JP2006258618A - Phosphor sheet for radiation detector and radiation detector using it - Google Patents

Phosphor sheet for radiation detector and radiation detector using it Download PDF

Info

Publication number
JP2006258618A
JP2006258618A JP2005076744A JP2005076744A JP2006258618A JP 2006258618 A JP2006258618 A JP 2006258618A JP 2005076744 A JP2005076744 A JP 2005076744A JP 2005076744 A JP2005076744 A JP 2005076744A JP 2006258618 A JP2006258618 A JP 2006258618A
Authority
JP
Japan
Prior art keywords
phosphor
radiation detector
phosphor layer
sheet
phosphor sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005076744A
Other languages
Japanese (ja)
Other versions
JP4764039B2 (en
Inventor
Eiji Koyaizu
英二 小柳津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Priority to JP2005076744A priority Critical patent/JP4764039B2/en
Publication of JP2006258618A publication Critical patent/JP2006258618A/en
Application granted granted Critical
Publication of JP4764039B2 publication Critical patent/JP4764039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)
  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphor sheet for radiation detector which is stable in material properties without affecting to a human body as a specimen and can improve sharpness of image, and also to provide a radiation detector using it. <P>SOLUTION: The phosphor sheet 11 for radiation detector having a support 9 provided with a metal film 8 and at least a phosphor layer 10 formed on the support 9 surface uses a rare-earth oxisulfide as a phosphor layer 10 whose thickness is 50 to 300 μm as characteristics. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は放射線検出器用蛍光体シートおよびそれを用いた放射線検出器に係り、特に放射線を使用した医用診断装置及び非破壊検査装置の放射線検出器に使用した場合に鮮鋭度が高い放射線透過画像が得られる放射線検出器用蛍光体シートおよびそれを用いた放射線検出器に関する。   The present invention relates to a phosphor sheet for a radiation detector and a radiation detector using the same, and in particular, when used for a radiation detector of a medical diagnostic apparatus and a non-destructive inspection apparatus using radiation, a radiation transmission image with high sharpness is obtained. The present invention relates to a phosphor sheet for a radiation detector and a radiation detector using the same.

従来から医用X線診断装置や工業用非破壊検査装置のX線平面検出器の分野において、診断対象物や検査対象物にX線等の放射線を照射し、対象物を透過した放射線の強度分布を検出して対象物の放射線画像を撮影する装置が、上記非破壊検査や医療診断の現場以外においても広く一般に利用されている。このような画像撮影の一般的な方法としては増感紙/フィルム法が普及している。すなわち、X線を照射すると可視光を発光する蛍光体シート(増感紙)を感光性フィルムの両面に密着させた積層体を用意し、被写体を介して積層体にX線等の放射線を照射する方法である。このとき被写体を透過したX線等は蛍光体で発光し、感光性フィルムにより光が捕捉され、この感光性フィルム上に形成された潜像を化学処理により現像し可視化することによってX線透過画像が得られる。   Conventionally, in the field of X-ray flat panel detectors for medical X-ray diagnostic equipment and industrial non-destructive inspection equipment, radiation intensity such as X-rays has been irradiated to diagnostic objects and inspection objects and transmitted through the objects. An apparatus that detects a radiation image of an object by detecting the above is widely used outside the field of the non-destructive inspection and medical diagnosis. An intensifying screen / film method is widely used as a general method for taking such an image. That is, a laminate is prepared in which a phosphor sheet (intensifying screen) that emits visible light when irradiated with X-rays is adhered to both sides of the photosensitive film, and the laminate is irradiated with radiation such as X-rays through the subject. It is a method to do. At this time, X-rays and the like transmitted through the subject are emitted by the phosphor, and the light is captured by the photosensitive film, and the latent image formed on the photosensitive film is developed and visualized by chemical processing to obtain an X-ray transmission image. Is obtained.

一方、近年のデジタル技術の進歩により、放射線画像を電気信号に変換し、この電気信号を画像処理した後に、可視画像としてCRT等に再生表示することにより高画質の放射線画像を得る方式が試行されている。   On the other hand, with recent advances in digital technology, a method of obtaining a high-quality radiation image by converting a radiation image into an electrical signal, processing the electrical signal, and reproducing and displaying the image on a CRT or the like as a visible image has been tried. ing.

このような放射線画像を電気信号に変換する方法としては、放射線の透過画像を一旦蛍光体中に潜像として蓄積して、後にレーザー光等の励起光を照射することにより潜像を光電的に読み出し、可視像として出力する放射線画像記録再生システム(CR:Computed Radiography)が提案されている。   As a method of converting such a radiation image into an electrical signal, a radiation transmission image is temporarily accumulated as a latent image in a phosphor, and then the latent image is photoelectrically irradiated by irradiating excitation light such as laser light later. A radiation image recording / reproducing system (CR) that reads out and outputs a visible image has been proposed.

また、光電膜、加速電極及び蛍光膜を設けた大きな真空管と1インチ程度のCCD(固体撮像素子)カメラとを使用し、画像を直接デジタル化するイメージインテンシファイアTV(II−TV)方式の診断装置が実現されている。しかし、例えば被検体としての患者の肺を診断する場合には、40cm×40cm程度の広領域を撮影するため、光を集光する大型の光学装置が必須となり、診断装置の大型化が問題になっている。   In addition, an image intensifier TV (II-TV) system that directly digitizes an image using a large vacuum tube provided with a photoelectric film, an accelerating electrode, and a fluorescent film and a CCD (solid-state imaging device) camera of about 1 inch. A diagnostic device is realized. However, for example, when diagnosing the lungs of a patient as a subject, a large optical device that collects light is indispensable for photographing a wide area of about 40 cm × 40 cm, and the enlargement of the diagnostic device is a problem. It has become.

また、近年の半導体プロセス技術の進歩に伴い、半導体センサを使用して同様に放射線画像を撮影する画像装置システムが開発されている。この種のシステムは、従来の感光性フィルムを用いる放射線写真システムと比較して、非常に広いダイナミックレンジを有しており、放射線の露光量の変動に影響されにくい放射線画像を得ることができる利点を有している。更には、化学的処理を不要とし即時的に出力画像を得ることができる利点もある。   Further, along with recent progress in semiconductor process technology, an image apparatus system for taking a radiographic image using a semiconductor sensor has been developed. This type of system has an extremely wide dynamic range compared to a radiographic system using a conventional photosensitive film, and is advantageous in that it can obtain a radiographic image that is not easily affected by fluctuations in the exposure dose of radiation. have. Furthermore, there is an advantage that an output image can be obtained immediately without requiring chemical processing.

また、医療分野においては、治療を迅速かつ的確に行うために、患者の医療データをデータベース化する方向へ進展している。この背景には、患者はしばしば複数の医療機関を利用する場合があり、より効果的で的確な治療行為を実施するためには、他の医療機関での検査データ等の処置経過データ(治療履歴)が必要になるためである。X線撮影の画像データについても各患者個人毎に一元化したデータベース化の要求が次第に高まり、それに伴って、X線撮影画像のデジタル化が要請されている。   In the medical field, in order to perform treatment quickly and accurately, progress is being made toward creating a database of patient medical data. In this background, patients often use multiple medical institutions, and in order to carry out more effective and accurate treatment, treatment progress data such as examination data at other medical institutions (treatment history) ) Is necessary. With respect to X-ray image data, there is a growing demand for a database that is unified for each individual patient, and accordingly, digitization of X-ray images is required.

そのデジタル化の1つの方式として、アモルファスシリコン薄膜トランジスタ(a−Si/TFT)を用いてX線像を直接電気信号に変換する直接変換方式の他に、X線像を一旦光信号に変換し、変換した光信号を電気信号に変換する、いわゆる間接変換方式のX線平面検出器も提案されている。この従来の間接変換方式のX線平面検出器には、X線像を光信号に変換するために使用する放射線検出器用蛍光体シートが用いられている。この蛍光体シートは樹脂材料等から成る支持体上に、GdS:Tbなどの蛍光体から成る蛍光体層を一体に付設して形成されている。 As one of the digitization methods, in addition to a direct conversion method that converts an X-ray image directly into an electrical signal using an amorphous silicon thin film transistor (a-Si / TFT), the X-ray image is once converted into an optical signal, A so-called indirect conversion type X-ray flat panel detector that converts the converted optical signal into an electrical signal has also been proposed. In this conventional indirect conversion type X-ray flat panel detector, a phosphor sheet for radiation detector used for converting an X-ray image into an optical signal is used. This phosphor sheet is formed by integrally attaching a phosphor layer made of a phosphor such as Gd 2 O 2 S: Tb on a support made of a resin material or the like.

またX線を光に変換するフォトダイオード等の検出素子を複数個配列し、隣接する検出素子を隔離する隔離板を配置し、隔離板表面における光の反射率を高めることにより、該部における光の吸収を低減し、光を効率良く検出素子に導いて画像の鮮鋭度を高める工夫もなされている(例えば、特許文献1)。
特開平5−45468号公報 特開2004−335870号公報
In addition, by arranging a plurality of detection elements such as photodiodes that convert X-rays into light, arranging separators that isolate adjacent detection elements, and increasing the reflectance of light on the surface of the separators, In order to improve the sharpness of an image by reducing the absorption of light and efficiently guiding light to a detection element (for example, Patent Document 1).
Japanese Patent Laid-Open No. 5-45468 JP 2004-335870 A

しかしながら、上記のような光電変換素子との組み合わせによる撮像装置の画像の鮮鋭度は従来の増感紙/フィルム系,II−TVを組み合わせた撮像装置の画像と比較して同等以下であり、高精度の診断や検査が実施できないという問題点があった。   However, the sharpness of the image of the image pickup device by the combination with the photoelectric conversion element as described above is equal to or less than that of the image of the image pickup device combining the conventional intensifying screen / film system and II-TV, and the high There was a problem that accuracy diagnosis and inspection could not be performed.

また、放射線検出器用蛍光体シートの代わりにCsI:Tl蒸着膜を用いた撮像装置も実用化されている(例えば、特許文献2)。この場合、蒸着膜が柱状構造の結晶であるため、分解能を向上させるためには好ましいが、膜成分の潮解性が高いという問題があり、時間の経過と共に撮影感度が低下する恐れがあり、長期間に渡って安定した感度特性を発揮し得ないという問題点があった。また、その蒸着膜の製法の複雑性から非常に高価な撮像装置となる問題点もあった。また、Tl(タリウム)は環境関連物質として環境基準は0.6ppm以下に設定されており使用取扱いには細心の注意が必要である。   In addition, an imaging apparatus using a CsI: Tl vapor deposition film instead of the radiation detector phosphor sheet has been put into practical use (for example, Patent Document 2). In this case, since the deposited film is a columnar crystal, it is preferable for improving the resolution. However, there is a problem that the deliquescence of the film component is high, and there is a possibility that the photographing sensitivity may be lowered with time. There was a problem that stable sensitivity characteristics could not be exhibited over a period of time. In addition, there is a problem that the imaging device becomes very expensive due to the complexity of the manufacturing method of the deposited film. Tl (thallium) is an environment-related substance, and the environmental standard is set to 0.6 ppm or less.

一方、X線像を直接電気信号に変換する直接変換方式では、その原理より分解能を向上させるためには非常に有利な方法である。しかしながら、現在検討されているX線電荷変換膜の材料としてa−Se,PbI,HgI,CdTe,CdZnTeなどがあるが、いずれの物質も人体に悪影響を及ぼすため、好ましくは使用を回避すべきであるという要請もあった。 On the other hand, the direct conversion method for directly converting an X-ray image into an electric signal is a very advantageous method for improving the resolution from the principle. However, there are a-Se, PbI 2 , HgI 2 , CdTe, CdZnTe, etc. as materials of the X-ray charge conversion film currently being studied. However, since any substance adversely affects the human body, it is preferable to avoid use. There was also a request that it should be.

上述したように、従来の放射線検出器用蛍光体シートでは光電変換素子とを組み合わせた撮像装置による画像の鮮鋭度は不充分であり、高精度の診断や検査を実施できないという問題点があった。   As described above, the conventional phosphor sheet for radiation detectors has a problem that the sharpness of an image by an imaging device combined with a photoelectric conversion element is insufficient, and high-precision diagnosis and inspection cannot be performed.

本発明は、上記従来技術の問題点を解決するためになされたものであり、被検体としての人体に悪影響を及ぼさず、材料特性に安定性があり、画像の鮮鋭度を向上させることが可能な放射線検出器用蛍光体シートおよびそれを用いた放射線検出器を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems of the prior art, has no adverse effect on the human body as a subject, has stable material characteristics, and can improve the sharpness of an image. An object of the present invention is to provide a phosphor sheet for a radiation detector and a radiation detector using the same.

上記目的を達成するために、本発明に係る放射線検出器用シートは、金属膜を設けた支持体と、この支持体表面上に形成された少なくとも一層の蛍光体層とを有する放射線検出器用蛍光体シートにおいて、上記蛍光体層は希土類酸硫化物系蛍光体を含有すると共に厚さが50〜300μmであることを特徴とする。   In order to achieve the above object, a radiation detector sheet according to the present invention comprises a support provided with a metal film and at least one phosphor layer formed on the support surface. In the sheet, the phosphor layer contains a rare earth oxysulfide phosphor and has a thickness of 50 to 300 μm.

また、前記金属膜を設けた支持体の蛍光体層形成面側は光の全反射率が90%以上であり、かつ正反射率が70%以上であることが好ましい。また、前記金属膜がAgまたはAl膜であることが好ましい。   The phosphor layer-forming surface side of the support provided with the metal film preferably has a total light reflectance of 90% or more and a regular reflectance of 70% or more. The metal film is preferably an Ag or Al film.

また、前記希土類酸硫化物系蛍光体は平均粒径が2〜20μmであることが好ましい。また、前記希土類酸硫化物系蛍光体はガドリニウム酸硫化物であることが好ましい。また、前記蛍光体層は希土類酸硫化物系蛍光体の充填率が50〜80体積%であることが好ましい。   The rare earth oxysulfide phosphor preferably has an average particle diameter of 2 to 20 μm. The rare earth oxysulfide phosphor is preferably gadolinium oxysulfide. The phosphor layer preferably has a filling ratio of rare earth oxysulfide phosphor of 50 to 80% by volume.

本発明の放射線検出器は、前記放射線検出器用蛍光体シート、およびこの蛍光体シート上にアレイ状に配列された複数の光電変換膜及び画素電極とを具備したことを特徴とする。また、上記放射線検出器を各種撮像装置のX線平面検出器として使用したときに優れた鮮鋭度を有する画像を得ることができる。   The radiation detector according to the present invention includes the phosphor sheet for radiation detector, and a plurality of photoelectric conversion films and pixel electrodes arranged in an array on the phosphor sheet. In addition, when the radiation detector is used as an X-ray flat detector of various imaging devices, an image having excellent sharpness can be obtained.

上記構成に係る放射線検出器用蛍光体シートおよび放射線検出器によれば、蛍光体層は希土類酸硫化物系蛍光体を含有し、かつ厚さが50〜300μmであることから環境にやさしい放射線検出器用蛍光体シートおよび放射線検出器を提供することができる。   According to the phosphor sheet for radiation detector and the radiation detector according to the above configuration, the phosphor layer contains a rare earth oxysulfide-based phosphor and has a thickness of 50 to 300 μm. A phosphor sheet and a radiation detector can be provided.

また、前記金属膜を設けた支持体の蛍光体層形成面側における光の全反射率および正反射率等を調整することにより、支持体側から入射した放射線により蛍光体層から放出された発光が支持体表面において散乱されることが少なく、蛍光体層の二次側から効率的に放出される。したがって、上記蛍光体シートを診断用や検査用の放射線画像撮影装置等に使用した場合には、鮮鋭度が高い画像が得られ診断や検査の精度を大幅に改善することが可能となる。   Further, by adjusting the total reflectance and regular reflectance of light on the phosphor layer forming surface side of the support provided with the metal film, light emitted from the phosphor layer due to radiation incident from the support side is emitted. It is less scattered at the surface of the support and is efficiently emitted from the secondary side of the phosphor layer. Therefore, when the phosphor sheet is used in a radiographic imaging apparatus for diagnosis or inspection, an image with high sharpness can be obtained, and the accuracy of diagnosis and inspection can be greatly improved.

以下、本発明を実施するための形態について添付図面を参照して説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

図1は本発明に係る蛍光体シートおよび放射線検出器を組み込んだ放射線画像撮影装置の一実施形態を示し、特に放射線としてX線を用いたX線画像撮影装置システムの概念図を示している。このX線画像撮影装置1は蛍光体シートを含むX線平面検出器2を内蔵しており、X線発生装置3から出射されたX線15を被写体4に照射し、被写体4を透過したX線は二次元の格子状に配列した光電変換素子であるX線平面検出器2によって検出される。この光電変換素子から出力された画像信号は画像処理手段4においてデジタル画像処理5されてモニタ6に被写体4のX線画像として表示されるように構成されている。   FIG. 1 shows an embodiment of a radiographic imaging apparatus incorporating a phosphor sheet and a radiation detector according to the present invention, and particularly shows a conceptual diagram of an X-ray imaging apparatus system using X-rays as radiation. The X-ray imaging apparatus 1 includes an X-ray flat panel detector 2 including a phosphor sheet. The X-ray 15 emitted from the X-ray generator 3 is irradiated to the subject 4 and transmitted through the subject 4. The line is detected by an X-ray flat detector 2 which is a photoelectric conversion element arranged in a two-dimensional lattice pattern. The image signal output from the photoelectric conversion element is subjected to digital image processing 5 in the image processing means 4 and is displayed on the monitor 6 as an X-ray image of the subject 4.

図2は本実施形態に係る放射線検出器用蛍光体シート11を組み込んだX線平面検出器2の構成を示す部分拡大断面図である。照射された放射線としてのX線15を可視光に変換する放射線検出器用蛍光体シート11は、プラスチックや不織布などからなる支持体本体7と、その支持体本体7の蛍光体側の表面部に形成された金属膜8としてのAg膜8と、蛍光体層10とから構成されている。上記支持体本体7と金属膜8とで支持体9が形成されている。   FIG. 2 is a partially enlarged cross-sectional view showing the configuration of the X-ray flat panel detector 2 incorporating the radiation detector phosphor sheet 11 according to the present embodiment. A radiation detector phosphor sheet 11 that converts X-rays 15 as irradiated radiation into visible light is formed on a support body 7 made of plastic or nonwoven fabric, and on the surface of the support body 7 on the phosphor side. The metal film 8 is composed of an Ag film 8 and a phosphor layer 10. A support 9 is formed by the support body 7 and the metal film 8.

なお、上記蛍光体層10の上面側に透明な保護膜を付設してもよいが、保護膜は蛍光体シートの特性である鮮鋭度を低下させる場合があるため、特別に保護機能が必要である場合を除いて、付設しない方が好ましい。さらに、X線平面検出器2には、変換された可視光を電気信号に変換する格子状に配列された光電変換素子12と、光電変換素子12を支持する基板13とが積層されている。また、光電変換素子12は配線14を介して、光電変換された電気信号を処理する回路基板に接続される。   A transparent protective film may be provided on the upper surface side of the phosphor layer 10, but the protective film may reduce sharpness, which is a characteristic of the phosphor sheet, and therefore requires a special protective function. Except in certain cases, it is preferable not to attach them. Further, the X-ray flat panel detector 2 is laminated with a photoelectric conversion element 12 arranged in a lattice shape for converting the converted visible light into an electric signal, and a substrate 13 for supporting the photoelectric conversion element 12. In addition, the photoelectric conversion element 12 is connected to a circuit board for processing an electric signal subjected to photoelectric conversion via a wiring 14.

より具体的には、X線平面検出器2は、入射X線を可視光に変換する放射線検出器用蛍光体シート11と、アレイ状に配列された複数の光電変換膜及び画素電極と、それぞれの画素電極と接続されるスイッチング素子と、各々1列のスイッチング素子に駆動信号を送る走査線と、各々1行のスイッチング素子と接続される信号線と、放射線検出器用蛍光体シートの画素電極が設けられている面と反対側の面上に設けられる共通電極とを具備し、蛍光体層10に接する支持体9の表面における光の全反射率が90%以上であると共に正反射率が70%以上となるように構成されている。   More specifically, the X-ray flat panel detector 2 includes a radiation detector phosphor sheet 11 that converts incident X-rays into visible light, a plurality of photoelectric conversion films and pixel electrodes arranged in an array, A switching element connected to the pixel electrode, a scanning line for sending a driving signal to each row of switching elements, a signal line connected to each row of switching elements, and a pixel electrode of the radiation detector phosphor sheet are provided. A common electrode provided on the surface opposite to the surface on which the light is applied, and the total reflectance of light on the surface of the support 9 in contact with the phosphor layer 10 is 90% or more and the regular reflectance is 70%. It is comprised so that it may become the above.

本実施形態に係る放射線検出器用蛍光体シート11は、図2に示すように、支持体9と、その一方の表面上に形成された蛍光体層10から成る。さらに必要に応じて保護膜を蛍光体層10上に形成してもよい。   As shown in FIG. 2, the radiation detector phosphor sheet 11 according to the present embodiment includes a support 9 and a phosphor layer 10 formed on one surface thereof. Furthermore, you may form a protective film on the fluorescent substance layer 10 as needed.

上記の蛍光体層10を形成するために用いられる蛍光体としては、希土類酸硫化物系蛍光体が挙げられる。特に下記の一般式(1)で表わされる組成を有する希土類酸硫化物系の蛍光体を用いることが好ましい。   Examples of the phosphor used for forming the phosphor layer 10 include rare earth oxysulfide phosphors. In particular, it is preferable to use a rare earth oxysulfide-based phosphor having a composition represented by the following general formula (1).

[数1]
S:Z ……(1)
[Equation 1]
M 2 O 2 S: Z (1)

ただし、Mはイットリウム(Y)、ランタン(La)、ガドリニウム(Gd)及びルテチウム(Lu)から成る群から選択される少なくとも一種の元素であり、そしてOは酸素、Sは硫黄であり、Zはテルビウム(Tb)およびユーロピウム(Eu)から成る群より選択される少なくとも一種の元素である。   Where M is at least one element selected from the group consisting of yttrium (Y), lanthanum (La), gadolinium (Gd) and lutetium (Lu), and O is oxygen, S is sulfur, and Z is It is at least one element selected from the group consisting of terbium (Tb) and europium (Eu).

さらに、上記蛍光体としてより好ましいものは、光電変換素子12の受光感度分布に適合した発光を示す蛍光体である。光電変換素子12の構成材として一般に使用されるa−Siおよび単結晶Siの受光感度分布を図3に示す。図3に示すように、a−Siでは600nm付近を受光ピークとするブロードな受光感度分布で、単結晶Siでは700〜800nmを受光ピークとするブロードな受光感度分布である。この光電変換素子12の受光感度分布にマッチングし、高い発光効率を呈する蛍光体としては、ユーロピウム付活希土類酸硫化物蛍光体が挙げられ、さらに好ましくはユーロピウム付活ガドリニウム酸硫化物蛍光体,ユーロピウム付活ルテチウム酸硫化物蛍光体,ユーロピウム付活ランタン酸硫化物蛍光体が挙げられる。特に、テルビウムまたはユーロピウム付活のガドリニウム酸硫化物蛍光体(GdS)は発光効率が高いので好ましい。 Further, more preferable as the phosphor is a phosphor exhibiting light emission suitable for the light receiving sensitivity distribution of the photoelectric conversion element 12. FIG. 3 shows light receiving sensitivity distributions of a-Si and single crystal Si that are generally used as the constituent material of the photoelectric conversion element 12. As shown in FIG. 3, a-Si has a broad light receiving sensitivity distribution having a light receiving peak near 600 nm, and single crystal Si has a broad light receiving sensitivity distribution having a light receiving peak of 700 to 800 nm. Examples of the phosphor that matches the light receiving sensitivity distribution of the photoelectric conversion element 12 and exhibits high luminous efficiency include europium-activated rare earth oxysulfide phosphors, and more preferably europium-activated gadolinium oxysulfide phosphors, europium. Examples include activated lutetium oxysulfide phosphors and europium activated lanthanum oxysulfide phosphors. In particular, a terbium or europium activated gadolinium oxysulfide phosphor (Gd 2 O 2 S) is preferable because of its high luminous efficiency.

また、ユーロピウム付活ガドリニウム酸硫化物蛍光体,ユーロピウム付活ルテチウム酸硫化物蛍光体,ユーロピウム付活ランタン酸硫化物蛍光体等の2種以上の希土類酸硫化物系蛍光体を混合して使用してもよい。   In addition, two or more rare earth oxysulfide phosphors such as europium activated gadolinium oxysulfide phosphor, europium activated lutetium oxysulfide phosphor, and europium activated lanthanum oxysulfide phosphor can be used in combination. May be.

また、蛍光体層を透過する光量を適正範囲にして透過画像の鮮鋭度を高めるために、蛍光体層の厚さを50〜300μmにすることが好ましい。蛍光体層の厚さが50μm未満ではX線に対する出力が十分得られず、300μmを超えると反射光が蛍光体層内で散乱・吸収してしまうので表面に出てくる光量が不十分となり易く支持体に金属膜を設けた効果が得難くなる。好ましくは100〜250μmの範囲である。   In order to increase the sharpness of the transmitted image by setting the amount of light transmitted through the phosphor layer within an appropriate range, the thickness of the phosphor layer is preferably 50 to 300 μm. If the thickness of the phosphor layer is less than 50 μm, sufficient output for X-rays cannot be obtained, and if it exceeds 300 μm, the reflected light is scattered and absorbed in the phosphor layer, so that the amount of light that appears on the surface tends to be insufficient. The effect of providing a metal film on the support is difficult to obtain. Preferably it is the range of 100-250 micrometers.

上記蛍光体層は、所定の蛍光体粒子と、結合剤と分散材と可塑剤とを有機溶剤等の有機成分に分散せしめて蛍光体塗布溶液として調製し支持体表面に塗布した後に、加熱・乾燥せしめて形成される。本発明の蛍光体層の厚さとは、表面側の蛍光体粒子の上端から裏面(支持体側)の蛍光体粒子の下端までの距離を示すものとする。   The phosphor layer is prepared by dispersing predetermined phosphor particles, a binder, a dispersing material, and a plasticizer in an organic component such as an organic solvent to prepare a phosphor coating solution, and applying the solution to a support surface. It is formed by drying. The thickness of the phosphor layer of the present invention indicates the distance from the upper end of the phosphor particles on the front surface side to the lower end of the phosphor particles on the back surface (support side).

上記蛍光体塗布液の調製に使用する結合剤としては、硝化綿、酢酸セルロース、エチルセルロース、ポリビニルブチラール、綿状ポリエステル、ポリ酢酸ビニル、塩化ビニリデン−塩化ビニルポリマー、塩化ビニル−酢酸ビニルコポリマー、ポリアルキル(メタ)アクリレート、ポリカーボネート、ポリウレタン、セルロースアセテートブチレート、ポリビニルアルコールなどが挙げられる。また有機溶剤としては、例えばエタノール、メチルエチルエーテル、酢酸ブチル、酢酸エチル、エチルエーテル、キシレンなどが用いられる。なお、蛍光体塗布液には必要に応じて、フタル酸、ステアリン酸などの分散剤や燐酸トリフェニル、フタル酸ジエチルなどの可塑剤を添加してもよい。   The binder used for the preparation of the phosphor coating solution is nitrified cotton, cellulose acetate, ethyl cellulose, polyvinyl butyral, cotton-like polyester, polyvinyl acetate, vinylidene chloride-vinyl chloride polymer, vinyl chloride-vinyl acetate copolymer, polyalkyl. (Meth) acrylate, polycarbonate, polyurethane, cellulose acetate butyrate, polyvinyl alcohol and the like. As the organic solvent, for example, ethanol, methyl ethyl ether, butyl acetate, ethyl acetate, ethyl ether, xylene and the like are used. If necessary, a dispersing agent such as phthalic acid or stearic acid or a plasticizer such as triphenyl phosphate or diethyl phthalate may be added to the phosphor coating solution.

さらに、前記のように本実施形態に係る放射線検出器用蛍光体シートには必要に応じて保護膜を付設してもよい。保護膜の構成材としては各種の透明樹脂が用いられる。具体的には、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリ塩化ビニリデン、ポリアミドなどからなる透明樹脂フィルムを蛍光体層上にラミネートして保護膜を形成する。あるいは、酢酸セルロース、エチルセルロース、セルロースアセテートブチレートなどのセルロース誘導体、ポリ塩化ビニル、ポリ酢酸ビニル、塩化ビニル−酢酸ビニルコポリマー、ポリカーボネート、ポリビニルブチラール、ポリメチルメタクリレート、ポリビニルホルマール、ポリウレタンなどの透明樹脂を溶解させて適当な粘度の保護膜塗布液を調製し、これを蛍光体層上に塗布、乾燥させることによって保護膜を形成する。また、場合によっては酸化チタンなどの光散乱剤を適当な量を練りこんで保護膜を形成してもよい。なお、保護膜の厚さは前記蛍光体層の厚さには含まないものとする。   Furthermore, as described above, a protective film may be provided on the radiation detector phosphor sheet according to the present embodiment, if necessary. Various transparent resins are used as the constituent material of the protective film. Specifically, a transparent resin film made of polyethylene terephthalate (PET), polyethylene (PE), polyvinylidene chloride, polyamide or the like is laminated on the phosphor layer to form a protective film. Or dissolve cellulose derivatives such as cellulose acetate, ethyl cellulose, cellulose acetate butyrate, transparent resins such as polyvinyl chloride, polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, polycarbonate, polyvinyl butyral, polymethyl methacrylate, polyvinyl formal, polyurethane, etc. Thus, a protective film coating solution having an appropriate viscosity is prepared, and this is coated on the phosphor layer and dried to form a protective film. In some cases, a protective film may be formed by kneading an appropriate amount of a light scattering agent such as titanium oxide. The thickness of the protective film is not included in the thickness of the phosphor layer.

また、蛍光体層を透過する光量を適正範囲にして透過画像の鮮鋭度を高めるために、蛍光体層を構成する蛍光体粒子の平均粒径は2〜20μmの範囲であることが好ましい。この蛍光体粒子の平均粒径が2μm未満と過小である場合には、蛍光体層の密度が過大になり、蛍光体層内で発生した光が蛍光体層を透過しにくくなり、透過像の撮影感度が低下してしまう。一方、蛍光体粒子の平均粒径が20μmを超えるように過大になると、蛍光体層内で発生した光が蛍光体層を透過し過ぎることになり、透過光の濃淡が不鮮明に成るために透過像の鮮鋭度が低下してしまう。   In order to increase the sharpness of the transmitted image by setting the amount of light transmitted through the phosphor layer within an appropriate range, the average particle size of the phosphor particles constituting the phosphor layer is preferably in the range of 2 to 20 μm. When the average particle diameter of the phosphor particles is too small, less than 2 μm, the density of the phosphor layer becomes excessive, and the light generated in the phosphor layer becomes difficult to transmit through the phosphor layer, and the transmission image Shooting sensitivity will decrease. On the other hand, if the average particle diameter of the phosphor particles is too large so as to exceed 20 μm, the light generated in the phosphor layer will pass through the phosphor layer too much, and the transmitted light will be blurred because the density of the transmitted light becomes unclear. The sharpness of the image is reduced.

また、蛍光体層中の希土類酸硫化物系蛍光体の充填率は50〜80体積%であることが好ましい。さらには60〜75体積%が好ましい。ここで、蛍光体層中の希土類酸硫化物系蛍光体の充填率とは(蛍光体粒子の総体積/蛍光体層の体積)×100(%)で示すものとする。充填率が50体積%未満であると発光した光の散乱が多くなり、鮮鋭度が得られない。一方、80体積%を超える蛍光体層は紛体を取り扱う上で製造上困難である。   The filling rate of the rare earth oxysulfide phosphor in the phosphor layer is preferably 50 to 80% by volume. Furthermore, 60-75 volume% is preferable. Here, the filling rate of the rare earth oxysulfide phosphor in the phosphor layer is represented by (total volume of phosphor particles / volume of phosphor layer) × 100 (%). When the filling rate is less than 50% by volume, scattering of emitted light increases and sharpness cannot be obtained. On the other hand, a phosphor layer exceeding 80% by volume is difficult to manufacture when handling powder.

上記支持体は前述のプラスチックフィルムまたは不織布の代わりに、例えば厚さが250μmのポリエステルフィルムにラミネートされた保護膜上に蛍光体塗布液を塗布、乾燥して蛍光体層を形成してもよい。その場合は、接着剤等を塗布された支持体と保護膜付き蛍光体層とを貼り合せて放射線検出器用蛍光体シートを形成することもできる。 Instead of the plastic film or the nonwoven fabric described above, the phosphor layer may be formed by applying and drying a phosphor coating solution on a protective film laminated on a polyester film having a thickness of 250 μm, for example. In that case, a phosphor sheet for a radiation detector can also be formed by laminating a support coated with an adhesive or the like and a phosphor layer with a protective film.

上記支持体としては、例えば酢酸セルロース、プロピオン酸セルロース、酢酸酪酸セルロース、ポリエチレンテレフタレート(PET)などのポリエステル、ポリスチレン、ポリメタクリレート、ポリアミド、塩化ビニル−酢酸ビニルコポリマー、ポリカーボネートなどの樹脂をフィルム状に成形したもの、紙やアルミニウム板などが用いられる。なお、上述のようなプラスチックフィルムや紙に二酸化チタン,炭酸カルシウムなどの光反射性物質またはカーボンブラックなどの光吸収性物質を練り込んだシートや、気泡を含有させたシートも使用することができる。前記光反射物質または光吸収物質を含有させることにより、白色または黒色等の着色された支持体を得ることができる。   As the above support, for example, a resin such as cellulose acetate, cellulose propionate, cellulose acetate butyrate, polyethylene terephthalate (PET), polystyrene, polymethacrylate, polyamide, vinyl chloride-vinyl acetate copolymer, polycarbonate or the like is formed into a film. , Paper, aluminum plate, etc. are used. In addition, a sheet obtained by kneading a light-reflecting substance such as titanium dioxide and calcium carbonate or a light-absorbing substance such as carbon black into a plastic film or paper as described above, or a sheet containing bubbles can be used. . By containing the light reflecting material or the light absorbing material, a colored support such as white or black can be obtained.

本実施形態において、蛍光体層からの発光の大部分が支持体の表面において散乱させずに反射させるために具体的に支持体表面に金属膜を設けている。金属膜としては、光の全反射率が90%以上であり、かつ正反射率が70%以上であるものが好ましい。   In this embodiment, a metal film is specifically provided on the surface of the support so that most of the light emitted from the phosphor layer is reflected without being scattered on the surface of the support. The metal film preferably has a total light reflectance of 90% or more and a regular reflectance of 70% or more.

上記金属膜としては、Al,Ag,Cr,Cu,Ni,Ti,Mg,Rh,Pt,Au等の金属膜が挙げられる。特に好ましいのはAg、Al膜であり、さらに好ましくはAg膜である。Ag膜であれば全反射率95%以上、正反射率90%以上の金属膜が得易い。また、金属膜の形成方法は特に限定されるものではないが、蒸着法が好ましい。特に、Ag、Al、Cu等は真空蒸着法を用いれば比較的低温度で蒸着できることから、成膜時の熱により支持体を傷つけずに済む。金属膜の厚さは0.01〜3μmが好ましい。0.01μm未満では上記反射率を得難く、3μmを超えてもそれ以上の効果が得られずコストアップの要因にもなる。   Examples of the metal film include metal films such as Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au. Particularly preferred are Ag and Al films, and more preferred is an Ag film. In the case of an Ag film, it is easy to obtain a metal film having a total reflectance of 95% or more and a regular reflectance of 90% or more. Moreover, although the formation method of a metal film is not specifically limited, a vapor deposition method is preferable. In particular, Ag, Al, Cu, and the like can be deposited at a relatively low temperature by using a vacuum deposition method, so that the support is not damaged by the heat during film formation. The thickness of the metal film is preferably 0.01 to 3 μm. If the thickness is less than 0.01 μm, it is difficult to obtain the above reflectance, and if it exceeds 3 μm, no further effect can be obtained, which causes an increase in cost.

上記全反射率および正反射率の一方でも上記条件を満たさない場合には、支持体表面における発光の散乱量が多くなり、所定の画像の鮮鋭度が得られなくなる。したがって良好な画像鮮鋭度を得るためには、反射面における90%以上の全反射率と70%以上の正反射率を共に確保する必要がある。   If one of the total reflectance and regular reflectance does not satisfy the above condition, the amount of light emission scattered on the surface of the support increases, and the sharpness of a predetermined image cannot be obtained. Therefore, in order to obtain good image sharpness, it is necessary to ensure both a total reflectance of 90% or more and a regular reflectance of 70% or more on the reflecting surface.

上記金属蒸着膜8を支持体本体7に一体に形成する場合、蒸着装置の真空度や支持体の表面粗さ等の条件によっては金属蒸着膜8の表面荒さが粗大になり、反射光の散乱が発生し易い。したがって、上記金属反射層または支持体9の表面における光の全反射率は90%以上であり、かつ正反射率は70%以上に規定される。さらに正反射率は90%以上であることが好ましい。   When the metal vapor deposition film 8 is formed integrally with the support body 7, the surface roughness of the metal vapor deposition film 8 becomes coarse depending on conditions such as the degree of vacuum of the vapor deposition apparatus and the surface roughness of the support, and the scattered light is scattered. Is likely to occur. Therefore, the total reflectance of light on the surface of the metal reflecting layer or the support 9 is 90% or more, and the regular reflectance is defined to be 70% or more. Further, the regular reflectance is preferably 90% or more.

このような金属蒸着膜(反射層)8を設けた支持体9の蛍光体シート11では、X線15により蛍光体層10から発光した光が支持体9側に散乱されることが少なく、表面側から裏面側の光電変換素子12に高い効率で入射される結果、透過画像の鮮鋭度が向上する。   In the phosphor sheet 11 of the support 9 provided with such a metal vapor-deposited film (reflection layer) 8, light emitted from the phosphor layer 10 by the X-rays 15 is hardly scattered to the support 9 side, and the surface As a result of being incident on the photoelectric conversion element 12 on the back side from the side with high efficiency, the sharpness of the transmitted image is improved.

なお、上記反射率の測定方法としては、一般的には蛍光体層8を形成する前の支持体の段階において、または支持体本体7に金属蒸着膜8を形成した段階において、日本工業規格(JIS R3106およびZ8741(45°))の規定に準拠し分光光度計を用いて測定を実施する方法が採用される。   As a method for measuring the reflectance, generally, at the stage of the support before forming the phosphor layer 8 or at the stage of forming the metal vapor-deposited film 8 on the support body 7, the Japanese Industrial Standard ( A method of performing measurement using a spectrophotometer in accordance with the regulations of JIS R3106 and Z8741 (45 °) is employed.

ここで、正反射とは光の反射が入射角が反射角と等しくなる反射形態であり、入射光束を100としたときに正反射として反射する光束の割合が正反射率として定義される。正反射率以外を拡散反射率と呼び、正反射率と拡散反射率との合計を全反射率という。   Here, the regular reflection is a reflection form in which the reflection of light has an incident angle equal to the reflection angle, and the ratio of the luminous flux reflected as regular reflection when the incident luminous flux is 100 is defined as the regular reflectance. The other than regular reflectance is called diffuse reflectance, and the sum of regular reflectance and diffuse reflectance is called total reflectance.

また本実施形態において、蛍光体層10の厚さは支持体9における反射光の挙動に大きな影響を与える要素となる。蛍光体層10は、保護膜及び支持体を除いた蛍光体と結合剤とから構成されており、その厚さは50〜300μmの範囲に規定される。この蛍光体層10の厚さが50μm未満と薄い場合は、X線に対する蛍光体層の発光出力が不足する。   In the present embodiment, the thickness of the phosphor layer 10 is a factor that greatly affects the behavior of reflected light on the support 9. The phosphor layer 10 is composed of a phosphor and a binder excluding the protective film and the support, and the thickness thereof is defined in the range of 50 to 300 μm. When the thickness of the phosphor layer 10 is as thin as less than 50 μm, the light emission output of the phosphor layer for X-rays is insufficient.

一方、蛍光体層10の厚さが300μmを超えるように過大になると、反射光が蛍光体層10内で散乱・吸収を生起しながら光電変換素子側表面に放出される時点では、ほとんど光量が喪失されてしまうために、支持体表面における光の反射効果も無益になる。したがって従って、支持体表面における光の反射効果と相乗させて発光の放出量を高めるためには、蛍光体層10の厚さは50〜300μmの範囲に規定される。   On the other hand, when the thickness of the phosphor layer 10 becomes excessive so as to exceed 300 μm, almost no light is emitted when the reflected light is emitted to the surface of the photoelectric conversion element while causing scattering and absorption in the phosphor layer 10. Since it is lost, the light reflection effect on the surface of the support becomes useless. Therefore, in order to increase the emission amount of light emission in synergy with the light reflection effect on the support surface, the thickness of the phosphor layer 10 is specified in the range of 50 to 300 μm.

上記のように本実施形態に係る放射線検出器用蛍光体シート11および放射線検出器2を組み込んだX線画像撮影装置において、X線発生装置3から発射されたX線15が被写体4を介してX線平面検出器2に入射すると、透過X線は放射線検出器用蛍光体シート11の蛍光体層10で可視光に変換され、この可視光は光電変換素子12によって電気信号に変換され、回路基板によって処理された電気信号はCRT等のモニタ6によってX線画像として表示される。   In the X-ray imaging apparatus incorporating the radiation detector phosphor sheet 11 and the radiation detector 2 according to the present embodiment as described above, the X-rays 15 emitted from the X-ray generator 3 are transmitted through the subject 4 to the X-ray. When incident on the line flat detector 2, the transmitted X-rays are converted into visible light by the phosphor layer 10 of the radiation detector phosphor sheet 11, and the visible light is converted into an electric signal by the photoelectric conversion element 12, and then by the circuit board. The processed electrical signal is displayed as an X-ray image on a monitor 6 such as a CRT.

上記実施形態に係る放射線検出器用蛍光体シートおよび放射線検出器を組み込んだX線画像撮影装置1によれば、蛍光体シート11の蛍光体層10の厚さが50〜300μmであり、この蛍光体層10に接する支持体9の金属蒸着膜8の表面における光の全反射率が90%以上に規定されると共に正反射率が70%以上に規定されているため、支持体9側から入射したX線15により蛍光体層10から放出された発光が支持体9表面において散乱されることが少なく、蛍光体層10の二次側から効率的に放出される。したがって、上記蛍光体シート11を診断用や検査用の放射線画像撮影装置1等に使用した場合には、鮮鋭度が高い画像が得られ診断や検査の精度を大幅に改善することが可能となる。   According to the X-ray imaging apparatus 1 incorporating the phosphor sheet for radiation detector and the radiation detector according to the above embodiment, the thickness of the phosphor layer 10 of the phosphor sheet 11 is 50 to 300 μm. Since the total reflectance of light on the surface of the metal vapor deposition film 8 of the support 9 in contact with the layer 10 is defined as 90% or more and the regular reflectance is defined as 70% or more, the light enters from the support 9 side. Light emitted from the phosphor layer 10 by the X-ray 15 is hardly scattered on the surface of the support 9 and is efficiently emitted from the secondary side of the phosphor layer 10. Therefore, when the phosphor sheet 11 is used in the radiographic imaging apparatus 1 for diagnosis or inspection, an image with high sharpness can be obtained and the accuracy of diagnosis or inspection can be greatly improved. .

特に上記実施形態の放射線検出器用蛍光体シート11を用いたX線平面検出器2は、医療用X線撮影及び工業用非破壊検査などに使用した場合には、鮮鋭度が向上し検査精度の向上につながる。   In particular, when the X-ray flat detector 2 using the phosphor sheet 11 for radiation detectors of the above-described embodiment is used for medical X-ray imaging and industrial nondestructive inspection, the sharpness is improved and the inspection accuracy is improved. It leads to improvement.

次に本発明の具体的な実施例について説明する。   Next, specific examples of the present invention will be described.

[実施例1]
平均粒子径が8μmのGdS:Tb蛍光体粉末10重量部に対して、結合剤としてポリビニルブチラール樹脂0.5重量部と、有機溶剤として適当量の酢酸ブチルとを混合して蛍光体塗布液を調製した。この蛍光体塗布液を厚さが250μmである白色ポリエチレンテレフタレートフィルムから成るシート上に、乾燥後の蛍光体塗布重量密度(塗工量)が90mg/cmとなるようにナイフコータで均一に塗布、乾燥させて蛍光体層を形成した。また、厚さが1μmであるAg蒸着膜を形成した支持体に蛍光体層をプレスすることにより実施例1に係る放射線検出器用蛍光体シートを作製した。支持体表面のAg蒸着膜の全反射率は98%であり、正反射率は95%であった。また、蛍光体層の蛍光体の充填率は69体積%であった。
[Example 1]
Fluorescence is obtained by mixing 0.5 parts by weight of polyvinyl butyral resin as a binder and an appropriate amount of butyl acetate as an organic solvent with respect to 10 parts by weight of Gd 2 O 2 S: Tb phosphor powder having an average particle diameter of 8 μm. A body coating solution was prepared. This phosphor coating solution is uniformly applied on a sheet of a white polyethylene terephthalate film having a thickness of 250 μm with a knife coater so that the phosphor coating weight density (coating amount) after drying is 90 mg / cm 2 . The phosphor layer was formed by drying. Moreover, the fluorescent substance sheet for Example 1 was produced by pressing a fluorescent substance layer to the support body in which the Ag vapor deposition film whose thickness is 1 micrometer was formed. The total reflectance of the Ag vapor deposition film on the surface of the support was 98%, and the regular reflectance was 95%. The filling rate of the phosphor in the phosphor layer was 69% by volume.

このようにして調製した放射線検出器用蛍光体シート11を使用して図1に示すようなX線画像撮影システムを構成し、鮮鋭度を測定した。   Using the thus prepared phosphor sheet 11 for a radiation detector, an X-ray imaging system as shown in FIG. 1 was constructed, and the sharpness was measured.

[実施例2]
支持体表面に光の全反射率が92%であり、正反射率が70%であるAl蒸着膜を設けた以外は実施例1と同様に処理して実施例2に係る放射線検出器用蛍光体シートを作製した。
[Example 2]
The phosphor for a radiation detector according to Example 2 is processed in the same manner as in Example 1 except that an Al deposited film having a total light reflectance of 92% and a regular reflectance of 70% is provided on the support surface. A sheet was produced.

[実施例3]
平均粒径が2μmである蛍光体粒子を使用した点および厚さが50μmである蛍光体層を形成した点以外は実施例1と同様に処理して実施例3に係る放射線検出器用蛍光体シートを作製した。
[Example 3]
A phosphor sheet for a radiation detector according to Example 3 is processed in the same manner as in Example 1 except that phosphor particles having an average particle diameter of 2 μm are used and a phosphor layer having a thickness of 50 μm is formed. Was made.

[実施例4]
平均粒径が20μmである蛍光体粒子を使用した点および厚さが300μmである蛍光体層を形成した点以外は実施例1と同様に処理して実施例4に係る放射線検出器用蛍光体シートを作製した。
[Example 4]
A phosphor sheet for a radiation detector according to Example 4 processed in the same manner as in Example 1 except that phosphor particles having an average particle diameter of 20 μm were used and a phosphor layer having a thickness of 300 μm was formed. Was made.

[実施例5]
蛍光体粒子の平均粒径25μm、蛍光体層の厚さが300μmであること以外は実施例1と同様に処理して実施例5に係る放射線検出器用蛍光体シートを作製した。
[Example 5]
A phosphor sheet for a radiation detector according to Example 5 was produced in the same manner as in Example 1 except that the average particle diameter of the phosphor particles was 25 μm and the thickness of the phosphor layer was 300 μm.

[実施例6]
蛍光体をGdS:Euに代えた以外は実施例1と同様に処理して実施例6に係る放射線検出器用蛍光体シートを作製した。
[Example 6]
A phosphor sheet for a radiation detector according to Example 6 was prepared by treating in the same manner as in Example 1 except that the phosphor was changed to Gd 2 O 2 S: Eu.

[実施例7]
蛍光体をLuS:Euに代えた以外は実施例1と同様に処理して実施例7に係る放射線検出器用蛍光体シートを作製した。
[Example 7]
A phosphor sheet for a radiation detector according to Example 7 was prepared by treating in the same manner as in Example 1 except that the phosphor was replaced with Lu 2 O 2 S: Eu.

[実施例8]
蛍光体層中の蛍光体の充填率を60体積%に代えた以外は実施例1と同様に処理して実施例8に係る放射線検出器用蛍光体シートを作製した。
[Example 8]
A phosphor sheet for a radiation detector according to Example 8 was produced by performing the same process as in Example 1 except that the filling rate of the phosphor in the phosphor layer was changed to 60% by volume.

[実施例9]
蛍光体層中の蛍光体の充填率を75体積%に代えた以外は実施例1と同様に処理して実施例9に係る放射線検出器用蛍光体シートを作製した。
[Example 9]
A phosphor sheet for a radiation detector according to Example 9 was produced by performing the same treatment as in Example 1 except that the phosphor filling rate in the phosphor layer was changed to 75% by volume.

[比較例1]
金属層を設けない全反射率85%、正反射率20%の白色PETフィルム支持体とした点以外は実施例1と同様に処理して比較例1に係る放射線検出器用蛍光体シートを作製した。また、蛍光体層の蛍光体の充填率は71体積%であった。
[Comparative Example 1]
A phosphor sheet for a radiation detector according to Comparative Example 1 was prepared in the same manner as in Example 1 except that a white PET film support having a total reflectance of 85% and a regular reflectance of 20% without a metal layer was used. . Moreover, the filling rate of the phosphor in the phosphor layer was 71% by volume.

[比較例2]
平均粒径が1μmである微細な蛍光体粒子を使用した点および厚さが40μmである蛍光体層を形成した点以外は実施例1と同様に処理して比較例2に係る放射線検出器用蛍光体シートを作製した。また、蛍光体層の蛍光体の充填率は71体積%であった。
[Comparative Example 2]
Fluorescence for a radiation detector according to Comparative Example 2 in the same manner as in Example 1 except that fine phosphor particles having an average particle diameter of 1 μm are used and a phosphor layer having a thickness of 40 μm is formed. A body sheet was prepared. Moreover, the filling rate of the phosphor in the phosphor layer was 71% by volume.

[比較例3]
平均粒径が30μmである粗大な蛍光体粒子を使用した点および厚さが過大で350μmである蛍光体層を形成した点以外は実施例1と同様に処理して比較例3に係る放射線検出器用蛍光体シートを作製した。また、蛍光体層の蛍光体の充填率は71体積%であった。
[Comparative Example 3]
Radiation detection according to Comparative Example 3 in the same manner as in Example 1 except that coarse phosphor particles having an average particle size of 30 μm are used and a phosphor layer having an excessive thickness of 350 μm is formed. A device phosphor sheet was prepared. Moreover, the filling rate of the phosphor in the phosphor layer was 71% by volume.

上記のように調製した各実施例および比較例に係る放射線検出器用蛍光体シートについて、透過画像の鮮鋭度を測定した。この鮮鋭度の評価においては、比較例1の蛍光体シートを標準(100)とし、この標準値に対する鮮鋭度の向上率を相対的に測定評価した。各測定結果を下記表1に示す。

Figure 2006258618
The sharpness of the transmission image was measured for the phosphor sheets for radiation detectors according to the examples and comparative examples prepared as described above. In the evaluation of the sharpness, the phosphor sheet of Comparative Example 1 was used as a standard (100), and the improvement rate of the sharpness with respect to the standard value was relatively measured and evaluated. Each measurement result is shown in Table 1 below.
Figure 2006258618

上記表1に示す結果から明らかなように、蛍光体シート11の蛍光体層10の厚さが50〜300μmの範囲であり、この蛍光体層10に接する支持体9の金属蒸着膜8の表面における光の全反射率が90%以上に規定されると共に正反射率が70%以上に規定された各実施例に係る蛍光体シート11を使用したX線画像撮影装置においては、支持体9側から入射したX線15により蛍光体層10から放出された発光が支持体9のAg蒸着膜8表面において散乱されることが少なく効果的に反射され、蛍光体層10の二次側から効率的に放出されるために、鮮鋭度が高い画像が得られ診断や検査の精度を大幅に改善することが可能となった。   As is clear from the results shown in Table 1 above, the thickness of the phosphor layer 10 of the phosphor sheet 11 is in the range of 50 to 300 μm, and the surface of the metal vapor deposition film 8 of the support 9 in contact with the phosphor layer 10. In the X-ray imaging apparatus using the phosphor sheet 11 according to each example in which the total reflectance of light is defined as 90% or more and the regular reflectance is defined as 70% or more, the support 9 side The light emitted from the phosphor layer 10 by the X-rays 15 incident thereon from the phosphor layer 10 is effectively reflected from the secondary side of the phosphor layer 10 with little scattering on the surface of the Ag vapor deposition film 8 of the support 9. Therefore, it is possible to obtain an image with high sharpness and to greatly improve the accuracy of diagnosis and inspection.

また、支持体表面における光の全反射率および正反射率が規定値を満足しても、蛍光体層の厚さが所定範囲外とした比較例2,3に係る蛍光体シートを使用したX線画像撮影装置においては、蛍光体層から放出される発光の濃淡差が減少するために画像鮮鋭度が低下することが判明した。   In addition, even when the total reflectance and regular reflectance of light on the support surface satisfy the specified values, X using the phosphor sheet according to Comparative Examples 2 and 3 in which the thickness of the phosphor layer is outside the predetermined range In the line image photographing apparatus, it has been found that the image sharpness is lowered because the difference in light intensity emitted from the phosphor layer is reduced.

以上のように、蛍光体層の厚さ、支持体表面での光の全反射率および正反射率などを所定範囲に規定することにより、鮮鋭度が向上したX線平面検出器を提供することが可能となる。   As described above, an X-ray flat panel detector with improved sharpness is provided by defining the thickness of the phosphor layer, the total reflectance of light on the support surface, and the regular reflectance within a predetermined range. Is possible.

本発明に係る蛍光体シートを使用した放射線検出器を組み込んだ放射線画像撮影装置のシステム構成を示すブロック図。The block diagram which shows the system configuration | structure of the radiographic imaging apparatus incorporating the radiation detector using the fluorescent substance sheet which concerns on this invention. 本発明に係る放射線検出器用蛍光体シートを使用したX線平面検出器の概略構成を示す断面図。Sectional drawing which shows schematic structure of the X-ray flat panel detector which uses the fluorescent substance sheet for radiation detectors concerning this invention. 受光素子を構成するa−Siおよび単結晶Siの受光感度分布を示すグラフ。The graph which shows the light reception sensitivity distribution of a-Si and single crystal Si which comprise a light receiving element.

符号の説明Explanation of symbols

1 放射線画像撮影装置(X線画像撮影装置)
2 放射線平面検出器(X線平面検出器)
3 放射線発生装置(X線発生装置)
4 被写体
5 デジタル画像処理手段
6 モニタ(CRT)
7 支持体本体
8 金属膜(Ag蒸着膜、反射層)
9 支持体
10 蛍光体層
11 放射線検出器用蛍光体シート
12 光電変換素子(フォトダイオード)
13 基板
14 配線
15 放射線(X線)
1 Radiation imaging equipment (X-ray imaging equipment)
2 Radiation plane detector (X-ray plane detector)
3 Radiation generator (X-ray generator)
4 Subject 5 Digital image processing means 6 Monitor (CRT)
7 Support body 8 Metal film (Ag vapor deposition film, reflective layer)
DESCRIPTION OF SYMBOLS 9 Support body 10 Phosphor layer 11 Phosphor sheet for radiation detector 12 Photoelectric conversion element (photodiode)
13 Substrate 14 Wiring 15 Radiation (X-ray)

Claims (8)

金属膜を設けた支持体と、この支持体表面上に形成された少なくとも一層の蛍光体層とを有する放射線検出器用蛍光体シートにおいて、上記蛍光体層は希土類酸硫化物系蛍光体を含有すると共に厚さが50〜300μmであることを特徴とする放射線検出器用蛍光体シート。 In a phosphor sheet for a radiation detector having a support provided with a metal film and at least one phosphor layer formed on the surface of the support, the phosphor layer contains a rare earth oxysulfide phosphor. And the thickness is 50-300 micrometers, The fluorescent substance sheet for radiation detectors characterized by the above-mentioned. 前記金属膜を設けた支持体の蛍光体層形成面側は光の全反射率が90%以上であり、かつ正反射率が70%以上であることを特徴とする請求項1記載の放射線検出器用蛍光体シート。 2. The radiation detection according to claim 1, wherein the phosphor layer-forming surface side of the support provided with the metal film has a total light reflectance of 90% or more and a regular reflectance of 70% or more. A phosphor sheet for dexterity. 前記金属膜がAgまたはAl膜であることを特徴とする請求項1または請求項2のいずれか1項に記載の放射線検出器用蛍光体シート。 The phosphor sheet for a radiation detector according to claim 1, wherein the metal film is an Ag or Al film. 前記希土類酸硫化物系蛍光体は平均粒径が2〜20μmであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の放射線検出器用蛍光体シート。 The phosphor sheet for a radiation detector according to any one of claims 1 to 3, wherein the rare earth oxysulfide phosphor has an average particle diameter of 2 to 20 µm. 前記蛍光体層は希土類酸硫化物系蛍光体の充填率が50〜80体積%であることを特徴とする請求項1乃至請求項4のいずれか1項に記載の放射線検出器用蛍光体シート。 The phosphor sheet for a radiation detector according to any one of claims 1 to 4, wherein the phosphor layer has a rare earth oxysulfide-based phosphor filling ratio of 50 to 80% by volume. 前記希土類酸硫化物系蛍光体はガドリニウム酸硫化物であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の放射線検出器用蛍光体シート。 The phosphor sheet for a radiation detector according to any one of claims 1 to 5, wherein the rare earth oxysulfide-based phosphor is gadolinium oxysulfide. 請求項1乃至請求項6のいずれか1項に記載の放射線検出器用蛍光体シート、およびこの蛍光体シート上にアレイ状に配列された複数の光電変換膜及び画素電極とを具備したことを特徴とする放射線検出器。 A phosphor sheet for a radiation detector according to any one of claims 1 to 6, and a plurality of photoelectric conversion films and pixel electrodes arranged in an array on the phosphor sheet. A radiation detector. 前記放射線検出器はX線平面検出器であることを特徴とする請求項7記載の放射線検出器。 The radiation detector according to claim 7, wherein the radiation detector is an X-ray flat panel detector.
JP2005076744A 2005-03-17 2005-03-17 Phosphor sheet for radiation detector and radiation detector using the same Active JP4764039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076744A JP4764039B2 (en) 2005-03-17 2005-03-17 Phosphor sheet for radiation detector and radiation detector using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005076744A JP4764039B2 (en) 2005-03-17 2005-03-17 Phosphor sheet for radiation detector and radiation detector using the same

Publications (2)

Publication Number Publication Date
JP2006258618A true JP2006258618A (en) 2006-09-28
JP4764039B2 JP4764039B2 (en) 2011-08-31

Family

ID=37098047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076744A Active JP4764039B2 (en) 2005-03-17 2005-03-17 Phosphor sheet for radiation detector and radiation detector using the same

Country Status (1)

Country Link
JP (1) JP4764039B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180627A (en) * 2007-01-25 2008-08-07 Konica Minolta Medical & Graphic Inc Radiation image conversion panel, method for manufacturing it and radiography system
JP2011117966A (en) * 2009-12-07 2011-06-16 Carestream Health Inc Digital radiographic detector with bonded phosphor layer, and method for forming the digital radiographic detector
JP2013101131A (en) * 2007-02-08 2013-05-23 Konica Minolta Medical & Graphic Inc Method for cutting radiation image conversion plate
CN103140898A (en) * 2011-10-03 2013-06-05 株式会社东芝 Intensifying screen for x-ray detector, x-ray detector, and x-ray inspection device
JP2013162021A (en) * 2012-02-07 2013-08-19 Seiko Epson Corp Wavelength conversion element, light source device, and projector
JP2014142217A (en) * 2013-01-23 2014-08-07 Konica Minolta Inc Radiation image imaging device
JP2015039559A (en) * 2013-08-23 2015-03-02 日立造船株式会社 Electron beam monitoring device in electron beam sterilization unit
US9961078B2 (en) 2013-03-28 2018-05-01 Thomson Licensing Network system comprising a security management server and a home network, and method for including a device in the network system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181634A (en) * 1993-07-08 1995-07-21 Agfa Gevaert Nv Medical x-ray recording system
JPH09304891A (en) * 1996-05-16 1997-11-28 Konica Corp Image forming method of silver halide photographic sensitive material
JPH10160898A (en) * 1996-11-29 1998-06-19 Sony Corp Fluorescence element and radiation image observation device
JPH1164596A (en) * 1997-08-11 1999-03-05 Konica Corp Radiation sensitized screen
JPH1172596A (en) * 1997-06-19 1999-03-16 Fuji Photo Film Co Ltd Radiation sensitized screen
JPH11174197A (en) * 1997-12-08 1999-07-02 Konica Corp Radiation intensifying screen and combined body for forming radiation image
JP2003114506A (en) * 2001-10-04 2003-04-18 Konica Corp Exposure method and image forming method
WO2004029657A1 (en) * 2002-09-26 2004-04-08 Kabushiki Kaisha Toshiba Phosphor sheet for radiation detector, radiation detector employing it and equipment for detecting radiation
JP2004251883A (en) * 2002-06-28 2004-09-09 Agfa Gevaert Nv Storage phosphor screen free from bonding agent

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07181634A (en) * 1993-07-08 1995-07-21 Agfa Gevaert Nv Medical x-ray recording system
JPH09304891A (en) * 1996-05-16 1997-11-28 Konica Corp Image forming method of silver halide photographic sensitive material
JPH10160898A (en) * 1996-11-29 1998-06-19 Sony Corp Fluorescence element and radiation image observation device
JPH1172596A (en) * 1997-06-19 1999-03-16 Fuji Photo Film Co Ltd Radiation sensitized screen
JPH1164596A (en) * 1997-08-11 1999-03-05 Konica Corp Radiation sensitized screen
JPH11174197A (en) * 1997-12-08 1999-07-02 Konica Corp Radiation intensifying screen and combined body for forming radiation image
JP2003114506A (en) * 2001-10-04 2003-04-18 Konica Corp Exposure method and image forming method
JP2004251883A (en) * 2002-06-28 2004-09-09 Agfa Gevaert Nv Storage phosphor screen free from bonding agent
WO2004029657A1 (en) * 2002-09-26 2004-04-08 Kabushiki Kaisha Toshiba Phosphor sheet for radiation detector, radiation detector employing it and equipment for detecting radiation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180627A (en) * 2007-01-25 2008-08-07 Konica Minolta Medical & Graphic Inc Radiation image conversion panel, method for manufacturing it and radiography system
JP2013101131A (en) * 2007-02-08 2013-05-23 Konica Minolta Medical & Graphic Inc Method for cutting radiation image conversion plate
JP2011117966A (en) * 2009-12-07 2011-06-16 Carestream Health Inc Digital radiographic detector with bonded phosphor layer, and method for forming the digital radiographic detector
CN103140898A (en) * 2011-10-03 2013-06-05 株式会社东芝 Intensifying screen for x-ray detector, x-ray detector, and x-ray inspection device
CN103140898B (en) * 2011-10-03 2015-09-30 株式会社东芝 The X-ray detector paper that adds lustre to, X-ray detector and X ray checking device
JP2013162021A (en) * 2012-02-07 2013-08-19 Seiko Epson Corp Wavelength conversion element, light source device, and projector
JP2014142217A (en) * 2013-01-23 2014-08-07 Konica Minolta Inc Radiation image imaging device
US9961078B2 (en) 2013-03-28 2018-05-01 Thomson Licensing Network system comprising a security management server and a home network, and method for including a device in the network system
JP2015039559A (en) * 2013-08-23 2015-03-02 日立造船株式会社 Electron beam monitoring device in electron beam sterilization unit

Also Published As

Publication number Publication date
JP4764039B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4607587B2 (en) Phosphor sheet for radiation detector, and radiation detector and radiation inspection apparatus using the same
JP4764039B2 (en) Phosphor sheet for radiation detector and radiation detector using the same
JP5587788B2 (en) Radiation sensitive detector with scintillator in composite resin
US7692152B2 (en) Radiation detecting apparatus, scintillator panel, radiation detecting system, and method for producing scintillator layer
US5594253A (en) Hybrid luminescent device for imaging of ionizing and penetrating radiation
US7161160B2 (en) Needle-shaped cylindrical storage phosphor crystals
EP1705478A1 (en) Phosphor film, imagining assembly and inspection method
KR20090031728A (en) Apparatus for asymmetric dual-screen digital radiography
JP2019023579A (en) Scintillator
JP2010078385A (en) Radiation image detecting device
JPH0682858B2 (en) Radiation image detection method
JP2007248283A (en) Scintillator, fluorescent screen, and x-ray detector using it
US20050002490A1 (en) Rare earth activated lutetium oxyorthosilicate phosphor for direct X-ray detection
JP2010025780A (en) Radiation conversion sheet and radiological image detection apparatus
EP1359204A1 (en) Needle-shaped cylindrical storage phosphor crystals
JP2000235078A (en) Radiation detecting structural body, and radiation detector and radiation inspection device using same
US9971042B2 (en) Scintillator panel
JPH04290985A (en) Neutron detector
JP2004002746A (en) Needle-shaped columnar storage phosphor crystal
JP2008082764A (en) X-ray line sensor
EP1493798A1 (en) Rare earth activated lutetium oxysulfide phosphor for direct x-ray detection.
JPH0471347B2 (en)
JP2023009941A (en) Scintillator array, radiation detector, radiation inspection device, and method of manufacturing scintillator array
Takasu et al. Image quality of the front exposure system and the back exposure system in the indirect (x-ray-to-light conversion) digital radiography system
JPH11194198A (en) Fluorescence plate and method for combining fluorescence plate and imaging element and forming radiation image

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4764039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150