JP4445252B2 - DC circuit breaker control method - Google Patents

DC circuit breaker control method Download PDF

Info

Publication number
JP4445252B2
JP4445252B2 JP2003426766A JP2003426766A JP4445252B2 JP 4445252 B2 JP4445252 B2 JP 4445252B2 JP 2003426766 A JP2003426766 A JP 2003426766A JP 2003426766 A JP2003426766 A JP 2003426766A JP 4445252 B2 JP4445252 B2 JP 4445252B2
Authority
JP
Japan
Prior art keywords
circuit breaker
circuit
breaker
current
disconnector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003426766A
Other languages
Japanese (ja)
Other versions
JP2005190671A (en
Inventor
芳充 丹羽
順 松崎
邦夫 横倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003426766A priority Critical patent/JP4445252B2/en
Publication of JP2005190671A publication Critical patent/JP2005190671A/en
Application granted granted Critical
Publication of JP4445252B2 publication Critical patent/JP4445252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/543Contacts shunted by static switch means third parallel branch comprising an energy absorber, e.g. MOV, PTC, Zener

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

本発明は、点検作業を容易にし得る直流回路に用いる直流遮断器の制御方法に関する。
The present invention relates to a control method for a DC circuit breaker used in a DC circuit that can facilitate inspection work.

従来の電気鉄道用き電回路のような直流回路においては、直流電源の電源側に事故電流や通電電流などを遮断する直流遮断器が回線毎に設けられている(例えば、特許文献1参照。)。   In a DC circuit such as a conventional electric railway feeding circuit, a DC circuit breaker that cuts off an accident current or an energized current is provided for each line on the power source side of the DC power supply (see, for example, Patent Document 1). ).

図5に示すように、電気鉄道用き電回路の電源線1には、第1の断路器2を介して第1の直流遮断器3が接続され、この直流遮断器3から第2の断路器4を介して第1のき電線5に直流電力の供給が行われている。そして、第1のき電線5から、交通機器の電車6へ直流電力を供給し、レールなどの帰線7により負極側へ戻る回路構成となっている。また、第1のき電線5と絶縁された第2のき電線8には、電源線1から第3の断路器9を介して第2の直流遮断器10が接続され、この第2の直流遮断器10から第4の断路器11を介して直流電力の供給が行われている。   As shown in FIG. 5, the first DC breaker 3 is connected to the power line 1 of the electric railway feeder circuit via the first disconnector 2, and the second disconnector is connected to the DC breaker 3. DC power is supplied to the first feeder 5 via the device 4. And it has a circuit configuration in which DC power is supplied from the first feeder 5 to the train 6 of the traffic equipment and returned to the negative electrode side by a return line 7 such as a rail. A second DC breaker 10 is connected to the second feeder 8 insulated from the first feeder 5 via the third disconnector 9 from the power line 1, and this second DC DC power is supplied from the circuit breaker 10 through the fourth disconnector 11.

この第1の直流遮断器3および第2の直流遮断器10には、直流回路にそれぞれ主遮断器12と副遮断器13とが直列接続されている。主遮断器12には、過電圧を吸収するサージアブソーバ14、およびリアクトル15、コンデンサ16、転流スイッチ17を直列接続した転流回路18が並列接続されている。また、直流回路には、電流を検出する変流器19が設けられている。
特開平9−73845号公報 (第3ページ、図5)
In the first DC circuit breaker 3 and the second DC circuit breaker 10, a main circuit breaker 12 and a sub circuit breaker 13 are connected in series to a DC circuit, respectively. The main circuit breaker 12 is connected in parallel with a surge absorber 14 that absorbs overvoltage, and a commutation circuit 18 in which a reactor 15, a capacitor 16, and a commutation switch 17 are connected in series. Further, the DC circuit is provided with a current transformer 19 for detecting current.
JP-A-9-73845 (3rd page, FIG. 5)

上記の従来の直流遮断器3または10においては、次のような問題がある。   The conventional DC circuit breaker 3 or 10 has the following problems.

第1の直流遮断器3を点検する場合、第1の断路器2と第2の断路器4とを開路し、第1の直流遮断器3を直流回路から切離して点検が行われていた。また、第2の直流遮断器10においても同様に、第3の断路器9と第4の断路器11とを開路して直流回路から切離していた。しかしながら、この点検においては、電車6が運転されない終電から初電までの夜間に限られ、作業が困難であった。更には、電車6の運転中には、点検ができなかった。   When the first DC breaker 3 is inspected, the first disconnector 2 and the second disconnector 4 are opened, and the first DC breaker 3 is disconnected from the DC circuit. Similarly, in the second DC breaker 10, the third disconnector 9 and the fourth disconnector 11 are opened and disconnected from the DC circuit. However, in this inspection, it was limited to the night from the last train to the first train when the train 6 was not operated, and the work was difficult. Furthermore, the inspection could not be performed while the train 6 was in operation.

このため、昼間で、且つ電車6が運転中であっても直流遮断器3または10を直流回路から切離して点検作業ができることが望まれていた。   For this reason, it has been desired that the DC circuit breaker 3 or 10 can be disconnected from the DC circuit and can be inspected in the daytime and even when the train 6 is in operation.

本発明は上記問題を解決するためになされたもので、昼間で、且つ電車が運転中であっ
ても直流回路から切離して点検を可能とする直流遮断器の制御方法を得ることを目的とす
る。
The present invention has been made to solve the above problem, and an object of the present invention is to provide a DC circuit breaker control method that enables inspection by disconnecting from a DC circuit during daytime and even when a train is in operation. .

上記目的を達成するために、本発明の直流遮断器の制御方法は、直流回路に主遮断器と
副遮断器とを直列接続し、前記主遮断器に転流回路を並列接続した直流遮断器を電気鉄道
用き電回路の電源線とき電線間に2台並列接続した直流遮断器の制御方法において、先ず
一方の直流遮断器を閉極した状態で他方の直流遮断器を閉極し、前記電源線の通電電流
を前記2台の直流遮断器にそれぞれ分流させ、その後、前記一方の直流遮断器の主遮断器
よりも副遮断器を先に開極し、分流された電流を減衰させ、次に、この分流された電流が
零点を迎える前に、この分流された電流と同一方向の転流電流を前記一方の直流遮断器の
転流回路から重畳させたことを特徴とする。
In order to achieve the above object, a DC circuit breaker control method according to the present invention includes a DC circuit breaker in which a main circuit breaker and a sub circuit breaker are connected in series to a DC circuit, and a commutation circuit is connected in parallel to the main circuit breaker. In the control method of the DC breaker in which two units are connected in parallel between the power lines of the electric circuit for electric railway
, One DC circuit breaker is closed , the other DC circuit breaker is closed, and the energization current of the power line is divided into the two DC circuit breakers, respectively, and then the one DC circuit breaker Main circuit breaker
And opening even sub breaker ahead, the diverted current is attenuated, then, this diverted current
Before reaching the zero point, a commutation current in the same direction as this shunt current is applied to the one DC breaker.
It is characterized by being superimposed from the commutation circuit .

このような構成によれば、電気鉄道用き電回路に、2台の直流遮断器を並列接続し、一方の直流遮断器から他方の直流遮断器に直流電力を切替える場合、一方の直流遮断器を閉極した状態で他方の直流遮断器を閉極し、通電電流を分流させ、次いで一方の直流遮断器を開極して分流電流を零まで減衰させるので、直流電力を一方の直流遮断器から他方の直流遮断器に切替えることができる。このため、通電中の電気鉄道用き電回路から一方の直流遮断器を切離して点検することができる。   According to such a configuration, when two DC circuit breakers are connected in parallel to a feeder circuit for an electric railway and DC power is switched from one DC circuit breaker to the other DC circuit breaker, one DC circuit breaker The other DC circuit breaker is closed with the current closed, and the current flow is shunted, then one of the DC circuit breakers is opened and the shunt current is attenuated to zero. To the other DC circuit breaker. For this reason, one DC circuit breaker can be disconnected and inspected from the electric railway feeder circuit being energized.

以下、本発明による直流遮断器を図面を参照して説明する。   Hereinafter, a DC circuit breaker according to the present invention will be described with reference to the drawings.

先ず、本発明の実施例1に係る直流遮断器を図1および図2を参照して説明する。図1は、本発明の実施例1に係る直流遮断器を用いた直流回路の回路図、図2は、本発明の実施例1に係る直流遮断器および断路器の動作を説明する図である。なお、図1において、従来と同様の構成部分については、同一符号を付した。   First, a DC circuit breaker according to Embodiment 1 of the present invention will be described with reference to FIG. 1 and FIG. FIG. 1 is a circuit diagram of a DC circuit using a DC circuit breaker according to Embodiment 1 of the present invention, and FIG. 2 is a diagram for explaining operations of the DC circuit breaker and disconnector according to Embodiment 1 of the present invention. . In FIG. 1, the same components as those in the prior art are denoted by the same reference numerals.

図1に示すように、直流の電気鉄道用き電回路の電源線1には、第1の断路器2を介して第1の直流遮断器3が接続され、この直流遮断器3から第2の断路器4を介して第1のき電線5に直流電力の供給が行われている。そして、第1のき電線5から、交通機器の電車6へ電力を供給し、レールなどの帰線7により負極側へ戻る回路構成となっている。また、電源線1側に第5の断路器20、第1のき電線5側に第6の断路器21を接続した第3の直流遮断器22が第1の直流遮断器3と並列接続されている。なお、第2のき電線8にも同様に、2台の直流遮断器が並列接続されている。   As shown in FIG. 1, a first DC circuit breaker 3 is connected to a power line 1 of a DC electric railway feeder circuit via a first disconnector 2, DC power is supplied to the first feeder 5 via the disconnector 4. And it is the circuit structure which supplies electric power from the 1st feeder 5 to the train 6 of a traffic device, and returns to the negative electrode side by the return line 7 such as a rail. Further, a third DC breaker 22 in which a fifth disconnector 20 is connected to the power line 1 side and a sixth disconnector 21 is connected to the first feeder 5 side is connected in parallel with the first DC breaker 3. ing. Similarly, two DC breakers are connected in parallel to the second feeder 8.

この第1の直流遮断器3および第3の直流遮断器22には、直流回路にそれぞれ主遮断器12と副遮断器13とが直列接続されている。主遮断器12には、過電圧を吸収するサージアブソーバ14、およびリアクトル15、コンデンサ16、転流スイッチ17を直列接続した転流回路18が並列接続されている。また、それぞれの直流遮断器3、22の直流回路には、電流を検出する変流器19が設けられている。   A main circuit breaker 12 and a sub circuit breaker 13 are connected in series to the first DC circuit breaker 3 and the third DC circuit breaker 22, respectively, in a DC circuit. The main circuit breaker 12 is connected in parallel with a surge absorber 14 that absorbs overvoltage, and a commutation circuit 18 in which a reactor 15, a capacitor 16, and a commutation switch 17 are connected in series. Further, the DC circuit of each of the DC circuit breakers 3 and 22 is provided with a current transformer 19 for detecting current.

そして、通常、第1の断路器2、第2の断路器4が閉路され、第1の直流遮断器3も閉極されて第1のき電線5に直流電力の供給が行われている。また、第5の断路器20、第6の断路器21は開路、第3の直流遮断器22は開極され、予備のものとなっている。ここで、第1の直流遮断器3を点検するために、直流電力を第3の直流遮断器22側に切替える場合を、図2を参照して説明する。   Usually, the first disconnector 2 and the second disconnector 4 are closed, the first DC breaker 3 is also closed, and the DC power is supplied to the first feeder 5. Further, the fifth disconnector 20 and the sixth disconnector 21 are opened, and the third DC breaker 22 is opened and is a spare one. Here, a case where the DC power is switched to the third DC circuit breaker 22 side in order to check the first DC circuit breaker 3 will be described with reference to FIG.

図2に示すように、先ず、図示しない制御回路からの信号で第5の断路器20、第6の断路器21を時間t1で閉路し、次いで、第3の直流遮断器22の主遮断器12および副遮断器13を閉極する。これにより、第1の直流遮断器3側に流れていた通電電流i0は、第3の直流遮断器22側とに分流してほぼ等しい実線で示すような第1の直流遮断器3の分流電流i1と、一点鎖線で示すような第3の直流遮断器22の分流電流i2となる。そして、数秒経過後の時間t2において、図示しない制御回路からの信号で第1の直流遮断器3の主遮断器12を開極すると、第1の直流遮断器3側の分流電流i1は減衰し、第3の直流遮断器22側の分流電流i2は増加する。   As shown in FIG. 2, first, the fifth disconnector 20 and the sixth disconnector 21 are closed at time t <b> 1 by a signal from a control circuit (not shown), and then the main breaker of the third DC breaker 22. 12 and the auxiliary circuit breaker 13 are closed. As a result, the energization current i0 flowing to the first DC circuit breaker 3 side is shunted to the third DC circuit breaker 22 side, and the shunt current of the first DC circuit breaker 3 as shown by substantially the same solid line. i1 and the shunt current i2 of the third DC breaker 22 as indicated by the alternate long and short dash line. When the main circuit breaker 12 of the first DC circuit breaker 3 is opened with a signal from a control circuit (not shown) at time t2 after several seconds have elapsed, the shunt current i1 on the first DC circuit breaker 3 side is attenuated. The shunt current i2 on the third DC circuit breaker 22 side increases.

この分流電流i1の減衰は、第1の直流遮断器3の主遮断器12の電極間で発生するアーク抵抗などの回路定数によるものであり、数10ms後には零点を迎える。また、第3の直流遮断器22の分流電流i2は、通電電流i0まで達する。このため、分流電流i1が零点を迎える時間t3のとき、第1の直流遮断器3の副遮断器13を図示しない制御回路からの信号で開極する。次いで、第1の断路器2と第2の断路器4とを開路する。   The attenuation of the shunt current i1 is due to circuit constants such as arc resistance generated between the electrodes of the main circuit breaker 12 of the first DC circuit breaker 3, and reaches a zero point after several 10 ms. Further, the shunt current i2 of the third DC circuit breaker 22 reaches the energization current i0. Therefore, at time t3 when the shunt current i1 reaches the zero point, the auxiliary circuit breaker 13 of the first DC circuit breaker 3 is opened by a signal from a control circuit (not shown). Next, the first disconnector 2 and the second disconnector 4 are opened.

これにより、直流電力を第1の直流遮断器3側から第3の直流遮断器22側に切替えることができる。そして、第1の直流遮断器3を直流回路から切離すことができ、点検をすることができる。   Thereby, DC power can be switched from the 1st DC circuit breaker 3 side to the 3rd DC circuit breaker 22 side. And the 1st DC circuit breaker 3 can be disconnected from a DC circuit, and can be inspected.

なお、分流電流i1が零になる前に第1の断路器2と第2の断路器4を開路すると、開離した電極間でアークを発生し、開路することができなくなることがある。また、転流回路18は、動作をさせないものである。   If the first disconnector 2 and the second disconnector 4 are opened before the shunt current i1 becomes zero, an arc may be generated between the separated electrodes, and the circuit may not be opened. Further, the commutation circuit 18 does not operate.

上記実施例1の直流遮断器によれば、第1および第3の直流遮断器3および22を並列接続し、第1の直流遮断器3から第3の直流遮断器22に直流電力を切替える場合、第1の直流遮断器3を閉極した状態で第3の直流遮断器22を閉極して通電電流を分流させ、その後第1の直流遮断器3を開極するので、第1の直流遮断器3の分流電流が零を迎えて、第1の直流遮断器3から第3の直流遮断器22に直流電力を切替えることができる。そして、電気鉄道用き電線回路から第1の直流遮断器3を切離し、点検することができる。   According to the DC circuit breaker of the first embodiment, the first and third DC circuit breakers 3 and 22 are connected in parallel, and the DC power is switched from the first DC circuit breaker 3 to the third DC circuit breaker 22. Since the first DC circuit breaker 3 is closed, the third DC circuit breaker 22 is closed to divert the energizing current, and then the first DC circuit breaker 3 is opened. When the shunt current of the circuit breaker 3 reaches zero, the DC power can be switched from the first DC circuit breaker 3 to the third DC circuit breaker 22. Then, the first DC circuit breaker 3 can be disconnected from the electric railway feeder circuit and inspected.

なお、上記実施例1では、直流回路の電源側に主遮断器、そして副遮断器を直列接続して説明したが、これを逆にして、電源側に副遮断器、そして主遮断器を直列接続してもよい。   In the first embodiment, the main circuit breaker and the sub circuit breaker are connected in series on the power source side of the DC circuit, but this is reversed, and the sub circuit breaker and the main circuit breaker are connected in series on the power source side. You may connect.

次に、本発明の実施例2に係る直流遮断器を再び図1および図3を参照して説明する。図1は、本発明の実施例2に係る直流遮断器を用いた直流回路の回路図、図3は、本発明の実施例2に係る直流遮断器の動作を説明する図である。なお、この実施例2が実施例1と異なる点は、直流電力の切替え時に転流回路を動作させることである。また、図1の説明は、省略する。   Next, a DC circuit breaker according to Embodiment 2 of the present invention will be described with reference to FIGS. 1 and 3 again. FIG. 1 is a circuit diagram of a DC circuit using a DC circuit breaker according to Embodiment 2 of the present invention, and FIG. 3 is a diagram for explaining the operation of the DC circuit breaker according to Embodiment 2 of the present invention. The second embodiment is different from the first embodiment in that the commutation circuit is operated when the DC power is switched. The description of FIG. 1 is omitted.

以下、第1の直流遮断器3を点検するために、直流電力を第3の直流遮断器22側に切替える場合を、図3を参照して説明する。   Hereinafter, a case where the DC power is switched to the third DC circuit breaker 22 side in order to check the first DC circuit breaker 3 will be described with reference to FIG.

図3に示すように、第1の直流遮断器3が閉極状態で、開極している第3の直流遮断器22を図示しない制御回路からの信号で閉極すると、通電電流i0は、分流してほぼ等しい第1の直流遮断器3の分流電流i1と、第3の直流遮断器22の分流電流i2となる。次いで、時間t2に図示しない制御回路からの信号で第1の直流遮断器3の主遮断器12を開極すると、時間t2から第1の直流遮断器3側の分流電流i1は減衰し、第3の直流遮断器22側の分流電流i2は増加する。   As shown in FIG. 3, when the first DC breaker 3 is in a closed state and the opened third DC breaker 22 is closed by a signal from a control circuit (not shown), the energization current i0 is The shunt current i1 of the first DC circuit breaker 3 and the shunt current i2 of the third DC circuit breaker 22 are substantially equal. Next, when the main circuit breaker 12 of the first DC circuit breaker 3 is opened by a signal from a control circuit (not shown) at time t2, the shunt current i1 on the first DC circuit breaker 3 side is attenuated from time t2, and the first 3, the shunt current i2 on the DC breaker 22 side increases.

ここで、分流電流i1は、第1の直流遮断器3の主遮断器12のアーク抵抗などの回路定数により減衰して電流零点を迎える。しかしながら、その前の時間t4に、図示しない制御回路からの信号で転流スイッチ17を閉路し、分流電流i1と同一方向の実線で示すような転流電流i1aを重畳させる。これは、直流回路で地絡事故などが起き、分流電流i1の減衰に長時間を要する場合にも行うことができる。更には、分流電流i1が増加する場合にも行うことができる。   Here, the shunt current i1 is attenuated by a circuit constant such as the arc resistance of the main circuit breaker 12 of the first DC circuit breaker 3 and reaches the current zero point. However, at the previous time t4, the commutation switch 17 is closed by a signal from a control circuit (not shown), and a commutation current i1a as indicated by a solid line in the same direction as the shunt current i1 is superimposed. This can also be performed when a ground fault or the like occurs in the DC circuit and it takes a long time to attenuate the shunt current i1. Furthermore, it can also be performed when the shunt current i1 increases.

次いで、分流電流i1に重畳された転流電流i1aの半波が電流零点を迎える時間t5のとき、図示しない制御回路からの信号で第1の直流遮断器3の副遮断器13を開極する。これにより、分流電流i1は、転流電流の半波の電流零点で遮断される。また、分流電流i2は、第1の直流遮断器3と第3の直流遮断器22で構成される閉回路により、転流電流i1aと反転した一点鎖線で示すような反転電流i2aが重畳され、そして分流電流i1遮断時に通電電流i0に達する。その後、第1の断路器2と第2の断路器4とを開路すれば、第1の直流遮断器3を直流回路から切離すことができ、点検をすることができる。 Next, when the half wave of the commutation current i1a superimposed on the shunt current i1 reaches the current zero point, the sub-breaker 13 of the first DC breaker 3 is opened by a signal from a control circuit (not shown). . Thereby, the shunt current i1 is cut off at the half-wave current zero point of the commutation current. In addition, the shunt current i2 is superimposed by a closed circuit composed of the first DC breaker 3 and the third DC breaker 22 , and an inverted current i2a as shown by a one-dot chain line inverted from the commutated current i1a is superimposed. Then, the current i0 is reached when the shunt current i1 is cut off. Thereafter, if the first disconnector 2 and the second disconnector 4 are opened, the first DC breaker 3 can be disconnected from the DC circuit and can be inspected.

なお、副遮断器13を時間t5で開極しない場合には、転流電流i1aが二点鎖線で示すような振動波電流i1bとなって、通電電流i0に加算されて電流値が増加したようになる。通電電流i0が増加することは、変流器19で地絡のような事故電流と検出され、第3の直流遮断器22の誤動作を招くことになり好ましくない。   When the secondary circuit breaker 13 is not opened at time t5, the commutation current i1a becomes an oscillating wave current i1b as indicated by a two-dot chain line, and is added to the energization current i0 so that the current value increases. become. An increase in the energizing current i0 is not preferable because the current transformer 19 detects an accident current such as a ground fault and causes the third DC breaker 22 to malfunction.

上記実施例2の直流遮断器によれば、実施例1の効果の他に、第1の直流遮断器3を短時間で開極することができる。   According to the DC circuit breaker of the second embodiment, in addition to the effects of the first embodiment, the first DC circuit breaker 3 can be opened in a short time.

なお、上記実施例2では、主遮断器12を開極し、その後電流零点を迎える前に副遮断器13を開極させたが、主遮断器12と副遮断器13とを同時に開極させてもよい。更には、先ず副遮断器13を開極し、次いで主遮断器12を開極させてもよい。これは、分流電流i1の減衰する時間が、第1の直流遮断器3の主遮断器12と副遮断器13とのアーク抵抗などの回路定数で決まるので、副遮断器13をなるべく早く開極すればこのアーク抵抗が増加して、減衰する時間が短縮される効果を生じるためである。このため、副遮断器13にアーク抵抗が高くなる平板電極や磁気駆動電極を用いてもよい。   In the second embodiment, the main circuit breaker 12 is opened and then the sub circuit breaker 13 is opened before reaching the current zero point. However, the main circuit breaker 12 and the sub circuit breaker 13 are opened simultaneously. May be. Furthermore, the auxiliary circuit breaker 13 may be opened first, and then the main circuit breaker 12 may be opened. This is because the time during which the shunt current i1 decays is determined by circuit constants such as arc resistance between the main circuit breaker 12 and the sub circuit breaker 13 of the first DC circuit breaker 3, so that the sub circuit breaker 13 is opened as soon as possible. This is because the arc resistance increases, and the decay time is shortened. For this reason, a flat plate electrode or a magnetic drive electrode with high arc resistance may be used for the auxiliary circuit breaker 13.

次に、本発明の実施例3に係る直流遮断器を図4を参照して説明する。図4は、本発明の実施例3に係る直流遮断器の回路構成図である。なお、この実施例3が実施例1と異なる点は、転流回路の構成である。図4において、図1と同様の構成部分については、同一符号を付した。   Next, a DC circuit breaker according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 4 is a circuit configuration diagram of a DC circuit breaker according to Embodiment 3 of the present invention. The third embodiment differs from the first embodiment in the configuration of the commutation circuit. In FIG. 4, the same components as those in FIG.

以下、直流遮断器は、第1の直流遮断器3、第3の直流遮断器22で同様であるので、第1の直流遮断器3を例にとり説明する。   Hereinafter, since the DC breaker is the same in the first DC breaker 3 and the third DC breaker 22, the first DC breaker 3 will be described as an example.

図4に示すように、直流回路には、主遮断器12と副遮断器13とが直列接続されている。主遮断器12には、過電圧を吸収するサージアブソーバ14、およびリアクトル15、コンデンサ16、転流スイッチ23を直列接続した転流回路18が並列接続されている。ここで、転流スイッチ23は、例えばサイリスタのようなスイッチを両方向の向きに設けたものである。また、直流回路には、電流を検出する変流器19が設けられている。   As shown in FIG. 4, a main circuit breaker 12 and a sub circuit breaker 13 are connected in series to the DC circuit. The main circuit breaker 12 is connected in parallel with a surge absorber 14 that absorbs overvoltage, and a commutation circuit 18 in which a reactor 15, a capacitor 16, and a commutation switch 23 are connected in series. Here, the commutation switch 23 is provided with a switch such as a thyristor in both directions. Further, the DC circuit is provided with a current transformer 19 for detecting current.

これにより、主遮断器12を開極し、次いで減衰していく分流電流に転流電流を重畳させる場合、変流器19で分流電流を検出し、そして図示しない制御回路からの信号により転流スイッチ23を選択して分流電流と同一方向の転流電流を重畳させる。   As a result, when the main circuit breaker 12 is opened and then the commutation current is superimposed on the shunting current that is attenuated, the shunt current is detected by the current transformer 19 and the commutation is performed by a signal from a control circuit (not shown). The switch 23 is selected to superimpose a commutation current in the same direction as the shunt current.

上記実施例3の直流遮断器によれば、実施例1の効果の他に、分流電流と同一方向の転流電流を確実に重畳させることができる。   According to the DC circuit breaker of the third embodiment, in addition to the effects of the first embodiment, a commutation current in the same direction as the shunt current can be reliably superimposed.

本発明の実施例1および実施例2に係る直流遮断器を用いた直流回路の回路図。The circuit diagram of the DC circuit using the DC circuit breaker which concerns on Example 1 and Example 2 of this invention. 本発明の実施例1に係る直流遮断器および断路器の動作を説明する図。The figure explaining operation | movement of the DC circuit breaker and disconnector which concern on Example 1 of this invention. 本発明の実施例2に係る直流遮断器の動作を説明する図。The figure explaining operation | movement of the DC circuit breaker which concerns on Example 2 of this invention. 本発明の実施例3に係る直流遮断器の回路構成図。The circuit block diagram of the direct-current circuit breaker which concerns on Example 3 of this invention. 従来の直流遮断器を用いた直流回路の回路図。The circuit diagram of the DC circuit using the conventional DC circuit breaker.

符号の説明Explanation of symbols

1 電源線
2 第1の断路器
3 第1の直流遮断器
4 第2の断路器
5 第1のき電線
6 電車
7 帰線
8 第2のき電線
9 第3の断路器
10 第2の直流遮断器
11 第4の断路器
12 主遮断器
13 副遮断器
14 サージアブソーバ
15 リアクトル
16 コンデンサ
17、23 転流スイッチ
18 転流回路
19 変流器
20 第5の断路器
21 第6の断路器
22 第3の直流遮断器
1 power line 2 first disconnector 3 first DC breaker 4 second disconnector 5 first feeder 6 train 7 return line 8 second feeder 9 third disconnector 10 second DC Circuit breaker 11 Fourth disconnector 12 Main circuit breaker 13 Sub circuit breaker 14 Surge absorber 15 Reactor 16 Capacitors 17, 23 Commutation switch 18 Commutation circuit 19 Current transformer 20 Fifth disconnector 21st sixth disconnector 22 Third DC circuit breaker

Claims (1)

直流回路に主遮断器と副遮断器とを直列接続し、前記主遮断器に転流回路を並列接続し
た直流遮断器を電気鉄道用き電回路の電源線とき電線間に2台並列接続した直流遮断器の
制御方法において、
先ず、一方の直流遮断器を閉極した状態で他方の直流遮断器を閉極し、前記電源線の通電
電流を前記2台の直流遮断器にそれぞれ分流させ、
その後、前記一方の直流遮断器の主遮断器よりも副遮断器を先に開極し、分流された電流
を減衰させ、
次に、この分流された電流が零点を迎える前に、この分流された電流と同一方向の転流電
流を前記一方の直流遮断器の転流回路から重畳させたことを特徴とする直流遮断器の制御
方法
A main circuit breaker and a sub circuit breaker are connected in series to a DC circuit, and two DC circuit breakers in which a commutation circuit is connected in parallel to the main circuit breaker are connected in parallel between power lines and wires of an electric railway feeder . DC circuit breaker
In the control method,
First, in the state where one DC circuit breaker is closed, the other DC circuit breaker is closed, and the energization current of the power line is divided into the two DC circuit breakers,
Thereafter, the secondary circuit breaker is opened before the main circuit breaker of the one DC circuit breaker, and the shunt current is attenuated.
Next, before the shunt current reaches zero, the commutation current in the same direction as the shunt current is
DC breaker control characterized in that current is superimposed from the commutation circuit of said one DC breaker
Way .
JP2003426766A 2003-12-24 2003-12-24 DC circuit breaker control method Expired - Fee Related JP4445252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003426766A JP4445252B2 (en) 2003-12-24 2003-12-24 DC circuit breaker control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003426766A JP4445252B2 (en) 2003-12-24 2003-12-24 DC circuit breaker control method

Publications (2)

Publication Number Publication Date
JP2005190671A JP2005190671A (en) 2005-07-14
JP4445252B2 true JP4445252B2 (en) 2010-04-07

Family

ID=34786205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003426766A Expired - Fee Related JP4445252B2 (en) 2003-12-24 2003-12-24 DC circuit breaker control method

Country Status (1)

Country Link
JP (1) JP4445252B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101679722B1 (en) 2013-12-31 2016-11-25 주식회사 효성 Direct current circuit breaker
WO2016056098A1 (en) * 2014-10-09 2016-04-14 三菱電機株式会社 Direct current circuit breaker
GB2532009A (en) * 2014-11-04 2016-05-11 Hawker Siddeley Switchgear Ltd DC circuit breaker and disconnector
JP2017004726A (en) * 2015-06-09 2017-01-05 株式会社東芝 Dc blocking device and dc blocking method
EP4160641B1 (en) * 2017-07-11 2024-02-28 Mitsubishi Electric Corporation Direct-current circuit breaker
GB2601334A (en) * 2020-11-26 2022-06-01 Hawker Siddeley Switchgear Ltd An apparatus and methods for use in a power delivery system

Also Published As

Publication number Publication date
JP2005190671A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
WO2015121983A1 (en) Protection system for dc power transmission system, ac/dc converter, and dc power transmission system breaking method
KR20140022374A (en) Method for eliminating a fault on a high-voltage dc line, system for transmitting an electric current via a high-voltage dc line, and converter
AU2017225327B2 (en) DC voltage switch
JP4445252B2 (en) DC circuit breaker control method
JP5031607B2 (en) DC high-speed vacuum circuit breaker
JP2007001463A (en) Arc suppression system for booster section and method
JP2010238391A (en) Direct-current breaker
KR101564736B1 (en) Source transfer switching apparatus
CN101977004A (en) Large current deexcitation loop based on silicon controlled rectifier subject to multi-redundancy trigger of jumper
JP2006260925A (en) Direct current high speed vacuum circuit breaker
JP2016103427A (en) DC current cutoff device
EP0416510A2 (en) DC power supply circuit arrangement
JP3517742B2 (en) Grounding equipment for DC electric railway
JP3067428B2 (en) Abnormality monitoring device for DC breaker
JPH06168820A (en) Power supply for nuclear fusion device
SU1393669A1 (en) Protection device for induction electric motor of railway car ventilation system
JPH0866047A (en) Voltage type power converter
JPS5838420A (en) Dc breaker
SU1105353A1 (en) Rail distribution system
JP2002093291A (en) Semiconductor switch and its control method
JPS59101728A (en) Protecting system for dc transmission system
SU1179472A1 (en) Device for protection of autotransformer against incomplete phase operation
CN102882396A (en) Three-bypass high-power rectifier power supply and control method for same
JPH08212878A (en) Dc circuit breaker
JPS5986438A (en) No-break power source

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

R151 Written notification of patent or utility model registration

Ref document number: 4445252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees