常は平面状とするが、本発明はこれに限定されな
い。
When the antenna element is arranged in a planar shape, it is usually a planar shape, but the present invention is not limited to this.

【0016】前記アンテナ素子は導電体とすることが必
要であり、一般に銅、アルミニウム、白金などを使用す
ることができる。しかしながらこれらの例示金属に本発
明は限定されない。
The antenna element needs to be a conductor, and generally copper, aluminum, platinum or the like can be used. However, the present invention is not limited to these exemplary metals.

【0017】[0017]

【発明の実施の形態】以下図面を参照するプラズマCV
D装置によって実施した一実施の形態を示し、本発明を
具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Plasma CV with reference to the drawings.
The present invention will be specifically described by showing an embodiment implemented by the D device.

【0018】図2, 3に示すCVD装置(以下単に装
置)1は、本実施の形態の大面積プラズマ生成用アンテ
ナ(以下単にアンテナ)2をチャンバー3内に配置し、
その両側にガラスなどの蒸着用基板4をチャンバー3の
金属製の壁面3aに配置した基板台3bに取り付け、蒸
着ガスを壁面3aに開口するガス供給管5から装置1内
に導入するようにしたものである。また使用する蒸着ガ
スは、蒸着目的によって一定しないが、太陽電池用とし
てはシランガスなどを用いることができる。
A CVD apparatus (hereinafter simply referred to as an apparatus) 1 shown in FIGS. 2 and 3 has a large area plasma generating antenna (hereinafter simply referred to as an antenna) 2 of the present embodiment arranged in a chamber 3.
The vapor deposition substrates 4 such as glass are attached to the substrate pedestals 3b arranged on the metal wall surface 3a of the chamber 3 on both sides thereof, and the vapor deposition gas is introduced into the apparatus 1 through the gas supply pipe 5 opening to the wall surface 3a. It is a thing. The vapor deposition gas used is not constant depending on the vapor deposition purpose, but silane gas or the like can be used for solar cells.

【0019】なお前記基板3bには基板4を加熱するた
めの発熱体 (図示せず) が取り付けられており、また図
2、3に示す符合3cは真空発生用の排気管である。以
上説明した装置構造は、プラズマ蒸着装置の概要説明用
の例示であり、これによって本発明を限定的に解釈され
るべきではない。
A heating element (not shown) for heating the substrate 4 is attached to the substrate 3b, and reference numeral 3c shown in FIGS. 2 and 3 is an exhaust pipe for generating a vacuum. The apparatus structure described above is an example for explaining the outline of the plasma deposition apparatus, and the present invention should not be limitedly interpreted thereby.

【0020】アンテナ2は、複数のアンテナ素子6から
なるアレイアンテナであり、各アンテナ素子6は、図2
に示すように給電方向が交互に逆方向を向き、しかも互
いに平行的(図2)且つ平面的(図3)に配置し、それ
ぞれの極のアンテナ素子6に同相電力分配器7を配置
し、ここからアンテナ素子6ごとに高周波電流を分配す
る。
The antenna 2 is an array antenna composed of a plurality of antenna elements 6, and each antenna element 6 is shown in FIG.
As shown in FIG. 3, the feeding directions are alternately opposite to each other, and the feeding directions are arranged parallel to each other (FIG. 2) and planarly (FIG. 3), and the common-mode power distributor 7 is arranged on the antenna element 6 of each pole. From here, a high-frequency current is distributed to each antenna element 6.

【0021】アンテナ素子6は、図4に示すように電気
良導体からなる棒状(パイプであってもよい)で、長さ
Sを使用高周波の波長λの(2n+1)/4倍(式中n
はゼロ、または正の整数である)の長さとし、表面を誘
電体8で被覆したもので、チャンバー壁3aに開けた開
口3dに電気的に絶縁して取り付け、高周波電流供給端
6a側を、同軸フィーダー9の芯線9aに接続したもの
である。なお図1,2に示すようにチャンバー壁3aは
接地されている。
As shown in FIG. 4, the antenna element 6 has a rod shape (may be a pipe) made of a good electric conductor, and has a length S of (2n + 1) / 4 times (n in the formula:
Is a zero or a positive integer), the surface of which is covered with a dielectric 8 is electrically insulated from the opening 3d opened in the chamber wall 3a, and the high-frequency current supply end 6a side is It is connected to the core wire 9a of the coaxial feeder 9. The chamber wall 3a is grounded as shown in FIGS.

【0022】図2、 3において、排気管3bに接続した
真空ポンプ(図示せず)を作動させてを通常1mmTorr〜
1Torr程度の真空にしたチャンバー3内に蒸着用ガスを
送り込み、アンテナ素子6に高周波電流を供給すると、
図5に示すようにアンテナ素子6の周囲には交番磁場お
よび電場が発生し、アンテナ素子6から周囲に電波が放
射され、チャンバー3内に供給されたガスが電離してプ
ラズマとなる。
In FIGS. 2 and 3, the vacuum pump (not shown) connected to the exhaust pipe 3b is actuated to operate normally at 1 mmTorr.
When the vapor deposition gas is fed into the chamber 3 which is evacuated to about 1 Torr and a high frequency current is supplied to the antenna element 6,
As shown in FIG. 5, an alternating magnetic field and an electric field are generated around the antenna element 6, radio waves are radiated from the antenna element 6 to the surroundings, and the gas supplied into the chamber 3 is ionized into plasma.

【0023】この場合プラズマは導電性であるので、チ
ャンバー3内にプラズマが充満して全体が導電性になる
と、放射された電波はプラズマに反射され、電波はアン
テナ素子6の周辺に閉じ込められ、この部分にプラズマ
加熱領域10(図6)が限定されるようになる。
In this case, since the plasma is conductive, when the chamber 3 is filled with plasma and becomes entirely conductive, the radiated radio waves are reflected by the plasma, and the radio waves are confined around the antenna element 6. The plasma heating region 10 (FIG. 6) is limited to this portion.

【0024】ところで、誘電体8の厚さをある値 (以下
に説明する臨界値)以上とすると、電場および磁場がア
ンテナ素子の軸心方向(以下z軸という)に垂直な面内
(図6のx軸、y軸を含む面)にあるTEMモード(tra
nsverse electromagnetic mode) の電波がz軸方向に伝
播する。以下この電波放射と誘電体被覆との関係につい
て順次説明する。
By the way, when the thickness of the dielectric 8 is a certain value (a critical value described below) or more, the electric field and the magnetic field are in a plane perpendicular to the axial direction of the antenna element (hereinafter referred to as the z axis) (FIG. 6). In the TEM mode (tra including the x-axis and y-axis) of
nsverse electromagnetic mode radio waves propagate in the z-axis direction. The relationship between the radio wave radiation and the dielectric coating will be sequentially described below.

【0025】プラズマ加熱のエネルギー源となる高周波
電流の周波数をfとすると、通常のプラズマCVD装置
やエッチング装置などの場合、プラズマ周波数fp より
低いと仮定することができる。なおfp は〔数2〕式で
与えられる。
When the frequency of the high-frequency current that is the energy source for plasma heating is f, it can be assumed that it is lower than the plasma frequency fp in the case of a normal plasma CVD apparatus or etching apparatus. Note that fp is given by the formula [2].

【0026】[0026]

【数2】 式中ne は電子の単位体積中の数、−eは電子の電荷、
e は電子の質量、ε0は真空の誘電率を表す。〔数
2〕式を使用し電子密度ne とプラズマ周波数fpとの
関係を求めると図7がえられる。図7において、一般に
プラズマCVDに使用する電子密度は1015〜1017
範囲であるから、プラズマCVDに使用するプラズマ周
波数fp は、300MHz〜5GHzの範囲の値となる
ことが分かる。
[Equation 2] Where n e is the number of electrons in a unit volume, −e is the charge of the electron,
m e represents the mass of the electron, and ε 0 represents the dielectric constant of vacuum. Expression (2) equation using the obtain the relationship between the electron density n e and the plasma frequency fp 7 will be obtained. In FIG. 7, since the electron density generally used in plasma CVD is in the range of 10 15 to 10 17 , it can be seen that the plasma frequency fp used in plasma CVD has a value in the range of 300 MHz to 5 GHz.

【0027】アンテナ素子6に沿った軸をz軸とし、位
置zにおける中心の導体部分の電位をV(z) 、電流をI
(z) で、表し、系の時間依存性をexp(i ω t)と仮
定する。ここでω=2πfであり、iは虚数(−1の平
方根)を表す。このときアンテナ素子6に沿って伝播す
る電波の基礎方程式は単位長さ当たりのインダクタンス
L(z) と容量C(z) を用いて電圧V(z) 、I(z) のz軸
方向の変化を示すと、〔数3〕式、〔数4〕式のように
表すことができる。
The axis along the antenna element 6 is the z-axis, the potential of the central conductor portion at the position z is V (z), and the current is I.
(z), and the time dependence of the system is assumed to be exp (iωt). Here, ω = 2πf, and i represents an imaginary number (square root of −1). At this time, the basic equation of the radio wave propagating along the antenna element 6 is the change in the voltage V (z) and I (z) in the z-axis direction using the inductance L (z) and the capacitance C (z) per unit length. Can be expressed as in [Equation 3] and [Equation 4].

【0028】[0028]

【数3】 [Equation 3]

【0029】[0029]

【数4】 ここで、L(ω)は単位長さ当たりのインダクタンス、
C(ω) は単位長さ当たりの容量を表す。
[Equation 4] Where L (ω) is the inductance per unit length,
C (ω) represents the capacity per unit length.

【0030】インダクタンスL(ω)と容量C(ω)と
は更に誘電体に関する部分とプラズマに関する部分とに
分けるとことができる。アンテナ素子6本体(導体部
分)の断面形状を半径をaの円形とし、同様に誘電体を
外径がbの円形断面とすると、インダクタンスL(ω)
および容量C(ω)はそれぞれ〔数5〕式、〔数6〕式
で与えられる。
The inductance L (ω) and the capacitance C (ω) can be further divided into a dielectric-related part and a plasma-related part. When the cross-sectional shape of the antenna element 6 main body (conductor portion) is a circle with a radius of a and the dielectric is also a circular cross section with an outer diameter of b, the inductance L (ω)
And the capacitance C (ω) are given by the equations [5] and [6], respectively.

【0031】[0031]

【数5】 [Equation 5]

【0032】[0032]

【数6】 [Equation 6]

【0033】ここでεはアンテナ素子6の誘電体8の誘
電率、μ0 は真空の誘電率、Inは自然対数を表す。ま
た、〔数5〕式を第1項と第2項との加算式としたとき
の第2項はプラズマが寄与する単位長さ当たりのインダ
クタンスを表し、〔数6〕式を第1項と第2項との減算
式としたときの第2項(負号を含む)はプラズマが寄与
する単位長さ当たりの容量を表している。
Here, ε represents the dielectric constant of the dielectric 8 of the antenna element 6, μ 0 represents the dielectric constant of vacuum, and In represents the natural logarithm. When the equation (5) is an addition equation of the first term and the second term, the second term represents the inductance per unit length contributed by the plasma, and the equation (6) is the first term. The second term (including the negative sign) when the subtraction formula with the second term is used represents the capacity per unit length of plasma that contributes.

【0034】更に〔数5〕式および〔数6〕式中の関数
F(x)は〔数7〕式で与えられる関数である。
Furthermore, the function F (x) in the expressions (5) and (6) is the function given by the expression (7).

【0035】[0035]

【数7】 ここでK0 (u) は0次のベッセル関数であり、図8に
〔数7〕式のxとF(x)との関係を示す。
[Equation 7] Here, K 0 (u) is a 0th-order Bessel function, and FIG. 8 shows the relationship between x and F (x) in the equation [7].

【0036】なお〔数6〕式の第2項の符号が負である
ことについては以降で説明する。
The fact that the sign of the second term in the equation (6) is negative will be described below.

【0037】z軸に沿って伝播する波動を〔数8〕式の
ように表すことができる。
Waves propagating along the z-axis can be expressed as in [Equation 8].

【0038】[0038]

【数8】 ここでγは伝播定数である。伝播定数γは、〔数3〕、
〔数4〕から導いた〔数9〕式で与えられる。
[Equation 8] Where γ is a propagation constant. The propagation constant γ is [Equation 3],
It is given by the equation 9 derived from the equation 4.

【0039】[0039]

【数9】 [Equation 9]

【0040】もしアンテナ素子に誘電体被覆が無かった
とすると、中心導体(アンテナ素子6)の半径aと誘電
体8の外径bとの関係はa=bとなり、C(ω)を与え
る〔数6〕式の分母の第1項は0となり、単位長さあた
り容量C(ω)は負になってしまう。
If the antenna element has no dielectric coating, the relation between the radius a of the central conductor (antenna element 6) and the outer diameter b of the dielectric 8 is a = b, and C (ω) is given. The first term of the denominator of the equation 6] becomes 0, and the capacitance C (ω) per unit length becomes negative.

【0041】一方、前記「単位長さ当たりのインダクタ
ンス」は常に正である。したがって〔数9〕式からγは
正の数となる。このときアンテナ素子6の長手方向に沿
って伝播する電波は、給電点からz軸方向に指数関数的
に減衰し、波動として伝播しない。したがって、波長の
(2n+1)/4倍の長さとしても共振はあり得ず、結
果的に効率よくプラズマ中へのエネルギーを投入するこ
とができなくなる。この関係を図9に示す。
On the other hand, the "inductance per unit length" is always positive. Therefore, γ is a positive number from the formula [9]. At this time, the radio wave propagating along the longitudinal direction of the antenna element 6 is exponentially attenuated in the z-axis direction from the feeding point and does not propagate as a wave. Therefore, resonance cannot occur even if the length is (2n + 1) / 4 times the wavelength, and as a result, energy cannot be efficiently introduced into the plasma. This relationship is shown in FIG.

【0042】一方アンテナ素子6に誘導体被覆がある
と、〔数6〕式の第2項を正の値にすることができる。
このとき、伝播定数γは虚数となり、アンテナ素子6に
沿って電波が伝播するようになる。この値(臨界値bc
) より大きな誘電体8の外径bを選べば、図10に示
すようにz 軸方向に高周波電流を伝播させることが可能
となり、アンテナ素子6から電波を放射させることが可
能となる。この場合、アンテナ素子6の長さを波長の
(2n+1)/4倍とすることにより、アンテナ2が共
振器として動作するようになる。
On the other hand, if the antenna element 6 has a dielectric coating, the second term of the equation (6) can be made a positive value.
At this time, the propagation constant γ becomes an imaginary number, and the radio wave propagates along the antenna element 6. This value (critical value bc
) If a larger outer diameter b of the dielectric 8 is selected, it becomes possible to propagate a high frequency current in the z-axis direction as shown in FIG. 10, and it becomes possible to radiate a radio wave from the antenna element 6. In this case, the antenna 2 operates as a resonator by setting the length of the antenna element 6 to be (2n + 1) / 4 times the wavelength.

【0043】次に、誘電体8の被覆厚さとアンテナ素子
6を流れる電流との関係を説明する。アンテナ素子6の
長手方向の電流強度は、供給端が最も高く、先端部でゼ
ロになる。したがって、それぞれ反対極のアンテナ素子
6に、互に反対方向から高周波電流を供給し、それぞれ
が放射した電波が合成されて均一なプラズマが形成さ
れ、膜厚が均一な蒸着膜が得られることとなる。
Next, the relationship between the coating thickness of the dielectric 8 and the current flowing through the antenna element 6 will be described. The current strength in the longitudinal direction of the antenna element 6 is highest at the supply end and zero at the tip. Therefore, high-frequency currents are supplied to the antenna elements 6 having opposite polarities in mutually opposite directions, radio waves emitted from the antenna elements 6 are combined to form a uniform plasma, and a vapor deposition film having a uniform thickness can be obtained. Become.

【0044】ところで、前記誘電体8の半径が前記臨界
c を超える厚さにし、高周波電流をアンテナ素子6内
に伝播可能にすると、反対極のアンテナ素子6それぞれ
に流れる電流強度Ia,Ibの減衰曲線は余弦曲線とな
り、エネルギーはその 2乗でに比例するから、電流強度
Ia、Ibによるエネルギーの和は、正弦および余弦そ
れぞれの2乗の和1に比例する。即ち図11(B)のグ
ラフに示すようにアンテナ素子6の軸方向に対して常に
平らとなり、生成するプラズマのチャンバー3内の空間
密度を均一とすることができる。
By the way, when the radius of the dielectric 8 is set to a thickness exceeding the critical b c and a high frequency current can be propagated in the antenna element 6, the intensity of the current Ia, Ib flowing through each of the antenna elements 6 of opposite polarities is reduced. Since the attenuation curve is a cosine curve, and the energy is proportional to the square of the energy, the sum of the energy due to the current intensities Ia and Ib is proportional to the sum 1 of the squares of the sine and the cosine. That is, as shown in the graph of FIG. 11B, the antenna element 6 is always flat in the axial direction, and the spatial density of the generated plasma in the chamber 3 can be made uniform.

【0045】前記臨界値bc から誘電体8の厚さtc(=
bc −a)を求め、プラズマ周波数fp との関係を求め
ると図12が得られる。プラズマの電子密度を10
16(1/m3 )とすると、プラズマ周波数fp はおよそ
1GHzとなる。この値を図12に入れると誘電体厚の
臨界値tc はおよそ2mmとなる。
From the critical value bc, the thickness tc of the dielectric 8 (=
bc-a) is obtained, and the relationship with the plasma frequency fp is obtained, so that FIG. 12 is obtained. Plasma electron density is 10
If it is 16 (1 / m 3 ), the plasma frequency fp will be about 1 GHz. When this value is put in FIG. 12, the critical value tc of the dielectric thickness is about 2 mm.

【0046】以上の説明から明らかなように、本発明に
よって1m×1mという従来実現できなかった大型の薄
膜太陽電池、液晶の製膜やエッチングなどをを効率よく
行うことが可能となった。なお本発明のプラズマ生成用
アンテナは、以上に具体的に説明したCVD蒸着、液晶
製膜、エッチング以外の用途にも適宜使用することがで
きる。
As is clear from the above description, according to the present invention, it has become possible to efficiently carry out film formation, etching, etc. of large thin film solar cells of 1 m × 1 m, which could not be realized conventionally, and liquid crystals. The plasma generation antenna of the present invention can be appropriately used for purposes other than the CVD vapor deposition, the liquid crystal film formation, and the etching described above.

【0047】[0047]

【発明の効果】以上説明したように本発明の大面積プラ
ズマ生成用アンテナは、アレイアンテナを構成する棒状
アンテナ素子の表面を誘電体で被覆したことにより、放
射電波エネルギーを効率よく電極周囲のガス中に放出す
ることが可能となり、空間的に均質なプラズマを、可及
的に高い密度で発生させることが可能となった。したが
って、電力供給用として利用可能な大型の薄膜太陽電池
の製造、液晶薄膜の製造、半導体などのエッチングその
他各種の工業的用途に適用することができる。
As described above, in the antenna for large-area plasma generation of the present invention, the surface of the rod-shaped antenna element forming the array antenna is covered with the dielectric, so that the radiated radio wave energy can be efficiently supplied to the gas around the electrode. It has become possible to generate a spatially homogeneous plasma with a density as high as possible. Therefore, it can be applied to the production of large-sized thin film solar cells that can be used for power supply, the production of liquid crystal thin films, the etching of semiconductors, and various other industrial applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明アンテナの基本形状を示し、そ
れぞれアンテナ素子の自由端側を壁面WR 側にした場合
と、アンテナ素子の自由端側をWL にした場合との対で
あることを示す図、(b)はそれぞれのアンテナ素子上
に生じる定在波を示す図である。。
FIG. 1A shows a basic shape of an antenna of the present invention, and shows a pair of a case where a free end side of an antenna element is a wall surface W R side and a case where a free end side of an antenna element is W L. FIG. 7B is a diagram showing that there is a certain thing, and FIG. .

【図2】本発明の一実施の形態によるプラズマ発生用ア
ンテナを取り付けたプラズマCVD装置の内部構成の概
要を説明するための平面図である。
FIG. 2 is a plan view for explaining the outline of the internal configuration of the plasma CVD apparatus provided with the plasma generation antenna according to the embodiment of the present invention.

【図3】図2のIII−III線断面図である。3 is a sectional view taken along line III-III in FIG.

【図4】図1に示す棒状アンテナ素子をチャンバー壁に
取り付けた部分の様子を示す拡大部分断面図である。
4 is an enlarged partial sectional view showing a state of a portion where the rod-shaped antenna element shown in FIG. 1 is attached to a chamber wall.

【図5】図3のアンテナ素子の周囲にプラズマが発生し
ている様子を説明するための部分拡大断面図である。
5 is a partial enlarged cross-sectional view for explaining how plasma is generated around the antenna element of FIG.

【図6】図4の直角方向断面図である。6 is a cross-sectional view in the direction perpendicular to FIG.

【図7】電子密度ne とプラズマ周波数fp との関係を
示すグラフ図である。
FIG. 7 is a graph showing the relationship between electron density n e and plasma frequency fp.

【図8】〔数7〕式のxと関数F(x)との関係を示すグ
ラフ図であり、(A)はxが0.01〜1の場合のグラ
フであり、(B)はxが1〜20の場合のF(x)の値
を示す。
8A and 8B are graphs showing a relationship between x and a function F (x) in the equation (7), (A) is a graph when x is 0.01 to 1, and (B) is x. Shows the value of F (x) when is 1 to 20.

【図9】通常の導電体からなる棒状アンテナ素子を用い
てプラズマを発生させる際の遮蔽効果を説明するグラフ
図である。
FIG. 9 is a graph illustrating a shielding effect when plasma is generated using a rod-shaped antenna element made of a normal conductor.

【図10】誘電体層の厚さtがtc より大きい場合にz
軸方向に無限に電波が減衰することなく伝播することを
示す図である。
FIG. 10: z when the thickness t of the dielectric layer is greater than t c
It is a figure showing that an electric wave propagates infinitely in the axial direction without being attenuated.

【図11】本発明の1/4λ長のアンテナ素子の長手方
向の電流分布を最適化する方法の説明図であり、(A)
はアンテナ素子の断面図を、 (B)は最適化された分布
を示すグラフ図である。
FIG. 11 is an explanatory diagram of a method for optimizing the current distribution in the longitudinal direction of the 1 / 4λ-long antenna element of the present invention, (A)
[Fig. 3] is a cross-sectional view of the antenna element, and (B) is a graph showing the optimized distribution.

【図12】誘電体の比誘電率を5. 0としたとき、アン
テナ素子に進行波を給電可能にする限界誘電体被覆厚さ
を示すグラフ図である。
FIG. 12 is a graph showing a limit dielectric coating thickness that allows a traveling wave to be fed to an antenna element when the dielectric constant of the dielectric is 5.0.

【符号の説明】[Explanation of symbols]

2 アレイアンテナ 6 アンテナ素子 8 誘電体 2 array antenna 6 antenna elements 8 Dielectric

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K030 FA03 JA01 KA15 KA30 LA16 5F004 AA01 BA20 BB11 BB16 BC08 BD04 DA00 DB02 5F045 AC01 AE15 AE17 AE19 BB01 BB08 CA13 CA15 DP11 EH02 EH17    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K030 FA03 JA01 KA15 KA30 LA16                 5F004 AA01 BA20 BB11 BB16 BC08                       BD04 DA00 DB02                 5F045 AC01 AE15 AE17 AE19 BB01                       BB08 CA13 CA15 DP11 EH02                       EH17

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 柱状の導電体からなる複数のアンテナ素
子を、交互に給電方向を逆にして平行的に且つ面状に配
置したアレイアンテナからなり、前記アンテナ素子は、
いずれも表面を誘電体で覆ったことからなる大面積プラ
ズマ生成用アンテナ。
1. An array antenna in which a plurality of antenna elements made of columnar conductors are alternately arranged in parallel and planarly with the feeding directions reversed, and the antenna element comprises:
Both are large-area plasma generation antennas whose surface is covered with a dielectric.
【請求項2】 前記アンテナ素子の長さを、実質的に前
記アレイアンテナに供給する高周波の波長の(2n+
1)/4倍(但し前記式中のnはゼロまたは正の整数で
ある)の長さとした請求項1記載の大面積プラズマ生成
用アンテナ。
2. The length of the antenna element is substantially equal to (2n +) of a high frequency wavelength supplied to the array antenna.
The large area plasma generating antenna according to claim 1, wherein the length is 1) / 4 times (where n in the formula is zero or a positive integer).
【請求項3】 前記面状の配置が平面状の配置である請
求項1または2記載の大面積プラズマ生成用アンテナ。
3. The large-area plasma generating antenna according to claim 1, wherein the planar arrangement is a planar arrangement.
JP2001280285A 2001-09-14 2001-09-14 Plasma generating antenna and CVD apparatus Expired - Fee Related JP4564213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001280285A JP4564213B2 (en) 2001-09-14 2001-09-14 Plasma generating antenna and CVD apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001280285A JP4564213B2 (en) 2001-09-14 2001-09-14 Plasma generating antenna and CVD apparatus

Publications (2)

Publication Number Publication Date
JP2003086581A true JP2003086581A (en) 2003-03-20
JP4564213B2 JP4564213B2 (en) 2010-10-20

Family

ID=19104312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001280285A Expired - Fee Related JP4564213B2 (en) 2001-09-14 2001-09-14 Plasma generating antenna and CVD apparatus

Country Status (1)

Country Link
JP (1) JP4564213B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261508A (en) * 2005-03-18 2006-09-28 Mitsui Eng & Shipbuild Co Ltd Plasma cvd device
JP2006278862A (en) * 2005-03-30 2006-10-12 Mitsui Eng & Shipbuild Co Ltd Plasma processing device
JP2006274420A (en) * 2005-03-30 2006-10-12 Mitsui Eng & Shipbuild Co Ltd Plasma film deposition method, and plasma cvd apparatus
JP2007157535A (en) * 2005-12-06 2007-06-21 Aet Inc Traveling wave microwave plasma generating device
JP2007258570A (en) * 2006-03-24 2007-10-04 Mitsui Eng & Shipbuild Co Ltd Plasma processing device
WO2007114155A1 (en) * 2006-03-30 2007-10-11 Mitsui Engineering & Shipbuilding Co., Ltd. Method and apparatus for growing plasma atomic layer
JP2008277263A (en) * 2007-05-01 2008-11-13 Taida Electronic Ind Co Ltd Plasma generating device
EP2001044A2 (en) * 2006-03-29 2008-12-10 MITSUI ENGINEERING & SHIPBUILDING CO., LTD Plasma generating apparatus and plasma generating method
WO2009104379A1 (en) 2008-02-18 2009-08-27 三井造船株式会社 Atomic layer deposition apparatus and atomic layer deposition method
JP2010174272A (en) * 2009-01-27 2010-08-12 Mitsui Eng & Shipbuild Co Ltd Plasma generation apparatus and plasma generation method
JP2012151185A (en) * 2011-01-17 2012-08-09 Ihi Corp Inductively-coupled double-tube electrode and array antenna type cvd plasma device
JP2012174753A (en) * 2011-02-18 2012-09-10 Ihi Corp Antenna transport system of array antenna type plasma cvd apparatus, and antenna transport method thereof
DE102011100057A1 (en) * 2011-04-29 2012-10-31 Centrotherm Thermal Solutions Gmbh & Co. Kg Plasma treatment device for treating e.g. semiconductor substrate, has electrodes arranged in pairs with same distance from center plane of chamber such that microwaves of electrodes are partially offset with respect to each other
JP2013214646A (en) * 2012-04-03 2013-10-17 Ihi Corp Plasma processing apparatus
JP2014027169A (en) * 2012-07-27 2014-02-06 Osaka Univ Deposition apparatus
US8872428B2 (en) 2011-02-25 2014-10-28 Applied Materials, Inc. Plasma source with vertical gradient
US9397380B2 (en) 2011-01-28 2016-07-19 Applied Materials, Inc. Guided wave applicator with non-gaseous dielectric for plasma chamber
WO2018016131A1 (en) * 2016-07-21 2018-01-25 株式会社日立国際電気 Plasma generating device, substrate processing device, and method of manufacturing semiconductor device
US9922854B2 (en) 2010-04-30 2018-03-20 Applied Materials, Inc. Vertical inline CVD system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189293A (en) * 1996-10-28 1998-07-21 Anelva Corp Plasma processing device
JP2000008170A (en) * 1998-06-23 2000-01-11 Ricoh Co Ltd Plasma cvd device
JP2000355771A (en) * 1999-06-14 2000-12-26 Canon Inc Film deposition and film deposition system
JP2001126899A (en) * 1999-10-26 2001-05-11 Ulvac Japan Ltd Antenna unit and plasma processing apparatus
JP2001274101A (en) * 2000-03-27 2001-10-05 Mitsubishi Heavy Ind Ltd Plasma chemiclal vapor deposition apparatus having rod- like electrodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189293A (en) * 1996-10-28 1998-07-21 Anelva Corp Plasma processing device
JP2000008170A (en) * 1998-06-23 2000-01-11 Ricoh Co Ltd Plasma cvd device
JP2000355771A (en) * 1999-06-14 2000-12-26 Canon Inc Film deposition and film deposition system
JP2001126899A (en) * 1999-10-26 2001-05-11 Ulvac Japan Ltd Antenna unit and plasma processing apparatus
JP2001274101A (en) * 2000-03-27 2001-10-05 Mitsubishi Heavy Ind Ltd Plasma chemiclal vapor deposition apparatus having rod- like electrodes

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4594770B2 (en) * 2005-03-18 2010-12-08 三井造船株式会社 Plasma CVD equipment
JP2006261508A (en) * 2005-03-18 2006-09-28 Mitsui Eng & Shipbuild Co Ltd Plasma cvd device
JP2006278862A (en) * 2005-03-30 2006-10-12 Mitsui Eng & Shipbuild Co Ltd Plasma processing device
JP2006274420A (en) * 2005-03-30 2006-10-12 Mitsui Eng & Shipbuild Co Ltd Plasma film deposition method, and plasma cvd apparatus
JP2007157535A (en) * 2005-12-06 2007-06-21 Aet Inc Traveling wave microwave plasma generating device
JP2007258570A (en) * 2006-03-24 2007-10-04 Mitsui Eng & Shipbuild Co Ltd Plasma processing device
TWI398197B (en) * 2006-03-29 2013-06-01 Mitsui Shipbuilding Eng Apparatus and method for generating a plasma
EP2001044A4 (en) * 2006-03-29 2010-09-29 Mitsui Shipbuilding Eng Plasma generating apparatus and plasma generating method
US8098016B2 (en) 2006-03-29 2012-01-17 Mitsui Engineering & Shipbuilding Co., Ltd. Plasma generating apparatus and plasma generating method
EP2001044A2 (en) * 2006-03-29 2008-12-10 MITSUI ENGINEERING & SHIPBUILDING CO., LTD Plasma generating apparatus and plasma generating method
JP4820864B2 (en) * 2006-03-30 2011-11-24 三井造船株式会社 Plasma atomic layer growth method and apparatus
US8440268B2 (en) 2006-03-30 2013-05-14 Mitsui Engineering & Shipbuilding Co., Ltd. Method and apparatus for growing plasma atomic layer
WO2007114155A1 (en) * 2006-03-30 2007-10-11 Mitsui Engineering & Shipbuilding Co., Ltd. Method and apparatus for growing plasma atomic layer
KR101014858B1 (en) * 2006-03-30 2011-02-15 미쯔이 죠센 가부시키가이샤 Method and apparatus for growing plasma atomic layer
EP2006888A4 (en) * 2006-03-30 2011-11-09 Mitsui Shipbuilding Eng Method and apparatus for growing plasma atomic layer
EP2006888A2 (en) * 2006-03-30 2008-12-24 MITSUI ENGINEERING & SHIPBUILDING CO., LTD Method and apparatus for growing plasma atomic layer
JP2008277263A (en) * 2007-05-01 2008-11-13 Taida Electronic Ind Co Ltd Plasma generating device
WO2009104379A1 (en) 2008-02-18 2009-08-27 三井造船株式会社 Atomic layer deposition apparatus and atomic layer deposition method
US8607733B2 (en) 2008-02-18 2013-12-17 Mitsui Engineering & Shipbuilding Co., Ltd. Atomic layer deposition apparatus and atomic layer deposition method
JP2010174272A (en) * 2009-01-27 2010-08-12 Mitsui Eng & Shipbuild Co Ltd Plasma generation apparatus and plasma generation method
US9922854B2 (en) 2010-04-30 2018-03-20 Applied Materials, Inc. Vertical inline CVD system
JP2012151185A (en) * 2011-01-17 2012-08-09 Ihi Corp Inductively-coupled double-tube electrode and array antenna type cvd plasma device
US9397380B2 (en) 2011-01-28 2016-07-19 Applied Materials, Inc. Guided wave applicator with non-gaseous dielectric for plasma chamber
JP2012174753A (en) * 2011-02-18 2012-09-10 Ihi Corp Antenna transport system of array antenna type plasma cvd apparatus, and antenna transport method thereof
US8872428B2 (en) 2011-02-25 2014-10-28 Applied Materials, Inc. Plasma source with vertical gradient
DE102011100057A1 (en) * 2011-04-29 2012-10-31 Centrotherm Thermal Solutions Gmbh & Co. Kg Plasma treatment device for treating e.g. semiconductor substrate, has electrodes arranged in pairs with same distance from center plane of chamber such that microwaves of electrodes are partially offset with respect to each other
JP2013214646A (en) * 2012-04-03 2013-10-17 Ihi Corp Plasma processing apparatus
JP2014027169A (en) * 2012-07-27 2014-02-06 Osaka Univ Deposition apparatus
WO2018016131A1 (en) * 2016-07-21 2018-01-25 株式会社日立国際電気 Plasma generating device, substrate processing device, and method of manufacturing semiconductor device
JPWO2018016131A1 (en) * 2016-07-21 2019-01-31 株式会社Kokusai Electric Plasma generating apparatus, substrate processing apparatus, semiconductor device manufacturing method and program
US11749510B2 (en) 2016-07-21 2023-09-05 Kokusai Electric Corporation Plasma generating device, substrate processing apparatus, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP4564213B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP2003086581A (en) Antenna for generating large-area plasma
US7243610B2 (en) Plasma device and plasma generating method
KR100602074B1 (en) Parallel-antenna transformer-coupled plasma generation systems
Wu et al. The influence of antenna configuration and standing wave effects on density profile in a large-area inductive plasma source
JP4671313B2 (en) Electron cyclotron resonant plasma source with coaxial microwave applicator and plasma generation method
JP2004055600A (en) Plasma processing apparatus
JP2010525155A (en) Plasma generator
JP5155235B2 (en) Plasma processing apparatus and plasma generation apparatus
JP2002280196A (en) Plasma generating device using microwave
JP5017762B2 (en) Discharge device, plasma processing method
WO1999035302A1 (en) Coaxial resonant multiport microwave applicator for an ecr plasma source
JP4982783B2 (en) Sheet plasma generator
KR0174070B1 (en) Plasma treatment device and plasma treatment method
US20040155829A1 (en) Slot aray antenna and plasma processing apparatus
JP4452061B2 (en) Method of matching antenna for plasma generator and plasma generator
WO2002056649A1 (en) Plasma generator
JP4471589B2 (en) Antenna device for plasma generation and plasma processing apparatus
JP5506826B2 (en) Large area plasma processing equipment
JP3071814B2 (en) Plasma processing apparatus and processing method thereof
EP3866565B1 (en) Stage, film forming device, and film processing device
JP3745700B2 (en) Antenna for generating microwave plasma
JP5273759B1 (en) Plasma processing apparatus and plasma processing method
WO2003079740A1 (en) Plasma device
JP2791770B2 (en) Apparatus for forming functional deposited film by microwave plasma CVD
JP2007018819A (en) Treatment device and treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140806

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees