JP2006260925A - Direct current high speed vacuum circuit breaker - Google Patents

Direct current high speed vacuum circuit breaker Download PDF

Info

Publication number
JP2006260925A
JP2006260925A JP2005076457A JP2005076457A JP2006260925A JP 2006260925 A JP2006260925 A JP 2006260925A JP 2005076457 A JP2005076457 A JP 2005076457A JP 2005076457 A JP2005076457 A JP 2005076457A JP 2006260925 A JP2006260925 A JP 2006260925A
Authority
JP
Japan
Prior art keywords
current
circuit
capacitor
vacuum valve
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005076457A
Other languages
Japanese (ja)
Inventor
Yasuhiko Hosokawa
靖彦 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2005076457A priority Critical patent/JP2006260925A/en
Publication of JP2006260925A publication Critical patent/JP2006260925A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably shut off a large direct current, to completely cut off a circuit after shutdown, and to prolong a contact service life of a vacuum bulb. <P>SOLUTION: This direct current high speed vacuum circuit breaker composed by connecting in series, a first serial circuit with a commutation capacitor 1, a thyristor 2 and a commutation reactor 3 is connected in parallel to a second serial circuit with the vacuum bulb 4 and a saturable reactor 6 serially connected, and a capacitor 7 is connected with the saturable reactor 6 in parallel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、主として電鉄用の直流変電所に設置され、架線短絡事故時に主回路を遮断して電源回路を保護する真空バルブを用いた直流高速真空遮断装置に関する。   The present invention relates to a DC high-speed vacuum shut-off device using a vacuum valve that is installed mainly in a DC substation for electric railways and shuts off a main circuit and protects a power supply circuit in the event of an overhead wire short circuit accident.

従来、例えば電鉄用の直流変電所においては、架線短絡事故時に電源回路を保護するため、真空バルブを用いた直流高速真空遮断装置が設置されている。   2. Description of the Related Art Conventionally, for example, in a DC substation for electric railways, a DC high-speed vacuum shut-off device using a vacuum valve has been installed to protect a power supply circuit in the event of an overhead wire short circuit accident.

図4は、かかる従来の直流高速真空遮断装置の回路構成を示すものである。   FIG. 4 shows a circuit configuration of such a conventional DC high-speed vacuum interrupter.

この直流高速真空遮断装置は、転流コンデンサ1、転流スイッチ2(サイリスタを用いることが多いので以後サイリスタと呼ぶ)、転流リアクトル又は配線の浮遊インダクタンス3が直列に接続された第1の直列回路と、直流を遮断する真空バルブ4、該真空バルブ4と配線のインダクタンスに蓄えられたエネルギーを吸収する非線形抵抗5及びスナバコンデンサ8の並列接続回路に可飽和リアクトル6を直列接続してなる第2の直列回路とを並列接続して構成され、図示しない電源回路と架線とを結ぶ主回路に設けられている。   This DC high-speed vacuum circuit breaker is a first series in which a commutation capacitor 1, a commutation switch 2 (hereinafter often referred to as a thyristor because a thyristor is often used), a commutation reactor, or a floating inductance 3 of wiring is connected in series. A saturable reactor 6 is connected in series to a parallel connection circuit of a circuit, a vacuum valve 4 that cuts off direct current, a nonlinear resistor 5 that absorbs energy stored in the inductance of the vacuum valve 4 and wiring, and a snubber capacitor 8. The two series circuits are connected in parallel, and are provided in a main circuit that connects a power supply circuit (not shown) and an overhead line.

図5は上記のサイリスタに代えて機械式のスイッチを使用した直流高速真空遮断装置の回路構成を示すもので、それ以外は図4と全く同じある(例えば、特許文献1)。   FIG. 5 shows a circuit configuration of a DC high-speed vacuum interrupter using a mechanical switch in place of the thyristor, and the other configuration is exactly the same as FIG. 4 (for example, Patent Document 1).

次に図4に示す直流高速真空遮断装置の動作について説明する。   Next, the operation of the DC high-speed vacuum interrupter shown in FIG. 4 will be described.

いま、真空バルブ4を通して主回路電流Iが流れているものとし、また転流コンデンサ1には予め図示しない充電回路によって図示極性に充電されているものとする。   It is assumed that the main circuit current I is flowing through the vacuum valve 4 and that the commutation capacitor 1 is charged to the illustrated polarity by a charging circuit (not illustrated) in advance.

このような状態にあるとき、真空バルブ4に外部から遮断信号が与えられるか、または図示しない電流検出手段により主回路に異常電流が流れていることが検出されると、まず真空バルブ4を開極させ、その直後サイリスタ2を点弧する。   In such a state, when a shut-off signal is given to the vacuum valve 4 from the outside, or when it is detected that an abnormal current is flowing in the main circuit by current detection means (not shown), the vacuum valve 4 is first opened. Immediately after that, the thyristor 2 is ignited.

すると、転流コンデンサ1、真空バルブ4、可飽和リアクトル6、サイリスタ2、転流リアクトル3及び転流コンデンサ1のループで直列共振回路が構成され、転流コンデンサ1に蓄えられた電荷により共振電流が流れる。   Then, a series resonance circuit is formed by a loop of the commutation capacitor 1, the vacuum valve 4, the saturable reactor 6, the thyristor 2, the commutation reactor 3, and the commutation capacitor 1, and the resonance current is generated by the electric charge stored in the commutation capacitor 1. Flows.

この電流の最大値は、予測される主回路電流の最大値より大きくなるように転流コンデンサ1と転流リアクトル3の値及び転流コンデンサ1の初期充電電圧が決められている。   The values of commutation capacitor 1 and commutation reactor 3 and the initial charging voltage of commutation capacitor 1 are determined so that the maximum value of this current is larger than the predicted maximum value of main circuit current.

真空バルブの開極後、主回路電流はアークとなって流れ続けるが、このとき前記共振電流は主回路電流より大きいため、真空バルブ内の電流はゼロ点を通過し極性反転しようとする。この際、可飽和リアクトル6が飽和から開放されて高インダクタンスとなり、電流の変化速度を弱める。   After the opening of the vacuum valve, the main circuit current continues to flow as an arc. At this time, since the resonance current is larger than the main circuit current, the current in the vacuum valve passes the zero point and tries to reverse the polarity. At this time, the saturable reactor 6 is released from saturation and becomes a high inductance, and the rate of change of current is weakened.

電流がゼロ点付近を通過する時点t2付近では、真空バルブ4内のアークは消滅し、ギャップには絶縁が回復して電圧が発生する。この真空バルブ4に発生する電圧は転流コンデンサ1の電圧とほぼ等しくなる。転流コンデンサ1の電圧は、転流回路のリアクトル3及び主回路の電源や負荷に存在する浮遊インダクタンスに蓄えられたエネルギーにより、逆方向に上昇を続ける。   Near the time t2 when the current passes near the zero point, the arc in the vacuum valve 4 disappears, and the insulation is restored in the gap to generate a voltage. The voltage generated in the vacuum valve 4 is substantially equal to the voltage of the commutation capacitor 1. The voltage of the commutation capacitor 1 continues to increase in the opposite direction due to the energy stored in the stray inductance existing in the reactor 3 of the commutation circuit and the power supply and load of the main circuit.

この電圧がある程度大きくなると、非線形抵抗5に電流が流れる。非線形抵抗5の通電閾値電圧は電源電圧より高く設定されているので、主回路電流は減衰してやがて電流ゼロとなり、遮断が完了する。   When this voltage increases to some extent, a current flows through the nonlinear resistor 5. Since the energization threshold voltage of the non-linear resistance 5 is set higher than the power supply voltage, the main circuit current attenuates and eventually becomes zero, and the interruption is completed.

図5に示す直流高速真空遮断装置においても、共振電流を流すためのスイッチとしてサイリスタに代えて機械式のスイッチ21に置き換えたものであり、遮断動作は上述と全く同様である。   In the DC high-speed vacuum cutoff device shown in FIG. 5 as well, a mechanical switch 21 is used instead of a thyristor as a switch for flowing a resonance current, and the cutoff operation is exactly the same as described above.

図6は短絡事故電流を遮断したときの各部の電流・電圧波形を示している。   FIG. 6 shows current / voltage waveforms at various points when the short-circuit fault current is interrupted.

図6において、時刻t0で短絡事故が発生すると、時刻t1で真空バルブ4が開極を開始し、時刻t2で共振電流により真空バルブ4に流れる電流がゼロとなる。そして、時刻t3で非線形抵抗5に電流が流れ始めると、次第に主回路電流が減少し、時刻t4で主回路電流がゼロとなって遮断が完了する。   In FIG. 6, when a short circuit accident occurs at time t0, the vacuum valve 4 starts opening at time t1, and the current flowing through the vacuum valve 4 by the resonance current becomes zero at time t2. When the current starts to flow through the non-linear resistance 5 at time t3, the main circuit current gradually decreases, and at time t4, the main circuit current becomes zero and the interruption is completed.

図7は、図6に示す動作波形のうち真空バルブの電流ゼロ点を通過する付近の動作説明図であり、(a)は時刻t2付近の等価回路、(b)は時間軸の拡大波形である。   FIG. 7 is an explanatory diagram of the operation in the vicinity of passing through the zero point of the vacuum valve among the operation waveforms shown in FIG. 6, (a) is an equivalent circuit near time t2, and (b) is an enlarged waveform of the time axis. is there.

真空バルブの電流IVSCが減少し、ゼロ点付近まで来ると可飽和リアクトル6が飽和から開放されるため、大きなインダクタンスを示す。   When the current IVSC of the vacuum valve decreases and comes close to the zero point, the saturable reactor 6 is released from saturation, and thus shows a large inductance.

その結果、回路のインダクタンスは可飽和リアクトルのインダクタンスが支配的となり、転流リアクトル3のインダクタンスは無視して考えても良い。そのため、等価回路は図7(a)のようになる。このとき、転流コンデンサの電圧VCは殆ど可飽和リアクトルにかかり、VC=VSLとなる。   As a result, the inductance of the saturable reactor is dominant in the inductance of the circuit, and the inductance of the commutation reactor 3 may be ignored. Therefore, the equivalent circuit is as shown in FIG. At this time, the voltage VC of the commutation capacitor is almost applied to the saturable reactor, and VC = VSL.

その後、真空バルブのアークが消滅し、極間の絶縁が回復すると、IVSCは急激に減少してゼロになる。その結果、可飽和リアクトルにかかっていた電圧VSLもゼロとなるが、このときの電流変化で可飽和リアクトルの端子間に大きな電圧が瞬時に誘起され、この電圧が真空バルブの極間にかかる。   After that, when the arc of the vacuum valve is extinguished and the insulation between the poles is restored, the IVSC rapidly decreases to zero. As a result, the voltage VSL applied to the saturable reactor also becomes zero, but a large voltage is instantaneously induced between the terminals of the saturable reactor due to the current change at this time, and this voltage is applied between the electrodes of the vacuum valve.

同時に転流コンデンサの電圧も真空バルブの極間にかかるため、真空バルブの極間電圧VVSCは急上昇する。この電圧が印加される時点で真空バルブはアークが消滅したばかりで、絶縁が不完全な状態にあるとともに、極間の距離も小さいため、再発弧して遮断失敗に至ることがある。特に大きな事故電流を遮断した場合には事故電流によるアークエネルギーが大きいため、再発弧が起き易い。また、高速遮断を実現するためには極間の距離が十分確保しない状態で遮断する必要があるため、より再発弧し易い。これを防止するためにスナバコンデンサ8が設けられており、スナバコンデンサにより真空バルブの極間電圧VVSCの上昇は抑制され、図示点線のように変化する。
特開平4−259719号公報
At the same time, since the voltage of the commutation capacitor is also applied between the electrodes of the vacuum valve, the voltage VVSC between the electrodes of the vacuum valve increases rapidly. At the time when this voltage is applied, the arc of the vacuum valve has just disappeared, the insulation is incomplete, and the distance between the poles is small, so that the arc may recur and fail to shut off. In particular, when a large accident current is interrupted, the arc energy due to the accident current is large, and re-arcing is likely to occur. Moreover, since it is necessary to cut off in a state where the distance between the poles is not sufficiently secured in order to realize high-speed cut-off, the re-arcing is easier. In order to prevent this, a snubber capacitor 8 is provided. The snubber capacitor suppresses an increase in the inter-electrode voltage VVSC of the vacuum valve and changes as shown by a dotted line in the figure.
JP-A-4-259719

このように従来の直流高速真空遮断装置においては、遮断完了後もスナバコンデンサ8を介して電流が流れ、負荷と電源とを完全に絶縁することができないという問題があった。   As described above, the conventional DC high-speed vacuum circuit breaker has a problem that even after completion of the circuit breakage, current flows through the snubber capacitor 8 and the load and the power source cannot be completely insulated.

図8は、従来の直流高速真空遮断装置を電鉄用等の直流電源の高速遮断器として適用した場合の電源及び負荷を含めた回路構成を示すものである。図8において、9はダイオード整流器、10は列車負荷である。   FIG. 8 shows a circuit configuration including a power source and a load when a conventional DC high-speed vacuum circuit breaker is applied as a high-speed circuit breaker of a DC power source for electric railways or the like. In FIG. 8, 9 is a diode rectifier and 10 is a train load.

通常ダイオード整流器の直流出力電圧は、完全な直流ではなく、かなり大きなリップル電圧を含んでいる。このリップル電圧は交流成分であり、コンデンサは交流分に対するインピーダンスが低いため、開放状態においてもスナバコンデンサ8を通って実線矢印11のルートで交流電流が流れる。これにより、回路が完全な開放状態とならず、負荷に不要な電圧が印加されるという問題があった。   Usually, the direct current output voltage of a diode rectifier is not perfect direct current but includes a considerably large ripple voltage. Since this ripple voltage is an alternating current component and the capacitor has a low impedance with respect to the alternating current component, an alternating current flows through the snubber capacitor 8 along the route of the solid arrow 11 even in an open state. As a result, the circuit is not completely opened, and there is a problem that an unnecessary voltage is applied to the load.

さらに、スナバコンデンサ8は、整流器9により図示極性に充電されるので、次に真空バルブ4が投入される際にコンデンサ8に充電された電荷が点線矢印12のルートで放電する。そして、投入時しばらくは真空バルブ4の接点に機械的な振動を発生して接触状態と非接触状態を繰返すが、この際にコンデンサの電荷が放電することによって接点が荒れ、寿命が短くなるという問題もあった。   Furthermore, since the snubber capacitor 8 is charged to the illustrated polarity by the rectifier 9, the charge charged in the capacitor 8 is discharged along the route indicated by the dotted arrow 12 when the vacuum valve 4 is next turned on. And for a while, the mechanical vibration is generated at the contact point of the vacuum valve 4 to repeat the contact state and the non-contact state. At this time, the capacitor charge is discharged and the contact point becomes rough and the life is shortened. There was also a problem.

本発明は、上記のような問題点を解消するためになされたもので、真空バルブのアーク消滅と同時に発生する極間電圧の急激な上昇を防止でき、且つ遮断後の電源と負荷との完全な遮断状態を実現するとともに、投入時の真空バルブの接点荒れをも防止できる安価な直流高速真空遮断装置を提供することを目的とする。   The present invention has been made to solve the above problems, and can prevent a rapid increase in the interelectrode voltage that occurs simultaneously with the extinction of the arc of the vacuum valve. An object of the present invention is to provide an inexpensive direct-current high-speed vacuum interrupter capable of realizing a simple interrupted state and preventing rough contact of the vacuum valve at the time of charging.

本発明は、上記の目的を達成するため、第1のコンデンサ、スイッチ及びインダクタンスを直列接続してなる第1の直列回路と、真空バルブ及び可飽和リアクトルを直列接続してなる第2の直列回路とを並列接続し、且つ前記可飽和リアクトルに並列に第2のコンデンサを接続する構成とする。   In order to achieve the above object, the present invention provides a first series circuit in which a first capacitor, a switch and an inductance are connected in series, and a second series circuit in which a vacuum valve and a saturable reactor are connected in series. Are connected in parallel, and a second capacitor is connected in parallel to the saturable reactor.

本発明によれば、電流遮断直後に可飽和リアクトルに流れていた電流を並列コンデンサに流し、コンデンサを徐々に放電させることにより真空バルブの極間電圧が急上昇することを防止できるので、真空バルブが再発弧することがなく、大電流を安定に遮断し、遮断後は真空バルブで回路を完全に切離すことができる。さらに、コンデンサの電荷は遮断後可飽和リアクトルを通って放電するので、真空バルブ再投入時点でコンデンサ放電電流が流れることがなくなり、接点荒れを防止でき、長寿命化を図ることができる。   According to the present invention, it is possible to prevent the voltage between the electrodes of the vacuum valve from rising rapidly by flowing the current flowing through the saturable reactor immediately after the current interruption to the parallel capacitor, and gradually discharging the capacitor. Without re-arcing, a large current can be shut off stably, and the circuit can be completely disconnected with a vacuum valve after the shut-off. Furthermore, since the electric charge of the capacitor is discharged through the saturable reactor after being cut off, the capacitor discharge current does not flow when the vacuum valve is turned on again, preventing contact roughening and extending the life.

以下本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明による直流高速真空遮断装置の第1の実施形態を示す回路構成図であり、図4と同一部品には同一符号を付して説明する。   FIG. 1 is a circuit configuration diagram showing a first embodiment of a DC high-speed vacuum interrupter according to the present invention, and the same components as those in FIG.

図1に示すように転流コンデンサ1、サイリスタ2及び転流リアクトル3を直列接続してなる第1の直列回路と、真空バルブ4及び可飽和リアクトル6を直列接続してなる第2の直列回路とを並列接続し、且つ真空バルブ4に並列に非直線抵抗5を接続すると共に、可飽和リアクトル6に並列にコンデンサ7を接続する構成とする。   As shown in FIG. 1, a first series circuit in which a commutation capacitor 1, a thyristor 2 and a commutation reactor 3 are connected in series, and a second series circuit in which a vacuum valve 4 and a saturable reactor 6 are connected in series. Are connected in parallel, a non-linear resistance 5 is connected in parallel to the vacuum valve 4, and a capacitor 7 is connected in parallel to the saturable reactor 6.

次に動作について述べる。   Next, the operation will be described.

いま、真空バルブ4を通して主回路電流が流れているものとし、また転流コンデンサ1には予め図示しない充電回路によって図示極性に充電されているものとする。   It is assumed that the main circuit current is flowing through the vacuum valve 4 and that the commutation capacitor 1 is charged to the illustrated polarity in advance by a charging circuit (not illustrated).

このような状態にあるとき、真空バルブ4に外部から遮断信号が与えられるか、または図示しない電流検出手段により主回路に異常電流が流れていることが検出されると、まず真空バルブ4を開極させ、その直後サイリスタ2を点弧する。   In such a state, when a shut-off signal is given to the vacuum valve 4 from the outside, or when it is detected that an abnormal current is flowing in the main circuit by current detection means (not shown), the vacuum valve 4 is first opened. Immediately after that, the thyristor 2 is ignited.

すると、転流コンデンサ1、真空バルブ4、可飽和リアクトル6、サイリスタ2、転流リアクトル3及び転流コンデンサ1のループで直列共振回路が構成され、転流コンデンサ1に蓄えられた電荷により共振電流が流れる。   Then, a series resonance circuit is formed by a loop of the commutation capacitor 1, the vacuum valve 4, the saturable reactor 6, the thyristor 2, the commutation reactor 3, and the commutation capacitor 1, and the resonance current is generated by the electric charge stored in the commutation capacitor 1. Flows.

この電流の最大値は、予測される主回路電流の最大値より大きくなるように転流コンデンサ1と転流リアクトル3の値及び転流コンデンサ1の初期充電電圧が決められている。   The values of commutation capacitor 1 and commutation reactor 3 and the initial charging voltage of commutation capacitor 1 are determined so that the maximum value of this current is larger than the predicted maximum value of main circuit current.

真空バルブ4の開極後、主回路電流Iはアークとなって流れ続けるが、このとき前記共振電流が主回路電流に重畳して流れ、共振電流の最大値が主回路電流より大きいため、真空バルブ4内の電流がゼロに近付き、可飽和リアクトル6が飽和から開放され、電流は変化速度を弱めてゼロ点を過通する。   After the opening of the vacuum valve 4, the main circuit current I continues to flow as an arc, but at this time, the resonance current flows superimposed on the main circuit current, and the maximum value of the resonance current is larger than the main circuit current. The current in the valve 4 approaches zero, the saturable reactor 6 is released from saturation, and the current passes through the zero point at a slower rate of change.

図2は、真空バルブの電流ゼロ点を通過する付近の動作説明図であり、(a)は時刻t2付近の等価回路、(b)は時間軸の拡大波形である。   FIGS. 2A and 2B are diagrams for explaining the operation in the vicinity of the current passing through the zero point of the vacuum valve, where FIG. 2A is an equivalent circuit near time t2, and FIG. 2B is an enlarged waveform of the time axis.

電流IVSCがゼロになる瞬間真空バルブ1内のアークは消滅し、バルブ極間は絶縁が回復して電圧VVSCが発生する。このとき真空バルブの電流IVSCが急激にゼロに変化する。その結果、可飽和リアクトルの電流は並列接続されたコンデンサに流れ、この電流によるコンデンサの放電と共に減少するので、その端子電圧VSLの変化速度は抑制されたものとなる。   At the moment when the current IVSC becomes zero, the arc in the vacuum valve 1 is extinguished, the insulation between the valve poles is restored, and the voltage VVSC is generated. At this time, the current IVSC of the vacuum valve suddenly changes to zero. As a result, the current of the saturable reactor flows through the capacitors connected in parallel and decreases with the discharge of the capacitor due to this current, so that the rate of change of the terminal voltage VSL is suppressed.

さらに、真空バルブの極間電圧VVSCは転流コンデンサ電圧VCと可飽和リアクトル電圧VSLとの差電圧にほぼ等しくなるため、極間電圧VVSCの電圧上昇率が抑制され、大電流を遮断した後も再発弧することがなくなる。   Furthermore, since the voltage VVSC between the electrodes of the vacuum valve is substantially equal to the difference voltage between the commutation capacitor voltage VC and the saturable reactor voltage VSL, the voltage increase rate of the voltage VVSC between the electrodes is suppressed, and even after the large current is cut off. No re-arcing.

このように本実施形態では、真空バルブ4に並列に接続されていたスナバコンデンサ8を取除き、可飽和リフクトル6に並列にコンデンサ7を接続することにより、次のような作用効果を得ることができる。   As described above, in this embodiment, the snubber capacitor 8 connected in parallel to the vacuum valve 4 is removed, and the capacitor 7 is connected in parallel to the saturable reactor 6, thereby obtaining the following effects. it can.

すなわち、直流高速真空遮断装置を電鉄用等の直流電源の高速遮断器として適用した場合、従来の回路構成では、図8に実線矢印で示すように真空バルブ4の絶縁が完了した後もスナバコンデンサ8を通して電源側と負荷側に微小電流が流れるため、回路が完全に切離すことができなかったが、本実施形態ではこのような実線矢印で示すような回路が構成されないので、真空バルブ4で遮断が完了した後は完全に回路の切離しができる。   That is, when the DC high-speed vacuum circuit breaker is applied as a high-speed circuit breaker for a DC power source for electric railways or the like, in the conventional circuit configuration, as shown by the solid line arrow in FIG. Since a small current flows through the power source side and the load side through 8, the circuit could not be completely disconnected. However, in the present embodiment, such a circuit as indicated by the solid line arrow is not configured, so the vacuum valve 4 After disconnection is complete, the circuit can be completely disconnected.

さらに、前述の動作説明のように遮断完了した後にコンデンサ7の電荷は図3に示すように可飽和リアクトル6を通して放電するので、次回に真空バルブ4を投入する際にコンデンサ7の電荷が真空バルブ4を通して放電することがない。したがって、放電電流による真空バルブ接点の荒れを防止することができので、真空バルブの長寿命化を図ることができる。   Furthermore, since the electric charge of the capacitor 7 is discharged through the saturable reactor 6 as shown in FIG. 3 after completion of the interruption as described above, the electric charge of the capacitor 7 is changed to the vacuum valve when the vacuum valve 4 is turned on next time. There is no discharge through 4. Therefore, roughening of the vacuum valve contact due to the discharge current can be prevented, so that the life of the vacuum bulb can be extended.

本発明による高速真空遮断装置の第1の実施形態を示す回路構成図。The circuit block diagram which shows 1st Embodiment of the high-speed vacuum interrupter by this invention. 同実施形態において、真空バルブの電流ゼロ点を通過する付近の動作を説明するための図で、(a)は電流ゼロ点通過時点付近の等価回路図、(b)は時間軸の拡大波形図。In the same embodiment, it is a figure for demonstrating the operation | movement of the vicinity which passes the electric current zero point of a vacuum valve, (a) is an equivalent circuit schematic of the electric current zero point vicinity vicinity, (b) is an enlarged waveform figure of a time-axis. . 同実施形態において、遮断完了後の電流経路を示す図。The figure which shows the electric current path after completion | finish of interruption | blocking in the same embodiment. 従来の高速真空遮断装置の一例を示す回路構成図。The circuit block diagram which shows an example of the conventional high-speed vacuum interrupter. 従来の高速真空遮断装置の他の例を示す回路構成図。The circuit block diagram which shows the other example of the conventional high-speed vacuum interrupter. 従来装置の遮断時の動作を説明するための各部の波形図。The wave form diagram of each part for demonstrating the operation | movement at the time of interruption | blocking of a conventional apparatus. 図6において、真空バルブの電流ゼロ点を通過する付近の動作を説明するための図で、(a)は時刻t2付近の等価回路図、(b)は時間軸の拡大波形図。6A and 6B are diagrams for explaining the operation of the vacuum valve near the current zero point, where FIG. 6A is an equivalent circuit diagram near time t2, and FIG. 6B is an enlarged waveform diagram of the time axis. 従来装置において、遮断完了後の電流経路を示す図。The figure which shows the electric current path after completion | finish of interruption | blocking in a conventional apparatus.

符号の説明Explanation of symbols

1…転流コンデンサ、2…サイリスタ、3…転流リアクトル、4…真空バルブ、5…非線形抵抗、6…可飽和リアクトル、7…コンデンサ、8…スナバコンデンサ、9…ダイオード整流器、10…負荷   DESCRIPTION OF SYMBOLS 1 ... Commutation capacitor, 2 ... Thyristor, 3 ... Commutation reactor, 4 ... Vacuum valve, 5 ... Nonlinear resistance, 6 ... Saturable reactor, 7 ... Capacitor, 8 ... Snubber capacitor, 9 ... Diode rectifier, 10 ... Load

Claims (1)

第1のコンデンサ、スイッチ及びインダクタンスを直列接続してなる第1の直列回路と、真空バルブ及び可飽和リアクトルを直列接続してなる第2の直列回路とを並列接続し、且つ前記可飽和リアクトルに並列に第2のコンデンサを接続する構成としたことを特徴とする直流高速真空遮断装置。   A first series circuit in which a first capacitor, a switch, and an inductance are connected in series, and a second series circuit in which a vacuum valve and a saturable reactor are connected in series are connected in parallel, and the saturable reactor is connected to the saturable reactor. A direct-current high-speed vacuum circuit breaker characterized in that a second capacitor is connected in parallel.
JP2005076457A 2005-03-17 2005-03-17 Direct current high speed vacuum circuit breaker Pending JP2006260925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076457A JP2006260925A (en) 2005-03-17 2005-03-17 Direct current high speed vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005076457A JP2006260925A (en) 2005-03-17 2005-03-17 Direct current high speed vacuum circuit breaker

Publications (1)

Publication Number Publication Date
JP2006260925A true JP2006260925A (en) 2006-09-28

Family

ID=37099926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076457A Pending JP2006260925A (en) 2005-03-17 2005-03-17 Direct current high speed vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JP2006260925A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099475A (en) * 2010-11-04 2012-05-24 General Electric Co <Ge> Mems-based switching systems
JP2015115096A (en) * 2013-12-09 2015-06-22 株式会社東芝 Dc cutoff device
JP2018500736A (en) * 2014-12-11 2018-01-11 スーパーグリッド インスティテュート Current interrupt device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099475A (en) * 2010-11-04 2012-05-24 General Electric Co <Ge> Mems-based switching systems
JP2015115096A (en) * 2013-12-09 2015-06-22 株式会社東芝 Dc cutoff device
JP2018500736A (en) * 2014-12-11 2018-01-11 スーパーグリッド インスティテュート Current interrupt device

Similar Documents

Publication Publication Date Title
US10964492B2 (en) Arc suppressor, system, and method
KR101550374B1 (en) High-voltage DC circuit breaker
WO2015121983A1 (en) Protection system for dc power transmission system, ac/dc converter, and dc power transmission system breaking method
JP6049913B2 (en) DC circuit breaker
KR101522412B1 (en) Bi-directional DC interruption device
US10937612B2 (en) DC voltage switch
JP6042035B2 (en) DC breaker
WO2010055568A1 (en) Magnetic energy regeneration switch provided with protection circuit
KR101766229B1 (en) Apparatus and method for interrupting high voltage direct current using gap switch
WO2016194584A1 (en) Dc circuit, dc power supply device, moving body, and power supply system
JP3965037B2 (en) DC vacuum interrupter
JP5654394B2 (en) Circuit breaker
KR20160033438A (en) Device for interrupting DC current and method the same
WO2018131307A1 (en) Arc-suppressing device
JP2006032077A (en) Dc circuit breaker
JPWO2019202703A1 (en) DC circuit breaker
JP5031607B2 (en) DC high-speed vacuum circuit breaker
JP2006260925A (en) Direct current high speed vacuum circuit breaker
JP5858943B2 (en) Current interrupt device
CN215580357U (en) Power supply circuit and battery system
JP2006147238A (en) Dc vacuum interrupting device
JP2005190671A (en) Dc breaker
JP2016103427A (en) DC current cutoff device
WO2018146942A1 (en) Arc-suppressing device
JP6365724B1 (en) DC breaker