JP2016103427A - DC current cutoff device - Google Patents

DC current cutoff device Download PDF

Info

Publication number
JP2016103427A
JP2016103427A JP2014241654A JP2014241654A JP2016103427A JP 2016103427 A JP2016103427 A JP 2016103427A JP 2014241654 A JP2014241654 A JP 2014241654A JP 2014241654 A JP2014241654 A JP 2014241654A JP 2016103427 A JP2016103427 A JP 2016103427A
Authority
JP
Japan
Prior art keywords
current
mechanical contact
disconnector
breaker
thyristor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014241654A
Other languages
Japanese (ja)
Inventor
隆太 長谷川
Ryuta Hasegawa
隆太 長谷川
中沢 洋介
Yosuke Nakazawa
洋介 中沢
尚隆 飯尾
Hisataka Iio
尚隆 飯尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014241654A priority Critical patent/JP2016103427A/en
Publication of JP2016103427A publication Critical patent/JP2016103427A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a DC current cutoff device which has less transmission loss and can be miniaturized.SOLUTION: A DC current cutoff device 3 comprises a semiconductor element part in which a self-excited semiconductor element 11 and a thyristor are connected in series, an arrester 9 which is connected to the thyristor in parallel, a semiconductor breaker 5 in which a semiconductor part and a capacitor 10 are connected in parallel, a current suppression reactor 6 which is connected to the semiconductor breaker 5 in series, and a mechanical contact type disconnector 7 which is connected to the semiconductor breaker 5 in series.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、直流電流遮断装置に関する。   Embodiments described herein relate generally to a direct current interruption device.

近年、風力発電や太陽光発電、太陽熱発電などの再生可能エネルギーの普及が促進されている。大電力を再生可能エネルギーでまかなうために、洋上風力発電や、砂漠地帯での太陽光、太陽熱発電が検討され始めている。洋上風力発電においては、発電された電力を消費地である都市まで海底ケーブルで大電力送電し、砂漠地帯で太陽光発電では、アフリカや中国奥部の砂漠地帯から、ヨーロッパや沿岸地帯の大都市まで大電力を長距離にわたって高効率に送電することが必要になる。従来の三相交流による電力送電よりも直流送電のほうが高効率で、ケーブルコストを抑えて設置できるため、大電力の長距離送電に対して直流送電システムを適用することが検討されている。   In recent years, the spread of renewable energy such as wind power generation, solar power generation, and solar thermal power generation has been promoted. Offshore wind power generation, solar power generation in the desert, and solar thermal power generation have begun to be studied in order to supply large amounts of power with renewable energy. In offshore wind power generation, the generated power is transmitted to the city where it is consumed by a submarine cable, and in the desert area, solar power is generated from desert areas in the back of Africa and China, to large cities in Europe and coastal areas. It is necessary to transmit a large amount of power over a long distance with high efficiency. Since direct current power transmission is more efficient than conventional three-phase alternating current power transmission and can be installed with reduced cable costs, the application of a direct current power transmission system to high-power long-distance transmission has been studied.

直流送電システムは、従来の交流送電システムに比べて、長距離大電力送電に適用した場合に、低コストで設置することが可能で、送電損失が少ない高効率システムである反面、落雷などに起因した系統事故が発生した個所を隔離することが難しい。交流送電システムにおいては、機械接点式の遮断器により、交流電流が交流周波数50Hzまたは60Hzの半サイクルごとにゼロを横切る点で電流遮断ができるのに対して、直流電流では電流がゼロを横切る点がないため、機械接点式の遮断器では接点にアークが発生し電流を容易に遮断できない。   Compared to conventional AC transmission systems, DC transmission systems can be installed at low cost when applied to long-distance, high-power transmission, and have low transmission loss. It is difficult to isolate the location where the system accident occurred. In an AC power transmission system, a mechanical contact breaker can interrupt current at a point where AC current crosses zero every half cycle at an AC frequency of 50 Hz or 60 Hz, whereas in DC current, the current crosses zero. Therefore, in a mechanical contact type circuit breaker, an arc is generated at the contact and the current cannot be easily interrupted.

直流送電システムは、線路インピーダンスが小さいことから電圧伝搬速度が早く、数百km先に電圧を伝搬させないためには数msで遮断完了できる遮断器が必要となる。電力送電網を構築する場合、事故発生点を高速に送電網から切り離して健全な送電網だけで運転継続しなければいけない要求が発生するが、直流送電に発生する事故電流を高速に遮断する遮断器が無いと、直流送電網を構築することができない。   Since the DC power transmission system has a low line impedance, the voltage propagation speed is fast, and a circuit breaker that can be cut off in a few ms is required to prevent the voltage from propagating several hundred kilometers away. When constructing a power transmission network, there is a requirement that the point of occurrence of the accident must be separated from the power transmission network at high speed and the operation must be continued only with a healthy power transmission network. Without a device, it is impossible to build a DC power grid.

直流き電鉄道用の遮断器には、機械接点式遮断器が用いられている。この機械接点式の遮断器は、コンデンサなどに予め電荷を蓄積しておき、事故発生時にコンデンサ電荷を放電させ、LC共振で零点を生成して、アークを消弧させる。直流き電鉄道は、き電電圧が高くても数kVであり、機械接点の開極距離が短くても絶縁耐電圧が確保でき、数msで遮断完了する。これに対し、直流送電システムでは送電電圧が数百kVにも及び、絶縁耐電圧を確保するために開極距離を長くする必要があり、遮断完了までに少なくとも数10msかかることから、直流き電鉄道用の遮断器を直流送電網へ適用することは困難である。   A mechanical contact type circuit breaker is used as a circuit breaker for a direct current railway. This mechanical contact type circuit breaker accumulates electric charge in a capacitor or the like in advance, discharges the capacitor electric charge when an accident occurs, generates a zero point by LC resonance, and extinguishes the arc. The DC feeder railway has several kV even if the feeding voltage is high, and even if the opening distance of the mechanical contact is short, the insulation withstand voltage can be secured, and the interruption is completed in a few ms. On the other hand, in a DC power transmission system, the transmission voltage reaches several hundreds kV, and it is necessary to increase the opening distance in order to secure the insulation withstand voltage. It is difficult to apply a circuit breaker for a railway to a DC power grid.

機械接点式の遮断器に対して、IGBT等の自己消弧能力を持つ半導体素子を用いた遮断器は、駆動電気信号をオフにするだけで遮断が可能である。半導体の電流遮断時間は数μsであり、直流送電網に要求される遮断時間を十分満たす。しかし、半導体遮断器は電圧降下が大きく、送電時の損失が大きくなることから、これまで直流送電に積極的に用いられることが無かった。   In contrast to a mechanical contact type circuit breaker, a circuit breaker using a semiconductor element having a self-extinguishing capability such as an IGBT can be cut off only by turning off a drive electric signal. The current interruption time of the semiconductor is several μs, which sufficiently satisfies the interruption time required for the DC power transmission network. However, the semiconductor circuit breaker has a large voltage drop and a large loss during power transmission, so far it has not been actively used for direct current power transmission.

この問題を解決する方法として、機械接点式断路器と補助半導体断路器を直列に接続した回路に、もう一つの半導体遮断器を並列に接続するハイブリッド遮断器が提案されている。ハイブリッド遮断器において、送電時は、機械接点式断路器と補助半導体遮断器の直列回路をオンにして、半導体遮断器をオフにした状態にする。送電電流は機械接点式断路器と補助半導体遮断器の直列回路側を流れる。   As a method for solving this problem, a hybrid circuit breaker has been proposed in which another semiconductor circuit breaker is connected in parallel to a circuit in which a mechanical contact disconnector and an auxiliary semiconductor disconnector are connected in series. In the hybrid circuit breaker, during power transmission, the series circuit of the mechanical contact disconnector and the auxiliary semiconductor circuit breaker is turned on, and the semiconductor circuit breaker is turned off. The transmission current flows through the series circuit side of the mechanical contact disconnector and auxiliary semiconductor circuit breaker.

系統事故発生時は、補助半導体遮断器をオフすると同時に並列側の半導体遮断器をオンにする。これにより事故電流はすべて並列側の半導体遮断器に流れはじめる。機械接点式断路器の電流がゼロになった時点で機械接点式断路器を切り離し、絶縁耐電圧を確保できるようにした状態で並列側半導体遮断器をオフすることにより、事故電流の遮断が可能になる。   When a system fault occurs, turn off the auxiliary semiconductor breaker and simultaneously turn on the parallel semiconductor breaker. As a result, all fault currents begin to flow through the parallel circuit breaker. Accident current can be cut off by disconnecting the mechanical contact type disconnector when the current of the mechanical contact type disconnector becomes zero and turning off the parallel-side semiconductor circuit breaker while ensuring the insulation withstand voltage. become.

特表平10−506260号公報Japanese National Patent Publication No. 10-506260 WO2011/34140号公報WO2011 / 34140 Publication

半導体遮断器やハイブリッド遮断器に、遮断電流が最大数kAのIGBTを適用するには、事故電流を数kAに抑制するためにリアクトルを設置する必要がある。遮断電流が小さいとリアクトルのインダクタンスを大きくせざるを得ず、巻き数が増えるためにリアクトルの抵抗が大きくなる。送電時はリアクトルを通して電流を流すため、抵抗増大は送電損失増大につながり、ランニングコストがアップする。また、自己消弧能力を持つ半導体素子は駆動電力を外部から供給する必要がある。対地電位が高い遮断器に対して数百kVの絶縁を持たせつつ電力供給するには、大型の絶縁トランスが必要となり、遮断器の大型化、コストアップ要因になる。   In order to apply an IGBT having a maximum breaking current of several kA to a semiconductor breaker or a hybrid breaker, it is necessary to install a reactor to suppress the accident current to several kA. If the breaking current is small, the inductance of the reactor must be increased, and the number of turns increases, so the resistance of the reactor increases. Since current flows through the reactor during power transmission, an increase in resistance leads to an increase in power transmission loss, which increases running costs. Further, a semiconductor element having a self-extinguishing capability needs to supply driving power from the outside. In order to supply power to a circuit breaker having a high ground potential while providing insulation of several hundred kV, a large insulation transformer is required, which increases the size and cost of the circuit breaker.

本発明の実施形態は、送電損失が少なく、小型化を可能とした直流電流遮断装置を提供することを目的とする。   An object of the present invention is to provide a direct current interrupting device that has a small power transmission loss and can be miniaturized.

本実施形態の直流電流遮断装置は、次の構成を有する。
(1)順方向の自励式半導体素子と順方向のサイリスタを直列に接続した半導体素子部。(2)前記順方向のサイリスタに並列に接続したアレスタ。
(3)前記半導体素子部とキャパシタを並列に接続した半導体遮断器。
(4)前記半導体遮断器と直列に接続した電流抑制リアクトル。
(5)前記半導体遮断器と直列に接続した機械接点式断路器または遮断器。
The direct current interrupt device of this embodiment has the following configuration.
(1) A semiconductor element portion in which a forward self-excited semiconductor element and a forward thyristor are connected in series. (2) An arrester connected in parallel to the forward thyristor.
(3) A semiconductor circuit breaker in which the semiconductor element portion and the capacitor are connected in parallel.
(4) A current suppressing reactor connected in series with the semiconductor breaker.
(5) A mechanical contact disconnector or circuit breaker connected in series with the semiconductor circuit breaker.

第1実施形態の構成を示す回路図。The circuit diagram which shows the structure of 1st Embodiment. 第1実施形態の動作を示すタイムチャート。The time chart which shows operation | movement of 1st Embodiment. 第2実施形態の構成を示す回路図。The circuit diagram which shows the structure of 2nd Embodiment. 第3実施形態の構成を示す回路図。A circuit diagram showing composition of a 3rd embodiment. 第3実施形態の動作を示すタイムチャート。The time chart which shows operation | movement of 3rd Embodiment. 第4実施形態の構成を示す回路図。The circuit diagram which shows the structure of 4th Embodiment. 第4実施形態の動作を示すタイムチャート。The time chart which shows operation | movement of 4th Embodiment. 第5実施形態の構成を示す回路図。The circuit diagram which shows the structure of 5th Embodiment.

[1.第1実施形態]
[1−1.構成]
以下、本発明の第1実施形態について、図面を参照して説明する。図1は直流電圧源1と、ケーブルや架空線などの送電線2で発生した事故点4を遮断し、電気的に絶縁する第1実施形態の直流電流遮断装置3の構成を示す。
[1. First Embodiment]
[1-1. Constitution]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of a DC current interrupting device 3 according to a first embodiment that interrupts and electrically insulates a DC voltage source 1 and an accident point 4 occurring in a power transmission line 2 such as a cable or an overhead wire.

直流電流遮断装置3は、半導体遮断器5と、その直流電圧源1側に直列に接続された電流抑制リアクトル6と、半導体遮断器5の送電線2側に接続された機械接点式断路器7を備える。半導体遮断器5は、半導体素子部8と、半導体素子部8に並列に接続されたアレスタ9と、半導体素子部8に並列に接続されたキャパシタ10を備える。アレスタ9の制限電圧は、通常は直流送電電圧の1.5倍以上に設定される。   The DC current interrupting device 3 includes a semiconductor circuit breaker 5, a current suppressing reactor 6 connected in series to the DC voltage source 1 side, and a mechanical contact disconnector 7 connected to the power transmission line 2 side of the semiconductor circuit breaker 5. Is provided. The semiconductor circuit breaker 5 includes a semiconductor element unit 8, an arrester 9 connected in parallel to the semiconductor element unit 8, and a capacitor 10 connected in parallel to the semiconductor element unit 8. The limiting voltage of the arrester 9 is normally set to 1.5 times or more of the DC transmission voltage.

機械接点式断路器7は、固定接点に対して可動接点を開離させることによって線路の遮断を行う。機械接点式断路器7はキャパシタ10と送電線間で発生するLC共振によって作られる零点で電流遮断する機械接点式遮断器でもよい。しかし、半導体素子部8が遮断完了すれば、事故電流はキャパシタ10と送電線2間の抵抗で減衰するため、電流遮断能力のない断路器を用いることができる。   The mechanical contact disconnector 7 cuts off the line by opening the movable contact with respect to the fixed contact. The mechanical contact breaker 7 may be a mechanical contact breaker that cuts off current at a zero point generated by LC resonance generated between the capacitor 10 and the transmission line. However, when the semiconductor element unit 8 is completely cut off, the fault current is attenuated by the resistance between the capacitor 10 and the transmission line 2, so that a disconnector having no current cut-off capability can be used.

半導体素子部8は、IGBTやIEGTなどの自励式半導体素子11(以下、IGBTという)と、IGBT11と直列に接続された順方向サイリスタ12を有する。IGBTは、直流電圧源1に対して、直流電圧源1からの電流を通過させる方向(順方向)に接続されている。この順方向IGBT11には、その電流の流れる方向とは逆方向に電流を通過させるダイオードが組み込まれている。順方向サイリスタ12は、順方向IGBT11に対して、直流電圧源1から送電線2に対して電流を流すことのできる方向(順方向)に接続されている。順方向IGBT11及び順方向サイリスタ12は、送電電圧に応じて1個あるいは複数個の素子が直列に接続されている。順方向サイリスタ12には、順方向サイリスタ12と逆方向に電流を流すダイオード13が並列に接続されている。   The semiconductor element unit 8 includes a self-excited semiconductor element 11 (hereinafter referred to as IGBT) such as IGBT or IEGT, and a forward thyristor 12 connected in series with the IGBT 11. The IGBT is connected to the DC voltage source 1 in a direction (forward direction) in which a current from the DC voltage source 1 is passed. This forward IGBT 11 incorporates a diode that allows a current to pass in a direction opposite to the direction in which the current flows. The forward thyristor 12 is connected to the forward IGBT 11 in a direction (forward direction) in which a current can flow from the DC voltage source 1 to the power transmission line 2. The forward IGBT 11 and the forward thyristor 12 have one or more elements connected in series according to the transmission voltage. The forward thyristor 12 is connected in parallel with a diode 13 that allows current to flow in the opposite direction to the forward thyristor 12.

直流電流遮断装置3には、図示しない制御装置が設けられている。この制御装置は、送電線2を流れる電流が増大したことを電流センサなどの装置で検出し、その検出結果に基づいて事故が発生したことを判定し、半導体遮断器5及び機械接点式断路器7に対して開放指令を出力する。   The direct current interrupter 3 is provided with a control device (not shown). This control device detects that an electric current flowing through the power transmission line 2 has increased by a device such as a current sensor, determines that an accident has occurred based on the detection result, and detects the semiconductor breaker 5 and the mechanical contact disconnector. 7 to open command.

キャパシタ10は、直流送電電圧相当の耐電圧を持つ。キャパシタ10の容量は次のように決定される。順方向サイリスタ12の電流がオフされる数μsの期間でキャパシタ10の電圧が上昇し、この電圧上昇値が自励式半導体素子11の耐電圧を超えないようにする。例えば、順方向IGBT11がオフする時間を10μs、順方向IGBT11の耐電圧を2kV、キャパシタ10への転流時の電流を5kAとすると、電荷Q=容量C×電圧Vの関係から、5kA×10μs=容量C×2kVより、容量C=25μFと算出される。順方向IGBT11がオフしている時間が非常に短いため、キャパシタ10の容量を抑えることができ、キャパシタ10追加による装置の大型化、コストアップへの影響は小さい。   The capacitor 10 has a withstand voltage equivalent to a DC transmission voltage. The capacitance of the capacitor 10 is determined as follows. The voltage of the capacitor 10 rises during a period of several μs when the current of the forward thyristor 12 is turned off, and the voltage rise value does not exceed the withstand voltage of the self-excited semiconductor element 11. For example, when the forward IGBT 11 is turned off for 10 μs, the withstand voltage of the forward IGBT 11 is 2 kV, and the current at the time of commutation to the capacitor 10 is 5 kA, the relationship of charge Q = capacitance C × voltage V is 5 kA × 10 μs. = Capacitance C = 25 μF is calculated from the capacitance C × 2 kV. Since the forward IGBT 11 is off for a very short time, the capacity of the capacitor 10 can be suppressed, and the addition of the capacitor 10 has little influence on the increase in size and cost of the device.

[1−2.作用]
事故が発生する前の正常な状態では、順方向IGBT11と順方向サイリスタ12はオンされ、直流電圧源1→電流抑制リアクトル6→順方向IGBT11→順方向サイリスタ12→機械接点式断路器7→送電線2へと直流電流が流れ、直流電力が送られる。または、送電線2→機械接点式断路器7→順方向サイリスタ12と並列に接続されたダイオード13→順方向IGBT11に組み込まれたダイオード→電流抑制リアクトル6→直流電圧源1の方向に電流を流し、逆方向に電力を送ることもできる。
[1-2. Action]
In a normal state before the accident occurs, the forward IGBT 11 and the forward thyristor 12 are turned on, and the DC voltage source 1 → current suppression reactor 6 → forward IGBT 11 → forward thyristor 12 → mechanical contact disconnector 7 → feed A direct current flows to the electric wire 2, and direct-current power is sent. Alternatively, a current is passed in the direction of the power transmission line 2 → the mechanical contact type disconnector 7 → the diode 13 connected in parallel with the forward thyristor 12 → the diode incorporated in the forward IGBT 11 → the current suppressing reactor 6 → the DC voltage source 1. It is also possible to send power in the reverse direction.

図2は事故発生後において、直流電流遮断装置3の各部を流れる電流を時系列で表した図である。図2を参照して事故時の遮断器の動作を説明する。
落雷などで送電線2に事故が発生すると、事故点4の電圧が低下し、直流電圧源1→電流抑制リアクトル6→順方向IGBT11→順方向サイリスタ12→機械接点式断路器7→送電線2へと事故電流が供給され、電流が増大する。
FIG. 2 is a diagram showing the current flowing through each part of the DC current interrupting device 3 in time series after an accident occurs. The operation of the circuit breaker at the time of the accident will be described with reference to FIG.
When an accident occurs in the transmission line 2 due to a lightning strike or the like, the voltage at the accident point 4 decreases, and the DC voltage source 1 → current suppression reactor 6 → forward IGBT 11 → forward thyristor 12 → mechanical contact disconnector 7 → transmission line 2 A fault current is supplied to the current and the current increases.

直流電流遮断装置3は、図示しない制御装置により、電流の増大で事故が発生したことを検知し、遮断器を開放する制御を開始する。最初に順方向IGBT11及び順方向サイリスタ12を駆動している信号をオフする。順方向IGBT11をオフすると、事故電流は順方向IGBT11→順方向サイリスタ12の経路から、並列に接続されたキャパシタ10に転流する。順方向IGBT11→順方向サイリスタ12に流れる電流は、順方向サイリスタ12の保持電流以下となり、順方向サイリスタ12電流がオフされる。事故電流が転流した結果、キャパシタ10の電圧が上昇すると、順方向IGBT11の耐電圧を超える恐れがあるため、数十μs後に再び順方向IGBT11をオンする。   The DC current interrupting device 3 detects that an accident has occurred due to an increase in current by a control device (not shown), and starts control to open the circuit breaker. First, the signals driving the forward IGBT 11 and the forward thyristor 12 are turned off. When the forward IGBT 11 is turned off, the fault current is commutated from the forward IGBT 11 to the forward thyristor 12 to the capacitor 10 connected in parallel. The current flowing from the forward IGBT 11 to the forward thyristor 12 becomes equal to or less than the holding current of the forward thyristor 12, and the forward thyristor 12 current is turned off. As a result of the commutation of the fault current, if the voltage of the capacitor 10 increases, the withstand voltage of the forward IGBT 11 may be exceeded. Therefore, the forward IGBT 11 is turned on again after several tens of μs.

事故電流は電流抑制リアクトル6→キャパシタ10→機械接点式断路器7→送電線2へと流れ続け、キャパシタ10の電圧が上昇する。キャパシタ10の電圧が、通常は直流送電電圧の1.5倍以上に設定されるアレスタ9の制限電圧に達すると、事故電流はアレスタ9に転流する。   The accident current continues to flow from the current suppressing reactor 6 → the capacitor 10 → the mechanical contact type disconnector 7 → the transmission line 2, and the voltage of the capacitor 10 increases. When the voltage of the capacitor 10 reaches the limit voltage of the arrester 9, which is normally set to 1.5 times or more of the DC transmission voltage, the fault current is commutated to the arrester 9.

事故電流は、電流抑制リアクトル6→アレスタ9→機械接点式断路器7→送電線2へと流れ続け、電流抑制リアクトル6や送電線2のインダクタンスに蓄積されたエネルギーがアレスタ9で消費される。電流がゼロになるまでアレスタ9に電流が流れ、その後は送電経路にインダクタンスとキャパシタ10が含まれるため、LC共振が発生し、抵抗成分で減衰する。機械接点式断路器7で半導体遮断器5と事故点4が隔離される。   The accident current continues to flow from the current suppression reactor 6 to the arrester 9 → the mechanical contact disconnector 7 → the transmission line 2, and the energy stored in the inductance of the current suppression reactor 6 and the transmission line 2 is consumed by the arrester 9. The current flows through the arrester 9 until the current becomes zero, and thereafter, since the inductance and the capacitor 10 are included in the power transmission path, LC resonance occurs and the resistance component attenuates. The mechanical contact disconnector 7 isolates the semiconductor circuit breaker 5 from the accident point 4.

[1−3.効果]
本実施形態によれば、半導体素子部8を順方向IGBT11と順方向サイリスタ12との組み合わせにより構成したため、電流耐量が低い順方向IGBT11の使用数を大幅に低減できる。順方向IGBT11の代わりに使用されるサイリスタは、電流耐量が大きい特徴があり、遮断器の遮断電流を大きくできる。サイリスタの遮断電流に合わせるには、順方向サイリスタ12に直列に接続する順方向IGBT11を複数並列にする必要があるが、順方向IGBT11の必要耐電圧は小さいため、使用数は少ない。特に、キャパシタ10に事故電流が転流した後、短時間で順方向IGBT11をオンとすることで、順方向IGBT11の破損を防止することも可能である。
[1-3. effect]
According to this embodiment, since the semiconductor element unit 8 is configured by the combination of the forward IGBT 11 and the forward thyristor 12, the number of forward IGBTs 11 having a low current withstand capability can be greatly reduced. The thyristor used in place of the forward IGBT 11 has a feature that the withstand current is large, and can increase the breaking current of the circuit breaker. In order to match the thyristor cutoff current, a plurality of forward IGBTs 11 connected in series to the forward thyristor 12 must be arranged in parallel. However, since the required withstand voltage of the forward IGBT 11 is small, the number of use is small. In particular, it is possible to prevent the forward IGBT 11 from being damaged by turning on the forward IGBT 11 in a short time after the fault current commutates to the capacitor 10.

サイリスタは他励式直流送電に多く用いられている半導体素子であり、対地電圧が高い環境で使用されることから、光信号のわずかな電力で点弧でき、光ファイバーケーブルを接続するだけで駆動可能な光トリガサイリスタが実用化されている。このようなサイリスタを用いることにより、駆動回路を簡略化でき、遮断器の小型化、コストダウンに大きな効果がある。   Thyristors are semiconductor elements that are often used for separately-excited DC power transmission, and since they are used in environments with high ground voltage, they can be ignited with a small amount of optical signal power and can be driven by simply connecting an optical fiber cable. Optical trigger thyristors have been put into practical use. By using such a thyristor, the drive circuit can be simplified, which has a great effect on the size reduction and cost reduction of the circuit breaker.

直流送電に用いられる電圧相当の耐電圧を持つキャパシタ10を追加する必要があるが、順方向IGBT11がオフしている時間が非常に短いため、キャパシタ10容量を抑えることができ、キャパシタ10追加による装置の大型化、コストアップへの影響は小さい。   Although it is necessary to add the capacitor 10 having a withstand voltage equivalent to the voltage used for direct current power transmission, since the forward IGBT 11 is off for a very short time, the capacity of the capacitor 10 can be suppressed. The impact on the increase in size and cost of the equipment is small.

[第2実施形態]
[2−1.構成]
第2実施形態について、図3を参照して説明する。図3は遮断器の両端が送電線2に接続され、どちら側で事故が起きても遮断できる構成である。第2実施形態では、第1実施形態と比較すると、順方向IGBT11に対して逆方向IGBT14が追加され、順方向サイリスタ12の並列ダイオード13が、順方向サイリスタ12とは逆方向の特性を有する逆方向サイリスタ15に置き換えられている。
[Second Embodiment]
[2-1. Constitution]
A second embodiment will be described with reference to FIG. FIG. 3 shows a configuration in which both ends of the circuit breaker are connected to the power transmission line 2 and can be interrupted even if an accident occurs on either side. In the second embodiment, compared to the first embodiment, a reverse IGBT 14 is added to the forward IGBT 11, and the parallel diode 13 of the forward thyristor 12 has a reverse characteristic that is reverse to that of the forward thyristor 12. The direction thyristor 15 is replaced.

[2−2.作用]
事故が発生する前の正常な状態では、順方向IGBT11と順方向サイリスタ12はオンされ、直流電圧源1→電流抑制リアクトル6→逆方向IGBT14に組み込まれたダイオード→順方向IGBT11→順方向サイリスタ12→機械接点式断路器7→送電線2へと直流電流が流れ、直流電力が送られる。また、送電線2→機械接点式断路器7→逆方向サイリスタ15→順方向IGBT11に組み込まれたダイオード→逆方向IGBT14→電流抑制リアクトル6→直流電圧源1の方向に電流を流し、逆方向に電力を送ることもできる。
[2-2. Action]
In a normal state before the accident occurs, the forward IGBT 11 and the forward thyristor 12 are turned on, the DC voltage source 1 → the current suppressing reactor 6 → the diode incorporated in the reverse IGBT 14 → the forward IGBT 11 → the forward thyristor 12. → Mechanical contact type disconnect switch 7 → Direct current flows to the transmission line 2 and direct current power is sent. In addition, the current flows in the direction of the power transmission line 2 → the mechanical contact disconnector 7 → the reverse thyristor 15 → the diode incorporated in the forward IGBT 11 → the reverse IGBT 14 → the current suppressing reactor 6 → the DC voltage source 1 and in the reverse direction. You can also send power.

第2実施形態において、第1実施形態と同様に直流電流遮断装置3の送電線2側に事故点4が発生し、事故電流が直流電圧源1から送電線2に流れる場合には、直流電圧源1→電流抑制リアクトル6→逆方向IGBT14に組み込まれたダイオード→順方向IGBT11→順方向サイリスタ12→機械接点式断路器7→送電線2へと事故電流が供給され、電流が増大する。直流電流遮断装置3は、図示しない制御装置により、電流の増大で事故が発生したことを検知し、遮断器を開放する制御を開始する。最初に順方向IGBT11及び順方向サイリスタ12を駆動している信号をオフする。以下の動作は、第1実施形態と同様である。   In the second embodiment, when the fault point 4 occurs on the transmission line 2 side of the DC current interrupting device 3 and the fault current flows from the DC voltage source 1 to the transmission line 2 as in the first embodiment, the DC voltage The fault current is supplied to the source 1 → the current suppressing reactor 6 → the diode incorporated in the reverse IGBT 14 → the forward IGBT 11 → the forward thyristor 12 → the mechanical contact type disconnector 7 → the transmission line 2, and the current increases. The DC current interrupting device 3 detects that an accident has occurred due to an increase in current by a control device (not shown), and starts control to open the circuit breaker. First, the signals driving the forward IGBT 11 and the forward thyristor 12 are turned off. The following operations are the same as those in the first embodiment.

第2実施形態において、直流電流遮断装置3の直流電圧源1側に事故点4が発生し、事故電流が送電線2→機械接点式断路器7→逆方向サイリスタ15→順方向IGBT11に組み込まれたダイオード→逆方向IGBT14→電流抑制リアクトル6→直流電圧源1に流れる場合には、事故電流の増加を検出した直流電流遮断装置3は、最初に逆方向IGBT14及び逆方向サイリスタ15を駆動している信号をオフする。以下は、順方向に事故電流が流れる場合と同様な処理が行われ、最終的には、機械接点式断路器7により事故点4が隔離される。   In the second embodiment, the fault point 4 occurs on the DC voltage source 1 side of the DC current interrupting device 3, and the fault current is incorporated in the power transmission line 2 → the mechanical contact disconnector 7 → the reverse thyristor 15 → the forward IGBT 11. When the current flows from the diode → reverse IGBT 14 → current suppression reactor 6 → DC voltage source 1, the DC current interrupting device 3 that detects the increase in the accident current first drives the reverse IGBT 14 and the reverse thyristor 15. Turn off the signal. In the following, the same processing as when an accident current flows in the forward direction is performed, and finally the accident point 4 is isolated by the mechanical contact disconnector 7.

[2−3.効果]
第2実施形態では、前記第1実施形態の効果に加え、順方向と逆方向の事故電流に対しても電流零点を発生させ、機械接点式断路器7による隔離が可能になる利点がある。
[2-3. effect]
In the second embodiment, in addition to the effects of the first embodiment, there is an advantage that a current zero point is generated even for an accident current in the forward direction and in the reverse direction, and isolation by the mechanical contact disconnector 7 is possible.

[第3実施形態]
[3−1.構成]
第3実施形態について、図4を参照して説明する。第3実施形態は、第2実施形態に加えて、機械接点式断路器16と半導体遮断器5を組み合わせ、送電時の損失を低減した構成である。すなわち、半導体遮断器5と並列に機械接点式断路器16を接続すると共に、機械接点式断路器16に断路器用の順方向IGBT17と断路器用の逆方向IGBT18を直列に接続する。
[Third Embodiment]
[3-1. Constitution]
A third embodiment will be described with reference to FIG. In the third embodiment, in addition to the second embodiment, the mechanical contact disconnector 16 and the semiconductor circuit breaker 5 are combined to reduce the loss during power transmission. That is, a mechanical contact disconnector 16 is connected in parallel with the semiconductor circuit breaker 5, and a forward IGBT 17 for the disconnector and a reverse IGBT 18 for the disconnector are connected in series to the mechanical contact disconnector 16.

[3−2.作用]
図5を用いて第3実施形態の作用を説明する。
送電時は電流抑制リアクトル6→機械接点式断路器16→断路器用の逆方向IGBT18のダイオード→断路器用の順方向IGBT17→機械接点式断路器7→送電線2の経路で電流を流し、直流電力を送電する。電流は耐電圧が小さい断路器用の順方向IGBT17および断路器用の逆方向IGBT18のダイオードを通過するので、電圧降下が小さく、高効率に送電することができる。
[3-2. Action]
The operation of the third embodiment will be described with reference to FIG.
At the time of power transmission, current is passed through the path of current suppression reactor 6 → mechanical contact disconnector 16 → reverse IGBT 18 for disconnector → forward IGBT 17 for disconnector → mechanical contact disconnector 7 → transmission line 2 and DC power Power transmission. Since the current passes through the diodes of the forward IGBT 17 for the disconnector and the reverse IGBT 18 for the disconnector having a small withstand voltage, the voltage drop is small and power can be transmitted with high efficiency.

直流電流遮断装置3の送電線2側で事故点4が発生すると、直流電流遮断装置3は電流の増大で事故が発生したことを検知し、まず、機械接点式断路器16を開放するために、機械接点式断路器16に直列に接続されている断路器用の順方向IGBT17をオフする。すると、事故電流は、機械接点式断路器16を通過する経路から半導体遮断器5側に転流し、電流抑制リアクトル6→逆方向IGBT14に組み込まれたダイオード→順方向IGBT11→順方向サイリスタ12→機械接点式断路器7→送電線2へと流れる。その結果、機械接点式断路器16の電流は零になるため、アークを発生することなく電流を遮断できる。断路器が遮断された後は、事故電流は第1実施形態と同様に半導体遮断器5を流れることになるから、直流電流遮断装置3は順方向IGBT11及び順方向サイリスタ12を駆動している信号をオフする。以下の動作は、第1実施形態と同様である。   When an accident point 4 occurs on the transmission line 2 side of the DC current interrupting device 3, the DC current interrupting device 3 detects that an accident has occurred due to an increase in current, and first opens the mechanical contact disconnector 16 The forward IGBT 17 for the disconnector connected in series to the mechanical contact disconnector 16 is turned off. Then, the fault current is commutated from the path passing through the mechanical contact disconnector 16 to the semiconductor circuit breaker 5 side, the current suppressing reactor 6 → the diode incorporated in the reverse IGBT 14 → the forward IGBT 11 → the forward thyristor 12 → the machine. It flows from the contact type disconnector 7 to the transmission line 2. As a result, since the current of the mechanical contact disconnector 16 becomes zero, the current can be interrupted without generating an arc. Since the fault current flows through the semiconductor circuit breaker 5 in the same manner as in the first embodiment after the disconnector is interrupted, the DC current interrupting device 3 is a signal that drives the forward IGBT 11 and the forward thyristor 12. Turn off. The following operations are the same as those in the first embodiment.

第3実施形態では、第2実施形態と同様に、半導体遮断器5は逆方向の事故電流の遮断も行うことができるように、逆方向IGBT14及び逆方向サイリスタ15を備えている。また、機械接点式断路器16には断路器用の逆方向IGBT18が設けられている。そのため、通常の電流供給時及び事故発生時において、順方向と逆方向のいずれにも電流を流したり、遮断することができる。   In the third embodiment, similarly to the second embodiment, the semiconductor circuit breaker 5 includes the reverse IGBT 14 and the reverse thyristor 15 so that the reverse fault current can be cut off. The mechanical contact disconnector 16 is provided with a reverse IGBT 18 for the disconnector. Therefore, at the time of normal current supply and when an accident occurs, current can be passed or cut off in both the forward and reverse directions.

[3−3.効果]
第3実施形態では、前記第1及び第2実施形態の効果に加えて、通常時に流れる電流は耐電圧が小さい断路器用の順方向IGBT17および断路器用の逆方向IGBT18のダイオードを通過するので、電圧降下が小さく、高効率に送電することができる効果を有する。
[3-3. effect]
In the third embodiment, in addition to the effects of the first and second embodiments, the current that normally flows passes through the diodes of the forward IGBT 17 for the disconnector and the reverse IGBT 18 for the disconnector that have a low withstand voltage. The effect is that the descent is small and power can be transmitted with high efficiency.

[第4実施形態]
[4−1.構成]
第4実施形態について、図6を参照して説明する。図6は、第3実施形態における断路器用の順方向IGBT17と断路器用の逆方向IGBT18の代わりに、断路器用の機械接点式遮断器19を設けることで、送電時の損失を低減した構成である。第4実施形態では、機械接点式断路器16に直列に断路器用の機械接点式遮断器19が接続されている。半導体遮断器5と機械接点式断路器7との間に転流調整リアクトル20が接続されている。断路器用の機械接点式遮断器19の送電線2側の端部は、機械接点式断路器7と転流調整リアクトル20との間に接続されている。
[Fourth Embodiment]
[4-1. Constitution]
A fourth embodiment will be described with reference to FIG. FIG. 6 shows a configuration in which a loss at the time of power transmission is reduced by providing a mechanical contact breaker 19 for a disconnector instead of the forward IGBT 17 for the disconnector and the reverse IGBT 18 for the disconnector in the third embodiment. . In the fourth embodiment, a mechanical contact breaker 19 for a disconnecting switch is connected in series to the mechanical contact disconnecting switch 16. A commutation adjusting reactor 20 is connected between the semiconductor circuit breaker 5 and the mechanical contact disconnector 7. The end of the mechanical contact breaker 19 for the disconnecting switch on the power transmission line 2 side is connected between the mechanical contact disconnecting switch 7 and the commutation adjusting reactor 20.

機械接点式断路器16と断路器用の機械接点式遮断器19の中間点と、半導体遮断器5と転流調整リアクトル20の中間点を結ぶように、直列に接続された2個のハーフブリッジ回路(以下、Hブリッジ回路21という)が設けられている。このHブリッジ回路21は請求項に記載した転流回路に相当するものであって、インバータとして機能するものである。このHブリッジ回路21は、図6の拡大部分に示すように、4個のIGBT22a〜22dとそれらに並列に接続されたコンデンサ23を備える。   Two half-bridge circuits connected in series so as to connect an intermediate point between the mechanical contact disconnector 16 and the mechanical contact breaker 19 for the disconnector and an intermediate point between the semiconductor breaker 5 and the commutation adjusting reactor 20 (Hereinafter referred to as H-bridge circuit 21). The H bridge circuit 21 corresponds to the commutation circuit described in the claims, and functions as an inverter. As shown in the enlarged portion of FIG. 6, the H bridge circuit 21 includes four IGBTs 22a to 22d and a capacitor 23 connected in parallel thereto.

[4−2.作用]
本実施形態の作用を、図7を用いて説明する。
送電時は電流抑制リアクトル6→機械接点式断路器16→断路器用の機械接点式遮断器19→機械接点式断路器7→送電線2の経路で電流を流し、直流電力を送電する。電流は半導体を通過しないので、損失を発生することなく、高効率に送電することができる。
[4-2. Action]
The operation of this embodiment will be described with reference to FIG.
At the time of power transmission, current is passed through the path of the current suppression reactor 6 → the mechanical contact type disconnector 16 → the mechanical contact type circuit breaker 19 for the disconnector → the mechanical contact type disconnector 7 → the power transmission line 2 to transmit DC power. Since the current does not pass through the semiconductor, it can be transmitted with high efficiency without causing any loss.

事故が発生すると、電流の増大で事故が発生したことを検知し、機械接点式断路器16、断路器用の機械接点式遮断器19、機械接点式断路器7を開放する指令を与える。まず、断路器用の機械接点式遮断器19に開放指令を与えると、Hブリッジ回路21がコンデンサ23の電荷を放電し、Hブリッジ回路21→転流調整リアクトル20→断路器用の機械接点式遮断器19の経路で電流を流す。この電流は事故電流と逆方向に流れるため零点が発生し、断路器用の機械接点式遮断器19による電流遮断が可能となる。   When an accident occurs, it is detected that the accident has occurred due to an increase in current, and a command to open the mechanical contact disconnector 16, the mechanical contact breaker 19 for the disconnector, and the mechanical contact disconnector 7 is given. First, when an open command is given to the mechanical contact breaker 19 for the disconnector, the H bridge circuit 21 discharges the electric charge of the capacitor 23, and the H bridge circuit 21 → commutation reactor 20 → mechanical contact breaker for the disconnector. Current is passed through 19 paths. Since this current flows in the direction opposite to the accident current, a zero point is generated, and the current can be interrupted by the mechanical contact breaker 19 for the disconnecting switch.

断路器用の機械接点式遮断器19が開放されると、電流抑制リアクトル6→機械接点式断路器16→Hブリッジ回路21→転流調整リアクトル20→機械接点式断路器7→送電線2の経路に電流が転流する。次に、Hブリッジ回路21を構成する4個のIGBT22a〜22dをゲートブロックし、電流を電流抑制リアクトル6→順方向IGBT11→順方向サイリスタ12→転流調整リアクトル20→送電線2の経路に転流させる。すると、機械接点式断路器16の電流は零になり、電流遮断が完了する。その後の動作は、第3実施形態と同様である。   When the mechanical contact breaker 19 for the disconnector is opened, the current suppression reactor 6 → the mechanical contact disconnector 16 → the H bridge circuit 21 → the commutation adjusting reactor 20 → the mechanical contact disconnector 7 → the path of the transmission line 2 The current commutates to. Next, the four IGBTs 22a to 22d constituting the H-bridge circuit 21 are gate-blocked, and the current is transferred to the path of the current suppression reactor 6 → the forward IGBT 11 → the forward thyristor 12 → the commutation adjusting reactor 20 → the transmission line 2. Let it flow. Then, the current of the mechanical contact disconnector 16 becomes zero, and the current interruption is completed. The subsequent operation is the same as in the third embodiment.

[4−3.効果]
第4実施形態では、第3実施形態と同様な効果に加え、断路器用の機械接点式遮断器19を設けることで、半導体素子を使用することなく断路器の開放が可能になり、送電時の損失をより低減することができる。なお、本実施形態における転流回路としては、図示のHブリッジ回路21以外に、電流零点を発生できるインバータであれば、他の構成のものを使用することもできる。
[4-3. effect]
In 4th Embodiment, in addition to the effect similar to 3rd Embodiment, by providing the mechanical contact-type circuit breaker 19 for disconnectors, it becomes possible to open the disconnector without using a semiconductor element, and at the time of power transmission Loss can be further reduced. In addition, as a commutation circuit in this embodiment, the thing of another structure can also be used if it is an inverter which can generate | occur | produce a current zero point other than the H bridge circuit 21 shown in figure.

[第5実施形態]
[5−1.構成]
第5実施形態について、図8を参照して説明する。第5実施形態は転流回路として、第4実施形態のHブリッジ回路21を、断路器用サイリスタ24a,24b及びキャパシタ25で構成した共振発生回路に置き換えた構成である。
[Fifth Embodiment]
[5-1. Constitution]
A fifth embodiment will be described with reference to FIG. The fifth embodiment is a commutation circuit in which the H-bridge circuit 21 of the fourth embodiment is replaced with a resonance generating circuit constituted by disconnector thyristors 24 a and 24 b and a capacitor 25.

[5−2.作用]
第5実施形態では、送電時は、第4実施形態と同様に、電流抑制リアクトル6→機械接点式断路器16→断路器用の機械接点式遮断器19→機械接点式断路器7→送電線2の経路で電流を流し、直流電力を送電する。電流は半導体を通過しないので、損失を発生することなく、高効率に送電することができる。
[5-2. Action]
In the fifth embodiment, during power transmission, as in the fourth embodiment, the current suppression reactor 6 → the mechanical contact type disconnector 16 → the mechanical contact type circuit breaker 19 for the disconnector → the mechanical contact type disconnector 7 → the transmission line 2. Current is passed through the path and DC power is transmitted. Since the current does not pass through the semiconductor, it can be transmitted with high efficiency without causing any loss.

事故が発生すると、まず、断路器用の機械接点式遮断器19を開放するために断路器用サイリスタ24aまたは24bに開放指令を与えることにより、キャパシタ25の電荷を放電し、キャパシタ25→転流調整リアクトル20→断路器用の機械接点式遮断器19の経路で電流を流す。この電流の経路には転流調整リアクトル20のインダクタンスとキャパシタ25が含まれるためLC共振が発生し、その結果、電流に零点が発生するので、断路器用の機械接点式遮断器19による電流遮断が可能となる。   When an accident occurs, first, by giving an open command to the disconnector thyristor 24a or 24b in order to open the mechanical contact breaker 19 for the disconnector, the charge of the capacitor 25 is discharged, and the capacitor 25 → commutation adjusting reactor. 20 → Current flows through the path of the mechanical contact breaker 19 for disconnector. Since this current path includes the inductance of the commutation reactor 20 and the capacitor 25, LC resonance occurs. As a result, a zero point is generated in the current, so that the current interruption by the mechanical contact breaker 19 for the disconnecting switch is interrupted. It becomes possible.

断路器用の機械接点式遮断器19に零点を生成した後、断路器用サイリスタ24a,24bをオフし、機械接点式断路器16の電流を零にすることで、機械接点式断路器16の開放を可能とする。その後の遮断動作は第4実施形態と同様である。   After the zero point is generated in the mechanical contact breaker 19 for the disconnector, the disconnector thyristors 24a and 24b are turned off, and the current of the mechanical contact disconnector 16 is made zero, thereby opening the mechanical contact disconnector 16 open. Make it possible. The subsequent blocking operation is the same as in the fourth embodiment.

[5−3.効果]
本実施形態は、前記第4実施形態の効果に加え、断路器用の機械接点式遮断器19を開放するための共振発生回路を、電流耐量が大きいサイリスタで構成できるので、転流時の電流を大きくできる利点がある。
[5-3. effect]
In this embodiment, in addition to the effects of the fourth embodiment, the resonance generating circuit for opening the mechanical contact breaker 19 for the disconnecting switch can be configured with a thyristor having a large current withstand capability. There is an advantage that can be increased.

[6.他の実施形態]
本発明の実施形態は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。たとえば実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
[6. Other Embodiments]
The embodiment of the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the components without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

1…直流電圧源
2…送電線
3…直流電流遮断装置
4…事故点
5…半導体遮断器
6…電流抑制リアクトル
7…機械接点式断路器
8…半導体素子部
9…アレスタ
10…キャパシタ
11…自励式半導体素子,順方向IGBT
12…順方向サイリスタ
13…ダイオード
14…逆方向IGBT
15…逆方向サイリスタ
16…機械接点式断路器
17…断路器用の順方向IGBT
18…断路器用の逆方向IGBT
19…断路器用の機械接点式遮断器
20…転流調整リアクトル
21…Hブリッジ回路
22a〜22d…IGBT
23…コンデンサ
24a,24b…遮断器用サイリスタ
25…キャパシタ
DESCRIPTION OF SYMBOLS 1 ... DC voltage source 2 ... Transmission line 3 ... DC current interruption device 4 ... Accident point 5 ... Semiconductor breaker 6 ... Current suppression reactor 7 ... Mechanical contact type disconnector 8 ... Semiconductor element part 9 ... Arrester 10 ... Capacitor 11 ... Self Excited semiconductor device, forward IGBT
12 ... Forward thyristor 13 ... Diode 14 ... Reverse IGBT
15 ... Reverse thyristor 16 ... Mechanical contact type disconnect switch 17 ... Forward IGBT for disconnect switch
18 ... Reverse IGBT for disconnector
DESCRIPTION OF SYMBOLS 19 ... Mechanical contact-type circuit breaker 20 for disconnectors ... Commutation adjustment reactor 21 ... H bridge circuits 22a-22d ... IGBT
23 ... Capacitors 24a, 24b ... Circuit breaker thyristor 25 ... Capacitor

Claims (12)

順方向の自励式半導体素子と順方向のサイリスタを直列に接続した半導体素子部と、
前記順方向のサイリスタに並列に接続したアレスタと、
前記半導体素子部とキャパシタを並列に接続した半導体遮断器と、
前記半導体遮断器と直列に接続した電流抑制リアクトルと、
前記半導体遮断器と直列に接続した機械接点式断路器または遮断器と、
を備える直流電流遮断装置。
A semiconductor element portion in which a forward self-excited semiconductor element and a forward thyristor are connected in series;
An arrester connected in parallel to the forward thyristor;
A semiconductor breaker in which the semiconductor element portion and the capacitor are connected in parallel;
A current suppressing reactor connected in series with the semiconductor breaker;
A mechanical contact disconnector or circuit breaker connected in series with the semiconductor breaker;
DC current interrupting device comprising.
前記順方向の自励式半導体素子の耐電圧が、前記順方向のサイリスタの耐電圧より小さい請求項1に記載の直流電流遮断装置。   2. The DC current interrupting device according to claim 1, wherein a withstand voltage of the forward self-excited semiconductor element is smaller than a withstand voltage of the forward thyristor. 前記順方向のサイリスタに対して、逆方向のダイオードを並列に接続した請求項2に記載の直流電流遮断装置。   3. The DC current interrupting device according to claim 2, wherein a reverse diode is connected in parallel to the forward thyristor. 前記順方向の自励式半導体素子に対して、逆方向の自励式半導体素子を直列に接続し、
前記順方向のサイリスタに対して逆方向のサイリスタを並列に接続し、双方向の直流電流を遮断する請求項3に記載の直流電流遮断装置。
A reverse self-excited semiconductor element is connected in series to the forward self-excited semiconductor element,
4. The DC current interrupting device according to claim 3, wherein a thyristor in a reverse direction is connected in parallel to the thyristor in the forward direction to interrupt a bidirectional DC current.
事故発生時に前記自励式半導体素子をオフし、サイリスタ電流を前記キャパシタに転流することによってサイリスタ電流をオフする請求項1から請求項4のいずれか1項に記載の直流電流遮断装置。   5. The DC current interrupting device according to claim 1, wherein, when an accident occurs, the self-excited semiconductor element is turned off and the thyristor current is turned off by commutating the thyristor current to the capacitor. 6. 事故発生時に前記自励式半導体素子をオフした直後、再度前記自励式半導体素子をオンする請求項5に記載の直流電流遮断装置。   6. The DC current interrupting device according to claim 5, wherein the self-excited semiconductor element is turned on again immediately after the self-excited semiconductor element is turned off when an accident occurs. 前記半導体遮断器に対して機械接点式断路器を並列に接続し、この機械接点式断路器に断路器開放用の自励式半導体素子を直列に接続した請求項1から請求項6のいずれか1項に記載の直流電流遮断装置。   The mechanical contact type disconnector is connected in parallel to the semiconductor circuit breaker, and a self-excited semiconductor element for opening the disconnector is connected in series to the mechanical contact type disconnector. The direct current interruption device according to item. 事故発生時に前記断路器開放用の自励式半導体素子をオフし、機械接点式断路器の電流を零にし、前記半導体遮断器に事故電流を転流する請求項7に記載の直流電流遮断装置。   8. The DC current interrupting device according to claim 7, wherein when an accident occurs, the self-excited semiconductor element for opening the disconnector is turned off, the current of the mechanical contact disconnector is made zero, and the accident current is commutated to the semiconductor circuit breaker. 機械接点式断路器と転流回路を前記半導体遮断器に並列に接続し、前記機械接点式断路器と転流回路の接点と前記機械接点式断路器または遮断器との間に、断路器用の機械接点式遮断器を接続し、前記半導体遮断器と前記機械接点式断路器または遮断器との間に転流調整リアクトルを接続した請求項1から請求項6のいずれか1項に記載の直流電流遮断装置。   A mechanical contact disconnector and a commutation circuit are connected in parallel to the semiconductor circuit breaker, and between the mechanical contact disconnector and the contact of the commutation circuit and the mechanical contact disconnector or circuit breaker, The direct current according to any one of claims 1 to 6, wherein a mechanical contact breaker is connected, and a commutation adjusting reactor is connected between the semiconductor breaker and the mechanical contact breaker or breaker. Current interrupt device. 事故発生時に前記転流回路で前記機械接点式遮断器に零点を生成して機械接点式遮断器を遮断し、前記転流回路をオフして前記機械接点式断路器の電流を零にし、前記半導体遮断器に事故電流を転流する請求項9に記載の直流電流遮断装置。   When an accident occurs, the commutation circuit generates a zero point in the mechanical contact circuit breaker to shut off the mechanical contact circuit breaker, the commutation circuit is turned off to make the current of the mechanical contact circuit breaker zero, The DC current interrupting device according to claim 9, wherein an accident current is commutated to the semiconductor circuit breaker. 前記転流回路をインバータとした請求項9または請求項10に記載の直流電流遮断装置。   The DC current interrupting device according to claim 9 or 10, wherein the commutation circuit is an inverter. 前記転流回路を共振発生回路とした請求項9または請求項10に記載の直流電流遮断装置。   The DC current interrupting device according to claim 9 or 10, wherein the commutation circuit is a resonance generating circuit.
JP2014241654A 2014-11-28 2014-11-28 DC current cutoff device Pending JP2016103427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014241654A JP2016103427A (en) 2014-11-28 2014-11-28 DC current cutoff device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014241654A JP2016103427A (en) 2014-11-28 2014-11-28 DC current cutoff device

Publications (1)

Publication Number Publication Date
JP2016103427A true JP2016103427A (en) 2016-06-02

Family

ID=56089582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014241654A Pending JP2016103427A (en) 2014-11-28 2014-11-28 DC current cutoff device

Country Status (1)

Country Link
JP (1) JP2016103427A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106971883A (en) * 2017-04-19 2017-07-21 中国科学院电工研究所 A kind of dc circuit breaker of hybrid switch device
JP2021518100A (en) * 2018-04-30 2021-07-29 エルエス、エレクトリック、カンパニー、リミテッドLs Electric Co., Ltd. Circuit breaker control module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106971883A (en) * 2017-04-19 2017-07-21 中国科学院电工研究所 A kind of dc circuit breaker of hybrid switch device
JP2021518100A (en) * 2018-04-30 2021-07-29 エルエス、エレクトリック、カンパニー、リミテッドLs Electric Co., Ltd. Circuit breaker control module
JP7097459B2 (en) 2018-04-30 2022-07-07 エルエス、エレクトリック、カンパニー、リミテッド Circuit breaker control module
US11811218B2 (en) 2018-04-30 2023-11-07 Ls Electric Co., Ltd. Circuit breaker control module

Similar Documents

Publication Publication Date Title
JP6430294B2 (en) DC breaker
RU2592640C2 (en) Linear dc voltage protective automatic device
US20230275417A1 (en) Dc circuit breaker with an alternating commutating circuit
JP6297619B2 (en) DC circuit breaker
JP6109649B2 (en) DC current interrupter
KR101483084B1 (en) Device and method to interrupt direct current
WO2015121983A1 (en) Protection system for dc power transmission system, ac/dc converter, and dc power transmission system breaking method
US10184452B2 (en) Wind power generation system and DC power transmission system
CN107534296B (en) Bipolar DC power transmission structure
JP6517589B2 (en) DC power transmission system, central server thereof, and method for recovering DC power transmission path after accident
CN104756338A (en) Circuit interruption device
JP2018046642A (en) DC power transmission system
Karthikeyan et al. Simulation and analysis of faults in high voltage DC (HVDC) power transmission
WO2015015831A1 (en) Current-limiting reactor device
JP2017004869A (en) Dc current cutoff apparatus
AU2017225327A1 (en) DC voltage switch
JP6462430B2 (en) DC current interrupter
JP6424976B1 (en) DC blocking device
CN107533926B (en) By-pass switch provides the method and power system of conductive path
JP2016103427A (en) DC current cutoff device
JP6223803B2 (en) DC breaker
JP2014236306A (en) Dc current interruption apparatus
JP6391993B2 (en) DC breaker
JP6382757B2 (en) DC breaker
KR102631482B1 (en) Dc circuit breaker