JP2006249572A - Evaporation source assembly and vapor deposition apparatus using the same - Google Patents

Evaporation source assembly and vapor deposition apparatus using the same Download PDF

Info

Publication number
JP2006249572A
JP2006249572A JP2005194444A JP2005194444A JP2006249572A JP 2006249572 A JP2006249572 A JP 2006249572A JP 2005194444 A JP2005194444 A JP 2005194444A JP 2005194444 A JP2005194444 A JP 2005194444A JP 2006249572 A JP2006249572 A JP 2006249572A
Authority
JP
Japan
Prior art keywords
evaporation source
source assembly
evaporation
deposition
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005194444A
Other languages
Japanese (ja)
Other versions
JP4732036B2 (en
Inventor
Jae Hong Ahn
宰 弘 安
Seiko Lee
星 昊 李
Genshaku Cho
源 錫 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of JP2006249572A publication Critical patent/JP2006249572A/en
Application granted granted Critical
Publication of JP4732036B2 publication Critical patent/JP4732036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02269Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by thermal evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporation source assembly and a vapor deposition apparatus using the same. <P>SOLUTION: An external housing 50 comprises a guide 80a constituting an evaporation source assembly 30, and the extension line of the guide has a shield 8 heading toward the same point, and the through-holes of nozzle sections possessed by evaporation sources 60, 70 constituting the evaporation source assembly are inclined by a prescribed angle to guide the vapor deposition materials discharged from the respective evaporation sources in such a manner that the vapor deposition materials are vapor-deposited in the same regions of the substrates for vapor deposition, and thereby the thin films having the uniform roughness are formed and the thin films having a uniform thickness can be formed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蒸発源アセンブリ及び蒸着装置に関するもので、さらに詳しく説明すると、均一な薄膜が形成できる複数の蒸発源を有する蒸発源アセンブリ及び蒸着装置(evaporating source assembly and deposition apparatus having the same)に関する。   The present invention relates to an evaporation source assembly and an evaporation apparatus, and more particularly, to an evaporation source assembly and an evaporation apparatus having a plurality of evaporation sources capable of forming a uniform thin film (evaporating source assembly and deposition having the same).

近来、高度情報化時代に伴い、迅速かつ正確な情報を手に得ようとする消費者の要求はますます高まり、軽薄で携帯性が良く情報処理速度も早いディスプレー装置についての開発が急速に進められている。その中でも、有機電界発光素子は有機発光層を含む有機膜に電圧を印加することによって電子及び正孔が有機発光層内で再結合し光を発生する自己発光型である。よって、LCDのようなバックライトは必要でなく軽量薄型であると共に、工程を単純化させることもできる。応答速度はCRTと同一レベルであり、低電圧駆動、高い発光効率、及び広い視野角によって次世代ディスプレーとして脚光を浴びている。   In recent years, with the advance of the advanced information era, the demand for consumers to obtain quick and accurate information has increased, and development of display devices that are light, thin, portable, and fast in information processing speed has been progressing rapidly. It has been. Among them, the organic electroluminescent element is a self-luminous type in which a voltage is applied to an organic film including an organic light emitting layer to recombine electrons and holes in the organic light emitting layer to generate light. Therefore, a backlight such as an LCD is not required, and it is lightweight and thin, and the process can be simplified. The response speed is at the same level as CRT, and it is attracting attention as a next generation display due to low voltage driving, high luminous efficiency, and wide viewing angle.

ここで、前記有機膜は、特に有機発光層の材料によって低分子型有機電界発光素子と高分子型有機電界発光素子とに分類される。   Here, the organic film is classified into a low molecular organic electroluminescent device and a polymer organic electroluminescent device depending on the material of the organic light emitting layer.

前記高分子型有機電界発光素子は、陽極と陰極との間に有機発光層からなった断層構造であるか、または正孔輸送層を含む二重構造からなるので、厚さが薄い層の有機電界発光素子が製造でき、また前記有機膜は湿式コーティングによって形成できるので常圧下でも製造可能であり生産工程の費用を節減できるが、有機溶媒による有機膜が損傷され素子の寿命が低下することもある。   The polymer type organic electroluminescent device has a tomographic structure composed of an organic light emitting layer between an anode and a cathode, or a double structure including a hole transport layer. The electroluminescent device can be manufactured, and the organic film can be formed by wet coating, so that it can be manufactured under normal pressure, and the cost of the production process can be reduced. is there.

一方、前記低分子型有機電界発光素子は、陽極と陰極との間に機能が互いに異なる多層の低分子型有機膜で形成されていて電荷の蓄積が起きないようにドーピングしたり、適切なエネルギー源を有する物質に代替させたりすることによって調節が可能であるため素子の安定性が優れる。また、前記低分子型有機膜は、主に蒸着によって形成されるので有機溶媒による有機膜が損傷されることを防止でき、素子の寿命の低下を防止することができる。   On the other hand, the low molecular weight organic electroluminescent device is formed of a multilayered low molecular weight organic film having different functions between the anode and the cathode, and is doped so that charge accumulation does not occur. Since the adjustment can be made by substituting the substance having a source, the stability of the device is excellent. Further, since the low molecular type organic film is mainly formed by vapor deposition, the organic film due to the organic solvent can be prevented from being damaged, and the lifetime of the element can be prevented from being reduced.

前記蒸着は、真空で低分子有機物質を形成する薄膜を製造する場合において、形成しようとする形状の開口部を有するシャドーマスクパターン(shadow mask pattern)を基板の前に整列して、基板に有機物質を蒸着することによって前記基板上に必要とする形状の有機薄膜を形成することができる。   In the case of manufacturing a thin film for forming a low molecular weight organic material in a vacuum, a shadow mask pattern having an opening having a shape to be formed is aligned in front of the substrate to form an organic layer on the substrate. An organic thin film having a required shape can be formed on the substrate by depositing a material.

ここで、前記のような真空蒸着により有機電界発光素子の有機膜層または電極層を形成する場合において、一つまたは二つの以上の物質を同時に空蒸着するために複数の蒸発源を有する蒸着装置が必要となる。   Here, in the case of forming the organic film layer or the electrode layer of the organic electroluminescent device by vacuum deposition as described above, a vapor deposition apparatus having a plurality of evaporation sources for simultaneously vapor-depositing one or two or more substances. Is required.

この場合、複数の蒸発源から放出する有機物質が前記基板に均一に混合されて形成されなかったり、均一な厚さを有する薄膜が形成されなかったりして有機電界発光素子の安全性及び性能が低下することもある。ここで、前記基板が大型化されるほど、均一な薄膜を形成することが難しくなる。   In this case, the organic material emitted from a plurality of evaporation sources is not uniformly mixed with the substrate, or a thin film having a uniform thickness is not formed. It may decrease. Here, as the substrate becomes larger, it becomes more difficult to form a uniform thin film.

特許文献1には、複数の蒸発源1を用いた同時蒸着にあって、均一に混合された薄膜蒸着のための蒸発領域調節装置が開示されている。   Patent Document 1 discloses an evaporation region adjusting device for simultaneous vapor deposition using a plurality of evaporation sources 1 and for uniformly mixed thin film deposition.

図1は、従来技術による複数の蒸発源を備えた蒸着装置をさらに詳しく説明するものである。   FIG. 1 illustrates a vapor deposition apparatus having a plurality of evaporation sources according to the prior art in more detail.

図1を参照すると、前記蒸発源間に領域調節板2を備えて、前記蒸発源を収納しているハウジング3の開口部0の大きさを制御することによって、前記蒸発源から吐出される蒸着物質の吐出方向を限定して被蒸着基板(S)に均一な薄膜を形成できるものとして提案している。しかしながら、前記特許では、蒸発源から吐出される蒸着物質の方向を限定する領域調節板2及び開口部0の大きさを制御するのは容易なことではない。
大韓民国特許登録第071595号明細書
Referring to FIG. 1, the region adjustment plate 2 is provided between the evaporation sources, and the size of the opening 0 of the housing 3 that houses the evaporation source is controlled to thereby deposit the vapor discharged from the evaporation source. It is proposed that a uniform thin film can be formed on the deposition target substrate (S) by limiting the discharge direction of the substance. However, in the above patent, it is not easy to control the size of the region adjusting plate 2 and the opening 0 that limit the direction of the vapor deposition material discharged from the evaporation source.
Korean Patent Registration No. 071595

本発明の目的は、前記従来技術の問題点を解決するために案出されたものであり、本発明は複数の蒸発源から放出される蒸着物質が被蒸着基板の同一領域に照射して均一な薄膜を形成することができる蒸発源アセンブリ及びそれを用いた蒸着装置を提供することにある。   The object of the present invention has been devised to solve the above-mentioned problems of the prior art, and the present invention uniformly applies a vapor deposition material emitted from a plurality of evaporation sources to the same region of the deposition substrate. Another object of the present invention is to provide an evaporation source assembly capable of forming a thin film and a vapor deposition apparatus using the same.

前記技術的課題を解決するための本発明の一態様は、蒸発源アセンブリを提供することである。前記蒸発源アセンブリは、少なくとも一部が開口される、少なくとも二つ以上のセルとして仕分けられた外部ハウジングを備える。前記各セルの内部にそれぞれの蒸発源がそれぞれ位置する。この場合、前記各セルの開口部の両側に位置して、前記外部ハウジングに繋がってガイドを有するシールドを備え、前記ガイドの延長線は同一地点に向いていることを特徴とする。これによって、前記それぞれの蒸発源から吐出される蒸着物質が被蒸着基板の同一面に照射できる。   One aspect of the present invention for solving the technical problem is to provide an evaporation source assembly. The evaporation source assembly includes an outer housing sorted as at least two or more cells that are at least partially open. Each evaporation source is located inside each cell. In this case, a shield having a guide connected to the outer housing is provided on both sides of the opening of each cell, and an extension line of the guide is directed to the same point. Accordingly, the vapor deposition material discharged from each of the evaporation sources can be irradiated on the same surface of the deposition target substrate.

ここで、前記蒸発源の内少なくとも一つの蒸発源は、地面に対して所定の角度で傾いていることが好ましい。この場合、前記蒸発源は蒸着物質が吐出される開口部が被蒸着基板の同一地点に向いていることがさらに好ましい。   Here, it is preferable that at least one of the evaporation sources is inclined at a predetermined angle with respect to the ground. In this case, it is more preferable that the evaporation source is such that the opening from which the vapor deposition material is discharged is directed to the same point on the deposition target substrate.

また、前記蒸発源は同じ蒸着物質を有することができる。または前記蒸発源の内少なくとも一つの蒸発源は被蒸着基板の一面に薄膜を形成する蒸着物質を有し、他の少なくとも一つの蒸発源は前記薄膜に含ませるための前記蒸着物質とは異なる添加剤を有することもある。   The evaporation sources may have the same deposition material. Alternatively, at least one of the evaporation sources has a deposition material for forming a thin film on one surface of the deposition substrate, and at least one other evaporation source is different from the deposition material for inclusion in the thin film. May have an agent.

前記技術的課題を解決するために本発明の他の一態様は、蒸発源アセンブリを提供する。前記蒸発源アセンブリは、少なくとも一部が開口され、少なくとも二つ以上のセルとして仕分けられる外部ハウジングが位置する。前記各セル内部にそれぞれの蒸発源が位置する。   In order to solve the technical problem, another aspect of the present invention provides an evaporation source assembly. The evaporation source assembly includes an outer housing that is at least partially opened and is classified as at least two cells. Each evaporation source is located inside each cell.

前記それぞれの蒸発源は、前記セルの開口された方向と同様な一部分が開口された貯蔵部と、前記貯蔵部の開口された部分と繋がるボディーと、前記ボディーを貫く貫通ホールを有するノズル部と、前記ノズル部と前記貯蔵部とを囲む形態のハウジングと、前記ハウジングと前記ノズル部との間に介在されている加熱部を備え、前記ノズル部を成す貫通ホールは前記ハウジングに対して所定の角度で傾いていることを特徴とする。   Each of the evaporation sources includes a storage part in which a part similar to the opening direction of the cell is opened, a body connected to the opened part of the storage part, and a nozzle part having a through-hole penetrating the body. A housing surrounding the nozzle part and the storage part, and a heating part interposed between the housing and the nozzle part, and the through-hole forming the nozzle part has a predetermined opening with respect to the housing. It is tilted at an angle.

ここで、前記それぞれの蒸発源の前記ノズル部を成す貫通ホールは被蒸着基板の同一地点に合わせるのが好ましい。   Here, it is preferable that the through holes forming the nozzle portions of the respective evaporation sources are aligned with the same point on the evaporation target substrate.

前記外部ハウジングは、前記各セルの開口部の両側に位置して、被蒸着基板に向かうガイドを有するシールド(shield)を含むことができる。この場合、前記それぞれのシールドのガイドはその延長線が同一地点に向かうように、少なくとも一つのガイドは所定の角度で傾いていることが好ましい。   The outer housing may include a shield having a guide toward the deposition target substrate on both sides of the opening of each cell. In this case, it is preferable that at least one of the guides of the respective shields is inclined at a predetermined angle so that an extension line thereof is directed to the same point.

さらに、前記技術的課題を解決するために本発明の他の一態様は、前記蒸発源アセンブリを含む蒸着装置を提供する。   In order to solve the technical problem, another aspect of the present invention provides a deposition apparatus including the evaporation source assembly.

本発明は、少なくとも二つの蒸発源を備えて蒸着する蒸発源アセンブリにあって、前記それぞれの蒸発源から放出する蒸着物質が被蒸着基板の同一領域に蒸着されることによって、均一な粗さを有する薄膜を形成すると共に、均一な厚さを有する薄膜を形成することができる。   The present invention provides an evaporation source assembly that deposits with at least two evaporation sources, and the deposition material discharged from each of the evaporation sources is deposited on the same region of the deposition substrate, thereby achieving uniform roughness. A thin film having a uniform thickness can be formed.

これによって、均一な特性を有することができ、さらに安定した素子を製造することができる。   As a result, uniform characteristics can be obtained, and a more stable element can be manufactured.

以下、本発明による蒸発源アセンブリ及びこれを用いた蒸着装置の図面を参照して詳しく説明する。次に説明される実施形態は当業者に本発明の思想が充分に理解できるようにするための例として提供される。したがって、本発明は以下に説明される実施形態には限定されず、他の形態で具体化されることもある。そして、図面において、装置の大きさ及び厚さなどは便宜のために誇張して表現されるものもある。明細書の全般にかけて同一参照番号は同一構成要素を現わす。   Hereinafter, an evaporation source assembly and a deposition apparatus using the same according to the present invention will be described in detail with reference to the drawings. The embodiments described below are provided as examples to enable those skilled in the art to fully understand the idea of the present invention. Therefore, the present invention is not limited to the embodiments described below, and may be embodied in other forms. In the drawings, the size and thickness of the device are sometimes exaggerated for convenience. Throughout the specification, the same reference numbers represent the same components.

図2は本発明の実施形態による蒸着装置を説明するための図である。   FIG. 2 is a view for explaining a vapor deposition apparatus according to an embodiment of the present invention.

図2を参照すると、本発明の実施形態による蒸着装置10は前記蒸着装置10のボディーを成すチャンバ20と、被蒸着基板(S)の一面に蒸着物質の粒子を噴射させるための少なくとも一つ以上の蒸発源を有する蒸発源アセンブリ30と、前記蒸発源アセンブリ30を地面に対して垂直方向に移動させることができる蒸発源アセンブリ移送手段40を有する構造からなる。   Referring to FIG. 2, the deposition apparatus 10 according to an embodiment of the present invention includes at least one chamber 20 that forms a body of the deposition apparatus 10 and at least one for spraying particles of a deposition material on one surface of the deposition substrate (S). The evaporation source assembly 30 has the evaporation source assembly 30 and the evaporation source assembly transfer means 40 capable of moving the evaporation source assembly 30 in a direction perpendicular to the ground.

前記チャンバ20は、図に示されていない真空ポンプによって内部が真空状態を維持するようになっている。そして、チャンバ20内部には蒸発源アセンブリ30を地面に対して垂直方向に移動できる蒸発源アセンブリ移送手段40が設けられて蒸発源アセンブリ30を蒸着方向に移動させるようになっている。   The inside of the chamber 20 is maintained in a vacuum state by a vacuum pump (not shown). An evaporation source assembly transfer means 40 capable of moving the evaporation source assembly 30 in a direction perpendicular to the ground is provided inside the chamber 20 to move the evaporation source assembly 30 in the vapor deposition direction.

前記蒸発源アセンブリの移送手段40は、真空で維持されるチャンバ20内での使用に適した垂直移送装置として、工程条件に従って蒸発源アセンブリ30の移動速度を調節することができる。   The transfer means 40 of the evaporation source assembly is a vertical transfer device suitable for use in the chamber 20 maintained in a vacuum, and can adjust the moving speed of the evaporation source assembly 30 according to process conditions.

一方、チャンバ20の内部に位置する被蒸着基板(S)は蒸着物質の蒸着のためにおおよそ垂直方向に位置する。   On the other hand, the deposition target substrate (S) positioned inside the chamber 20 is positioned in a substantially vertical direction for deposition of a deposition material.

そして、被蒸着基板(S)の全面、すなわち蒸発源アセンブリ30と被蒸着基板(S)との間には蒸着される蒸着物質の形状を決めるマスクパターン(M)が設けられる。したがって、蒸発源30から蒸発された蒸着物質はマスクパターン(M)を通って被蒸着基板(S)上に蒸着されて所定形状の薄膜が被蒸着基板(S)上に形成できるようにする。   A mask pattern (M) for determining the shape of the vapor deposition material to be deposited is provided on the entire surface of the deposition substrate (S), that is, between the evaporation source assembly 30 and the deposition substrate (S). Accordingly, the vapor deposition material evaporated from the evaporation source 30 is deposited on the deposition target substrate (S) through the mask pattern (M) so that a thin film having a predetermined shape can be formed on the deposition target substrate (S).

一方、蒸発源アセンブリ30は、少なくとも二つを有する蒸発源を備えて、チャンバ20内部の被蒸着基板(S)上に蒸着しようとする蒸着物質を収容し、収容された蒸着物質を加熱して蒸発させた後、これを被蒸着基板(S)上に噴射して被蒸着基板(S)上に薄膜が形成できるような機能を有する。ここで、前記蒸着物質は有機電界発光素子の有機膜形成物質または電極形成物質でもある。   On the other hand, the evaporation source assembly 30 includes at least two evaporation sources, stores a deposition material to be deposited on the deposition target substrate (S) in the chamber 20, and heats the stored deposition material. After evaporation, the thin film can be formed on the deposition target substrate (S) by spraying it onto the deposition target substrate (S). Here, the deposition material is also an organic film forming material or an electrode forming material of the organic electroluminescence device.

図3は本発明の実施形態による二つの蒸発源を有する蒸発源アセンブリ30の斜視図である。この実施形態では二つの蒸発源を有する蒸発源アセンブリに関して説明するが、これに限定されず、前記蒸発源アセンブリは三つ以上の複数の蒸発源を有することができる。   FIG. 3 is a perspective view of an evaporation source assembly 30 having two evaporation sources according to an embodiment of the present invention. Although this embodiment will be described with reference to an evaporation source assembly having two evaporation sources, the present invention is not limited thereto, and the evaporation source assembly may have three or more evaporation sources.

図3を参照すると、本発明の実施形態による前記蒸発源アセンブリ30は外部ハウジング50の内部に第1蒸発源60と第2蒸発源70を有する。   Referring to FIG. 3, the evaporation source assembly 30 according to the embodiment of the present invention includes a first evaporation source 60 and a second evaporation source 70 in an outer housing 50.

前記外部ハウジング50は、前記蒸発源60、70を支持する支持体として、前記蒸発源から発生する熱が外部に伝導されることを防ぐため冷却板からなっていることが好ましい。ここで、前記冷却板は冷媒を用いて前記蒸発源の内部の熱をクーリングすることができる。   The external housing 50 is preferably a cooling plate as a support for supporting the evaporation sources 60 and 70 in order to prevent heat generated from the evaporation source from being conducted to the outside. Here, the cooling plate can cool the heat inside the evaporation source using a refrigerant.

ここで、前記外部ハウジング50は、前記蒸発源から蒸着物質が噴射される入口に蒸着物質の蒸着方向を導いてくれるガイド80aを含むシールド(shield)80を備える。これによって、前記蒸発源から放出された蒸着物質が前記シールドにより反射されて前記蒸発源アセンブリを汚染するのを防ぐことができる。また、前記蒸着物質が放射される幅を制限することができ本発明のように少なくとも二つ以上の蒸発源を有する場合にあっては、前記それぞれの蒸発源から前記基板に蒸着する領域が常に重畳されるようにして、前記基板に均一な薄膜を形成するとともに、影効果(shadow effect)を減少させることができる。   Here, the outer housing 50 includes a shield 80 including a guide 80a that guides a deposition direction of the deposition material to an inlet from which the deposition material is injected from the evaporation source. Accordingly, it is possible to prevent the deposition material released from the evaporation source from being reflected by the shield and contaminating the evaporation source assembly. In addition, in the case where the evaporation material can have a width that can be radiated and has at least two evaporation sources as in the present invention, a region for evaporation from the respective evaporation sources to the substrate is always present. As a result, a uniform thin film can be formed on the substrate, and a shadow effect can be reduced.

ここで、前記シールド80は、前記外部ハウジング50から独立させて分離及び交替が可能である。また、前記シールド80は蒸着物質がその表面に付いた後、再び落ちないようにサンディング(sanding)されたステンレス鋼の物質からなるのが好ましい。これによって、前記シールドに吸着された物質が蒸着工程の際に落とされて被蒸着基板に蒸着されるのを防ぐことができる。   Here, the shield 80 can be separated and replaced independently of the outer housing 50. In addition, the shield 80 is preferably made of a stainless steel material that is sanded so that it does not fall again after the deposition material adheres to the surface. Accordingly, it is possible to prevent the substance adsorbed on the shield from being dropped and deposited on the deposition target substrate during the deposition process.

一方、前記第1蒸発源60と前記第2蒸発源70とは同様な蒸着物質を有することもあり、垂直に移動しながら均一な厚さを有する薄膜を被蒸着基板上に形成することができ、特に大型基板の適用に有効である。   On the other hand, the first evaporation source 60 and the second evaporation source 70 may have the same deposition material, and a thin film having a uniform thickness can be formed on the deposition substrate while moving vertically. In particular, it is effective for the application of large substrates.

他方、前記第1蒸発源60と前記第2蒸発源70とは相異なる蒸着物質を有することもある。よって、蒸着工程の間に二つの蒸着物質を混合して前記被蒸着基板(S)上に蒸着するので前記被蒸着基板に形成された薄膜は均一な粗さを有することができる。すなわち、前記第1蒸発源60は被蒸着基板の一面に薄膜を形成する蒸着物質を噴射する蒸発源である。これとは異なって、第2蒸発源70は前記薄膜の特性を改善させるための添加剤を前記薄膜に含ませる蒸発源である。   On the other hand, the first evaporation source 60 and the second evaporation source 70 may have different vapor deposition materials. Therefore, since two deposition materials are mixed and deposited on the deposition substrate (S) during the deposition process, the thin film formed on the deposition substrate can have a uniform roughness. That is, the first evaporation source 60 is an evaporation source that injects a deposition material that forms a thin film on one surface of the deposition target substrate. In contrast, the second evaporation source 70 is an evaporation source in which an additive for improving the characteristics of the thin film is included in the thin film.

このように、複数の蒸発源を有する蒸発源アセンブリにあって、均一な薄膜を形成するためには各蒸発源から放射する蒸着物質は前記被蒸着基板の同一地点に照射するように誘導するのが好ましい。これによって、均一な厚さ及び均一な粗さを有する薄膜を形成することができる。   As described above, in the evaporation source assembly having a plurality of evaporation sources, in order to form a uniform thin film, the evaporation material radiated from each evaporation source is guided to irradiate the same point of the evaporation target substrate. Is preferred. Thereby, a thin film having a uniform thickness and a uniform roughness can be formed.

図4及び図5は、本発明の実施形態による図3の蒸発源アセンブリをI−I′で切断した断面図であり、蒸着物質が被蒸着基板(S)の同一地点に照射されるように誘導する実施形態を説明するための図である。ここで、図には示されてないが、前記それぞれの蒸発源は蒸着物質を貯蔵して、一部が開口された貯蔵部と、前記貯蔵部の開口された部分と繋がって蒸着物質を噴射するノズル部と、前記ノズル部と前記貯蔵部を囲む形態のハウジングと、前記ノズル部と前記ハウジングとの間に介在されている加熱部を備えることができる。   4 and 5 are cross-sectional views taken along the line II ′ of the evaporation source assembly of FIG. 3 according to an embodiment of the present invention, so that the deposition material is irradiated to the same point of the deposition substrate (S). It is a figure for demonstrating embodiment to guide. Here, although not shown in the figure, each of the evaporation sources stores a vapor deposition material, and injects the vapor deposition material by connecting a part of the storage part opened to the part of the storage part opened. A nozzle portion, a housing surrounding the nozzle portion and the storage portion, and a heating portion interposed between the nozzle portion and the housing.

図4を参照すると、本発明の蒸発源アセンブリは外部ハウジング50が位置して、前記外部ハウジングは少なくとも一部が開口された開口部を備える二つのセルとして分けられて、第1セル50aには第1蒸発源60が支持台90によって固定されていて、第2セル50bには第2蒸発源70が支持台100によって固定されている。   Referring to FIG. 4, in the evaporation source assembly of the present invention, the outer housing 50 is located, and the outer housing is divided into two cells each having an opening that is at least partially opened. The first evaporation source 60 is fixed by the support table 90, and the second evaporation source 70 is fixed by the support table 100 in the second cell 50b.

前記外部ハウジング50は、それぞれのセルに位置するガイド80aを有するシールド(shield)80を備える。この場合、前記それぞれのセルに位置するガイド80aを外部ハウジング50の水平方向に対して所定の角度で傾けることになるが、前記それぞれのセルに位置するガイド80aの延長線を前記被蒸着基板(S)の同一地点に合わせることが好ましい。これによって、前記ガイド80aの誘導に従って前記それぞれの蒸発源から吐出される蒸着物質が前記被蒸着基板(S)の同一領域(a)に蒸着できる。この場合、前記ガイド80aが前記外部ハウジングの水平方向に対して所定の角度で傾いてなかったり、前記ガイド80aが傾いていても、それぞれのセルに位置するガイド80aの延長線が一致していなかったりすれば被蒸着基板(S)の同一地点に蒸着物質を蒸着することができなくなり、均一な薄膜を形成することができない。   The outer housing 50 includes a shield 80 having a guide 80a located in each cell. In this case, the guides 80a located in the respective cells are inclined at a predetermined angle with respect to the horizontal direction of the outer housing 50. The extension lines of the guides 80a located in the respective cells are connected to the deposition target substrate ( It is preferable to match with the same point of S). Accordingly, the vapor deposition materials discharged from the respective evaporation sources according to the guidance of the guide 80a can be deposited on the same region (a) of the deposition target substrate (S). In this case, the guide 80a is not inclined at a predetermined angle with respect to the horizontal direction of the outer housing, or even if the guide 80a is inclined, the extension lines of the guides 80a located in the respective cells do not match. If this is the case, the vapor deposition material cannot be deposited at the same point on the deposition target substrate (S), and a uniform thin film cannot be formed.

また、前記複数のセルの内いずれか一つのセルに位置するガイド80a間の幅を調節して前記蒸発源から放出する蒸着物質の蒸着幅を制御することができる。これによって、前記それぞれの蒸発源から吐出された蒸着物質が被蒸着基板の同一領域(a)を外れる領域に蒸着するのを前記シールドで遮断することができる。よって、前記それぞれの蒸発源から吐出される蒸着物質を前記被蒸着基板の同一領域(a)にさらに精巧に蒸着させることができる。   In addition, the width of the deposition material discharged from the evaporation source can be controlled by adjusting the width between the guides 80a located in any one of the plurality of cells. Accordingly, it is possible to block the vapor deposition material discharged from the respective evaporation sources from being deposited on the area to be removed from the same area (a) of the deposition target substrate by the shield. Therefore, the vapor deposition material discharged from each of the evaporation sources can be more precisely deposited on the same region (a) of the deposition target substrate.

前記シールド80は、前記外部ハウジング50に独立して分離及び交替することができる。これによって、前記シールド80が汚染された際は交替、あるいは着脱することで、洗浄し易く再び組立てて使用することができる。また、前記シールド80は手軽に分離及び交替ができるので、前記それぞれの蒸発源から吐出される蒸着物質が前記被蒸着基板(S)の同一領域上に蒸着するようにアライメントの際に多様な形態を有するシールド80を交替しながら簡単に制御することができる。   The shield 80 can be separated and replaced independently of the outer housing 50. As a result, when the shield 80 is contaminated, it can be easily assembled and used again by being replaced or detached. Further, since the shield 80 can be easily separated and replaced, various forms can be used during alignment so that the vapor deposition material discharged from the respective evaporation sources is deposited on the same region of the deposition target substrate (S). It is possible to easily control while changing the shield 80 having.

ここで、前記シールド80は蒸着物質がその表面に付着した後、再び落ちないようにサンディング(sanding)させたステンレス鋼の物質からなるのが好ましい。これによって、蒸着工程の際、前記シールド80から蒸着物質が落ちて前記被蒸着基板に蒸着されるのを防ぐことができて均一な薄膜を形成することができる。   Here, the shield 80 is preferably made of a stainless steel material that is sanded so that it does not fall again after the deposition material adheres to the surface. Accordingly, during the vapor deposition process, it is possible to prevent the vapor deposition material from dropping from the shield 80 and being deposited on the deposition target substrate, thereby forming a uniform thin film.

一方、前記第1蒸発源60と前記第2蒸発源70とは同様な蒸着物質を有することもあり、垂直に移動しながら均一な薄膜を基板上に蒸着することができる。   On the other hand, the first evaporation source 60 and the second evaporation source 70 may have the same deposition material, and a uniform thin film can be deposited on the substrate while moving vertically.

または、前記第1蒸発源60と前記第2蒸発源70とは相異なる蒸着物質を有していて、蒸着工程間に二つの蒸着物質を混合して前記被蒸着基板(S)に蒸着することができる。すなわち、前記第1蒸発源60は被蒸着基板(S)の一面に形成される薄膜を形成する蒸着物質を有する蒸発源である。これとは異なって、第2蒸発源70は前記薄膜の特性を改善するために前記薄膜に含ませる添加物を有する蒸発源である。   Alternatively, the first evaporation source 60 and the second evaporation source 70 have different vapor deposition materials, and two vapor deposition materials are mixed and vapor deposited on the deposition target substrate (S) during the vapor deposition process. Can do. That is, the first evaporation source 60 is an evaporation source having an evaporation material for forming a thin film formed on one surface of the evaporation target substrate (S). In contrast, the second evaporation source 70 is an evaporation source having an additive to be included in the thin film in order to improve the properties of the thin film.

前記外部ハウジング50は冷媒を用いてその内部に位置する蒸発源から放出する熱が外部に放出するのを防ぐための冷却板からなる。   The outer housing 50 is composed of a cooling plate for preventing the heat released from the evaporation source located inside using the refrigerant from being released to the outside.

さらに、図5のように、二つの蒸発源から放出される蒸着物質が前記被蒸着基板の同一領域上に蒸着するために前記二つの蒸発源の内少なくとも一つの蒸発源の角度を調節して、前記蒸発源は蒸着物質が吐出される開口部が前記基板の同一地点(a′)に向かうようにするのがさらに好ましい。これによって、前記蒸発源から放出する蒸着物質の方向を制御することがさらに容易になる。   Further, as shown in FIG. 5, the deposition material emitted from the two evaporation sources is deposited on the same region of the deposition target substrate, and the angle of at least one of the two evaporation sources is adjusted. More preferably, the evaporation source is configured such that the opening from which the vapor deposition material is discharged is directed to the same point (a ′) of the substrate. This makes it easier to control the direction of the vapor deposition material released from the evaporation source.

この場合、前記蒸発源の角度は、角度調節手段によって調節できる。前記角度調節手段は角度調節用支持台90、100を用いることができる。よく見ると、第1蒸発源60はその両側に高さが異なる第1支持台90aと第2支持台90bからなった角度調節用支持台90に固定することによって、前記第1蒸発源を所定の角度で調節し、前記第1蒸発源から放出する蒸着物質の蒸着方向を変えることができる。   In this case, the angle of the evaporation source can be adjusted by the angle adjusting means. The angle adjusting means may use angle adjusting supports 90 and 100. If you look closely, the first evaporation source 60 is fixed to an angle adjustment support base 90 composed of a first support base 90a and a second support base 90b having different heights on both sides thereof, so that the first evaporation source is predetermined. The vapor deposition direction of the vapor deposition material discharged from the first evaporation source can be changed by adjusting the angle.

また、第2蒸発源70はその両側に高さが異なる第1支持台100aと第2支持台100bからなった角度調節用支持台100によって固定することによって、前記第2蒸発源を所定の角度で調節して前記第2蒸発源から放出する蒸着物質の蒸着方向を変えることができる。   Further, the second evaporation source 70 is fixed by an angle adjusting support base 100 composed of a first support base 100a and a second support base 100b having different heights on both sides thereof, whereby the second evaporation source is set at a predetermined angle. The vapor deposition direction of the vapor deposition material discharged from the second evaporation source can be changed by adjusting.

ここで、前述のように、少なくとも一つの蒸発源の角度を調節したり、二つの蒸発源の角度を調節して前記蒸発源が前記被蒸着基板(S)の同一地点(a′)に向けたりするようにできて、結局各蒸発源から放出する蒸着物質が前記被蒸着基板(S)の同一領域(a)にさらに精巧に蒸着することができる。   Here, as described above, the angle of at least one evaporation source is adjusted, or the angle of two evaporation sources is adjusted so that the evaporation source is directed to the same point (a ′) of the deposition target substrate (S). As a result, the vapor deposition material released from each evaporation source can be more precisely deposited on the same region (a) of the deposition target substrate (S).

図6は本発明の他の実施形態による図3の蒸発源アセンブリをI−I′で切断した断面図であり、蒸着物質が被蒸着基板(S)の同一地点に照射するように誘導する実施形態を説明するための図である。この場合、本発明では二つのセルとそれぞれのセルに二つの蒸発源を備える蒸発源アセンブリに対して限定して説明しているが、前記蒸発源アセンブリは三つ以上の複数のセルと複数の蒸発源を有することができる。   FIG. 6 is a cross-sectional view taken along line II ′ of the evaporation source assembly of FIG. 3 according to another embodiment of the present invention, and guides the deposition material to irradiate the same point on the deposition target substrate (S). It is a figure for demonstrating a form. In this case, the present invention is limited to an evaporation source assembly including two cells and two evaporation sources in each cell. However, the evaporation source assembly includes three or more cells and a plurality of cells. It can have an evaporation source.

図6を参照すると、本発明の蒸発源アセンブリは第1セル100aと第2セル100bとで分離された外部ハウジング100が位置する。前記第1セル100aには第1蒸発源200が位置して、前記第2セル100bには第2蒸発源300が位置する。   Referring to FIG. 6, the evaporation source assembly of the present invention includes an outer housing 100 separated by a first cell 100a and a second cell 100b. A first evaporation source 200 is located in the first cell 100a, and a second evaporation source 300 is located in the second cell 100b.

前記蒸発源200、300は蒸着物質を貯蔵して、一部が開口された貯蔵部210、310と、前記貯蔵部210、310の開口された部分と繋がって蒸発された蒸着物質を噴射するノズル部220、320と、前記貯蔵部210、310及び前記ノズル部220、320を囲む形態のハウジング230、330と、前記貯蔵部210、310と前記ハウジング230、330との間に介在されている加熱部を有する構造からなる。   The evaporation sources 200 and 300 store a deposition material, and store portions 210 and 310 that are partially opened, and nozzles that eject the evaporated deposition material connected to the opened portions of the storage portions 210 and 310. Parts 220 and 320, housings 230 and 330 that surround the storage parts 210 and 310 and the nozzle parts 220 and 320, and heating that is interposed between the storage parts 210 and 310 and the housings 230 and 330. It has a structure having a part.

前記ノズル部220、320は、前記貯蔵部310から蒸発される蒸着物質の粒子をおおよそ垂直で立ててある被蒸着基板(S)の一面に噴射して、前記蒸着物質の粒子が前記被蒸着基板(S)の一面に蒸着、分布される形態を決める役目をする。   The nozzles 220 and 320 spray the vapor deposition material particles evaporated from the storage unit 310 onto one surface of the deposition substrate (S) that is substantially upright, and the deposition material particles are sprayed onto the deposition substrate. (S) Plays the role of determining the form of vapor deposition and distribution on one surface.

この場合、前記ノズル部220、320は前記ノズル部を成すボディー221、321と、前記ボディーを貫く貫通ホール222、322からなる。ここで、前記ノズル部を成す貫通ホール222、322を通って前記貯蔵部210、310から蒸発された蒸着物質が外部、すなわち被蒸着基板(S)に向けて放出される。ここで、前記貫通ホール222、322は前記ハウジング230、330に対して所定の角度で傾いていることもある。この場合、前記貫通ホールの傾きによって前記蒸発源から放出される蒸着物質の蒸着方向が調節できる。この場合、前記それぞれ蒸発源内に備えられた前記それぞれノズル部の貫通ホール222、322は、被蒸着基板の一地点に向いているのがさらに好ましい。これによって、前記被蒸着基板(S)に前記各蒸発源から放出した蒸着物質が同一領域(b)に蒸着できるように誘導することができ、均一な薄膜を形成することができる。   In this case, the nozzle portions 220 and 320 include bodies 221 and 321 constituting the nozzle portion and through holes 222 and 322 penetrating the body. Here, the vapor deposition material evaporated from the storage units 210 and 310 through the through holes 222 and 322 forming the nozzle unit is discharged toward the outside, that is, the deposition substrate (S). Here, the through holes 222 and 322 may be inclined at a predetermined angle with respect to the housings 230 and 330. In this case, the deposition direction of the deposition material released from the evaporation source can be adjusted by the inclination of the through hole. In this case, it is more preferable that the through holes 222 and 322 of the respective nozzle portions provided in the respective evaporation sources are directed to one point of the evaporation target substrate. Accordingly, it is possible to guide the deposition material released from each evaporation source to the deposition target substrate (S) so that it can be deposited in the same region (b), thereby forming a uniform thin film.

また、前記ノズル部220、320は、熱伝導度が優れた黒鉛(graphite)、またはこの等価物からなることができるが、本発明でその材質を限定するのではない。また、前記ノズル部220、320は、開口された形態によって蒸着物質粒子の噴射される形態が調節可能なので、前記貯蔵部210、310内の有機物の均一な蒸発が可能となるように制御することができる。   Further, the nozzles 220 and 320 may be made of graphite having excellent thermal conductivity, or an equivalent thereof, but the material is not limited in the present invention. In addition, the nozzles 220 and 320 may be controlled so that the organic substances in the storage units 210 and 310 can be uniformly evaporated because the form of the deposited material particles can be adjusted according to the opened form. Can do.

前記貯蔵部210、310は前記被蒸着基板(S)上に蒸着しようとする蒸着物質を貯蔵する部分として、一般的にるつぼからなる。また、前記貯蔵部210、310は熱伝導度が優れた黒鉛(graphite)、またはこの等価物からなることができるが、本発明ではその材質を限定するものではない。   The storage units 210 and 310 generally include a crucible as a part for storing a deposition material to be deposited on the deposition substrate (S). The storage units 210 and 310 may be made of graphite having excellent thermal conductivity or an equivalent thereof, but the material is not limited in the present invention.

前記貯蔵部210、310からクラスタ(cluster)型の蒸着物質が飛ぶことを防ぐために前記貯蔵部の開口された一面の隣接した領域、または前記ノズル部のボディーに位置する飛び防止膜をさらに備えることができる。   In order to prevent a cluster type deposition material from flying from the storage units 210 and 310, the storage unit may further include an anti-jumping film located on an adjacent region of the opened surface of the storage unit or in the body of the nozzle unit. Can do.

前記ハウジング(housing)220、330は、前記貯蔵部310を囲む形態となり、前記貯蔵部310を外部環境と隔離する役目をする。   The housings 220 and 330 surround the storage unit 310 and isolate the storage unit 310 from the external environment.

前記加熱部240、340は前記貯蔵部210、310と前記ハウジング230、330との間に介在されて前記貯蔵部310に貯蔵された蒸着物質の蒸発ができるように加熱する役目をする。   The heating units 240 and 340 are interposed between the storage units 210 and 310 and the housings 230 and 330 to heat the vapor deposition material stored in the storage unit 310.

また、前記蒸発源200、300は前記ハウジング230、330の内壁に付着する内部熱反射板250、350をさらに有することもできる。前記内部熱反射板250、350は前記加熱部240、340で発生される熱を反射して、前記加熱部240、340の熱効率を増加させるためのものである。   The evaporation sources 200 and 300 may further include internal heat reflecting plates 250 and 350 attached to the inner walls of the housings 230 and 330. The internal heat reflection plates 250 and 350 reflect heat generated by the heating units 240 and 340 to increase the thermal efficiency of the heating units 240 and 340.

また、前記蒸発源200、300は前記ノズル部220、320の外部面に付着する熱遮断手段260、360をさらに備えることができる。前記熱遮断手段260、360は前記ノズル部220、320を通って熱が放出されて前記被蒸着基板(S)に影響を与えるのを防ぐ。   In addition, the evaporation sources 200 and 300 may further include heat blocking means 260 and 360 attached to the outer surfaces of the nozzle units 220 and 320. The heat blocking means 260 and 360 prevent heat from being released through the nozzle portions 220 and 320 and affecting the deposition target substrate (S).

ここで、一方、前記第1蒸発源200と前記第2蒸発源300とは同様な蒸着物質を有することもあり、垂直に移動しながら均一な薄膜を被蒸着基板(S)上に蒸着することができる。または前記第1蒸発源200と前記第2蒸発源300とは相異なる蒸着物質を有していて、蒸着工程の間に二つの蒸着物質を混合して前記被蒸着基板に蒸着することができる。   Here, the first evaporation source 200 and the second evaporation source 300 may have the same vapor deposition material, and deposit a uniform thin film on the deposition substrate (S) while moving vertically. Can do. Alternatively, the first evaporation source 200 and the second evaporation source 300 may have different deposition materials, and two deposition materials may be mixed and deposited on the deposition target substrate during the deposition process.

ここで、前記各蒸発源のセルに位置するガイドを有するシールド270をさらに備えることによって、前述したように、前記それぞれの蒸発源から放出される蒸着物質の蒸着方向及び蒸着幅を調節して、前記被蒸着基板の同一領域で蒸着物質が蒸着できるようにさらに精巧に誘導することができる。   Here, by further including a shield 270 having a guide located in the cell of each evaporation source, as described above, the evaporation direction and the evaporation width of the evaporation material discharged from each of the evaporation sources is adjusted, It can be guided more elaborately so that the deposition material can be deposited in the same area of the deposition substrate.

これによって、前記それぞれの蒸発源から放出される蒸着物質は、前記ハウジングの水平方向に対して所定の角度で傾いた貫通ホールを介して前記被蒸着基板の同一蒸着領域(b)に蒸着される。この場合、前記被蒸着基板、または前記蒸発源アセンブリを移動させることによって、均一な薄膜を形成することができる。   As a result, the vapor deposition materials released from the respective evaporation sources are deposited in the same vapor deposition region (b) of the deposition target substrate through through holes inclined at a predetermined angle with respect to the horizontal direction of the housing. . In this case, a uniform thin film can be formed by moving the deposition target substrate or the evaporation source assembly.

上述では、本発明の好ましい実施の形態を参照しながら説明したが、当該技術分野の熟練した当業者は、添付の特許請求範囲に記載された本発明の思想及び領域から逸脱しない範囲で、本発明を多様に修正及び変更させることができる。   Although the foregoing has been described with reference to preferred embodiments of the invention, those skilled in the art will recognize that the invention may be practiced without departing from the spirit and scope of the invention as set forth in the appended claims. Various modifications and changes can be made to the invention.

本発明は有機電界発光ディスプレーの製造に利用することができる。   The present invention can be used in the manufacture of organic electroluminescent displays.

従来技術として複数の蒸発源を用いた蒸着装置を説明するための図である。It is a figure for demonstrating the vapor deposition apparatus using several evaporation sources as a prior art. 本発明の実施形態による蒸着装置を説明するための図である。It is a figure for demonstrating the vapor deposition apparatus by embodiment of this invention. 本発明の実施形態による二つの蒸発源を有する蒸発源のアセンブリの斜視図である。1 is a perspective view of an evaporation source assembly having two evaporation sources according to an embodiment of the present invention; FIG. 本発明の実施形態による図3の蒸発源アセンブリをI−I′に切断した断面で、蒸着物質が被蒸着基板の同一地点に照射するように誘導する実施形態を説明するための図である。4 is a cross-sectional view taken along the line II ′ of the evaporation source assembly of FIG. 3 according to an exemplary embodiment of the present invention to explain an embodiment in which a deposition material is guided to irradiate the same spot on a deposition target substrate. 本発明の実施形態による図3の蒸発源アセンブリをI−I′に切断した断面で、蒸着物質が被蒸着基板の同一地点に照射するように誘導する実施形態を説明するための図である。4 is a cross-sectional view taken along the line II ′ of the evaporation source assembly of FIG. 3 according to an exemplary embodiment of the present invention to explain an embodiment in which a deposition material is guided to irradiate the same spot on a deposition target substrate. 本発明の他の実施形態による図3の蒸発源アセンブリをI−I′に切断した断面で、蒸着物質が被蒸着基板の同一地点に照射するように誘導する実施形態を説明するための図である。3 is a cross-sectional view taken along the line II ′ of the evaporation source assembly of FIG. 3 according to another embodiment of the present invention to explain an embodiment in which a deposition material is guided to irradiate the same spot on a deposition target substrate. is there.

符号の説明Explanation of symbols

10:蒸着装置
20:チャンバ
30:蒸発源アセンブリ
40:蒸発源アセンブリ移送手段
60、200:第1蒸発源
70、300:第2蒸発源
80:シールド(shield)
90、100:角度調節支持台
220、320:ノズル部
221、321:貫通ホール
DESCRIPTION OF SYMBOLS 10: Deposition apparatus 20: Chamber 30: Evaporation source assembly 40: Evaporation source assembly transfer means 60, 200: 1st evaporation source 70, 300: 2nd evaporation source 80: Shield
90, 100: Angle adjustment support base 220, 320: Nozzle part 221, 321: Through hole

Claims (11)

少なくとも一部が開口されて少なくとも二つ以上のセルで仕分けられる外部ハウジングと、
前記各セルの内部に位置するそれぞれの蒸発源と、を含め、
前記各セルの開口部の両側に位置し、前記外部ハウジングと繋がっていて、ガイドを有するシールドを備え、前記ガイドの延長線が同一地点に向かうことを特徴とする蒸発源アセンブリ。
An outer housing that is at least partially open and sorted by at least two cells;
Each evaporation source located inside each of the cells,
An evaporation source assembly, wherein the evaporation source assembly is located on both sides of the opening of each cell, is connected to the outer housing, includes a shield having a guide, and an extended line of the guide is directed to the same point.
前記蒸発源の内少なくとも一つの蒸発源は地面に対して所定の角度に傾いていることを特徴とする請求項1に記載の蒸発源アセンブリ。   The evaporation source assembly according to claim 1, wherein at least one of the evaporation sources is inclined at a predetermined angle with respect to the ground. 前記蒸発源は、蒸着物質が吐出される開口部が被蒸着基板の同一地点に向かうことを特徴とする請求項2に記載の蒸発源アセンブリ。   The evaporation source assembly according to claim 2, wherein the evaporation source has an opening through which a deposition material is discharged directed to the same point on the deposition target substrate. 前記蒸発源は、同様な蒸着物質を有することを特徴とする請求項1に記載の蒸発源アセンブリ。   The evaporation source assembly of claim 1, wherein the evaporation source comprises a similar deposition material. 前記蒸発源の内少なくとも一つの蒸発源は被蒸着基板の一面に形成される薄膜を形成する蒸着物質を有し、他の少なくとも一つの蒸発源は前記薄膜に含ませるための前記蒸着物質と異なる添加剤を有することを特徴とする請求項1に記載の蒸発源アセンブリ。   At least one of the evaporation sources has a deposition material for forming a thin film formed on one surface of the deposition target substrate, and the other at least one evaporation source is different from the deposition material for inclusion in the thin film. The evaporation source assembly according to claim 1, further comprising an additive. 少なくとも一部が開口されたセルを、少なくとも二つ以上を備える外部ハウジングと、
前記各セルの内部に位置するそれぞれの蒸発源と、を含め、
前記それぞれの蒸発源は前記セルの開口された方向と等しい一部が開口された貯蔵部と、
前記貯蔵部の開口された部分と繋がるボディーと前記ボディーを貫く貫通ホールとを備えるノズル部と、
前記ノズル部と前記貯蔵部とを囲む形態のハウジングと、
前記ハウジングと前記ノズル部との間に介在されている加熱部と、を備え、
前記ノズル部を成す貫通ホールは前記ハウジングの水平方向に対して所定の角度で傾いていることを特徴とする蒸発源アセンブリ。
An outer housing comprising at least two or more cells that are at least partially open;
Each evaporation source located inside each of the cells,
Each of the evaporation sources has a reservoir that is partially opened in the same direction as the cell opening;
A nozzle part comprising a body connected to the opened part of the storage part and a through hole penetrating the body;
A housing that surrounds the nozzle part and the storage part;
A heating part interposed between the housing and the nozzle part,
The evaporation source assembly according to claim 1, wherein the through hole forming the nozzle portion is inclined at a predetermined angle with respect to a horizontal direction of the housing.
前記それぞれ蒸発源のノズル部を成す貫通ホールは被蒸着基板の同一地点に向かうことを特徴とする請求項6に記載の蒸発源アセンブリ。   The evaporation source assembly according to claim 6, wherein each of the through holes forming the nozzle portion of the evaporation source is directed to the same point on the deposition target substrate. 前記外部ハウジングは前記各セルの開口部の両側に位置して、被蒸着基板に向かうガイドを備えるシールドを含むことを特徴とする請求項6に記載の蒸発源アセンブリ。   The evaporation source assembly according to claim 6, wherein the outer housing includes shields provided on both sides of the opening of each cell and provided with a guide toward the deposition target substrate. 前記それぞれのシールドのガイドはその延長線が同一地点に向かうように、少なくとも一つのガイドは所定の角度で傾いていることを特徴とする請求項8に記載の蒸発源アセンブリ。   9. The evaporation source assembly according to claim 8, wherein at least one of the guides of each shield is inclined at a predetermined angle such that an extension line thereof is directed to the same point. 前記蒸発源の内少なくとも一つの蒸発源は被蒸着基板の一面に薄膜を形成する蒸着物質を有し、他の少なくとも一つの蒸発源は前記薄膜に含ませるための前記蒸着物質とは異なる添加剤を有することを特徴とする請求項6に記載の蒸発源アセンブリ。   At least one of the evaporation sources has a deposition material for forming a thin film on one surface of the substrate to be deposited, and at least one other evaporation source is an additive different from the deposition material for inclusion in the thin film. The evaporation source assembly according to claim 6, comprising: 請求項1または請求項6の蒸発源アセンブリを含むことを特徴とする蒸着装置。   A vapor deposition apparatus comprising the evaporation source assembly according to claim 1.
JP2005194444A 2005-03-07 2005-07-01 Evaporation source assembly and vapor deposition apparatus using the same Active JP4732036B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020050018834A KR100623730B1 (en) 2005-03-07 2005-03-07 Evaporating source assembly and deposition apparatus having the same
KR10-2005-0018834 2005-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009137662A Division JP5155941B2 (en) 2005-03-07 2009-06-08 Evaporation source assembly and vapor deposition apparatus using the same

Publications (2)

Publication Number Publication Date
JP2006249572A true JP2006249572A (en) 2006-09-21
JP4732036B2 JP4732036B2 (en) 2011-07-27

Family

ID=36993680

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2005194444A Active JP4732036B2 (en) 2005-03-07 2005-07-01 Evaporation source assembly and vapor deposition apparatus using the same
JP2009137662A Active JP5155941B2 (en) 2005-03-07 2009-06-08 Evaporation source assembly and vapor deposition apparatus using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009137662A Active JP5155941B2 (en) 2005-03-07 2009-06-08 Evaporation source assembly and vapor deposition apparatus using the same

Country Status (3)

Country Link
JP (2) JP4732036B2 (en)
KR (1) KR100623730B1 (en)
CN (1) CN1831185B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127066A (en) * 2007-11-21 2009-06-11 Mitsubishi-Hitachi Metals Machinery Inc In-line film-forming apparatus
JP2010015694A (en) * 2008-07-01 2010-01-21 Tokyo Electron Ltd Film-forming device and vapor deposition device of organic el
US20110005462A1 (en) * 2009-07-10 2011-01-13 Yuji Yanagi Vacuum vapor deposition apparatus
WO2012098927A1 (en) * 2011-01-18 2012-07-26 シャープ株式会社 Vapor deposition apparatus, vapor deposition method, organic el element, and organic el display apparatus
KR101248355B1 (en) * 2011-03-31 2013-04-02 가부시키가이샤 히다치 하이테크놀로지즈 Vacuum deposition apparatus and method of manufacturing organic el display device
JP2013076120A (en) * 2011-09-30 2013-04-25 Hitachi High-Technologies Corp Evaporation source and film forming apparatus
JP2016030839A (en) * 2014-07-28 2016-03-07 株式会社Joled Vapor deposition apparatus and vapor deposition source
CN112742631A (en) * 2020-12-24 2021-05-04 厦门天马微电子有限公司 Nozzle assembly, jet printing device and jet printing method
CN115094383A (en) * 2022-07-01 2022-09-23 江阴纳力新材料科技有限公司 Composite positive current collector preparation device and method based on evaporation

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768584B2 (en) * 2006-11-16 2011-09-07 財団法人山形県産業技術振興機構 Evaporation source and vacuum deposition apparatus using the same
US8628617B2 (en) * 2008-12-03 2014-01-14 First Solar, Inc. System and method for top-down material deposition
KR101216530B1 (en) * 2011-04-18 2012-12-31 (주)와이에스썸텍 Deposition Apparatus Using Linear Evaporating Source
KR101906358B1 (en) * 2012-02-21 2018-10-11 삼성디스플레이 주식회사 Depositing apparatus and method for manufacturing organic light emitting diode display using the same
CN104404451A (en) * 2014-12-16 2015-03-11 合肥鑫晟光电科技有限公司 Evaporation source and evaporation device
JP6529257B2 (en) * 2014-12-26 2019-06-12 キヤノントッキ株式会社 Vacuum evaporation system
KR102567009B1 (en) * 2016-03-29 2023-08-14 (주)선익시스템 Apparatus Restraining from Thermal Interference for Multi Source Co-Deposition
KR102629005B1 (en) * 2016-03-29 2024-01-25 주식회사 선익시스템 Multi Source Mixture Ratio Supporting Apparatus for Multi Source Co-Deposition
JP6815390B2 (en) * 2016-05-10 2021-01-20 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated How to operate the depositor, how to deposit the evaporated source material on the substrate, and the depositor
JP2018003120A (en) * 2016-07-05 2018-01-11 キヤノントッキ株式会社 Vapor deposition apparatus and evaporation source
CN106521423A (en) 2016-11-28 2017-03-22 上海天马有机发光显示技术有限公司 Vacuum evaporation device and method and organic light-emitting display panel
CN107858652A (en) * 2017-12-09 2018-03-30 四川金英科技有限责任公司 A kind of linear evaporation source device
CN109666898A (en) * 2019-01-03 2019-04-23 福建华佳彩有限公司 A kind of crucible for evaporation source
WO2021052592A1 (en) * 2019-09-19 2021-03-25 Applied Materials, Inc. Method of operating an evaporation source, evaporation system, and shield handling apparatus
CN112831753A (en) * 2019-11-25 2021-05-25 合肥欣奕华智能机器有限公司 Multiple evaporation source shelters from mechanism and film evaporation equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158374A (en) 1981-03-24 1982-09-30 Mitsubishi Heavy Ind Ltd Plated steel strip by vapor deposition of pb-zn binary alloy and producing device thereof
JP4336869B2 (en) * 2001-11-27 2009-09-30 日本電気株式会社 Vacuum film forming apparatus, vacuum film forming method, and battery electrode manufacturing method
KR100532657B1 (en) * 2002-11-18 2005-12-02 주식회사 야스 Apparatus for controlling deposition zone of homogeneously mixed layer in multi source co-deposition
JP4493926B2 (en) * 2003-04-25 2010-06-30 株式会社半導体エネルギー研究所 Manufacturing equipment
CN1210435C (en) * 2003-06-04 2005-07-13 深圳市创欧科技有限公司 Evaporating and coating apparatus for making organic electroluminescent display
CN2644433Y (en) * 2003-07-15 2004-09-29 精碟科技股份有限公司 Deposition equipment and screening unit thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127066A (en) * 2007-11-21 2009-06-11 Mitsubishi-Hitachi Metals Machinery Inc In-line film-forming apparatus
KR101088828B1 (en) * 2008-07-01 2011-12-06 도쿄엘렉트론가부시키가이샤 Deposition apparatus for organic el and evaporating apparatus
JP2010015694A (en) * 2008-07-01 2010-01-21 Tokyo Electron Ltd Film-forming device and vapor deposition device of organic el
US20150218691A1 (en) * 2009-07-10 2015-08-06 Mitsubishi Heavy Industries, Ltd. Vacuum vapor deposition apparatus
EP3103893A1 (en) 2009-07-10 2016-12-14 Mitsubishi Heavy Industries, Ltd. Vacuum vapor deposition method
EP2284292A1 (en) 2009-07-10 2011-02-16 Mitsubishi Heavy Industries, Ltd. Vacuum vapor deposition apparatus
KR101359066B1 (en) * 2009-07-10 2014-02-05 미츠비시 쥬고교 가부시키가이샤 Vacuum vapor deposition method
US20110005462A1 (en) * 2009-07-10 2011-01-13 Yuji Yanagi Vacuum vapor deposition apparatus
US9863034B2 (en) * 2009-07-10 2018-01-09 Mitsubishi Heavy Industries, Ltd. Vacuum vapor deposition method
WO2012098927A1 (en) * 2011-01-18 2012-07-26 シャープ株式会社 Vapor deposition apparatus, vapor deposition method, organic el element, and organic el display apparatus
CN103282538A (en) * 2011-01-18 2013-09-04 夏普株式会社 Vapor deposition apparatus, vapor deposition method, organic EL element, and organic EL display apparatus
JP5312697B2 (en) * 2011-01-18 2013-10-09 シャープ株式会社 Vapor deposition apparatus and vapor deposition method
US8669192B2 (en) 2011-01-18 2014-03-11 Sharp Kabushiki Kaisha Vapor deposition device, vapor deposition method, organic EL element and organic EL display device
KR101248355B1 (en) * 2011-03-31 2013-04-02 가부시키가이샤 히다치 하이테크놀로지즈 Vacuum deposition apparatus and method of manufacturing organic el display device
JP2013076120A (en) * 2011-09-30 2013-04-25 Hitachi High-Technologies Corp Evaporation source and film forming apparatus
JP2016030839A (en) * 2014-07-28 2016-03-07 株式会社Joled Vapor deposition apparatus and vapor deposition source
CN112742631A (en) * 2020-12-24 2021-05-04 厦门天马微电子有限公司 Nozzle assembly, jet printing device and jet printing method
CN115094383A (en) * 2022-07-01 2022-09-23 江阴纳力新材料科技有限公司 Composite positive current collector preparation device and method based on evaporation

Also Published As

Publication number Publication date
CN1831185A (en) 2006-09-13
CN1831185B (en) 2010-05-05
JP2009197336A (en) 2009-09-03
JP5155941B2 (en) 2013-03-06
KR100623730B1 (en) 2006-09-14
JP4732036B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4732036B2 (en) Evaporation source assembly and vapor deposition apparatus using the same
JP5261404B2 (en) Evaporation source and vapor deposition apparatus equipped with the same
JP2011132596A (en) Evaporation source and vapor-deposition apparatus using the same
KR20060060994A (en) Deposition source and deposition apparatus therewith
KR101256193B1 (en) Thin layers deposition apparatus and linear type evaporator using thereof
KR20070105595A (en) Evaporation apparatus
KR20160112293A (en) Evaporation source and Deposition apparatus including the same
JP2003123970A (en) Evaporation method of thin film used for organic electroluminescence display
KR102046441B1 (en) Depositing apparatus and method for manufacturing organic light emitting diode display using the same
KR101885245B1 (en) Depositing apparatus and method for manufacturing organic light emitting diode display using the same
JP2004107764A (en) Thin film-forming apparatus
KR20140006499A (en) Evaporation apparatus
KR20120061394A (en) Evaporator and method for depositing organic material
JP2023002518A (en) Evaporation source and method for depositing evaporated material
KR20140019579A (en) Evaporation apparatus
TWI625415B (en) Deposition apparatus and method for manufacturing organic light emitting diode display using the same
KR102608846B1 (en) Deposition sorce and method of manufacturing the same
JP2003317948A (en) Evaporation source and thin film formation device using the same
KR20190134367A (en) Angle controlling plate for deposition and deposition apparatus including the same
KR100637180B1 (en) Method of deposition and deposition apparatus for that method
KR100647578B1 (en) Apparatus and Method for evaporation
JP2020521039A (en) Evaporation source for depositing evaporated material, vacuum deposition system, and method for depositing evaporated material
KR20170057646A (en) Apparatus of deposition having radiation angle controlling plate
TWI816883B (en) Deposition apparatus
KR100980258B1 (en) The dome for fixing deposition products in the deposition device of multi-layer film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090612

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4732036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250