JP2000008170A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JP2000008170A
JP2000008170A JP10176188A JP17618898A JP2000008170A JP 2000008170 A JP2000008170 A JP 2000008170A JP 10176188 A JP10176188 A JP 10176188A JP 17618898 A JP17618898 A JP 17618898A JP 2000008170 A JP2000008170 A JP 2000008170A
Authority
JP
Japan
Prior art keywords
reaction vessel
plasma cvd
film
cylindrical substrate
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10176188A
Other languages
Japanese (ja)
Inventor
Akihiro Ito
彰浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP10176188A priority Critical patent/JP2000008170A/en
Publication of JP2000008170A publication Critical patent/JP2000008170A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a plasma CVD device capable of executing film formation onto a long-length substrate with a large area at a high film forming rate and capable of obtaining a thin film small in the generation of defects caused by the sticking of powder and having the uniformity of film characteristics. SOLUTION: In a plasma CVD device having a reaction vessel 1, a means 2 for of introducing a reaction gas into the reaction vessel, a means 3 for exhausting the reaction gas, a cylindrical substrate 4 to be film-formed arranged in the reaction vessel and means 7 to 9 applying high-frequency electric power of 30 to 600 MHz for generating plasma into the reaction vessel and executing film formation by a plasma CVD method, the outside of the cylindrical substrate 4 is provided with plural bar-shaped electric power feeding electrodes 5 and plural bar-shaped earth electrodes 6 at the positions on a circumference with a center axis same as that of the cylindrical substrate 4, and moreover, a mechanism 10 of rotating the cylindrical substrate 4 is provided. In this way, stable discharge is made possible on the space between the electric power feeding electrodes and the earth electrodes under low pressure of 0.1 to 10 Pa, and a film small in defects and good in uniformity can be obtd. at a high film forming rate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子写真用感光
体、画像入力用ラインセンサ、太陽電池、半導体デバイ
ス等の電子デバイスの薄膜の作製に適用され、プラズマ
CVD(ChemicalVapor Deposition)法による成膜
を行うプラズマCVD装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to the production of thin films for electronic devices such as photoreceptors for electrophotography, line sensors for image input, solar cells, semiconductor devices, etc., and is formed by plasma CVD (Chemical Vapor Deposition). The present invention relates to a plasma CVD apparatus for performing the above.

【0002】[0002]

【従来の技術】従来、プラズマCVD法による成膜を行
う装置や方法が種々提案されており、例えば、特開平9
−283449号公報には、反応容器内に、接地電極と
なる円筒形基板とこの円筒形基板の軸と同軸でより大き
い径の円筒形高周波電極を設置し、反応容器外に前記軸
と同軸で、一対の電磁コイルを設置したプラズマCVD
装置が開示されている。この装置では、成膜時、プラズ
マ中で発生する負に帯電した粉は、磁力線の周りを回転
し円筒形基板に移動しないので、膜中への粉の混入を防
止でき、ピンホールなどの膜質の低下を防ぐことができ
る。
2. Description of the Related Art Conventionally, various apparatuses and methods for forming a film by a plasma CVD method have been proposed.
JP-A-283449 discloses that a cylindrical substrate serving as a ground electrode and a cylindrical high-frequency electrode having a larger diameter coaxial with the axis of the cylindrical substrate are provided inside the reaction vessel, and coaxial with the axis outside the reaction vessel. , Plasma CVD equipped with a pair of electromagnetic coils
An apparatus is disclosed. In this system, during film formation, the negatively charged powder generated in the plasma rotates around the lines of magnetic force and does not move to the cylindrical substrate, so that it is possible to prevent the powder from being mixed into the film and to improve the film quality such as pinholes. Can be prevented from decreasing.

【0003】また特開平7−297142号公報には、
真空気密可能な反応容器内に、同心円上に複数の円筒状
支持体を配置し、これらの円筒状支持体に取り囲まれた
空間内に、棒状で表面が粗面化されているカソード電極
及びガス導入手段を設け、このカソード電極に20MH
z〜450MHzの高周波電力を印加しプラズマを発生
させるプラズマCVD装置が開示されている。この装置
では、成膜中、放電切れや異常放電が起こらなくなるの
で、電気特性に優れ画像欠陥の少ない電子写真感光体が
得られる。
[0003] Japanese Patent Application Laid-Open No. 7-297142 discloses that
A plurality of cylindrical supports are arranged on concentric circles in a reaction vessel capable of vacuum sealing, and a rod-shaped cathode electrode and a gas roughened surface are provided in a space surrounded by these cylindrical supports. Introducing means is provided, and this cathode electrode has 20 MH
A plasma CVD apparatus for generating plasma by applying a high frequency power of z to 450 MHz is disclosed. In this apparatus, since no discharge interruption or abnormal discharge occurs during film formation, an electrophotographic photoreceptor having excellent electric characteristics and few image defects can be obtained.

【0004】さらに特開平8−107074号公報に
は、真空気密可能な反応容器内に、同心円上に複数の円
筒状支持体を配置し、これらの円筒状支持体に取り囲ま
れた空間内に、棒状の第1の電極及び棒状の接地してあ
る第2の電極及びガス導入手段を設け、この第1の電極
に20MHz〜450MHzの高周波電力を印加し、実
質的に第1の電極と第2の電極間でプラズマを発生させ
るプラズマCVD装置が開示されている。この装置で
は、成膜中、放電が安定することにより、電気特性に優
れ画像欠陥の少ない電子写真感光体が得られる。
Further, Japanese Patent Application Laid-Open No. Hei 8-107074 discloses that a plurality of cylindrical supports are arranged concentrically in a vacuum-tight reaction vessel, and a space surrounded by these cylindrical supports is provided. A rod-shaped first electrode, a rod-shaped grounded second electrode, and gas introducing means are provided, and high-frequency power of 20 MHz to 450 MHz is applied to the first electrode, and the first electrode and the second electrode are substantially separated from each other. Discloses a plasma CVD apparatus for generating plasma between electrodes. In this apparatus, an electrophotographic photosensitive member having excellent electric characteristics and few image defects can be obtained by stabilizing discharge during film formation.

【0005】[0005]

【発明が解決しようとする課題】従来、電子写真用感光
体や画像入力用ラインセンサ、太陽電池などの長尺・大
面積の基板上へのアモルファスシリコン薄膜、アモルフ
ァス窒化シリコン薄膜、アモルファス炭化シリコン薄
膜、アモルファスカーボン薄膜等の成膜には、多くは1
3.56MHzの高周波を用いた同軸円筒型プラズマC
VD装置が使用されてきている。このような装置によ
り、アモルファスシリコンを主体にした薄膜をアルミニ
ウム円筒状基体に形成した電子写真用感光体が製品化さ
れている。
Conventionally, an amorphous silicon thin film, an amorphous silicon nitride thin film, an amorphous silicon carbide thin film on a long and large-area substrate such as an electrophotographic photoreceptor, an image input line sensor, and a solar cell. For forming amorphous carbon thin film, etc.
Coaxial cylindrical plasma C using high frequency of 3.56 MHz
VD devices have been used. With such an apparatus, an electrophotographic photosensitive member in which a thin film mainly composed of amorphous silicon is formed on an aluminum cylindrical substrate has been commercialized.

【0006】しかし、この装置の方式は5〜8μm/h
の成膜速度しか得られず、電子写真用感光体膜として必
要な30〜80μmの厚さの膜を得ようとすると、長時
間を要してしまう。また、使用可能なプロセス圧力は1
0〜1000Paのため、ガス分子間の衝突頻度が大き
く、プラズマ中の原料ガス分子種がポリマー化し粉体が
発生しやすくなる。そしてこの粉体が基板に付着した場
合、画像欠陥を引き起こすため製造の歩留り向上には限
界が生じてくる。
However, the system of this device is 5 to 8 μm / h
, And it takes a long time to obtain a film having a thickness of 30 to 80 μm, which is required as a photoreceptor film for electrophotography. The usable process pressure is 1
Since the pressure is 0 to 1000 Pa, the collision frequency between gas molecules is high, and the raw material gas molecular species in the plasma is polymerized to easily generate powder. When the powder adheres to the substrate, image defects are caused, which limits the improvement of manufacturing yield.

【0007】前述の特開平9−283449号公報記載
の従来技術では、このような同軸円筒型プラズマCVD
装置の反応室に直流磁場を印加する構成にしてポリマー
が基板に付着するのを防ぐ対策を行っており、その効果
が明示されている。しかし、成膜速度を大きくする対策
はなされていない。
In the prior art described in the above-mentioned Japanese Patent Application Laid-Open No. 9-283449, such a coaxial cylindrical plasma CVD is used.
A countermeasure to prevent the polymer from adhering to the substrate is made by applying a DC magnetic field to the reaction chamber of the apparatus, and the effect is clearly shown. However, no measures have been taken to increase the film formation rate.

【0008】粉体の発生を防ぎ成膜速度を大きくするに
は、ガス分子間の衝突頻度が少なくなる低いプロセス圧
力で密度の高いプラズマを発生するプラズマ源を利用す
ることが考えられる。このようなプラズマ源としては、
13.56MHzより高い周波数の電磁波を用いたプラ
ズマ源がある。例えば、500MHzの電磁波を用いた
プラズマ源をエッチングプロセスへ適用した例が報告さ
れており(S.Samukawaetal,Jpn.J.Appl.Phys.,Vol.34(1
995)6805)、0.66〜13.3Paの圧力範囲におい
て高いプラズマ密度のプラズマが発生することが示され
ている。また、このような13.56MHzより高い周
波数の高周波電力を電子写真用感光体の作製に用いた例
としては、前述の特開平7−297142号公報、特開
平8−107074号公報などの従来技術があり、高い
成膜速度と十分な電子写真特性が得られることが示され
ている。
In order to prevent the generation of powder and increase the deposition rate, it is conceivable to use a plasma source that generates high-density plasma at a low process pressure at which collision frequency between gas molecules is reduced. As such a plasma source,
There is a plasma source using electromagnetic waves having a frequency higher than 13.56 MHz. For example, an example in which a plasma source using a 500 MHz electromagnetic wave is applied to an etching process has been reported (S. Samukawaetal, Jpn. J. Appl. Phys., Vol.
995) 6805), it is shown that a plasma having a high plasma density is generated in a pressure range of 0.66 to 13.3 Pa. Examples of the use of such high-frequency power having a frequency higher than 13.56 MHz for the production of an electrophotographic photoreceptor are described in Japanese Patent Application Laid-Open Nos. Hei 7-297142 and Hei 8-107074. This indicates that a high film formation rate and sufficient electrophotographic characteristics can be obtained.

【0009】しかし、これらの従来技術にも幾つかの問
題がある。例えば特開平7−297142号公報記載の
従来技術の場合は、電力を供給する棒状のカソード電極
に対するアース電極は、このカソード電極を取り囲むよ
うに設置した自転する複数の円筒状支持体であり、これ
らの円筒状支持体に膜が堆積したり自転中の電気的接触
が変化すると高周波的に接地の状態が変わり、放電が不
安定になる。また、特開平8−107074号公報記載
の従来技術の場合はこの問題を解決するため、前記カソ
ード電極の近傍に独立に棒状のアース電極を設置し、実
質的にこのカソード電極とアース電極の間で放電を発生
させる構成をとるものである。この構成の場合、全体的
には放電は安定するが、カソード電極とアース電極のあ
る放電空間全体のプラズマの分布を常に均一にするのは
難しく、同心円上に配置した複数の円筒状支持体を自転
の他に公転する必要があり複雑な装置構成となってしま
う。
However, these prior arts also have some problems. For example, in the case of the prior art described in Japanese Patent Application Laid-Open No. 7-297142, the earth electrode for the rod-shaped cathode electrode for supplying electric power is a plurality of rotating cylindrical supports provided so as to surround the cathode electrode. When a film is deposited on the cylindrical support or electric contact during rotation changes, the grounding state changes at high frequency, and the discharge becomes unstable. In the case of the prior art described in Japanese Patent Application Laid-Open No. H8-107074, in order to solve this problem, a bar-shaped ground electrode is provided independently near the cathode electrode, and substantially between the cathode electrode and the ground electrode. To generate a discharge. In this configuration, the discharge is stable as a whole, but it is difficult to make the distribution of plasma throughout the discharge space including the cathode electrode and the ground electrode always uniform, and a plurality of cylindrical supports arranged concentrically are used. It is necessary to revolve in addition to the rotation, resulting in a complicated device configuration.

【0010】本発明は上記事情に鑑みなされたものであ
って、電子写真用感光体や画像入力用ラインセンサ、太
陽電池などの長尺・大面積の基板上へのアモルファスシ
リコン薄膜、アモルファス窒化シリコン薄膜、アモルフ
ァス炭化シリコン薄膜、アモルファス酸化シリコン薄膜
等の成膜を行うことができ、且つ、高い成膜速度が得ら
れ、粉体付着による欠陥の発生が少ない、膜特性の均一
性の良い薄膜が得られる、簡便な構成のプラズマCVD
装置を提供することを目的(課題)とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been made in consideration of the above circumstances, and it is an object of the present invention to provide an amorphous silicon thin film, an amorphous silicon nitride, Thin films, amorphous silicon carbide thin films, amorphous silicon oxide thin films, etc. can be formed, and a high film formation rate can be obtained. Obtained plasma CVD with simple structure
An object (problem) is to provide a device.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に係る発明は、反応容器と、該反応容器に
反応ガスを導入する手段と、該反応ガスを排気する手段
と、該反応容器中に配置された被成膜円筒状基体と、該
反応容器内にプラズマを発生させる30MHz〜600
MHzの高周波電力を印加する手段を有し、プラズマC
VD法による成膜を行うプラズマCVD装置において、
前記円筒状基体の外側の該円筒状基体と中心軸を同じく
した円周上の位置に複数の棒状の電力供給電極と複数の
棒状のアース電極を設けると共に、該円筒状基体を回転
する機構を設けることを特徴とするものである。
Means for Solving the Problems To achieve the above object, the invention according to claim 1 comprises a reaction vessel, means for introducing a reaction gas into the reaction vessel, means for exhausting the reaction gas, A film-forming cylindrical substrate placed in a reaction vessel, and a plasma generating 30 MHz to 600 m in the reaction vessel.
MHz means for applying high-frequency power of MHz.
In a plasma CVD apparatus for forming a film by the VD method,
A plurality of rod-shaped power supply electrodes and a plurality of rod-shaped ground electrodes are provided on the outer circumference of the cylindrical base at a position on the circumference having the same central axis as the cylindrical base, and a mechanism for rotating the cylindrical base is provided. It is characterized by being provided.

【0012】請求項2に係る発明は、請求項1に記載の
プラズマCVD装置において、前記電力供給電極と前記
アース電極の長さが、前記高周波の波長の略1/4また
は5/4であることを特徴とするものである。
According to a second aspect of the present invention, in the plasma CVD apparatus according to the first aspect, the lengths of the power supply electrode and the ground electrode are approximately 1 / or / of the wavelength of the high frequency. It is characterized by the following.

【0013】請求項3に係る発明は、請求項1または2
に記載のプラズマCVD装置において、前記円筒状基体
に10KHz〜20MHzの高周波電力を印加する手段
を設けることを特徴とするものである。
The invention according to claim 3 is the invention according to claim 1 or 2
Wherein the means for applying high-frequency power of 10 KHz to 20 MHz is provided to the cylindrical substrate.

【0014】請求項4に係る発明は、請求項1または2
または3に記載のプラズマCVD装置において、前記複
数の棒状の電力供給電極と複数の棒状のアース電極の位
置する円周上の外側または内側に中心軸を同じくして誘
電体からなる円筒を設けることを特徴とするものであ
る。
The invention according to claim 4 is the invention according to claim 1 or 2
Or the plasma CVD apparatus according to 3, wherein a cylinder made of a dielectric material having the same central axis is provided outside or inside the circumference where the plurality of rod-shaped power supply electrodes and the plurality of rod-shaped ground electrodes are located. It is characterized by the following.

【0015】[0015]

【発明の実施の形態】以下、本発明の構成・動作を図面
を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration and operation of the present invention will be described below in detail with reference to the drawings.

【0016】(請求項1の実施形態)図1は本発明に係
るプラズマCVD装置の第1の実施形態を示す図であ
り、(A)はプラズマCVD装置を上から見た概略断面
図、(B)は(A)のA−A部分の概略断面図である。
尚、図1(A)は(B)のB−B部分の断面に相当する
図である。図1に示すプラズマCVD装置は、反応容器
1と、該反応容器1に反応ガスを導入する手段(例えば
反応容器1の上部円盤1bに設けたガス導入管2と図示
しないガス供給部(バルブ、ガスボンベ等))と、該反
応ガスを排気する手段(例えば反応容器1の下部円盤1
aに設けた排気管3と該排気管3に接続される図示しな
い真空排気用のポンプ等)と、反応容器1中に配置され
た被成膜円筒状基体4と、反応容器1内にプラズマを発
生させる20MHz〜600MHzの高周波電力を印加
する手段(例えば超音波電源7、整合器8、給電器9
等)を有し、プラズマCVD法による成膜を行う成膜装
置であり、前記円筒状基体4の外側には該円筒状基体4
と中心軸を同じくした円周上の位置に複数の棒状の電力
供給電極5と複数の棒状のアース電極6が設けられると
共に、該円筒状基体4を回転させる円筒状基体回転機構
(モータ10aとギヤ10b,10c等)10が設けら
れている。
(Embodiment 1) FIG. 1 is a view showing a first embodiment of a plasma CVD apparatus according to the present invention. FIG. 1A is a schematic sectional view of a plasma CVD apparatus as viewed from above. (B) is a schematic sectional view of AA part of (A).
FIG. 1A is a view corresponding to a cross section taken along a line BB in FIG. The plasma CVD apparatus shown in FIG. 1 includes a reaction vessel 1 and a means for introducing a reaction gas into the reaction vessel 1 (for example, a gas introduction pipe 2 provided on an upper disk 1b of the reaction vessel 1 and a gas supply unit (not shown) Gas cylinder, etc.) and means for exhausting the reaction gas (for example, the lower disk 1 of the reaction vessel 1).
a), an evacuation pump (not shown) connected to the evacuation pipe 3), a film-forming cylindrical substrate 4 disposed in the reaction vessel 1, and plasma inside the reaction vessel 1. Means for applying high frequency power of 20 MHz to 600 MHz (for example, an ultrasonic power source 7, a matching device 8, a power supply 9)
And the like, and a film forming apparatus for forming a film by a plasma CVD method.
A plurality of rod-shaped power supply electrodes 5 and a plurality of rod-shaped ground electrodes 6 are provided at positions on the circumference having the same central axis as the center axis, and a cylindrical substrate rotating mechanism (a motor 10 a and a motor 10 a) for rotating the cylindrical substrate 4. Gears 10b, 10c, etc.) 10 are provided.

【0017】電力供給電極5及びアース電極6の材質は
導電性の高いアルミニウム(Al),銅(Cu),チタ
ン(Ti),鉄(Fe),クロム(Cr),ニッケル
(Ni),金(Au),白金(Pt),コバルト(C
o)等の金属及びこれらの合金からなる。この電力供給
電極5への電力の供給は、単一の電源(例えば超短波電
源7)から図1のような整合器8及び給電器9を介して
各電力供給電極5へ分岐して供給がなされる場合の他、
図2に示す第2の実施形態のように、単一または少数の
電源(例えば超短波電源7)から整合器8及び電力分配
部11(例えば誘電体部材11bで覆われた電力分配円
板11a等)を介して電力供給電極5へ分岐して供給が
なされる場合、また図示しないが複数の電源から個別に
各電力供給電極5へ供給がなされる場合等がある。尚、
図1の第1の実施形態と図2の第2の実施形態では、電
力供給電極5への電力供給部(給電部9、電力分配部1
1)の構成が異なるだけであり、その他の構成は同じで
ある。
The materials of the power supply electrode 5 and the ground electrode 6 are aluminum (Al), copper (Cu), titanium (Ti), iron (Fe), chromium (Cr), nickel (Ni), gold ( Au), platinum (Pt), cobalt (C
o) and their alloys. The power is supplied to the power supply electrode 5 by branching from a single power supply (for example, an ultra-high frequency power supply 7) to each power supply electrode 5 via a matching unit 8 and a power supply 9 as shown in FIG. Otherwise,
As in the second embodiment shown in FIG. 2, a matching device 8 and a power distribution unit 11 (for example, a power distribution disk 11a covered with a dielectric member 11b) from a single or a small number of power sources (for example, an ultra-high frequency power supply 7). ), The power is supplied to the power supply electrode 5 by branching, or although not shown, the power is supplied to each power supply electrode 5 from a plurality of power sources individually. still,
In the first embodiment of FIG. 1 and the second embodiment of FIG. 2, a power supply unit (power supply unit 9, power distribution unit 1) to the power supply electrode 5 is provided.
Only the configuration of 1) is different, and the other configurations are the same.

【0018】図1または図2に示すプラズマCVD装置
における電力供給電極5及びアース電極6の断面形状
は、円形の場合や矩形の場合もあり特に形状を限定しな
い。また、電力供給電極5とアース電極6間の距離は、
電力供給電極5と円筒状基体4間の距離より短くなるよ
うに設ける。例えば図1において示せば、電力供給電極
5−円筒状基体4間の距離X1と、電力供給電極5−ア
ース電極6間の距離X2とは、X2<X1の関係となっ
ている。
The cross-sectional shape of the power supply electrode 5 and the ground electrode 6 in the plasma CVD apparatus shown in FIG. 1 or 2 may be circular or rectangular, and the shapes are not particularly limited. The distance between the power supply electrode 5 and the ground electrode 6 is
It is provided so as to be shorter than the distance between the power supply electrode 5 and the cylindrical substrate 4. For example, as shown in FIG. 1, the distance X1 between the power supply electrode 5 and the cylindrical base 4 and the distance X2 between the power supply electrode 5 and the ground electrode 6 have a relationship of X2 <X1.

【0019】被成膜円筒状基体4は、材質には制限がな
く金属の他、プラスチックでもよい。形状は、外形が円
筒状の空間に入ればよく、円筒形の他、多角柱形の場合
もある。電子写真用感光体を作製する場合は、Alの円
筒状基体を用いることが多く、画像入力用ラインセンサ
や太陽電池を作製する場合は、Al,ステンレス等の金
属多角柱の側面に複数個の基板を配置する場合もある。
また、この円筒状基体4は円筒内に抵抗加熱ヒータ等の
加熱機構を設ける場合もある。さらに、この円筒状基体
4を支持する支持体4aの下部は反応容器1の下部円盤
部1aに回転自在に支持されており、その支持体4aの
反応容器外の端部にはギヤ10cが設けられ、該ギヤ1
0cがモータ10a側のギヤ10bと係合している。す
なわち、モータ10aとギヤ10b,10cとで円筒状
基体回転機構10が構成されており、モータ10aの回
転によりギヤ10b,10cを介して円筒状基体4を回
転することができる。
The material of the film-forming cylindrical substrate 4 is not limited, and it may be plastic in addition to metal. The shape may be any shape as long as the outer shape is in a cylindrical space, and may be a polygonal prism in addition to a cylinder. When an electrophotographic photoreceptor is manufactured, a cylindrical substrate of Al is often used, and when an image input line sensor or a solar cell is manufactured, a plurality of aluminum, stainless steel, or other metal polygonal pillars are provided on a side surface. In some cases, a substrate is arranged.
Further, the cylindrical base 4 may be provided with a heating mechanism such as a resistance heater in the cylinder. Further, a lower portion of a support 4a for supporting the cylindrical substrate 4 is rotatably supported by a lower disk portion 1a of the reaction vessel 1, and a gear 10c is provided at an end of the support 4a outside the reaction vessel. And the gear 1
0c is engaged with the gear 10b on the motor 10a side. That is, the cylindrical base rotating mechanism 10 is constituted by the motor 10a and the gears 10b and 10c, and the cylindrical base 4 can be rotated via the gears 10b and 10c by the rotation of the motor 10a.

【0020】成膜用反応ガスは、図1または図2に示す
ように反応容器1の何れかの場所(例えば反応容器1の
上部円盤1bの上部)からガス導入管2を通して導入す
ることができるが、この他、アース電極6を1個以上の
孔を持つ管で形成してガス導入管を兼ねる構成にし、こ
のアース電極兼ガス導入管を通して反応ガスを導入した
りすることもできる。これらのガス導入管を通して、反
応容器1内に、SiH4,Si26,CH4,C26,C
22,NH3,NO,N2O,CO2,H2,N2,He,
Ar,B26,PH3などのガスを導入し、アモルファ
スシリコン薄膜、アモルファス窒化シリコン薄膜、アモ
ルファス炭化シリコン薄膜、アモルファス酸化シリコン
薄膜等のシリコン(Si)を含むアモルファス薄膜の成
膜を行う。
The reaction gas for film formation can be introduced from any place of the reaction vessel 1 (for example, the upper part of the upper disk 1b of the reaction vessel 1) through the gas introduction pipe 2 as shown in FIG. 1 or FIG. However, in addition, the earth electrode 6 may be formed of a tube having one or more holes so as to also serve as a gas introduction tube, and a reaction gas may be introduced through the earth electrode / gas introduction tube. Through these gas introduction pipes, SiH 4 , Si 2 H 6 , CH 4 , C 2 H 6 , C
2 H 2 , NH 3 , NO, N 2 O, CO 2 , H 2 , N 2 , He,
A gas such as Ar, B 2 H 6 or PH 3 is introduced to form an amorphous thin film containing silicon (Si) such as an amorphous silicon thin film, an amorphous silicon nitride thin film, an amorphous silicon carbide thin film, and an amorphous silicon oxide thin film.

【0021】本発明のプラズマCVD装置では、以上の
ような装置構成及び電極配置構造にすることにより、
0.1〜10Paの低圧で実質的に電力供給電極5とア
ース電極6の間で安定した放電が可能となり、ダストの
発生による欠陥が少ない膜で、且つ、均一性の良い膜が
高い成膜速度で得られる。さらに、円筒状基体4を回転
させる機構10を設けたことにより均一性の良い膜が得
られる。また、本発明のプラズマCVD装置で、プラズ
マを生成させる周波数を20MHz〜600MHzとし
たのは、この領域で安定してプラズマが発生し従来の1
3.56MHzを使用した場合と比較して顕著に成膜速
度の増大が見られるのは20MHz以上であり、600
MHz以上では放電が不安定になるからである。
In the plasma CVD apparatus of the present invention, by adopting the above-described apparatus configuration and electrode arrangement structure,
At a low pressure of 0.1 to 10 Pa, stable discharge can be substantially performed between the power supply electrode 5 and the ground electrode 6, and a film with few defects due to generation of dust and a film with good uniformity is highly formed. Obtained at speed. Further, by providing the mechanism 10 for rotating the cylindrical substrate 4, a film with good uniformity can be obtained. In addition, the reason why the plasma generation frequency is set to 20 MHz to 600 MHz in the plasma CVD apparatus of the present invention is that the plasma is stably generated in this region and the conventional one is not used.
Compared with the case where 3.56 MHz is used, the remarkable increase in the film formation rate is observed at 20 MHz or more,
This is because discharge becomes unstable at MHz or higher.

【0022】(請求項2の実施形態)次に請求項2に係
る発明では、図1または図2に示した構成のプラズマC
VD装置において、前記電力供給電極5と前記アース電
極6の長さが、前記高周波の空気中での波長の略1/4
または5/4であることを特徴としている。この電極の
長さは、正確に高周波の波長の1/4または5/4であ
る必要はなく、80〜120%の範囲も含む(尚、電極
の長さを図1において示せばYとなる)。線状アンテナ
の理論により、電力供給電極5とアース電極6の長さ
が、前記高周波の波長の略1/4または5/4である
と、放電空間内に電磁波の定在波が立ち安定して大きな
電力の投入が可能となる。よって、安定して高い密度の
プラズマの発生が可能となり、より高い成膜速度が得ら
れる。
(Embodiment 2) Next, in the invention according to claim 2, the plasma C having the configuration shown in FIG.
In the VD device, the lengths of the power supply electrode 5 and the ground electrode 6 are approximately 1 / of the wavelength in the high-frequency air.
Or 5/4. The length of this electrode does not need to be exactly 1/4 or 5/4 of the wavelength of the high frequency wave, but also includes a range of 80 to 120% (the length of the electrode is Y if shown in FIG. 1). ). According to the theory of the linear antenna, if the lengths of the power supply electrode 5 and the ground electrode 6 are approximately 1/4 or 5/4 of the wavelength of the high frequency, a standing wave of the electromagnetic wave stands and stabilizes in the discharge space. Large power input is possible. Therefore, stable high-density plasma can be generated, and a higher film-forming rate can be obtained.

【0023】(請求項3の実施形態)図3は本発明に係
るプラズマCVD装置の第3の実施形態を示す図であ
り、(A)はプラズマCVD装置を上から見た概略断面
図、(B)は(A)のA−A部分の概略断面図である。
尚、図3(A)は(B)のB−B部分の断面に相当する
図である。このプラズマCVD装置の基本構成は図1と
同様であるが、前記円筒状基体4が金属の場合に、この
円筒状基体4に10KHz〜20MHzのバイアス高周
波電力を印加する手段(例えばバイアス高周波電源1
2、整合器13、カーボンスライダー14等)を設けた
ことを特徴としている(請求項3)。
(Embodiment 3) FIG. 3 is a view showing a third embodiment of a plasma CVD apparatus according to the present invention. FIG. 3A is a schematic sectional view of the plasma CVD apparatus as viewed from above. (B) is a schematic sectional view of AA part of (A).
FIG. 3A is a view corresponding to a cross section taken along line BB of FIG. Although the basic configuration of this plasma CVD apparatus is the same as that of FIG. 1, when the cylindrical substrate 4 is made of metal, means for applying a bias high-frequency power of 10 KHz to 20 MHz to the cylindrical substrate 4 (for example, a bias high-frequency power source 1)
2, a matching device 13, a carbon slider 14, etc.).

【0024】円筒状基体4には前述したように回転機構
10が設けられているが、回転する円筒状基体4に上記
のバイアス高周波電力を印加する手段の例としては、図
3に示すように円筒状基体4を設置する支持体4aの一
部に高周波的に導通している真鍮製のリング4bを設
け、このリング4bと帯状に接するようにカーボンスラ
イダー14を配置し、このカーボンスライダー14に整
合器13を介してバイアス高周波電源12により高周波
電力を印加する方法がある。
The rotating mechanism 10 is provided on the cylindrical base 4 as described above. As an example of the means for applying the bias high-frequency power to the rotating cylindrical base 4 as shown in FIG. A brass ring 4b conducting at high frequency is provided on a part of a support 4a on which the cylindrical base 4 is installed, and a carbon slider 14 is arranged in contact with the ring 4b in a band shape. There is a method of applying high frequency power from the bias high frequency power supply 12 via the matching unit 13.

【0025】プラズマ中の円筒状基体4に高周波電力を
印加すると、電力に応じてプラズマ電位に対して負の数
ボルト〜数十ボルトのシース電位が生じる。プラズマ中
で生成した粉体は負に帯電することが多いので、このシ
ース電位が円筒状基体4(あるいは基体4上の基板)に
粉体が近づくのを防ぐように作用する。また、このよう
な高密度プラズマを用いた成膜法は、成膜速度が大きい
反面、膜の緻密さが劣る場合がある。このような場合、
シース電位を生じさせることにより、正にイオン化した
ガスがより多く円筒状基体4(あるいは基体4上の基
板)をたたき緻密な膜が得られるようになる。
When high-frequency power is applied to the cylindrical substrate 4 in the plasma, a sheath potential of several volts to several tens volts negative with respect to the plasma potential is generated according to the power. Since the powder generated in the plasma is often negatively charged, the sheath potential acts to prevent the powder from approaching the cylindrical substrate 4 (or the substrate on the substrate 4). Further, in the film formation method using such high-density plasma, the film formation rate is high, but the denseness of the film may be poor. In such a case,
By generating the sheath potential, a dense film can be obtained by hitting the cylindrical substrate 4 (or the substrate on the substrate 4) with more positively ionized gas.

【0026】(請求項4の実施形態)図4は本発明に係
るプラズマCVD装置の第4の実施形態を示す図であ
り、(A)はプラズマCVD装置を上から見た概略断面
図、(B)は(A)のA−A部分の概略断面図である。
尚、図4(A)は(B)のB−B部分の断面に相当する
図である。このプラズマCVD装置の基本構成は図1と
同様であるが、前記複数の棒状の電力供給電極5と複数
の棒状のアース電極6の位置する円周上の外側または内
側(図示の例では外側)に中心軸を同じくして誘電体か
らなる円筒15を設けたことを特徴としている(請求項
4)。
(Embodiment 4) FIG. 4 is a view showing a fourth embodiment of a plasma CVD apparatus according to the present invention, wherein (A) is a schematic cross-sectional view of the plasma CVD apparatus as viewed from above. (B) is a schematic sectional view of AA part of (A).
FIG. 4A is a diagram corresponding to a cross section taken along line BB of FIG. The basic configuration of this plasma CVD apparatus is the same as that of FIG. 1, but outside or inside (outside in the illustrated example) on the circumference where the plurality of rod-shaped power supply electrodes 5 and the plurality of rod-shaped ground electrodes 6 are located. And a cylindrical member 15 made of a dielectric material having the same central axis (claim 4).

【0027】この誘電体円筒15を構成する材料として
は、誘電損の少ない材料が望ましく、アルミナ、石英、
窒化ケイ素、窒化炭素、四弗化エチレン等があげられ
る。この誘電体円筒15が反応容器1内の反応室の外側
円筒壁を兼ねる場合もある。また、この誘電体円筒15
と反応容器壁は、ゴムのOリング等を介して真空シール
されていてもよい。尚、図4は、電力供給電極5とアー
ス電極6の位置する円周上の外側に中心軸を同じくして
誘電体からなる円筒15を設け、この誘電体円筒15と
反応容器1の上下部円盤壁1a,1bとをOリング等を
介して真空シールした場合の例である。また、図4の例
では、円筒状基体4の円筒内に抵抗加熱ヒータ16によ
る加熱機構が設けられている。
The dielectric cylinder 15 is preferably made of a material having a small dielectric loss, such as alumina, quartz,
Examples include silicon nitride, carbon nitride, and ethylene tetrafluoride. The dielectric cylinder 15 may also serve as the outer cylindrical wall of the reaction chamber in the reaction vessel 1 in some cases. Also, this dielectric cylinder 15
And the reaction vessel wall may be vacuum sealed via a rubber O-ring or the like. In FIG. 4, a cylinder 15 made of a dielectric material is provided outside the circumference where the power supply electrode 5 and the ground electrode 6 are located, and has the same central axis. This is an example in which the disk walls 1a and 1b are vacuum-sealed with an O-ring or the like. In the example of FIG. 4, a heating mechanism using a resistance heater 16 is provided in the cylinder of the cylindrical base 4.

【0028】図4に示すプラズマCVD装置のように、
電力供給電極5とアース電極6の位置する円周上の外側
に中心軸を同じくして誘電体円筒15を設けることによ
り、実質的に反応容器体積が小さくなり、反応ガスの滞
在時間が小さくなる。よって、分解したガスのポリマー
化が進まないうちに反応容器外に排出されるので、円筒
状基体4(あるいは基体4上の基板)への粉体の付着が
少なくなる。
As in the plasma CVD apparatus shown in FIG.
By providing the dielectric cylinder 15 with the same central axis outside the circumference where the power supply electrode 5 and the ground electrode 6 are located, the volume of the reaction vessel is substantially reduced, and the residence time of the reaction gas is reduced. . Therefore, the decomposed gas is discharged to the outside of the reaction vessel before the polymerization proceeds, so that the adhesion of the powder to the cylindrical substrate 4 (or the substrate on the substrate 4) is reduced.

【0029】[0029]

【実施例】次に、本発明によるプラズマCVD装置を用
いて成膜を行った場合の具体的な実施例について説明す
る。
Next, a specific embodiment in which a film is formed using the plasma CVD apparatus according to the present invention will be described.

【0030】(実施例1:請求項1,2の実施例)図1
に示した構成のプラズマCVD装置により、a−Si系
電子写真用感光体を作製した例を示す。まず、使用した
装置について説明する。ステンレス製の円筒形反応容器
1内に該反応容器1と中心軸を同じくして回転機構10
と図示しない加熱機構が付いている円筒形ステンレス製
基板支持体4aを配置している。さらに、円筒形反応容
器1に中心軸を同じくして半径300mmの円周上に、
反応容器上部円盤1bから4本の電力供給電極5と、反
応容器下部円盤1aから4本のアース電極6を配置して
ある。電力供給電極5とアース電極6の長さYは、Y=
250mmである。また、周波数300MHzの超短波
電源7から整合器8と電力を分岐する給電器9を通して
4本の電力供給電極5に電力を供給する構成となってい
る。
(Embodiment 1: Embodiments of Claims 1 and 2) FIG.
An example is shown in which an a-Si electrophotographic photoreceptor is manufactured using a plasma CVD apparatus having the configuration shown in FIG. First, the used apparatus will be described. A rotating mechanism 10 is provided in a cylindrical reaction vessel 1 made of stainless steel with the same central axis as the reaction vessel 1.
And a cylindrical stainless steel substrate support 4a having a heating mechanism (not shown). Further, on the circumference of a radius of 300 mm with the same central axis as the cylindrical reaction vessel 1,
Four power supply electrodes 5 are arranged from the upper disk 1b of the reaction vessel, and four earth electrodes 6 are arranged from the lower disk 1a of the reaction vessel. The length Y of the power supply electrode 5 and the ground electrode 6 is Y =
250 mm. In addition, power is supplied to the four power supply electrodes 5 from the ultrahigh frequency power supply 7 having a frequency of 300 MHz through a matching device 8 and a power supply 9 for branching power.

【0031】反応容器1の上部円盤1bの上部にはガス
導入管2を配置してあり、このガス導入管2は図示しな
いバルブを介してガス供給部(ガスボンベ等)に接続さ
れている。また、反応容器1の下部円盤1aにはガス排
気用の排気管3を配置し、該排気管3は図示しないバル
ブを介してターボ分子ポンプとそれに続くドライポンプ
に連結されている。
A gas introduction pipe 2 is arranged above the upper disk 1b of the reaction vessel 1. The gas introduction pipe 2 is connected to a gas supply unit (gas cylinder or the like) via a valve (not shown). An exhaust pipe 3 for exhausting gas is disposed on the lower disk 1a of the reaction vessel 1, and the exhaust pipe 3 is connected to a turbo molecular pump and a subsequent dry pump via a valve (not shown).

【0032】次に、感光体膜の作成手順について説明す
る。まず前記円筒形ステンレス製基板支持体4aを包む
ように、有機溶剤で脱脂洗浄した外径100mmで長さ
330mmのAl製円筒状基体4を設置した。そして反
応容器1内を7×10~4Paに排気しながら、円筒状基
体4を250℃に昇温した。次に回転機構10でAl製
円筒状基体4を15rpmで回転させながら、Al製円
筒状基体4上に電荷注入阻止層、光導電層、表面保護層
を順次積層した。このときの各層の成膜条件は以下の表
1に示す通りであり、全層での平均成膜速度は、25μ
m/hrであった。
Next, a procedure for forming a photoreceptor film will be described. First, an Al cylindrical substrate 4 having an outer diameter of 100 mm and a length of 330 mm, which was degreased and washed with an organic solvent, was installed so as to surround the cylindrical stainless steel substrate support 4 a. The temperature of the cylindrical substrate 4 was raised to 250 ° C. while the inside of the reaction vessel 1 was evacuated to 7 × 10 to 4 Pa. Next, the charge injection preventing layer, the photoconductive layer, and the surface protection layer were sequentially laminated on the Al cylindrical substrate 4 while rotating the Al cylindrical substrate 4 at 15 rpm by the rotation mechanism 10. At this time, the film forming conditions of each layer are as shown in Table 1 below, and the average film forming speed of all the layers is 25 μm.
m / hr.

【0033】[0033]

【表1】 [Table 1]

【0034】以上のようにして作成した電子写真用感光
体を半導体レーザープリンターに装着し、画像評価試験
を行った。光量は30μW/cm2,20μW/cm2
10μW/cm2,光ビーム径を60μmとした。帯電
方式はスコロトロン方式で、印加電圧を+6KVとし
た。この条件で+700Vの帯電電位が得られた。ま
た、現像は2成分現像剤を用いた磁気ブラシ現像法によ
り行った。また、感光体の回転速度(線速度)は150
mm/sとした。その結果得られた画像は、オリジナル
原稿として用いた1mm当たり8組の白黒の線(白、黒
それぞれの線幅が62.5μmに相当)のパターンを忠
実に再現しており、画像欠陥も無かった。
The electrophotographic photosensitive member prepared as described above was mounted on a semiconductor laser printer, and an image evaluation test was performed. The light amount is 30 μW / cm 2 , 20 μW / cm 2 ,
The light beam diameter was 10 μW / cm 2 and the light beam diameter was 60 μm. The charging method was a scorotron method, and the applied voltage was +6 KV. Under this condition, a charging potential of +700 V was obtained. The development was performed by a magnetic brush development method using a two-component developer. The rotation speed (linear speed) of the photoconductor is 150
mm / s. The resulting image faithfully reproduces the pattern of eight black and white lines (each of white and black has a line width of 62.5 μm) per mm used as the original document, and has no image defects. Was.

【0035】(実施例2:請求項3の実施例)図3に示
した構成のプラズマCVD装置により、a−Si系電子
写真用感光体を作製した例を示す。まず、使用した装置
について説明する。ステンレス製の円筒形反応容器1内
に該反応容器1と中心軸を同じくして回転機構10と図
示しない加熱機構が付いている円筒形ステンレス製基板
支持体4aを配置している。この円筒形ステンレス製基
板支持体4aには、バイアス高周波電源12から整合器
13及びカーボンスライダー14を介して13.56M
Hzのバイアス高周波電力が投入できるようになってい
る。さらに、円筒形反応容器1に中心軸を同じくして半
径300mmの円周上に、反応容器上部円盤1bから4
本の電力供給電極5と、反応容器下部円盤1aから4本
のアース電極6を配置してある。電力供給電極5とアー
ス電極6の長さは200mmである。また、周波数40
0MHzの超短波電源7から整合器8と電力を分岐する
給電器9を通して4本の電力供給電極5に電力を供給す
る構成となっている。
Embodiment 2 An embodiment in which an a-Si type electrophotographic photoreceptor is manufactured by a plasma CVD apparatus having the structure shown in FIG. First, the used apparatus will be described. A cylindrical stainless steel substrate support 4a having a rotation mechanism 10 and a heating mechanism (not shown) having the same central axis as the reaction vessel 1 is arranged in the stainless steel cylindrical reaction vessel 1. 13.56 M is applied to the cylindrical stainless steel substrate support 4a from the bias high frequency power supply 12 via the matching unit 13 and the carbon slider 14.
Hz bias high frequency power can be supplied. Further, on the circumference having a radius of 300 mm with the same central axis as the cylindrical reaction vessel 1, 4
The power supply electrodes 5 and the four earth electrodes 6 from the lower disk 1a of the reaction vessel are arranged. The length of the power supply electrode 5 and the ground electrode 6 is 200 mm. In addition, the frequency 40
The configuration is such that power is supplied to the four power supply electrodes 5 from a 0 MHz ultrahigh frequency power supply 7 through a matching device 8 and a power supply 9 which branches the power.

【0036】反応容器1の上部円盤1bの上部にはガス
導入管2を配置してあり、このガス導入管2は図示しな
いバルブを介してガス供給部(ガスボンベ等)に接続さ
れている。また、反応容器1の下部円盤1aにはガス排
気用の排気管3を配置し、該排気管3は図示しないバル
ブを介してターボ分子ポンプとそれに続くドライポンプ
に連結されている。
A gas introduction pipe 2 is disposed above the upper disk 1b of the reaction vessel 1. The gas introduction pipe 2 is connected to a gas supply unit (gas cylinder or the like) via a valve (not shown). An exhaust pipe 3 for exhausting gas is disposed on the lower disk 1a of the reaction vessel 1, and the exhaust pipe 3 is connected to a turbo molecular pump and a subsequent dry pump via a valve (not shown).

【0037】次に、感光体膜の作成手順について説明す
る。まず前記円筒形ステンレス製基板支持体4aを包む
ように、有機溶剤で脱脂洗浄した外径100mmで長さ
330mmのAl製円筒状基体4を設置した。そして反
応容器1内を7×10~4Paに排気しながら、円筒状基
体4を250℃に昇温した。次に回転機構10でAl製
円筒状基体4を15rpmで回転させながら、Al製円
筒状基体4上に電荷注入阻止層、光導電層、表面保護層
を順次積層した。このときの各層の成膜条件は以下の表
2に示す通りであり、全層での平均成膜速度は、28μ
m/hrであった。
Next, a procedure for forming a photoreceptor film will be described. First, an Al cylindrical substrate 4 having an outer diameter of 100 mm and a length of 330 mm, which was degreased and washed with an organic solvent, was installed so as to surround the cylindrical stainless steel substrate support 4 a. The temperature of the cylindrical substrate 4 was raised to 250 ° C. while the inside of the reaction vessel 1 was evacuated to 7 × 10 to 4 Pa. Next, the charge injection preventing layer, the photoconductive layer, and the surface protection layer were sequentially laminated on the Al cylindrical substrate 4 while rotating the Al cylindrical substrate 4 at 15 rpm by the rotation mechanism 10. At this time, the film forming conditions of each layer are as shown in Table 2 below, and the average film forming speed of all the layers is 28 μm.
m / hr.

【0038】[0038]

【表2】 [Table 2]

【0039】以上のようにして作成した電子写真用感光
体を半導体レーザープリンターに装着し、前述の実施例
1と同じ条件で画像評価試験を行った。その結果得られ
た画像は、オリジナル原稿として用いた1mm当たり8
組の白黒の線(白、黒それぞれの線幅が62.5μmに
相当)のパターンを忠実に再現しており、画像欠陥も無
かった。
The electrophotographic photosensitive member prepared as described above was mounted on a semiconductor laser printer, and an image evaluation test was performed under the same conditions as in Example 1 described above. The resulting image is 8 per mm used as the original document.
The pattern of the set of black and white lines (the line width of each of white and black was equivalent to 62.5 μm) was faithfully reproduced, and there was no image defect.

【0040】(実施例3:請求項4の実施例)図4に示
した構成のプラズマCVD装置により、a−Si系電子
写真用感光体を作製した例を示す。まず、使用した装置
について説明する。ステンレス製の円筒形反応容器1内
に該反応容器1と中心軸を同じくして回転機構10と加
熱機構16が付いている円筒形ステンレス製基板支持体
4aを配置している。さらに、円筒形反応容器1に中心
軸を同じくして半径300mmの円周上に、反応容器上
部円盤1bから4本の電力供給電極5と、反応容器下部
円盤1aから4本のアース電極6を配置してある。電力
供給電極5とアース電極6の長さは250mmである。
また、周波数300MHzの超短波電源7から整合器8
と電力を分岐する給電器9を通して4本の電力供給電極
5に電力を供給する構成となっている。
(Embodiment 3: Embodiment of Claim 4) An example is shown in which an a-Si type electrophotographic photoreceptor is manufactured using a plasma CVD apparatus having the structure shown in FIG. First, the used apparatus will be described. A cylindrical stainless steel substrate support 4a having a rotation mechanism 10 and a heating mechanism 16 having the same central axis as the reaction vessel 1 is arranged in the cylindrical reaction vessel 1 made of stainless steel. Further, four power supply electrodes 5 from the upper disk 1b of the reaction vessel and four earth electrodes 6 from the lower disk 1a of the reaction vessel are arranged on a circumference having a radius of 300 mm with the same central axis as the cylindrical reaction vessel 1. It is arranged. The length of the power supply electrode 5 and the ground electrode 6 is 250 mm.
Further, a matching device 8 is connected to an
The power is supplied to the four power supply electrodes 5 through a power supply 9 that branches the power.

【0041】さらに、ステンレス製の円筒形反応容器1
内に該反応容器1と中心軸を同じくして、内径350m
m、厚さ20mmのアルミナ製誘電体円筒15を配置し
てある。この誘電体円筒15と反応容器上部円盤1b及
び下部円盤1aは、Oリングを用いて真空シールしてあ
る。この誘電体円筒15と円筒形反応容器1の間の空間
には、この空間でのプラズマの発生を起こさないように
するため、N2 ガスを大気圧で充填してある。
Further, a cylindrical reaction vessel 1 made of stainless steel
The inner diameter of the reaction vessel 1 is 350 m
An alumina dielectric cylinder 15 having a thickness of 20 mm and a thickness of 20 mm is arranged. The dielectric cylinder 15 and the upper and lower disks 1b and 1a of the reaction vessel are vacuum-sealed using an O-ring. The space between the dielectric cylinder 15 and the cylindrical reaction vessel 1 is filled with N 2 gas at atmospheric pressure in order to prevent generation of plasma in this space.

【0042】反応容器1の上部円盤1bの上部にはガス
導入管2を配置してあり、このガス導入管2は図示しな
いバルブを介してガス供給部(ガスボンベ等)に接続さ
れている。また、反応容器1の下部円盤1aにはガス排
気用の排気管3を配置し、該排気管3は図示しないバル
ブを介してターボ分子ポンプとそれに続くドライポンプ
に連結されている。
A gas introduction pipe 2 is disposed above the upper disk 1b of the reaction vessel 1. The gas introduction pipe 2 is connected to a gas supply unit (gas cylinder or the like) via a valve (not shown). An exhaust pipe 3 for exhausting gas is disposed on the lower disk 1a of the reaction vessel 1, and the exhaust pipe 3 is connected to a turbo molecular pump and a subsequent dry pump via a valve (not shown).

【0043】次に、感光体膜の作成手順について説明す
る。まず前記円筒形ステンレス製基板支持体4aを包む
ように、有機溶剤で脱脂洗浄した外径100mmで長さ
330mmのAl製円筒状基体4を設置した。そして反
応容器1内を7×10~4Paに排気しながら、円筒状基
体4を加熱機構のヒータ16で250℃に昇温した。次
に回転機構10でAl製円筒状基体4を15rpmで回
転させながら、Al製円筒状基体4上に電荷注入阻止
層、光導電層、表面保護層を順次積層した。このときの
各層の成膜条件は前述の実施例1で示した表1と同じで
あり、全層での平均成膜速度は、27μm/hrであっ
た。
Next, a procedure for forming a photosensitive film will be described. First, an Al cylindrical substrate 4 having an outer diameter of 100 mm and a length of 330 mm, which was degreased and washed with an organic solvent, was installed so as to surround the cylindrical stainless steel substrate support 4 a. While the inside of the reaction vessel 1 was evacuated to 7 × 10 to 4 Pa, the temperature of the cylindrical substrate 4 was raised to 250 ° C. by the heater 16 of the heating mechanism. Next, the charge injection preventing layer, the photoconductive layer, and the surface protection layer were sequentially laminated on the Al cylindrical substrate 4 while rotating the Al cylindrical substrate 4 at 15 rpm by the rotation mechanism 10. At this time, the film forming conditions of each layer were the same as those in Table 1 shown in Example 1 described above, and the average film forming speed of all the layers was 27 μm / hr.

【0044】以上のようにして作成した電子写真用感光
体を半導体レーザープリンターに装着し、前述の実施例
1と同じ条件で画像評価試験を行った。その結果得られ
た画像は、オリジナル原稿として用いた1mm当たり8
組の白黒の線(白、黒それぞれの線幅が62.5μmに
相当)のパターンを忠実に再現しており、画像欠陥も無
かった。
The electrophotographic photosensitive member prepared as described above was mounted on a semiconductor laser printer, and an image evaluation test was performed under the same conditions as in Example 1 described above. The resulting image is 8 per mm used as the original document.
The pattern of the set of black and white lines (the line width of each of white and black was equivalent to 62.5 μm) was faithfully reproduced, and there was no image defect.

【0045】[0045]

【発明の効果】以上説明したように、請求項1に係る発
明は、反応容器と、該反応容器に反応ガスを導入する手
段と、該反応ガスを排気する手段と、該反応容器中に配
置された被成膜円筒状基体と、該反応容器内にプラズマ
を発生させる30MHz〜600MHzの高周波電力を
印加する手段を有し、プラズマCVD法による成膜を行
うプラズマCVD装置において、前記円筒状基体の外側
の該円筒状基体と中心軸を同じくした円周上の位置に複
数の棒状の電力供給電極と複数の棒状のアース電極を設
けると共に、該円筒状基体を回転する機構を設けたこと
により、0.1〜10Paの低圧で実質的に電力供給電
極とアース電極の間で安定した放電が可能となり、ダス
トの発生による欠陥が少ない膜で、且つ、均一性の良い
膜が高い成膜速度で得られる。さらに、円筒状基体を回
転させることにより均一性の良い膜が得られる。
As described above, according to the first aspect of the present invention, there is provided a reaction vessel, a means for introducing a reaction gas into the reaction vessel, a means for exhausting the reaction gas, and a device disposed in the reaction vessel. A cylindrical substrate to be deposited, and means for applying high-frequency power of 30 MHz to 600 MHz for generating plasma in the reaction vessel, wherein the cylindrical substrate is formed by a plasma CVD method. By providing a plurality of rod-shaped power supply electrodes and a plurality of rod-shaped ground electrodes at positions on the circumference having the same central axis as that of the cylindrical base outside the base, and by providing a mechanism for rotating the cylindrical base. At a low pressure of 0.1 to 10 Pa, a stable discharge can be substantially performed between the power supply electrode and the ground electrode, and a film having few defects due to generation of dust and a film having good uniformity has a high film forming rate. Obtained. Furthermore, a film with good uniformity can be obtained by rotating the cylindrical substrate.

【0046】請求項2に係る発明は、請求項1に記載の
プラズマCVD装置において、前記電力供給電極と前記
アース電極の長さが、前記高周波の波長の略1/4また
は5/4であることにより、放電空間内に電磁波の定在
波が立ち安定して大きな電力の投入が可能となる。よっ
て、安定して高い密度のプラズマの発生が可能となり、
より高い成膜速度が得られる。
According to a second aspect of the present invention, in the plasma CVD apparatus according to the first aspect, the lengths of the power supply electrode and the ground electrode are approximately 1 / or / of the wavelength of the high frequency wave. As a result, a standing wave of an electromagnetic wave is generated in the discharge space, and a large amount of power can be supplied stably. Therefore, it is possible to stably generate high-density plasma,
A higher deposition rate can be obtained.

【0047】請求項3に係る発明は、請求項1または2
に記載のプラズマCVD装置において、前記円筒状基体
に10KHz〜20MHzのバイアス高周波電力を印加
する手段を設けたことにより、電力に応じてプラズマ電
位に対して負の数ボルト〜数十ボルトのシース電位を生
じさせることができる。そして、プラズマ中で生成した
粉体は負に帯電することが多いので、このシース電位が
粉体が基体(あるいは基体上の基板)に近づくのを防ぐ
ことができる。また、このような高密度プラズマを用い
た成膜法は、成膜速度が大きい反面、膜の緻密さが劣る
場合があるが、このような場合、シース電位を生じさせ
ることにより、正にイオン化したガスがより多く基板を
たたき緻密な膜が得られるようになる。
The invention according to claim 3 is the invention according to claim 1 or 2
Wherein the means for applying a bias high-frequency power of 10 KHz to 20 MHz is provided to the cylindrical substrate, so that a sheath potential of several volts to several tens volts negative with respect to the plasma potential depending on the power. Can be caused. Since the powder generated in the plasma is often negatively charged, the sheath potential can prevent the powder from approaching the substrate (or the substrate on the substrate). In addition, in the film formation method using such high-density plasma, the film formation rate is high, but the film density may be inferior. In such a case, the ionization is positively performed by generating a sheath potential. The denser the gas, the more the gas hits the substrate, and a dense film can be obtained.

【0048】請求項4に係る発明は、請求項1または2
または3に記載のプラズマCVD装置において、前記複
数の棒状の電力供給電極と複数の棒状のアース電極の位
置する円周上の外側または内側に中心軸を同じくして誘
電体からなる円筒を設けたことにより、実質的に反応容
器体積が小さくなり、反応ガスの滞在時間が短くなるた
め、反応容器内で分解したガスは、ポリマー化が進まな
いうちに反応容器外に排出される。そのため、基体(あ
るいは基体上の基板)への粉体の付着が少なくなり、成
膜後の膜の欠陥が少なくなる。
The invention according to claim 4 is the invention according to claim 1 or 2
Or the plasma CVD apparatus according to 3, wherein a cylinder made of a dielectric material is provided outside or inside the circumference on which the plurality of rod-shaped power supply electrodes and the plurality of rod-shaped ground electrodes are located with the same central axis. This substantially reduces the volume of the reaction vessel and shortens the residence time of the reaction gas, so that the gas decomposed in the reaction vessel is discharged to the outside of the reaction vessel before polymerization proceeds. Therefore, the amount of powder adhering to the substrate (or the substrate on the substrate) is reduced, and the number of defects in the formed film is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態を示す図であり、
(A)はプラズマCVD装置を上から見た概略断面図、
(B)は(A)のA−A部分の概略断面図である。
FIG. 1 is a diagram showing a first embodiment of the present invention,
(A) is a schematic cross-sectional view of the plasma CVD apparatus viewed from above,
(B) is a schematic sectional view of AA part of (A).

【図2】本発明の第2の実施形態を示す図であり、
(A)はプラズマCVD装置を上から見た概略断面図、
(B)は(A)のA−A部分の概略断面図である。
FIG. 2 is a diagram showing a second embodiment of the present invention,
(A) is a schematic cross-sectional view of the plasma CVD apparatus viewed from above,
(B) is a schematic sectional view of AA part of (A).

【図3】本発明の第3の実施形態を示す図であり、
(A)はプラズマCVD装置を上から見た概略断面図、
(B)は(A)のA−A部分の概略断面図である。
FIG. 3 is a diagram showing a third embodiment of the present invention;
(A) is a schematic cross-sectional view of the plasma CVD apparatus viewed from above,
(B) is a schematic sectional view of AA part of (A).

【図4】本発明の第4の実施形態を示す図であり、
(A)はプラズマCVD装置を上から見た概略断面図、
(B)は(A)のA−A部分の概略断面図である。
FIG. 4 is a diagram showing a fourth embodiment of the present invention;
(A) is a schematic cross-sectional view of the plasma CVD apparatus viewed from above,
(B) is a schematic sectional view of AA part of (A).

【符号の説明】[Explanation of symbols]

1:反応容器 1a:反応容器の下部円盤 1b:反応容器の上部円盤 2:ガス導入管 3:排気管 4:円筒状基体 4a:円筒状基体の支持体 4b:リング 5:電力供給電極 6:アース電極 7:超短波電源 8:整合器 9:給電器 10:円筒状基体回転機構 10a:モータ 10b,10c:ギヤ 11:電力分配部 11a:電力分配円板 11b:誘電体部材 12:バイアス高周波電源 13:整合器 14:カーボンスライダー 15:誘電体円筒 16:ヒータ(加熱機構) 1: Reaction vessel 1a: Lower disc of reaction vessel 1b: Upper disc of reaction vessel 2: Gas introduction pipe 3: Exhaust pipe 4: Cylindrical base 4a: Support of cylindrical base 4b: Ring 5: Power supply electrode 6: Ground electrode 7: Ultra high frequency power supply 8: Matching device 9: Power supply 10: Cylindrical substrate rotating mechanism 10a: Motor 10b, 10c: Gear 11: Power distribution section 11a: Power distribution disk 11b: Dielectric member 12: Bias high frequency power supply 13: Matching device 14: Carbon slider 15: Dielectric cylinder 16: Heater (heating mechanism)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】反応容器と、該反応容器に反応ガスを導入
する手段と、該反応ガスを排気する手段と、該反応容器
中に配置された被成膜円筒状基体と、該反応容器内にプ
ラズマを発生させる30MHz〜600MHzの高周波
電力を印加する手段を有し、プラズマCVD法による成
膜を行うプラズマCVD装置において、 前記円筒状基体の外側の該円筒状基体と中心軸を同じく
した円周上の位置に複数の棒状の電力供給電極と複数の
棒状のアース電極を設けると共に、該円筒状基体を回転
する機構を設けることを特徴とするプラズマCVD装
置。
1. A reaction vessel, means for introducing a reaction gas into the reaction vessel, means for exhausting the reaction gas, a film-forming cylindrical substrate disposed in the reaction vessel, and A plasma CVD apparatus for forming a film by a plasma CVD method, which has means for applying a high-frequency power of 30 MHz to 600 MHz for generating plasma to the plasma, wherein a circle having the same central axis as the cylindrical substrate outside the cylindrical substrate. A plasma CVD apparatus, comprising: a plurality of rod-shaped power supply electrodes and a plurality of rod-shaped ground electrodes provided at circumferential positions; and a mechanism for rotating the cylindrical substrate.
【請求項2】前記電力供給電極と前記アース電極の長さ
が、前記高周波の波長の略1/4または5/4であるこ
とを特徴とする請求項1に記載のプラズマCVD装置。
2. The plasma CVD apparatus according to claim 1, wherein the lengths of the power supply electrode and the ground electrode are approximately 1/4 or 5/4 of the wavelength of the high frequency.
【請求項3】前記円筒状基体に10KHz〜20MHz
の高周波電力を印加する手段を設けることを特徴とする
請求項1または2に記載のプラズマCVD装置。
3. The method according to claim 1, wherein the cylindrical substrate has a frequency of 10 KHz to 20 MHz.
3. The plasma CVD apparatus according to claim 1, further comprising means for applying the high-frequency power.
【請求項4】前記複数の棒状の電力供給電極と複数の棒
状のアース電極の位置する円周上の外側または内側に中
心軸を同じくして誘電体からなる円筒を設けることを特
徴とする請求項1または2または3に記載のプラズマC
VD装置。
4. A cylinder made of a dielectric material having the same central axis is provided outside or inside the circumference where the plurality of rod-shaped power supply electrodes and the plurality of rod-shaped ground electrodes are located. Item C. The plasma C according to item 1, 2 or 3.
VD device.
JP10176188A 1998-06-23 1998-06-23 Plasma cvd device Pending JP2000008170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10176188A JP2000008170A (en) 1998-06-23 1998-06-23 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10176188A JP2000008170A (en) 1998-06-23 1998-06-23 Plasma cvd device

Publications (1)

Publication Number Publication Date
JP2000008170A true JP2000008170A (en) 2000-01-11

Family

ID=16009194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10176188A Pending JP2000008170A (en) 1998-06-23 1998-06-23 Plasma cvd device

Country Status (1)

Country Link
JP (1) JP2000008170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086581A (en) * 2001-09-14 2003-03-20 Mitsui Eng & Shipbuild Co Ltd Antenna for generating large-area plasma

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086581A (en) * 2001-09-14 2003-03-20 Mitsui Eng & Shipbuild Co Ltd Antenna for generating large-area plasma
JP4564213B2 (en) * 2001-09-14 2010-10-20 三井造船株式会社 Plasma generating antenna and CVD apparatus

Similar Documents

Publication Publication Date Title
US5534070A (en) Plasma CVD process using a very-high-frequency and plasma CVD apparatus
US5849455A (en) Plasma processing method and plasma processing apparatus
JPS59193265A (en) Plasma cvd apparatus
WO2004083486A1 (en) Method and apparatus for plasma cdv by use of ultrashort wave
JP3501668B2 (en) Plasma CVD method and plasma CVD apparatus
JP3406936B2 (en) Plasma CVD method using ultrashort wave and plasma CVD apparatus
JP2000008170A (en) Plasma cvd device
US5558719A (en) Plasma processing apparatus
EP0674335B1 (en) Plasma processing method and plasma processing apparatus
JPH024976A (en) Thin film formation
JPH06295866A (en) Plasma reaction system
JPS63243278A (en) Production of thin film
JPS5889943A (en) Plasma cvd device
JPH09256160A (en) Plasma cvd device and deposited film forming method by plasma cvd
JP3544076B2 (en) Plasma CVD apparatus and method for forming deposited film by plasma CVD
US6268582B1 (en) ECR plasma CVD apparatus
JPH04247877A (en) Deposited film forming device
JPS62174383A (en) Thin film deposition device
JPH09283449A (en) Plasma chemical vapor deposition system
JPS6256573A (en) Thin film forming device
JPH08236460A (en) Method and device for forming deposited film
JPH05217915A (en) Plasma cvd device
JP2958850B2 (en) Plasma CVD apparatus and method for manufacturing amorphous silicon photoreceptor using the same
JPH01279758A (en) Plasma treatment apparatus
JPH01279757A (en) Plasma treatment apparatus