JP2006257527A - Method for producing grain-oriented magnetic steel sheet and device for reducing core loss in grain-oriented magnetic steel sheet - Google Patents

Method for producing grain-oriented magnetic steel sheet and device for reducing core loss in grain-oriented magnetic steel sheet Download PDF

Info

Publication number
JP2006257527A
JP2006257527A JP2005080017A JP2005080017A JP2006257527A JP 2006257527 A JP2006257527 A JP 2006257527A JP 2005080017 A JP2005080017 A JP 2005080017A JP 2005080017 A JP2005080017 A JP 2005080017A JP 2006257527 A JP2006257527 A JP 2006257527A
Authority
JP
Japan
Prior art keywords
drum
steel sheet
grain
iron loss
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005080017A
Other languages
Japanese (ja)
Other versions
JP4569335B2 (en
Inventor
Masayasu Ueno
雅康 植野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005080017A priority Critical patent/JP4569335B2/en
Publication of JP2006257527A publication Critical patent/JP2006257527A/en
Application granted granted Critical
Publication of JP4569335B2 publication Critical patent/JP4569335B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a grain-oriented magnetic steel sheet by which a low core loss grain-oriented magnetic steel sheet suitable for a stacked-core transformer or for a ribbon-core transformer can be produced with little variation in magnetic properties, and to provide an core reduction device. <P>SOLUTION: With the use of a core loss reduction device provided with: a thin cylindrical drum around which a transported grain-oriented magnetic steel sheet being the material to be projected can be wound, and which is freely rotatably arranged and has a plurality of slits elongating axially on a circumferential face; planet rolls for supporting the drum from the inside; and a solid grain projecting device for projecting solid grains from the inside of the drum through the slits onto the material to be projected, after a cold rolling step where the steel sheet is made into a cold rolled sheet with a final sheet thickness, the continuously transported cold rolled sheet is subjected to a strain introduction part or linear groove imparting step in which the continuously transported cold rolled sheet is wound around the thin cylindrical drum, solid grains are projected from the inside of the drum through the slits onto the surface of the cold rolled sheet, and the surface of the cold rolled sheet is given linear strain introduction parts or linear grooves. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低鉄損方向性電磁鋼板の製造方法に係り、とくに鉄損の低減のために、線状に歪または溝を導入する方法およびその装置の改善に関する。   The present invention relates to a method for manufacturing a low iron loss grain-oriented electrical steel sheet, and more particularly, to a method for introducing strain or grooves in a linear shape and a device improvement for reducing iron loss.

方向性電磁鋼板は、主として変圧器等の鉄芯材料として用いられ、その磁気特性、とくに励磁特性、鉄損特性が良好であることが要求される。とくに、近年では、省エネルギーの観点から鉄芯用として、エネルギーロスの少ない、低鉄損材料の要求が高まっている。また、変圧器等で発生する騒音は、鉄芯材料の磁束密度が大きいほど小さくなることが明らかにされており、最近では、低鉄損でかつ高磁束密度を有する鉄芯用材料が熱望されている。   Oriented electrical steel sheets are mainly used as iron core materials for transformers and the like, and are required to have good magnetic characteristics, particularly excitation characteristics and iron loss characteristics. In particular, in recent years, from the viewpoint of energy saving, there has been an increasing demand for low iron loss materials with low energy loss for iron cores. In addition, it has been clarified that the noise generated by a transformer or the like becomes smaller as the magnetic flux density of the iron core material increases. Recently, iron core materials having a low iron loss and a high magnetic flux density are eagerly desired. ing.

鉄損を低減する方法として、高磁束密度化や二次再結晶粒の微細化等の冶金的方法以外に、物理的方法としてレーザ光やプラズマ炎を照射することにより磁区を細分化する方法が提案されている。このレーザ光やプラズマ炎を照射する方法では、磁区細分化は、レーザ光やプラズマ炎の照射により導入された熱歪に起因している。この導入された熱歪は、高温での焼鈍により消失(回復)するため、この磁区細分化技術は歪取り焼鈍を必要としない積鉄芯トランス用としては利用できるが、歪取り焼鈍を必要とする巻鉄芯トランス用としては使用できない。このようなことから、歪取り焼鈍にも耐えられる耐熱型磁区細分化技術の開発が望まれていた。   In addition to metallurgical methods such as increasing the magnetic flux density and refining secondary recrystallized grains as a method of reducing iron loss, there is a method of subdividing magnetic domains by irradiating laser light or plasma flame as a physical method. Proposed. In this method of irradiating a laser beam or a plasma flame, the magnetic domain fragmentation is caused by thermal strain introduced by the irradiation of the laser beam or the plasma flame. Since the introduced thermal strain disappears (recovers) by annealing at high temperature, this magnetic domain refinement technology can be used for a steel core transformer that does not require strain relief annealing, but requires strain relief annealing. It cannot be used for wound iron core transformers. For these reasons, it has been desired to develop a heat-resistant magnetic domain fragmentation technique that can withstand strain relief annealing.

歪取り焼鈍にも耐えられ、積鉄芯トランスおよび巻鉄芯トランスの両トランスに使用できる方向性電磁鋼板の製造方法として、例えば特許文献1には、電磁鋼板表面に歯型ロールを利用して溝を形成する方法が、また、特許文献2には、最終冷延板表面にエッチングにより線状溝を形成する方法が、また、特許文献3には、電磁鋼板冷延板表面にレーザにより点列又は線状の溝を形成する方法が、それぞれ提案されている。特許文献1、特許文献2、特許文献3に記載された方法は、いずれも点列または線状の溝を形成させ、溝形状の反磁場効果を利用して磁区細分化を行っており、このため、歪取り焼鈍後でも磁区細分化効果が残存する。   As a method for producing a grain-oriented electrical steel sheet that can withstand strain relief annealing and can be used for both a cored iron transformer and a wound iron core transformer, Patent Document 1, for example, uses a tooth-type roll on the surface of the electrical steel sheet. Patent Document 2 discloses a method of forming grooves, and Patent Document 2 discloses a method of forming linear grooves by etching on the surface of the final cold-rolled plate. Methods for forming rows or linear grooves have been proposed. In each of the methods described in Patent Document 1, Patent Document 2, and Patent Document 3, a point-sequence or linear groove is formed, and magnetic domain subdivision is performed using the demagnetizing field effect of the groove shape. Therefore, the domain refinement effect remains even after the strain relief annealing.

しかしながら、特許文献1に開示された歯型ロールを利用して溝を形成する方法では、加工具の摩耗により、所望の溝形状を長期にわたり安定して加工することができないこと、および加工具の寿命が比較的短いため、加工具の交換頻度が高くなり、加工具の組替え時間ロス、組替えコスト増加が生じ、生産性の観点から問題を残していた。また、特許文献2、特許文献3に開示されたエッチングやレーザを用いて溝を形成する方法では、溝形成のための装置が非常に複雑でかつ高価であることから、設備コストや運転コストの高騰を招き、経済的に不利となるという問題があった。   However, in the method of forming a groove using the tooth roll disclosed in Patent Document 1, it is impossible to stably process a desired groove shape over a long period of time due to wear of the processing tool. Since the service life is relatively short, the replacement frequency of the processing tool increases, resulting in loss of processing tool recombination time and an increase in recombination cost, leaving problems from the viewpoint of productivity. In addition, in the method of forming a groove using etching or laser disclosed in Patent Document 2 and Patent Document 3, since the apparatus for forming the groove is very complicated and expensive, There was a problem that it was soaring and economically disadvantageous.

このような問題に対し、例えば特許文献4には、仕上焼鈍された方向性電磁鋼板の表面に、金属粒、合成樹脂粒等の粒状体を投射して点状歪を線状に付与する方向性電磁鋼板の鉄損低減方法が提案されている。粒状体を投射する方法として、特許文献4には、粒状体を気体例えば空気と一緒にした投射、液体例えば水と一緒にした投射が例示され、また粒状体としてスチールショットが例示されている。特許文献4に記載された方法によれば、投射する粒状体の材質、粒径、投射速度を調整することにより、用途に応じ容易に、導入歪量や溝形状を変化させることができ、目的に応じて方向性電磁鋼板を作り分けることができるという利点がある。例えば、積鉄芯用の場合には、投射粒状体への付与エネルギーを小さくし、大きな凹部(溝)を形成させずに歪のみを導入し、磁束密度の劣化を小さくしたうえで鉄損の低減を図ることができる。また、巻鉄芯用の場合には、投射粒状体への付与エネルギーを大きくし、凹部(溝)を形成させて歪取り焼鈍にも耐えられる鉄損低減効果を得ることができる。   For such a problem, for example, Patent Document 4 discloses a direction in which granular materials such as metal grains and synthetic resin grains are projected onto the surface of a finish-annealed grain-oriented electrical steel sheet to give a point-like strain linearly. A method for reducing the iron loss of a magnetic steel sheet has been proposed. As a method for projecting a granular material, Patent Document 4 exemplifies a projection in which the granular material is combined with a gas, for example, air, and a projection in which a liquid is combined with water, for example, and a steel shot is illustrated as the granular material. According to the method described in Patent Document 4, the amount of strain introduced and the groove shape can be easily changed according to the application by adjusting the material, particle size, and projection speed of the granular material to be projected. There is an advantage that a grain-oriented electrical steel sheet can be made according to the situation. For example, in the case of an iron core, the energy applied to the projection granule is reduced, only strain is introduced without forming a large recess (groove), and the deterioration of the magnetic flux density is reduced. Reduction can be achieved. Further, in the case of a wound iron core, it is possible to obtain an effect of reducing iron loss that can withstand the stress relief annealing by increasing the energy imparted to the projection granule and forming a recess (groove).

特許文献4に記載された方法では、粒状体を投射させる設備は例えばショットブラストでよく、レーザ法やエッチング法に比べて安価な設備であり、設備コストも安く、さらに使用する粒状体も循環して使用できるうえ、形状等が大きく変化しても分級することにより、劣化した粒状体を除去することができ、安定した歪導入加工が可能であるとされる。
さらに特許文献4には、上記した方向性電磁鋼板の鉄損低減方法を実現するための装置として、図3に示すように、方向性電磁鋼板1の表面から離れて、複数のスリット2を設けた回転自在なドラム3と、該ドラム3の両端部に粒状体投射装置6を設け、粒状体4を投射する鉄損低減装置が記載されている。
In the method described in Patent Document 4, the equipment for projecting the granular material may be, for example, shot blasting, which is inexpensive equipment compared to the laser method or the etching method, the equipment cost is low, and the granular material to be used is also circulated. In addition, even if the shape or the like changes greatly, classification is performed, whereby deteriorated granular materials can be removed, and stable strain introduction processing is possible.
Further, in Patent Document 4, as an apparatus for realizing the iron loss reduction method of the above-described grain-oriented electrical steel sheet, a plurality of slits 2 are provided apart from the surface of the grain-oriented electrical steel sheet 1 as shown in FIG. A rotatable drum 3 and an iron loss reducing device for projecting the granular material 4 by providing the granular material projection device 6 at both ends of the drum 3 are described.

また、特許文献5には、仕上焼鈍済みまたは仕上焼鈍後絶縁被膜処理した方向性電磁鋼板の表面に金属粒、合成樹脂等の粒状体あるいは高圧水を投射又は噴射して圧延方向に対し、直角から45°の範囲内で間隔が圧延方向に2〜20mm、幅が30〜1000μm、地鉄部分の深さが5μm超え30μm以下の凹部を形成し、ついで750℃以上の温度で熱処理する方向性電磁鋼板の製造方法が提案されている。特許文献5に記載された技術によれば、磁区細分化による鉄損低減効果を効果的に得るために鋼板表面に導入される凹部(線状溝)の形状に最適な大きさが存在するとしている。   Further, Patent Document 5 discloses that a grain or a high-pressure water such as metal grains, synthetic resin, or the like is projected or jetted onto the surface of a grain-oriented electrical steel sheet that has been finish-annealed or treated with an insulating film after finish annealing, and perpendicular to the rolling direction. Direction of heat treatment at a temperature of 750 ° C or higher after forming a recess with a spacing of 2 to 20mm in the rolling direction within a range of 45 ° to 45 °, a width of 30 to 100 µm, and a depth of the base iron portion of 5 µm to 30 µm. A method for manufacturing an electrical steel sheet has been proposed. According to the technique described in Patent Document 5, there is an optimum size for the shape of the recess (linear groove) introduced into the steel sheet surface in order to effectively obtain the iron loss reduction effect due to magnetic domain subdivision. Yes.

また、非特許文献1にはエッチング処理を施し線状溝を導入した際に、溝形状と磁区細分化効果の関係を調査し、磁区細分化効果が最も効果的に得られる溝形状として、溝深さ:約20μm、溝幅:約200μm、溝ピッチ:3mmを得ている。
特開昭61−117218号公報 特公平3−69968号公報 特開昭61−75506号公報 特開昭58−16027号公報 特開昭63−166932号公報 佐藤圭司ら:川崎製鉄技報、vol.29 (1997)、No.3、p.153〜158
In addition, in Non-Patent Document 1, when a linear groove is introduced by performing an etching process, the relationship between the groove shape and the magnetic domain refinement effect is investigated, and the groove shape in which the magnetic domain refinement effect is most effectively obtained is Depth: about 20 μm, groove width: about 200 μm, groove pitch: 3 mm.
JP-A-61-117218 Japanese Patent Publication No. 3-69968 JP 61-75506 JP JP 58-16027 A JP 63-166932 A Junji Sato et al .: Kawasaki Steel Technical Report, vol.29 (1997), No.3, p.153-158

特許文献5や非特許文献1の記載から、磁区細分化効果をより多く発揮させるためには、歪導入部や線状溝を安定して適正範囲の大きさに形成することが重要であることがわかる。しかし、特許文献4に記載された図3に示すような鉄損低減装置を用いて、方向性電磁鋼板表面に、点状歪を線状に、あるいは線状溝を付与すると、歪導入部や線状溝の寸法形状にばらつきが生じ、安定して精度よく所望の寸法形状の微細な線状の歪導入部や線状溝を付与できず、優れた磁気特性を安定して確保できないという問題があった。   From the description of Patent Document 5 and Non-Patent Document 1, it is important to stably form the strain introducing portion and the linear groove in a size within an appropriate range in order to exert more magnetic domain subdivision effects. I understand. However, when using the iron loss reducing apparatus shown in FIG. 3 described in Patent Document 4 and applying a linear strain or a linear groove to the surface of the grain-oriented electrical steel sheet, There is a variation in the dimensional shape of the linear groove, and it is impossible to stably provide fine linear strain introduction portions and linear grooves of the desired dimensional shape with high accuracy, and it is impossible to stably secure excellent magnetic properties. was there.

特許文献4に記載された鉄損低減装置では、方向性電磁鋼板1から一定の距離を離れた位置に設けられた、複数のスリット2を有するドラム3を、方向性電磁鋼板1の搬送速度と同期してドラム3を回転させながら、粒状体投射装置6から投射した粒状体4により、ドラム3に設けたスリット2に応じた点状歪を線状に、あるいは線状歪を方向性電磁鋼板1の表面に付与しようとするものである。この装置によれば、ドラム3に加工されたスリット幅、スリットピッチに応じた歪導入部や線状溝を鋼板表面に付与することは原理的には可能であるが、例えば鋼板の搬送速度とドラムの回転速度にわずかなずれが生じても、歪導入部や線状溝のピッチが鋼板搬送方向に対して変動することになり、磁気特性のばらつきの原因となることが考えられる。鋼板が高速搬送される実製造ラインでは、板振動や加速減速は常に生じるため、鋼板とドラムとが一定距離はなれた状態では、鋼板の搬送速度とドラムの回転速度を完全に同期させることは困難であり、磁気特性のばらつきが発生することになる。   In the iron loss reducing apparatus described in Patent Document 4, the drum 3 having a plurality of slits 2 provided at a position away from the directional electromagnetic steel sheet 1 by a certain distance is used as the conveying speed of the directional electromagnetic steel sheet 1. While rotating the drum 3 synchronously, the granular material 4 projected from the granular material projection device 6 causes the point distortion corresponding to the slit 2 provided in the drum 3 to be linear, or the linear distortion to the directional electrical steel sheet. It is intended to be applied to the surface of 1. According to this apparatus, although it is possible in principle to give the steel sheet surface the distortion introduction part and the linear groove according to the slit width and slit pitch processed in the drum 3, for example, the conveyance speed of the steel sheet and Even if a slight deviation occurs in the rotational speed of the drum, the pitch of the strain introducing portion and the linear groove varies with respect to the steel sheet conveyance direction, which may cause variations in magnetic characteristics. In an actual production line where steel plates are transported at high speed, plate vibration and acceleration / deceleration always occur, so it is difficult to completely synchronize the steel plate transport speed and drum rotation speed when the steel plate and drum are at a certain distance. As a result, variations in magnetic characteristics occur.

また、特許文献4の装置を用いて、固体の粒状体を投射して線状溝を付与する場合には、付与される歪導入部や線状溝の形状が、スリット部の深さ、すなわちドラムの肉厚の影響を受ける。たとえば、投射する粒状体の粒子径と比較して、ドラムの肉厚が厚い場合には、投射された粒状体は、スリットを通過する際にスリット内の側壁と衝突する確率が高く、そのため粒状体の運動エネルギーが減衰し、鋼板表面に所望の寸法形状の歪導入部や線状溝を付与できなくなる。   Moreover, when the solid granule is projected by using the apparatus of Patent Document 4 to give a linear groove, the shape of the applied strain introducing part or the linear groove is the depth of the slit part, that is, Influenced by drum thickness. For example, when the drum is thicker than the particle size of the projected granular material, the projected granular material has a high probability of colliding with the side wall in the slit when passing through the slit. The kinetic energy of the body is attenuated, and a strain-introducing portion or a linear groove having a desired dimensional shape cannot be applied to the steel plate surface.

したがって、特許文献4の装置を用いて、微細な歪導入部や線状溝を付与するためには、投射する粒状体は微細なものを用い、使用するドラムは薄肉とする必要がある。しかし、ドラムを薄肉とすると、剛性が不足して遠心力によりドラム自体が変形、振動を起こす可能性が高くなり、そのため、鋼板表面に付与する歪導入部や線状溝の寸法精度が低下し、磁気特性のばらつきが発生することになる。   Therefore, in order to provide a fine strain introduction part and a linear groove using the apparatus of Patent Document 4, it is necessary to use a fine granular material to be projected and to use a thin drum. However, if the drum is thin, the rigidity is insufficient and the drum itself is more likely to be deformed and vibrated by centrifugal force.Therefore, the dimensional accuracy of strain-introducing parts and linear grooves applied to the steel sheet surface is reduced. As a result, variations in magnetic characteristics occur.

本発明は、かかる従来技術の問題を有利に解決し、積鉄芯トランス用、あるいは歪取り焼鈍にも耐えられる巻鉄芯トランス用として好適な、低鉄損方向性電磁鋼板を磁気特性のばらつき少なく製造できる、方向性電磁鋼板の製造方法および方向性電磁鋼板の鉄損低減装置を提案することを目的とする。   The present invention advantageously solves such problems of the prior art, and provides a low iron loss directional electrical steel sheet suitable for a laminated iron core transformer or a wound iron core transformer that can withstand strain relief annealing. It aims at proposing the manufacturing method of a grain-oriented electrical steel sheet and the iron loss reduction apparatus of a grain-oriented electrical steel sheet which can be manufactured few.

本発明者らは、上記した課題を達成するために、方向性電磁鋼板に微小な線状の歪導入部又は線状溝を寸法精度よく付与する方法について鋭意検討した。その結果、微小な線状溝を寸法精度よく付与するためには、方向性電磁鋼板を、複数のスリットを有し無駆動で回転自在な構造の薄肉ドラムに、巻き掛けすることを思い付いた。これにより、鋼板の搬送速度にわずかな変動が生じても鋼板の搬送速度とドラムの回転速度を完全に同期させることができ、線状溝の寸法形状のばらつきを防止できる。また、本発明者らは、さらに考究した結果、薄肉ドラムの剛性の低下は、ドラム内部に遊星ロールを設けドラムを内側から支持することにより解決できることを見出した。   In order to achieve the above-mentioned problems, the present inventors diligently studied a method for imparting a fine linear strain introducing portion or a linear groove to a grain-oriented electrical steel sheet with high dimensional accuracy. As a result, in order to provide minute linear grooves with high dimensional accuracy, it has been conceived that a grain-oriented electrical steel sheet is wound around a thin drum having a plurality of slits and having a structure that can be driven and rotated freely. Thereby, even if slight fluctuations occur in the conveying speed of the steel sheet, the conveying speed of the steel sheet and the rotational speed of the drum can be completely synchronized, and variations in the dimensional shape of the linear grooves can be prevented. Further, as a result of further study, the present inventors have found that the reduction in rigidity of the thin drum can be solved by providing a planetary roll inside the drum and supporting the drum from the inside.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)方向性電磁鋼板の製造方法において、最終板厚の冷延板とする冷間圧延工程よりあとに、連続して搬送される前記冷延板を、遊星ロールで内側から支持され回転自在に配設された円周面上に複数の軸方向に伸びた.スリットを有する薄肉円筒形状のドラムに巻き掛けし、該ドラムの内側から固体粒子を前記スリットを通し前記冷延板表面に投射し、前記冷延板表面に線状の歪導入部又は線状溝を付与する歪導入部又は線状溝付与工程を施すことを特徴とする低鉄損方向性電磁鋼板の製造方法。
(2)被投射材である、搬送される方向性電磁鋼板を巻き掛け可能で、かつ回転自在に配設され、円周面上に複数の軸方向に伸びたスリットを有する薄肉円筒形状のドラムと、該ドラムを内側から支持する遊星ロールと、該ドラムの内側から前記被投射材に前記スリットを通して固体粒子を投射する固体粒子投射装置とを備え、前記方向性電磁鋼板の表面に線状の歪導入部又は線状溝を付与することを特徴とする方向性電磁鋼板用鉄損低減装置。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) In the manufacturing method of grain-oriented electrical steel sheet, the cold-rolled sheet that is continuously conveyed after the cold-rolling step to obtain a cold-rolled sheet with the final thickness is supported by a planetary roll from the inside and freely rotatable. A plurality of axially extending drums are wound around a circumferential surface disposed on a thin cylindrical drum having slits, and solid particles are projected from the inside of the drum to the surface of the cold-rolled plate through the slits. And the manufacturing method of the low iron loss directionality electrical steel sheet characterized by performing the distortion | strain introduction part or linear groove | channel provision process which provides a linear distortion | strain introduction part or a linear groove | channel on the said cold-rolled sheet surface.
(2) A thin cylindrical drum having a plurality of axially extending slits on a circumferential surface, which is capable of being wound around a directional electromagnetic steel sheet to be transported, which is a projection material, and which is rotatably disposed. A planetary roll that supports the drum from the inside, and a solid particle projection device that projects solid particles from the inside of the drum to the projection target through the slit, and has a linear shape on the surface of the grain-oriented electrical steel sheet. An iron loss reducing device for grain-oriented electrical steel sheet, characterized by providing a strain introducing portion or a linear groove.

本発明によれば、方向性電磁鋼板の鉄損値を安定して低くでき、しかも磁気特性のばらつきを少なく製造でき、産業上格段の効果を奏する。また、本発明の方向性電磁鋼板の鉄損低減装置は、実用的に簡便な装置であり、本発明によれば、低鉄損方向性電磁鋼板製造における設備コスト、運転コストの低減が可能であるという効果もある。   According to the present invention, the iron loss value of the grain-oriented electrical steel sheet can be stably reduced, and the variation in magnetic properties can be reduced, thereby producing a remarkable industrial effect. Further, the iron loss reducing device for grain-oriented electrical steel sheet of the present invention is a practically simple apparatus, and according to the present invention, it is possible to reduce the equipment cost and the operating cost in the production of low iron loss grain-oriented electrical steel sheet. There is also an effect that there is.

まず、本発明の方向性電磁鋼板用鉄損低減装置について説明する。
本発明の方向性電磁鋼板用鉄損低減装置は、ドラム3、遊星ロール5および固体粒子投射装置6を備える。本発明の方向性電磁鋼板用鉄損低減装置の一例を模式的に図1に示す。
ドラム3は、薄肉円筒形状を呈し、円周面上に複数の軸方向に伸びた肉厚貫通スリット2を有する。ドラム3は、無駆動とし、連続的に搬送される方向性電磁鋼板1を巻き掛け可能で、回転自在に配設される。このような構造とすることにより、ドラム3は、巻き掛けされた方向性電磁鋼板1表面との摩擦によって該方向性電磁鋼板1と一体となり自由に回転できる。このため、鋼板の搬送速度に変動が生じた場合でも、ドラムの回転速度と鋼板の搬送速度とは常に同一速度となり、ドラムの回転速度と鋼板の搬送速度とは、同期のための制御装置を必要とすることはない。
First, the iron loss reducing apparatus for grain-oriented electrical steel sheet according to the present invention will be described.
The iron loss reducing device for grain-oriented electrical steel sheet according to the present invention includes a drum 3, a planetary roll 5, and a solid particle projection device 6. An example of the iron loss reduction apparatus for grain-oriented electrical steel sheets according to the present invention is schematically shown in FIG.
The drum 3 has a thin cylindrical shape and has a plurality of through-thick slits 2 extending in the axial direction on the circumferential surface. The drum 3 is non-driven, and can be wound around the directional electromagnetic steel sheet 1 that is continuously conveyed, and is rotatably arranged. By adopting such a structure, the drum 3 can be freely rotated integrally with the directional electromagnetic steel sheet 1 by friction with the surface of the wound directional electromagnetic steel sheet 1. For this reason, even when fluctuations occur in the steel plate conveyance speed, the drum rotation speed and the steel plate conveyance speed are always the same, and the drum rotation speed and the steel plate conveyance speed are controlled by a control device for synchronization. I don't need it.

ここで、「薄肉」円筒形状とは、肉厚tが10mm以下で、かつドラム外径Dと肉厚tとの比、t/Dが0.02以下の場合をいうものとする。本発明では、ドラム3は、方向性電磁鋼板の磁気特性の劣化を防ぐために、方向性電磁鋼板がドラムに巻き掛けされた場合に塑性変形が生じない程度の大径のドラムとすることが必要であり、外径Dを500mm以上とすることが好ましい。スリットを設けるドラムを、このような薄肉円筒ドラムとすることにより、投射される固体粒子の運動エネルギーを減衰することなく効率的に線状の歪導入部又は線状溝を形成できる。   Here, the “thin wall” cylindrical shape means a case where the thickness t is 10 mm or less, the ratio of the drum outer diameter D to the thickness t, and t / D is 0.02 or less. In the present invention, the drum 3 needs to be a large diameter drum that does not cause plastic deformation when the directional electromagnetic steel sheet is wound around the drum in order to prevent deterioration of the magnetic properties of the directional electromagnetic steel sheet. It is preferable that the outer diameter D is 500 mm or more. By using such a thin cylindrical drum as the drum in which the slit is provided, it is possible to efficiently form a linear strain introducing portion or a linear groove without attenuating the kinetic energy of the projected solid particles.

また、ドラム3は、円周面上に複数の、軸方向に伸びた肉厚貫通スリット2を有する。ドラム3の円周面上に設けられるスリット2の幅およびそのピッチは、方向性電磁鋼板1に付与する線状の歪導入部、線状溝の寸法形状(幅、ピッチ)に応じて適宜決定すればよいが、鉄損低減効果を効果的に高めるためには、スリットの幅を100〜500μm、スリットのピッチを2〜10mmとすることが好ましい。なお、スリットの長さは、鋼板幅とほぼ等しくすることが好ましい。   The drum 3 has a plurality of thick through slits 2 extending in the axial direction on the circumferential surface. The width and pitch of the slits 2 provided on the circumferential surface of the drum 3 are appropriately determined according to the linear strain introduction portion and the dimensional shape (width and pitch) of the linear grooves applied to the grain-oriented electrical steel sheet 1. However, in order to effectively increase the iron loss reduction effect, it is preferable to set the slit width to 100 to 500 μm and the slit pitch to 2 to 10 mm. Note that the length of the slit is preferably substantially equal to the steel plate width.

また、本発明では、ドラム3は、内側から複数の遊星ロール5により回転自在に支持される。遊星ロール5も無駆動とする。これにより、薄肉円筒状のドラムでも十分な剛性を確保でき、スリットの寸法に応じた微細な線状の歪導入部又は線状溝を精度よく付与できる。
また、遊星ロール5は、ドラム3を内側から均等に支持するように、ドラムの内側円周面に沿って均等に配設することが好ましい。本発明では、配設する遊星ロール5は、ドラムの径に応じて内周面を均等に支持し、しかも固体粒子を内側から投射できる空間を確保できる本数であればよく、その数はとくに限定されない。
In the present invention, the drum 3 is rotatably supported by the plurality of planetary rolls 5 from the inside. The planetary roll 5 is also not driven. Thereby, sufficient rigidity can be secured even with a thin cylindrical drum, and a fine linear strain introduction portion or linear groove corresponding to the dimension of the slit can be provided with high accuracy.
Further, it is preferable that the planetary rolls 5 are evenly disposed along the inner circumferential surface of the drum so as to support the drum 3 evenly from the inner side. In the present invention, the arranged planetary rolls 5 may be any number as long as the number of the planetary rolls 5 can support the inner peripheral surface evenly according to the diameter of the drum and can secure a space in which solid particles can be projected from the inside. Not.

本発明では、ドラム3の内部で遊星ロール5間の空間に、複数の固体粒子投射装置6が配設される。固体粒子投射装置6は、固体粒子4をドラム3に設けられたスリット2を通し方向性電磁鋼板1表面に投射する。固体粒子投射装置6は、遊星ロール5と遊星ロール5間の空間で固体粒子を方向性電磁鋼板1表面に投射可能な位置に設けることが好ましい。なお、固体粒子の投射方向は特に限定されないが、スリットの下方から投射することが好ましい。これにより、投射した固体粒子が自重で落下し、スリット内に堆積し、スリットを塞ぐという問題がなくなる。なお、固体粒子投射装置6は、空気式ショットブラスト装置等とすることが好ましいが、これに限定されるものではない。また、固体粒子投射装置6では、用途に応じて、固体粒子の投射速度等の投射エネルギーを可変とすることができることが好ましい。   In the present invention, a plurality of solid particle projection devices 6 are disposed in the space between the planetary rolls 5 inside the drum 3. The solid particle projection device 6 projects the solid particles 4 on the surface of the grain-oriented electrical steel sheet 1 through the slits 2 provided in the drum 3. The solid particle projection device 6 is preferably provided at a position where the solid particles can be projected onto the surface of the grain-oriented electrical steel sheet 1 in the space between the planetary roll 5 and the planetary roll 5. In addition, although the projection direction of a solid particle is not specifically limited, It is preferable to project from the downward direction of a slit. This eliminates the problem that the projected solid particles fall by their own weight, accumulate in the slit, and block the slit. The solid particle projection device 6 is preferably a pneumatic shot blasting device or the like, but is not limited thereto. Moreover, in the solid particle projector 6, it is preferable that the projection energy such as the projection speed of the solid particles can be made variable according to the application.

また、本発明の鉄損低減装置で投射される固体粒子は、とくに限定する必要はなく、用途に応じて適宜選定すればよいが、スチールショット、アルミナ粒子等が例示できる。
固体粒子投射装置6には、ドラム3の外部に、例えばドラム3の軸方向端部、に固体粒子供給装置8が接続され、固体粒子4を固体粒子投射装置6に供給する。また、ドラム3には、集塵装置7が接続されることが好ましく、これにより、投射された固体粒子4が吸引され、ドラム3下部に固体粒子4が堆積することがなくなる。また、集塵装置7には、分級装置(図示せず)を接続することが好ましい。これにより、吸引された固体粒子は分級され、摩耗や破砕された粒子や異物が除去され、一定の粒子径のもののみを循環使用することができ、微細な線状の歪導入部又は線状溝を安定して精度よく付与できる。
Further, the solid particles projected by the iron loss reducing apparatus of the present invention are not particularly limited and may be appropriately selected depending on the application, and examples thereof include steel shots and alumina particles.
A solid particle supply device 8 is connected to the solid particle projection device 6 outside the drum 3, for example, at an axial end of the drum 3, and supplies the solid particles 4 to the solid particle projection device 6. Further, the dust collector 7 is preferably connected to the drum 3, whereby the projected solid particles 4 are sucked and the solid particles 4 do not accumulate at the lower part of the drum 3. The dust collector 7 is preferably connected to a classifier (not shown). As a result, the sucked solid particles are classified, and the worn and crushed particles and foreign matters are removed, and only those having a certain particle diameter can be circulated and used. A groove can be stably and accurately provided.

なお、本発明の鉄損低減装置には、電磁鋼板を着脱するため等の稼動のための付帯設備が設けられることは言うまでもない。
つぎに、微細な線状の歪導入部又は線状溝を導入され、優れた鉄損特性を有する、方向性電磁鋼板の製造方法について説明する。
通常の方向性電磁鋼板の製造方法では、Si:4mass%以下を含有する方向性電磁鋼板用スラブに、熱間圧延を施し熱延板とする熱間圧延工程と、該熱延板に必要に応じて熱処理を施したのち、該熱延板に中間焼鈍を含む2回の冷間圧延または1回の冷間圧延を施し最終板厚の冷延板とする冷間圧延工程と、該冷延板に脱炭焼鈍と、焼鈍分離剤を塗布しさらに二次再結晶焼鈍と、ついで平坦化焼鈍を行う焼鈍工程と、絶縁被膜塗布・焼付工程とを順次施し、方向性電磁鋼板とする。
Needless to say, the iron loss reducing apparatus of the present invention is provided with ancillary equipment for operation such as attaching and detaching electromagnetic steel sheets.
Next, a method for producing a grain-oriented electrical steel sheet having fine iron loss characteristics introduced with a fine linear strain introduction portion or linear groove will be described.
In a normal method of manufacturing a grain-oriented electrical steel sheet, a hot rolling process in which hot rolling is performed on a slab for grain-oriented electrical steel sheet containing Si: 4 mass% or less, and the hot-rolled sheet is necessary. A cold rolling step of subjecting the hot-rolled sheet to cold-rolled sheet having a final sheet thickness by subjecting the hot-rolled sheet to two cold rollings including intermediate annealing or one cold rolling. The steel sheet is subjected to a decarburization annealing, an annealing separator and a secondary recrystallization annealing, followed by a flattening annealing and an insulating coating application / baking process in order to obtain a grain-oriented electrical steel sheet.

本発明では、上記した、最終板厚の冷延板とする冷間圧延工程よりあとに、連続して搬送される冷延板を、遊星ロールで内側から支持され回転自在に配設された円周面上に複数の軸方向に伸びたスリットを有する薄肉円筒形状のドラムに巻き掛けし、該ドラムの内側から固体粒子をスリットを通し冷延板表面に投射し、冷延板表面に線状の歪導入部又は線状溝を付与する歪導入部又は線状溝付与工程を施す。   In the present invention, after the cold rolling step of making the cold-rolled sheet having the final thickness described above, the cold-rolled sheet that is continuously conveyed is supported from the inside by a planetary roll and is arranged rotatably. It is wound around a thin cylindrical drum having a plurality of axially extending slits on the peripheral surface, and solid particles are projected from the inside of the drum through the slit onto the surface of the cold rolled plate, and linear on the surface of the cold rolled plate The strain introducing portion or the linear groove applying step for applying the strain introducing portion or the linear groove is applied.

上記した歪導入部又は線状溝付与工程は、最終板厚の冷延板とする冷間圧延工程よりあとの工程であれば何時でもよく、例えば、脱炭焼鈍前でも、二次再結晶焼鈍前でもよく、該工程の実施の順序はとくに限定されない。
なお、巻鉄芯用の場合には、線状溝を形成する必要があるが、そのままでは形成された線状溝の近傍に大きな歪が残存し、磁気特性に悪影響を及ぼす。このため、熱処理等で歪を回復させておくことが必要になるため、二次再結晶焼鈍や平坦化焼鈍などの、700℃以上の高温焼鈍前に線状溝を形成することが好ましい。一方、積鉄芯用の場合には、線状溝を形成してもよいが、線状溝形成により磁束密度が若干低下するため、高磁束密度で低鉄損の方向性電磁鋼板とするためには、歪のみを導入することがより好ましい。この場合には、歪導入は、平坦化焼鈍後に行うことが好ましい。
The strain introduction part or the linear groove applying step described above may be any time as long as it is a step after the cold rolling step to obtain a cold-rolled sheet having a final thickness, for example, secondary recrystallization annealing even before decarburization annealing. The order of performing the steps is not particularly limited.
In the case of a wound iron core, it is necessary to form a linear groove, but if left as it is, a large strain remains in the vicinity of the formed linear groove, which adversely affects the magnetic properties. For this reason, since it is necessary to recover the strain by heat treatment or the like, it is preferable to form linear grooves before high-temperature annealing at 700 ° C. or higher, such as secondary recrystallization annealing or planarization annealing. On the other hand, in the case of a product core, a linear groove may be formed, but the magnetic flux density is slightly reduced by forming the linear groove, so that a directional electrical steel sheet having a high magnetic flux density and a low iron loss is obtained. It is more preferable to introduce only strain. In this case, the strain introduction is preferably performed after the planarization annealing.

歪導入部又は線状溝付与工程は、上記した本発明の鉄損低減装置を利用して行うことが好ましい。
本発明では、連続して搬送される方向性電磁鋼板(冷延板)を、遊星ロールで内側から支持され十分な剛性を有するとともに回転自在で、複数の肉厚貫通スリットを有する薄肉円筒形状のドラムに巻き掛けする。これにより、冷延板の搬送速度とドラムの回転速度とが完全に同期し、スリットの寸法に応じた微細な歪導入部又は線状溝を精度よく付与できる。
The strain introducing portion or the linear groove applying step is preferably performed using the iron loss reducing apparatus of the present invention described above.
In the present invention, a directional electromagnetic steel sheet (cold rolled sheet) continuously conveyed is supported from the inside by a planetary roll, has sufficient rigidity and is rotatable, and has a thin cylindrical shape having a plurality of thick through slits. Wrap around the drum. Thereby, the conveyance speed of a cold-rolled board and the rotational speed of a drum synchronize completely, and the fine distortion introduction part or linear groove | channel according to the dimension of a slit can be provided accurately.

ついで、薄肉円筒形状のドラムに巻き掛けされた冷延板の表面に、該ドラムの内側から固体粒子を、固体粒子投射装置により、ドラムに設けられたスリットを通し投射する。これにより、冷延板表面にスリットの寸法に応じた微細な歪導入部又は線状溝が付与される。
付与される歪導入部又は線状溝の好ましい形状は、歪導入部では幅:100〜500μm、ピッチ:2〜10mmとすることが好ましく、線状溝では、深さ:5〜100μm、幅:100〜500μm、ピッチ:2〜10mmとすることが好ましい。なお、投射される固体粒子の種類、粒径等は、目的に応じて適宜選択すればよく、その粒径(サイズ)は、50〜300μmとすることが好ましい。
Next, solid particles are projected from the inside of the drum onto the surface of the cold-rolled plate wound around the thin cylindrical drum through a slit provided in the drum by a solid particle projection device. Thereby, the fine strain introduction part or linear groove | channel according to the dimension of a slit is provided on the cold rolled sheet surface.
The preferable shape of the strain introducing portion or the linear groove to be applied is preferably a width: 100 to 500 μm and a pitch: 2 to 10 mm in the strain introducing portion, and a depth: 5 to 100 μm and a width in the linear groove. Preferably, the thickness is 100 to 500 μm and the pitch is 2 to 10 mm. In addition, what is necessary is just to select suitably the kind of solid particle, particle size, etc. which are projected according to the objective, and it is preferable that the particle size (size) shall be 50-300 micrometers.

以下、実施例に基づいてさらに本発明について説明する。   Hereinafter, the present invention will be further described based on examples.

(実施例1)
平坦化焼鈍済みのSi:4mass%を含有する方向性電磁鋼板(板厚:0.23mm、板幅:300mm)
を用い、図1に示した本発明の鉄損低減装置を利用して、該鉄損低減装置のドラム3に連続して搬送される方向性電磁鋼板を巻き掛けして、該方向性電磁鋼板表面に線状の歪導入部を付与し、本発明例とした。使用した鉄損低減装置では、ドラム3は、外径:1000mmφ、肉厚:3mmの薄肉円筒とし、ドラム内部には16本の遊星ロール(外径:100mmφ)5が配設され、ドラム3を内側から支持する構造となっている。ドラム3には、軸方向に伸びる幅:350μmの肉厚貫通スリット2が、ピッチ:7.5mmで円周面上に円周方向に複数個設けられている。さらにドラム3の内部でドラム上部の遊星ロールと遊星ロールとの間に、固体粒子噴射装置6として、空気式ショットブラスト装置が6台配設されている。この空気式ショットブラスト装置を用い、コンプレッサーで圧縮された高圧空気に投射する固体粒子を混合し、高速で鋼板表面に投射し、線状の歪導入部を付与した。固体粒子としては、平均粒径:55μmのアルミナ粒子を用い、噴射圧力:0.1MPaで実施した。
Example 1
Planar annealed Si: 4 mass% grain-oriented electrical steel sheet (thickness: 0.23 mm, width: 300 mm)
1 is used to wind a directional electrical steel sheet continuously conveyed on the drum 3 of the iron loss reduction apparatus using the iron loss reduction apparatus of the present invention shown in FIG. A linear strain-introducing portion was imparted to the surface to make an example of the present invention. In the iron loss reduction apparatus used, the drum 3 is a thin cylinder with an outer diameter of 1000 mmφ and a wall thickness of 3 mm, and 16 planetary rolls (outer diameter: 100 mmφ) 5 are arranged inside the drum. The structure is supported from the inside. The drum 3 is provided with a plurality of thick through slits 2 extending in the axial direction and having a width of 350 μm in the circumferential direction on the circumferential surface with a pitch of 7.5 mm. Further, six pneumatic shot blasting apparatuses are disposed as solid particle ejecting apparatuses 6 between the planetary rolls at the upper part of the drum 3 and between the planetary rolls inside the drum 3. Using this pneumatic shot blasting device, solid particles to be projected onto high-pressure air compressed by a compressor were mixed and projected onto the steel plate surface at high speed to give a linear strain introduction part. As solid particles, alumina particles having an average particle diameter of 55 μm were used, and the injection pressure was 0.1 MPa.

なお、方向性電磁鋼板の搬送速度を図2に示すように変化させて、線状の歪導入部を付与した。この際、単位時間あたりの固体粒子の投射量が5kg/min・mと一定になるように、搬送速度に比例して固体粒子の投射量を変化させた。
また、従来例として、図3に示す装置と同種の装置を利用して、平坦化焼鈍済みのSi:4mass%を含有する方向性電磁鋼板(板厚:0.23mm、板幅:300mm)に線状の歪導入部を付与した。なお、図3に示す装置と同種の装置では、方向性電磁鋼板を一定の距離(100mm)離した状態で、ドラムの回転速度と鋼板の搬送速度とを同期させながらドラムの内側からスリットを介し、固体粒子を投射した。ドラムの寸法、およびドラムに設けたスリットの大きさ、ピッチや、投射固体粒子、投射圧力、投射量は、図1の装置を利用した本発明例の場合と同様とした。
In addition, the conveyance speed of the grain-oriented electrical steel sheet was changed as shown in FIG. At this time, the projection amount of the solid particles was changed in proportion to the conveyance speed so that the projection amount of the solid particles per unit time was constant at 5 kg / min · m 2 .
In addition, as a conventional example, using the same type of apparatus as shown in FIG. 3, wire is applied to a grain-oriented electrical steel sheet (sheet thickness: 0.23 mm, sheet width: 300 mm) containing Si: 4 mass% after flattening annealing. A strain-introducing portion was added. In the same type of apparatus as shown in FIG. 3, with the directional electromagnetic steel sheet being separated by a certain distance (100 mm), the drum rotation speed and the steel sheet conveyance speed are synchronized with each other through a slit from the inside of the drum. , Solid particles were projected. The dimensions of the drum, the size of the slit provided in the drum, the pitch, the projected solid particles, the projection pressure, and the projection amount were the same as those of the example of the present invention using the apparatus of FIG.

上記した方法で線状の歪導入部を付与された方向性電磁鋼板は、さらに絶縁被膜コーティングを施されたのち、方向性電磁鋼板の図2に示す各領域に該当する各位置から試験片を各5枚採取して、鉄損W17/50、磁束密度B8を測定した。得られた鉄損値および磁束密度値から、搬送速度が変化した各領域での測定値のばらつきを算出した。
得られた測定結果を表1に示す。なお、W17/50は、磁束密度1.7T、周波数50Hzにおける鉄損W/kgを表す。
The grain-oriented electrical steel sheet provided with the linear strain-introducing portion by the above-described method is further coated with an insulating coating, and then a test piece is taken from each position corresponding to each region shown in FIG. 2 of the grain-oriented electrical steel sheet. Five pieces of each were collected and measured for iron loss W17 / 50 and magnetic flux density B8. From the obtained iron loss value and magnetic flux density value, the variation of the measured value in each region where the conveyance speed was changed was calculated.
The obtained measurement results are shown in Table 1. W17 / 50 represents iron loss W / kg at a magnetic flux density of 1.7 T and a frequency of 50 Hz.

Figure 2006257527
本発明例、従来例ともに、歪付与前に比べて、鉄損が0.09W/kg程度低減しており、歪導入により大きな鉄損低減効果が得られている。本発明例では、歪導入後の鉄損値のばらつきが少なくなっているのに対し、従来例では、歪導入により鉄損値のばらつきが大きくなっている。なお、磁束密度B8は、歪導入により若干低下しているが、実用上は問題ない程度である。
(実施例2)
平坦化焼鈍済みのSi:4mass%を含有する方向性電磁鋼板(板厚:0.23mm、板幅:500mm)
を用い、実施例1と同様に、図1に示した本発明の鉄損低減装置を利用して、該鉄損低減装置のドラム3に連続して搬送される方向性電磁鋼板を巻き掛けし、該方向性電磁鋼板表面に固体粒子噴射装置6から固体粒子を高速で投射し、線状溝を付与し、本発明例とした。なお、使用した鉄損低減装置のドラム3には、幅:400μmの肉厚貫通スリット2を、ピッチ:7.5mmで円周面上に複数個設けた。また、投射する固体粒子は、平均粒径:200μmのSUS304粒子を用い、噴射圧力を1.0MPaとした。
Figure 2006257527
In both the example of the present invention and the conventional example, the iron loss is reduced by about 0.09 W / kg as compared with that before the application of strain, and a large iron loss reduction effect is obtained by introducing the strain. In the example of the present invention, the variation of the iron loss value after the introduction of strain is reduced, whereas in the conventional example, the variation of the iron loss value is increased by introducing the strain. The magnetic flux density B8 is slightly reduced due to the introduction of strain, but is practically satisfactory.
(Example 2)
Planar annealed Si: 4 mass% grain-oriented electrical steel sheet (thickness: 0.23 mm, width: 500 mm)
In the same manner as in Example 1, using the iron loss reducing device of the present invention shown in FIG. 1, a directional electrical steel sheet continuously wound around the drum 3 of the iron loss reducing device is wound. The solid particle was projected at high speed from the solid particle injection device 6 on the surface of the grain-oriented electrical steel sheet to give a linear groove, thereby obtaining an example of the present invention. The drum 3 of the iron loss reducing apparatus used was provided with a plurality of thick through slits 2 having a width of 400 μm on the circumferential surface with a pitch of 7.5 mm. The solid particles to be projected were SUS304 particles having an average particle size of 200 μm and the injection pressure was 1.0 MPa.

なお、方向性電磁鋼板の搬送速度を図2に示すように変化させた。この際、単位時間あたりの固体粒子の投射量が10kg/min・mと一定になるように、搬送速度に比例して固体粒子の投射量を変化させた。
また、従来例として、実施例1と同様に、図3に示す装置と同種の装置を利用して、同種の方向性電磁鋼板に線状溝を付与した。なお、図3に示す装置と同種の装置では、方向性電磁鋼板を一定の距離(100mm)離した状態で、ドラムの回転速度と鋼板の搬送速度とを同期させながら行った。なお、ドラムの寸法、およびドラムに設けたスリットの大きさ、ピッチや、投射固体粒子、投射圧力、投射量は、図1の装置を利用した本発明例の場合と同様とした。
In addition, the conveyance speed of the grain-oriented electrical steel sheet was changed as shown in FIG. At this time, the projection amount of the solid particles was changed in proportion to the conveyance speed so that the projection amount of the solid particles per unit time was constant at 10 kg / min · m 2 .
Further, as a conventional example, similar to Example 1, an apparatus of the same type as the apparatus shown in FIG. In the same type of apparatus as shown in FIG. 3, the rotating speed of the drum and the conveying speed of the steel sheet were synchronized while the directional electromagnetic steel sheets were separated by a certain distance (100 mm). The dimensions of the drum, the size and pitch of the slits provided in the drum, the projection solid particles, the projection pressure, and the projection amount were the same as in the case of the present invention example using the apparatus of FIG.

上記した方法で線状の線状溝を付与された方向性電磁鋼板は、さらに絶縁被膜コーティングを施されたのち、方向性電磁鋼板の図2に示す各領域に該当する各位置から試験片を各5枚採取して、さらに750℃で焼鈍したのち、鉄損W17/50、磁束密度B8を測定した。得られた鉄損値および磁束密度値から、搬送速度が変化した各領域での測定値のばらつきを算出した。   The grain-oriented electrical steel sheet provided with linear linear grooves by the above-described method is further coated with an insulating coating, and then a test piece is taken from each position corresponding to each region shown in FIG. After collecting 5 pieces each and annealing at 750 ° C., the iron loss W17 / 50 and the magnetic flux density B8 were measured. From the obtained iron loss value and magnetic flux density value, the variation of the measured value in each region where the conveyance speed was changed was calculated.

得られた測定結果を表2に示す。なお、W17/50は、磁束密度1.7T、周波数50Hzにおける鉄損W/kgを表す。   The obtained measurement results are shown in Table 2. W17 / 50 represents iron loss W / kg at a magnetic flux density of 1.7 T and a frequency of 50 Hz.

Figure 2006257527
本発明例、従来例ともに、線状溝付与前に比べて、鉄損が0.1W/kg程度低減しており、溝付与により大きな鉄損低減効果が得られている。本発明例では、溝付与後の鉄損値のばらつきが、少なくなっているのに対し、従来例では、溝付与後に鉄損値のばらつきが大きくなっている。なお、磁束密度B8は、歪導入により若干低下しているが、実用上は問題ない程度である。
Figure 2006257527
In both the example of the present invention and the conventional example, the iron loss is reduced by about 0.1 W / kg as compared with that before the linear groove is provided, and a large effect of reducing the iron loss is obtained by providing the groove. In the example of the present invention, the variation in the iron loss value after providing the groove is reduced, whereas in the conventional example, the variation in the iron loss value after applying the groove is large. The magnetic flux density B8 is slightly reduced due to the introduction of strain, but is practically satisfactory.

本発明の鉄損低減装置の一例を模式的に示す概略図である。なお、(a)は側面図、(b)は平面図である。It is the schematic which shows typically an example of the iron loss reduction apparatus of this invention. In addition, (a) is a side view and (b) is a plan view. 実施例に用いた搬送速度の変化状況を示すグラフである。It is a graph which shows the change condition of the conveyance speed used for the Example. 従来の鉄損低減装置の一例を模式的に示す概略図である。なお、(a)は側面図、(b)は平面図である。It is the schematic which shows an example of the conventional iron loss reducing apparatus typically. In addition, (a) is a side view and (b) is a plan view.

符号の説明Explanation of symbols

1 方向性電磁鋼板
2 スリット
3 ドラム
4 固体粒子
5 遊星ロール
6 固体粒子投射装置
7 集塵装置
8 固体粒子供給装置
DESCRIPTION OF SYMBOLS 1 Directional electrical steel sheet 2 Slit 3 Drum 4 Solid particle 5 Planetary roll 6 Solid particle projection apparatus 7 Dust collector 8 Solid particle supply apparatus

Claims (2)

方向性電磁鋼板の製造方法において、最終板厚の冷延板とする冷間圧延工程よりあとに、連続して搬送される前記冷延板を、遊星ロールで内側から支持され回転自在に配設された円周面上に複数の軸方向に伸びたスリットを有する薄肉円筒形状のドラムに巻き掛けし、該ドラムの内側から固体粒子を前記スリットを通し前記冷延板表面に投射し、前記冷延板表面に線状の歪導入部又は線状溝を付与する歪導入部又は線状溝付与工程を施すことを特徴とする低鉄損方向性電磁鋼板の製造方法。   In the method for producing grain-oriented electrical steel sheets, the cold-rolled sheet that is continuously conveyed after the cold-rolling step to obtain a cold-rolled sheet with the final thickness is supported from the inside by a planetary roll and rotatably disposed. Wrapped around a thin cylindrical drum having a plurality of axially extending slits on the circumferential surface, and solid particles are projected from the inside of the drum through the slit onto the surface of the cold-rolled plate. A method for producing a low iron loss grain-oriented electrical steel sheet, comprising performing a strain introducing portion or a linear groove applying step for providing a linear strain introducing portion or a linear groove on a surface of a drawn plate. 被投射材である搬送される方向性電磁鋼板を巻き掛け可能で、かつ回転自在に配設され、円周面上に複数の軸方向に伸びたスリットを有する薄肉円筒形状のドラムと、該ドラムを内側から支持する遊星ロールと、該ドラムの内側から前記被投射材に前記スリットを通して固体粒子を投射する固体粒子投射装置とを備えることを特徴とする方向性電磁鋼板用鉄損低減装置。
A thin cylindrical drum having a plurality of axially extending slits on a circumferential surface, on which a directional electromagnetic steel sheet to be transported as a projection material can be wound and rotatably disposed, and the drum An iron loss reducing device for grain-oriented electrical steel sheets, comprising: a planetary roll that supports the inner surface of the drum; and a solid particle projection device that projects solid particles from the inside of the drum onto the projection material through the slit.
JP2005080017A 2005-03-18 2005-03-18 Manufacturing method of grain-oriented electrical steel sheet and iron loss reduction device for grain-oriented electrical steel sheet Expired - Fee Related JP4569335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005080017A JP4569335B2 (en) 2005-03-18 2005-03-18 Manufacturing method of grain-oriented electrical steel sheet and iron loss reduction device for grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005080017A JP4569335B2 (en) 2005-03-18 2005-03-18 Manufacturing method of grain-oriented electrical steel sheet and iron loss reduction device for grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2006257527A true JP2006257527A (en) 2006-09-28
JP4569335B2 JP4569335B2 (en) 2010-10-27

Family

ID=37097104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005080017A Expired - Fee Related JP4569335B2 (en) 2005-03-18 2005-03-18 Manufacturing method of grain-oriented electrical steel sheet and iron loss reduction device for grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4569335B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114829639A (en) * 2019-12-20 2022-07-29 Posco公司 Oriented electrical steel sheet and method for refining magnetic domain thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816027A (en) * 1981-07-17 1983-01-29 Nippon Steel Corp Method and device for reducing iron loss of directional electromagnetic steel plate
JPS596323A (en) * 1982-06-30 1984-01-13 Nippon Steel Corp Apparatus for decreasing iron loss of directional electromagnetic steel strip
JPS6029458U (en) * 1983-08-04 1985-02-27 新東工業株式会社 Continuous patterning device for steel strips
JPS63210239A (en) * 1987-02-27 1988-08-31 Nippon Steel Corp Method and device for imparting fine flaw to grain oriented electrical steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816027A (en) * 1981-07-17 1983-01-29 Nippon Steel Corp Method and device for reducing iron loss of directional electromagnetic steel plate
JPS596323A (en) * 1982-06-30 1984-01-13 Nippon Steel Corp Apparatus for decreasing iron loss of directional electromagnetic steel strip
JPS6029458U (en) * 1983-08-04 1985-02-27 新東工業株式会社 Continuous patterning device for steel strips
JPS63210239A (en) * 1987-02-27 1988-08-31 Nippon Steel Corp Method and device for imparting fine flaw to grain oriented electrical steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114829639A (en) * 2019-12-20 2022-07-29 Posco公司 Oriented electrical steel sheet and method for refining magnetic domain thereof
CN114829639B (en) * 2019-12-20 2024-01-09 Posco公司 Oriented electrical steel sheet and method for refining magnetic domains thereof

Also Published As

Publication number Publication date
JP4569335B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP4782248B1 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5594437B2 (en) Oriented electrical steel sheet and manufacturing method thereof
US10066286B2 (en) Apparatus and method for nitriding grain-oriented electrical steel sheet
US20190119773A1 (en) Method for nitriding grain-oriented electrical steel sheet
US11028459B2 (en) Method for orienting steel sheet grains, corresponding device, and facility implementing said method or device
JP2011246782A (en) Method of manufacturing grain-oriented electromagnetic steel sheet
CN103429767B (en) Method for producing a grain-oriented flat steel product
CN109468438A (en) A kind of silicon steel strip production method
CN102719640A (en) Production method of stainless steel band used for internal round diamond blade
JP4569335B2 (en) Manufacturing method of grain-oriented electrical steel sheet and iron loss reduction device for grain-oriented electrical steel sheet
JP5023552B2 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JP6660025B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPWO2008133337A1 (en) Manufacturing method of unidirectional electrical steel sheet
JP2008307596A (en) Hot-rolling equipment
JP2012180543A (en) Method for improving core loss in grain-oriented electromagnetic steel sheet
JP2016044322A (en) Batch annealing method for steel sheet coil
JP2015190022A (en) Method for estimating primary recrystallization texture and method for manufacturing grain oriented electrical steel sheet
JP2015117415A (en) Cooling method for coil after finish annealing
JP2006291346A (en) Method for producing non-oriented electrical steel sheet having high magnetic flux density in whole circumference
JP2012177148A (en) Annealing separating agent
JP2019147980A (en) Manufacturing method of grain-oriented electromagnetic steel sheet
JP2005177781A (en) Hot rolling method
WO2014068963A1 (en) Production method for oriented magnetic steel sheet exhibiting low iron loss
JPS6096719A (en) Apparatus for decreasing iron loss of directional silicon steel sheet
JP2009241081A (en) Method of manufacturing hot rolled steel strip of ferritic single-phase stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees