JP2006248756A - Frame of construction machine - Google Patents

Frame of construction machine Download PDF

Info

Publication number
JP2006248756A
JP2006248756A JP2005071155A JP2005071155A JP2006248756A JP 2006248756 A JP2006248756 A JP 2006248756A JP 2005071155 A JP2005071155 A JP 2005071155A JP 2005071155 A JP2005071155 A JP 2005071155A JP 2006248756 A JP2006248756 A JP 2006248756A
Authority
JP
Japan
Prior art keywords
hole
frame
curvature
stress
angle position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005071155A
Other languages
Japanese (ja)
Inventor
Tomohiko Murata
朝彦 村田
Yuichi Ogawa
祐一 小河
Yutaka Kobayashi
豊 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Cranes Co Ltd
Original Assignee
Kobelco Cranes Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Cranes Co Ltd filed Critical Kobelco Cranes Co Ltd
Priority to JP2005071155A priority Critical patent/JP2006248756A/en
Publication of JP2006248756A publication Critical patent/JP2006248756A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Jib Cranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively relieve stress concentration around a through-hole, while avoiding a large increase in its weight and cost, in a frame of a construction machine for arranging the through-hole on a side wall. <P>SOLUTION: The stress concentration is relieved by devising a hole shape of the through-hole 46 arranged on the side wall 44 of the frame 40 of the construction machine. Actually, a shape of the through-hole 46 is set so that curvature of the hole peripheral edge in a maximum stress angle position for maximizing an absolute value of stress generated around this circular hole when supposing the circular hole in a forming position of its through-hole 46, becomes smaller than curvature of the hole peripheral edge in a minimum stress angle position for minimizing the absolute value of the stress generated around the circular hole. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、移動式クレーン等の建設機械を構成するフレームに関するものである。   The present invention relates to a frame constituting a construction machine such as a mobile crane.

特許文献1に記載されるような建設機械のフレームの側壁には、種々の目的で貫通孔が設けられることが多い。例えば、当該側壁の内外に油圧配管や電気配線を通す場合や、他の部材との溶接を施工する場合、軽量化を図る場合等に、種々の貫通孔が前記フレームの側壁に設けられることになる。
特開2000−143156号公報
A through-hole is often provided in the side wall of a frame of a construction machine as described in Patent Document 1 for various purposes. For example, various through holes are provided in the side wall of the frame when hydraulic piping or electrical wiring is passed through the inside or outside of the side wall, when welding with other members is performed, or when weight reduction is achieved. Become.
JP 2000-143156 A

前記のように側壁に貫通孔が設けられたフレームに対して外力が加えられた場合、当該貫通孔の周囲には一般に応力集中が発生する。   When an external force is applied to the frame having the through hole provided in the side wall as described above, stress concentration generally occurs around the through hole.

例えば、図6に記載されるように、クレーンの下部走行体2上に旋回軸受4を介して旋回可能に設置される上部旋回フレーム6において、その後端にブームの吊り荷重を支持するための荷重支持部7が設けられている場合、この荷重支持部7には鉛直方向の力である上向きの引張力Fが作用するが、このとき、前記上部旋回フレーム6の後部(前記荷重支持部7と前記旋回軸受4との間の部分)の側壁6aに円形の貫通孔8が設けられていると、この貫通孔8の周囲には上記引張力Fに起因して応力集中が発生する。具体的には、前記上部旋回フレーム6において前記旋回軸受4に接合されている部分よりも後側の部分を、その自由端部に上向きの垂直荷重(引張力F)を受ける片持ち梁とみなすと、この片持ち梁には曲げ応力が発生し、貫通孔8の周縁にはその特定の角度位置で応力の絶対値が著しく上昇する応力集中が生ずる。   For example, as shown in FIG. 6, in an upper swing frame 6 that is swingably installed on a lower traveling body 2 of a crane via a swing bearing 4, a load for supporting a boom suspension load at the rear end thereof. When the support portion 7 is provided, an upward tensile force F, which is a vertical force, acts on the load support portion 7. At this time, the rear portion of the upper swing frame 6 (with the load support portion 7 and If a circular through hole 8 is provided in the side wall 6a of the portion between the slewing bearing 4), stress concentration occurs around the through hole 8 due to the tensile force F. Specifically, the rear part of the upper turning frame 6 with respect to the part joined to the turning bearing 4 is regarded as a cantilever that receives an upward vertical load (tensile force F) at its free end. Then, a bending stress is generated in the cantilever beam, and a stress concentration in which the absolute value of the stress is remarkably increased at the specific angular position is generated on the periphery of the through hole 8.

このような応力集中が発生する場合に、その最大応力を基準としてフレーム設計をすると、フレーム全体の肉厚が相当大きくなり、その重量及び材料費の増大は避けられない。また、前記応力集中が発生する部分に補強板を貼って局所的に断面積及び断面係数を増やすようにしても、その溶接施工に伴う疲労評価の低下も考慮すると補強板の厚みはかなり大きく設定しなければならず、補強構造は重厚なものとなってしまう。従って、当該補強構造に起因する重量及び費用の増加を抑制することは難しい。   When such stress concentration occurs, if the frame is designed based on the maximum stress, the thickness of the entire frame becomes considerably large, and an increase in weight and material cost is inevitable. In addition, even if a reinforcing plate is attached to the portion where the stress concentration occurs to locally increase the cross-sectional area and section modulus, the thickness of the reinforcing plate is set to be considerably large considering the decrease in fatigue evaluation due to the welding work. Therefore, the reinforcing structure becomes heavy. Therefore, it is difficult to suppress an increase in weight and cost due to the reinforcing structure.

本発明は、このような事情に鑑み、側壁に貫通孔が設けられる建設機械のフレームにおいて、その重量及び費用の大幅な増加を避けながら前記貫通孔の周囲の応力集中を有効に緩和することを目的とする。   In view of such circumstances, the present invention effectively reduces the stress concentration around the through hole in the frame of the construction machine provided with the through hole in the side wall while avoiding a significant increase in weight and cost. Objective.

一般に、孔の形状が円形以外の形状である場合、すなわち、孔周縁の曲率が全周にわたって一定でない場合、その曲率が大きい(すなわち曲率半径が小さい)位置ほど応力集中が著しくなる傾向がある。換言すれば、応力集中が著しい位置での孔周縁形状の曲率を小さく(曲率半径を大きく)すれば、その応力集中度を緩和することが可能になる。   Generally, when the hole has a shape other than a circle, that is, when the curvature of the hole periphery is not constant over the entire circumference, the stress concentration tends to become more significant as the curvature becomes larger (that is, the curvature radius is smaller). In other words, if the curvature of the hole peripheral shape at a position where the stress concentration is significant is reduced (the curvature radius is increased), the degree of stress concentration can be reduced.

本発明は、このような観点からなされたものであり、側壁にその内外を貫通する貫通孔が設けられるとともに、当該側壁に特定方向の荷重が加えられる建設機械のフレームにおいて、前記貫通孔の形状は、その貫通孔の形成位置に当該貫通孔の垂直方向の寸法と略同等の直径をもつ円形孔を仮想したときに前記特定方向の荷重の付加に伴って前記円形孔の周囲に生ずる応力の絶対値が最も大きくなる最大応力角度位置での前記貫通孔の孔周縁の曲率が、前記円形孔の周囲に生ずる応力の絶対値が最も小さくなる最小応力角度位置での前記貫通孔の孔周縁の曲率よりも小さくなるように、設定されているものである。   The present invention has been made from such a viewpoint, and in the frame of a construction machine in which a through hole penetrating the inside and outside of the side wall is provided and a load in a specific direction is applied to the side wall, the shape of the through hole is Is a stress generated around the circular hole due to the addition of a load in the specific direction when a circular hole having a diameter substantially equal to the vertical dimension of the through hole is assumed at the formation position of the through hole. The curvature of the hole periphery of the through hole at the maximum stress angle position where the absolute value is the largest is the hole periphery of the through hole at the minimum stress angle position where the absolute value of the stress generated around the circular hole is the smallest. It is set so as to be smaller than the curvature.

この構成によれば、前記貫通孔の形成位置に仮想される円形孔の周囲において応力の絶対値が最大となる最大応力角度位置での実際の貫通孔の孔周縁の曲率が最小応力角度位置での曲率よりも小さく設定されることにより、当該貫通孔の周囲における応力の最大値と最小値との差が縮められる。従って、当該貫通孔の周囲に補強を施すことなく、また補強をするとしても簡単な補強のみで、貫通孔周囲の応力集中を効果的に緩和することができる。   According to this configuration, the curvature of the actual peripheral edge of the through hole at the maximum stress angle position where the absolute value of the stress is maximum around the circular hole assumed at the formation position of the through hole is the minimum stress angle position. By setting the curvature smaller than the curvature, the difference between the maximum value and the minimum value of the stress around the through hole is reduced. Therefore, the stress concentration around the through hole can be effectively reduced without reinforcing the periphery of the through hole and with only simple reinforcement.

さらに、前記最大応力角度位置またはその近傍の角度位置で前記貫通孔の孔周縁の曲率が最小となるように当該貫通孔の孔周縁の形状を設定すれば、応力最大値をより有効に低減することができる。   Furthermore, if the shape of the hole periphery of the through hole is set so that the curvature of the hole periphery of the through hole is minimized at the maximum stress angle position or an angular position near the maximum stress angle position, the stress maximum value is more effectively reduced. be able to.

なお、前記貫通孔は、その中間部分に任意の方向に直線的に延びる直線部をもつ長孔であってもよく、その場合には、前記直線部を除く部分の曲率が前記円形孔の周囲の応力分布に基づいて設定されていればよい。   The through hole may be a long hole having a straight portion extending linearly in an arbitrary direction at an intermediate portion thereof. In this case, the curvature of the portion excluding the straight portion is around the circular hole. It may be set based on the stress distribution.

本発明は、種々の建設機械のフレームに適用し得るものであるが、特に、下部走行体上に旋回支持部を介して旋回可能に搭載され、当該旋回支持部に接合される箇所から水平方向に離れた荷重支持箇所に鉛直方向の力が付加されるクレーンの上部旋回フレームでは、その旋回支持部に接合される箇所から前記荷重支持箇所までの領域が大きな曲げ荷重を受ける片持ち梁となるため、この領域内に貫通孔を有する側壁を備える場合に、前記貫通孔のうちの少なくとも一つの貫通孔の形状を、その貫通孔の形成位置に当該貫通孔の垂直方向の寸法と略同等の直径をもつ円形孔を仮想したときに前記荷重支持箇所への鉛直方向の力の付加に伴って前記円形孔の周囲に生ずる応力の絶対値が最も大きくなる最大応力角度位置での前記貫通孔の孔周縁の曲率が、前記円形孔の周囲に生ずる応力の絶対値が最も小さくなる最小応力角度位置での前記貫通孔の孔周縁の曲率よりも小さくなるように、設定することにより、本発明の効果を如何なく発揮することができる。   The present invention can be applied to frames of various construction machines. In particular, the present invention is mounted horizontally on a lower traveling body via a turning support portion so as to be able to turn horizontally from a place where the turning support portion is joined. In an upper swing frame of a crane in which a vertical force is applied to a load support location that is far from the center, the area from the location where the swing support is joined to the load support location is a cantilever beam that receives a large bending load. Therefore, when a side wall having a through hole is provided in this region, the shape of at least one of the through holes is substantially equal to the vertical dimension of the through hole at the position where the through hole is formed. When a circular hole having a diameter is imagined, the through hole at the maximum stress angle position where the absolute value of the stress generated around the circular hole becomes the largest with the addition of a vertical force to the load supporting portion. Around the hole By setting the rate to be smaller than the curvature of the hole periphery of the through hole at the minimum stress angle position where the absolute value of the stress generated around the circular hole is the smallest, the effect of the present invention can be improved. It can be demonstrated without.

以上のように、本発明によれば、側壁に貫通孔が設けられる建設機械のフレームにおいて、当該貫通孔の孔周縁の曲率を適正に設定することにより、フレーム全体の重量及び費用の大幅な増加を避けながら前記貫通孔の周囲の応力集中を有効に緩和することができる効果がある。   As described above, according to the present invention, in the frame of a construction machine in which a through hole is provided on the side wall, the weight and cost of the entire frame are significantly increased by appropriately setting the curvature of the hole periphery of the through hole. There is an effect that the stress concentration around the through hole can be effectively relaxed while avoiding the above.

図1及び図2は、本発明の実施の形態に係る移動式クレーン10の全体構造を示したものである。   FIG.1 and FIG.2 shows the whole structure of the mobile crane 10 which concerns on embodiment of this invention.

このクレーン10は、左右クローラ11を有する下部走行体12と、その上に旋回軸受14を介して旋回可能に設置される上部旋回体16とを備えている。   The crane 10 includes a lower traveling body 12 having left and right crawlers 11 and an upper revolving body 16 installed on the lower traveling body 12 via a revolving bearing 14 thereon.

この上部旋回体16の前端部にはブーム取付部16aが設けられ、このブーム取付部16aを支点としてブーム18が起伏可能に支持されている。このブーム18は、図例ではラチスブームであり、その先端部からは主フック20及び図略の補フックが吊り下げられている。   A boom mounting portion 16a is provided at the front end portion of the upper swing body 16, and the boom 18 is supported to be raised and lowered with the boom mounting portion 16a as a fulcrum. The boom 18 is a lattice boom in the illustrated example, and a main hook 20 and an unillustrated auxiliary hook are suspended from the tip of the boom 18.

一方、上部旋回体16には第1ウインチ22、第2ウインチ24、及びブームウインチ26が搭載されている。そして、前記第1ウインチ22による巻上げワイヤロープ27の巻取りにより前記主フック20が吊上げられ、前記第2ウインチ24による図略の巻上げワイヤロープの巻取りにより前記補フックが吊上げられる。また、前記ブームウインチ26によるワイヤロープ28の巻取り/巻出しにより、前記ブーム18が前記ブーム取付部16aを支点として回動動作(起伏動作)をするようになっている。   On the other hand, a first winch 22, a second winch 24, and a boom winch 26 are mounted on the upper swing body 16. Then, the main hook 20 is lifted by winding the winding wire rope 27 by the first winch 22, and the auxiliary hook is lifted by winding the unillustrated winding wire rope by the second winch 24. Further, the winding / unwinding of the wire rope 28 by the boom winch 26 causes the boom 18 to rotate (raise / lower) with the boom attachment portion 16a as a fulcrum.

具体的に、前記上部旋回体16の後部にはブーム起伏用のガントリ30が設けられている。このガントリ30は、傾斜姿勢で配される前側の圧縮部材31と、立直姿勢で配される後側の引張部材32とが山型に組まれてその上端部同士が連結されたものであり、当該ガントリ30の頂部にシーブ34が回転可能な状態で設けられるとともに、このシーブ34にブームウインチ26から引き出されたワイヤロープ28が掛けられている。一方、前記ブーム18の先端にはガイケーブル36の一端がつながれ、このガイケーブル36の他端側と前記ガントリ30側とにそれぞれ上下スプレッダ37,38が取付けられており、当該スプレッダ37,38に含まれるシーブ同士の間に前記ワイヤロープ28が掛け回されている。   Specifically, a boom raising and lowering gantry 30 is provided at the rear of the upper swing body 16. The gantry 30 has a front compression member 31 arranged in an inclined posture and a rear tension member 32 arranged in a standing posture assembled in a mountain shape and their upper ends connected to each other. A sheave 34 is rotatably provided at the top of the gantry 30, and a wire rope 28 drawn from the boom winch 26 is hung on the sheave 34. On the other hand, one end of a guy cable 36 is connected to the tip of the boom 18, and upper and lower spreaders 37, 38 are attached to the other end of the guy cable 36 and the gantry 30, respectively. The wire rope 28 is hung between sheaves included.

従って、このクレーン10では、前記ブームウインチ26によるワイヤロープ28の巻取り(または巻出し)によりスプレッダ37がスプレッダ38に対して接近する(またはスプレッダ38から離れる)ように移動することによりブーム18が起伏するとともに、このブーム18や前記主フック20、補フック、ワイヤロープ27等の自重及びそのブーム18の先端の吊り荷Wによる荷重に起因して、前記ガントリ30を構成する圧縮部材31には圧縮力Fcが、引張部材32には引張力Ftがそれぞれ作用するようになっている。   Therefore, in this crane 10, the boom 18 is moved by moving the spreader 37 closer to (or away from) the spreader 38 by winding (or unwinding) the wire rope 28 by the boom winch 26. The compression member 31 constituting the gantry 30 is caused to undulate and due to the weight of the boom 18, the main hook 20, the auxiliary hook, the wire rope 27, and the like and the load caused by the suspended load W at the tip of the boom 18. The compressive force Fc and the tensile force Ft act on the tension member 32, respectively.

次に、前記上部旋回体16を構成する上部旋回フレーム40の構造を説明する。   Next, the structure of the upper turning frame 40 constituting the upper turning body 16 will be described.

この上部旋回フレーム40は、中空断面を有する箱型形状を有し、その前半部の底壁が前記旋回軸受14に接合されている。また、左右の側壁44の前側部上端に圧縮部材取付孔41が設けられ、後端上部に引張部材取付孔42が設けられている。   The upper revolving frame 40 has a box shape with a hollow cross section, and the bottom wall of the front half thereof is joined to the revolving bearing 14. A compression member mounting hole 41 is provided at the upper end of the front side part of the left and right side walls 44, and a tension member mounting hole 42 is provided at the upper rear end.

前記圧縮部材取付孔41には、この上部旋回フレーム40と前記ガントリ30の圧縮部材31とを連結するための図略のピンが挿通され、同様に、前記引張部材取付孔42には、この上部旋回フレーム40と前記ガントリ30の引張部材32とを連結するための図略のピンが挿通される。従って、この上部旋回フレーム40において前記引張部材取付孔42が設けられている箇所は、その引張部材32に作用する鉛直方向の力である上向きの引張力Ftが付加される荷重支持箇所となっており、この荷重支持箇所は前記旋回軸受14の接合箇所から水平方向後側に大きく離間した位置に存在している。すなわち、この上部旋回フレーム40のうち前記旋回軸受14よりも後側の部分は、その自由端部である後端部に上向き荷重が加えられて曲げモーメントMが発生する片持ち梁の状態となっている。   A pin (not shown) for connecting the upper revolving frame 40 and the compression member 31 of the gantry 30 is inserted into the compression member attachment hole 41. Similarly, the upper part of the tension member attachment hole 42 is inserted into the upper portion of the compression member attachment hole 41. A pin (not shown) for connecting the revolving frame 40 and the tension member 32 of the gantry 30 is inserted. Therefore, the location where the tension member mounting hole 42 is provided in the upper revolving frame 40 is a load support location to which an upward tensile force Ft which is a vertical force acting on the tension member 32 is applied. The load supporting portion is present at a position that is greatly separated from the joint portion of the slewing bearing 14 to the rear side in the horizontal direction. That is, a portion of the upper swing frame 40 on the rear side of the swing bearing 14 is in a cantilever state in which an upward load is applied to the rear end portion which is a free end portion and a bending moment M is generated. ing.

なお、このような曲げ状態が発生するのは、図示のようなガントリタイプのブーム支持構造に限られない。例えば、特開平10−194681号公報に示されるように、上部旋回体に揺動可能なマストを備え、このマストとブーム先端とをガイケーブルで連結するとともに、上部旋回フレームの後部に小ガントリを設け、この小ガントリの頂部と前記マストの先端部との間に滑車機構を設けてこの滑車機構をウインチの駆動で伸縮させることによりブームを起伏させるクレーンにおいても、その上部旋回フレームに前記と同様の曲げ状態が発生することになる。従って、このようなクレーンにおいても本発明を有効に適用することが可能である。   The occurrence of such a bent state is not limited to the gantry type boom support structure as shown in the figure. For example, as disclosed in Japanese Patent Laid-Open No. 10-194681, a swingable mast is provided on the upper swing body, the mast and the boom tip are connected by a guy cable, and a small gantry is mounted on the rear of the upper swing frame. Also in a crane that provides a pulley mechanism between the top of the small gantry and the tip of the mast and raises and lowers the boom by extending and retracting the pulley mechanism by driving a winch, the upper revolving frame is similar to the above. The bending state will occur. Therefore, the present invention can be effectively applied to such a crane.

図1及び図2に説明を戻すと、前記のような曲げ荷重を受ける上部旋回フレーム40は、左右に対なす側壁44を備え、これらの側壁44において、前記旋回軸受14から前記引張部材取付孔42に至るまでの水平方向の領域中に、当該側壁44の内外を連通する貫通孔46,48が設けられている。   Returning to FIG. 1 and FIG. 2, the upper revolving frame 40 that receives the bending load as described above includes side walls 44 facing left and right, and in these side walls 44 from the revolving bearing 14 to the tension member mounting hole. Through holes 46 and 48 that communicate the inside and outside of the side wall 44 are provided in the horizontal region up to 42.

図3に示すように、前記貫通孔46の孔周縁の形状は、その角度位置に応じて曲率が変化しており、当該曲率は、この貫通孔46の周囲における応力の集中度合いが緩和されるように設定されている。具体的には、前記貫通孔46の形成位置に当該貫通孔46の垂直方向の寸法と略同等の直径をもつ円形孔を仮想したときに、前記引張部材取付孔42が設けられている荷重支持箇所に上向きの引張力Ftが付加されるのに伴って前記円形孔の周囲に生ずる応力の絶対値が最も大きくなる最大応力角度位置での前記貫通孔46の孔周縁の曲率が、前記円形孔の周囲に生ずる応力の絶対値が最も小さくなる最小応力角度位置での前記貫通孔46の孔周縁の曲率よりも小さくなるように、当該貫通孔46の形状が設定されている。   As shown in FIG. 3, the curvature of the shape of the peripheral edge of the through hole 46 changes according to the angular position, and the curvature reduces the degree of stress concentration around the through hole 46. Is set to Specifically, the load support in which the tension member mounting hole 42 is provided when a circular hole having a diameter substantially equal to the vertical dimension of the through hole 46 is assumed at the position where the through hole 46 is formed. The curvature of the peripheral edge of the through hole 46 at the maximum stress angle position at which the absolute value of the stress generated around the circular hole becomes the largest as the upward tensile force Ft is applied to the location is the circular hole. The shape of the through hole 46 is set so as to be smaller than the curvature of the peripheral edge of the through hole 46 at the minimum stress angle position where the absolute value of the stress generated around the minimum is the smallest.

図4(a)は、前記貫通孔46に対応する円形孔46′を仮想したときの上部旋回フレーム側壁44の曲げ変形状態を誇張して表したものであり、同図(b)は当該曲げ変形状態における前記円形孔46′の周囲の応力分布を有限要素法で解析した結果を示したものである。同図(b)では、各分割要素に付されている網目の密度が細かいほど応力の絶対値が高いことを示している。   FIG. 4A exaggerates the bending deformation state of the upper revolving frame side wall 44 when a circular hole 46 ′ corresponding to the through hole 46 is assumed, and FIG. The result of having analyzed the stress distribution around the said circular hole 46 'in a deformation | transformation state by the finite element method is shown. FIG. 2B shows that the absolute value of the stress is higher as the mesh density attached to each divided element is smaller.

本来、円形孔46′をもつフレーム側壁44が前記円形孔46′を通る線を中立軸として曲げ変形した場合、当該円形孔46′の周囲にはほぼ45°方向の4つの角度位置で応力集中が最大となるが、図例では、円形孔46′の下端からフレーム下縁までの縦寸法が小さいため、図4(b)に示すように、実際の応力集中度は、円形孔46′の下端近傍であって少し後端寄りの角度位置の要素E1で最大(約41kg/mm2)となっている。 Originally, when the frame side wall 44 having the circular hole 46 ′ is bent and deformed with the line passing through the circular hole 46 ′ as a neutral axis, stress is concentrated around the circular hole 46 ′ at four angular positions in a direction of approximately 45 °. However, since the vertical dimension from the lower end of the circular hole 46 ′ to the lower edge of the frame is small in the illustrated example, the actual stress concentration is as shown in FIG. 4 (b). It is the maximum (about 41 kg / mm 2 ) at the element E1 in the vicinity of the lower end and slightly angular position near the rear end.

このような応力特性に鑑み、実際の貫通孔46の形状は、図5(a)(b)に示されるように、前記のような最大応力角度位置の近傍の角度位置及びこれと対向する位置(180°離間した位置)で孔周縁形状の曲率が最小となり、これと直交する方向の角度位置(前記最大応力角度位置から90°離間した角度位置)であって応力が最小となる角度位置の近傍の角度位置で前記曲率が最大となるように、設定されている。   In view of such stress characteristics, the actual shape of the through hole 46 is, as shown in FIGS. 5A and 5B, an angular position in the vicinity of the maximum stress angular position as described above, and a position facing this position. The curvature of the hole periphery shape is minimized at a position 180 ° apart, and the angle position in the direction orthogonal to this is the angle position 90 ° apart from the maximum stress angle position and the angle where the stress is minimum. It is set so that the curvature is maximized at a nearby angular position.

このような形状の貫通孔46であると、図5(b)に示すように、図4(b)に示す円形孔46′に比べて孔周囲の応力最大値(図では要素E2で約37kg/mm2)が効果的に低減し、また、高応力領域も有効に削減されることとなる。従って、フレーム全体の重量及び材料費の大幅な増加を避けながら前記貫通孔46の周囲の応力集中を有効に緩和することができる。 In the case of the through hole 46 having such a shape, as shown in FIG. 5 (b), the maximum stress around the hole (in the figure, element 37 is about 37 kg as compared to the circular hole 46 'shown in FIG. 4 (b)). / mm 2 ) is effectively reduced, and the high stress region is also effectively reduced. Therefore, stress concentration around the through hole 46 can be effectively reduced while avoiding a significant increase in the weight and material cost of the entire frame.

一方、貫通孔48の形状は、前記貫通孔46の形状を水平方向に延ばした形状となっている。すなわち、この貫通孔48はその水平方向中間部分に当該水平方向に直線的に延びる直線部48bを有し、その両側端部48aが前記貫通孔46と同様に前記円形孔46′の応力分布に基づいて曲率を変化させた形状となっている。換言すれば、この貫通孔48は横長の小判形状の左右両端部を変形させた形状を有している。このように、中間部分に任意の方向に延びる直線部を有する長孔であっても、その両側部分の曲率が適正に設定されることによって、応力集中を有効に緩和することが可能になる。   On the other hand, the shape of the through hole 48 is a shape obtained by extending the shape of the through hole 46 in the horizontal direction. That is, the through hole 48 has a straight portion 48b linearly extending in the horizontal direction at the horizontal intermediate portion, and both end portions 48a have a stress distribution of the circular hole 46 'in the same manner as the through hole 46. Based on this, the curvature is changed. In other words, the through hole 48 has a shape obtained by deforming the left and right ends of a horizontally long oval shape. As described above, even in the case of a long hole having a straight portion extending in an arbitrary direction in the intermediate portion, it is possible to effectively relieve stress concentration by appropriately setting the curvature of both side portions.

なお、前記貫通孔46の形成位置に仮想される円形孔46′の周囲の応力分布は、その形成位置によって当然に変化するから、その応力分布によって適宜貫通孔46の形状を設定すればよい。例えば、円形孔46′の上下両側におけるフレーム40の縦寸法が当該円形孔46′の直径に比して十分に大きいモデルを想定すると、上述のように、当該円形孔46′の周囲にはほぼ45°方向の4つの角度位置で応力の絶対値が最大となるから、その最大応力角度位置に対応する部分での曲率を最小にするように、貫通孔48の形状を例えば略菱形形状(ただし菱形の4つの頂点に相当する部分に極度の応力集中が発生しないようにその頂点部分は小さな曲率半径をもつ円弧にしておくのが好ましい。)とすることにより、大掛かりな補強をすることなく、孔周囲の応力集中を効果的に緩和することができる。   Since the stress distribution around the circular hole 46 ′ assumed at the formation position of the through hole 46 naturally changes depending on the formation position, the shape of the through hole 46 may be appropriately set according to the stress distribution. For example, assuming a model in which the vertical dimension of the frame 40 on both the upper and lower sides of the circular hole 46 'is sufficiently larger than the diameter of the circular hole 46', as described above, there is almost no circumference around the circular hole 46 '. Since the absolute value of the stress is maximized at the four angular positions in the 45 ° direction, the through hole 48 is formed in, for example, a substantially rhombus shape (however, in order to minimize the curvature at the portion corresponding to the maximum stress angular position. In order to prevent extreme stress concentration from occurring in the portion corresponding to the four vertices of the rhombus, the vertex portion is preferably an arc having a small radius of curvature.) The stress concentration around the hole can be effectively reduced.

なお、本発明では必ずしも円形孔の最大応力角度位置で曲率を最小にしなくてもよく、少なくとも前記最大応力角度位置での貫通孔の周縁の曲率が最小応力角度位置での周縁の曲率よりも小さくなる孔形状とすれば、応力の絶対値の最大値と最小値との差を縮める(すなわち応力集中度を低減させる)ことが可能である。ただし、前記最大応力角度位置またはその近傍の角度位置で前記貫通孔の孔周縁の曲率が最小となるように当該貫通孔の孔周縁の形状を設定すれば、応力最大値をより有効に低減することが可能になる。   In the present invention, it is not always necessary to minimize the curvature at the maximum stress angle position of the circular hole, and the curvature of the peripheral edge of the through hole at least at the maximum stress angle position is smaller than the curvature of the peripheral edge at the minimum stress angle position. If the hole shape is formed, it is possible to reduce the difference between the maximum value and the minimum value of the absolute value of stress (that is, to reduce the stress concentration degree). However, if the shape of the hole periphery of the through hole is set so that the curvature of the hole periphery of the through hole is minimized at the maximum stress angle position or an angular position in the vicinity thereof, the stress maximum value is more effectively reduced. It becomes possible.

また、図示の上部旋回フレーム40は、その荷重支持箇所に上向きの引張力Ftが付加されるものとなっているが、逆にその荷重支持箇所に下向きの押付力が加えられて当該押付力が強度設計上支配的であるようなフレームについても、本発明を有効に適用することが可能である。   Moreover, although the upward turning force Ft is added to the load support location of the upper turning frame 40 shown in the figure, conversely, a downward pressing force is applied to the load support location and the pressing force is applied. The present invention can be effectively applied to a frame that is dominant in strength design.

さらに、本発明はクレーンの上部旋回フレームに限らず、油圧ショベル等のその他の建設機械の上部旋回フレームや、下部走行体を構成するフレーム等、運転時に特定方向の荷重を受ける種々のフレームにおいて、その側壁に種々の目的で貫通孔が設けられる場合に、広く適用することが可能である。   Furthermore, the present invention is not limited to the upper swing frame of the crane, but in various frames that receive a load in a specific direction during operation, such as an upper swing frame of other construction machines such as a hydraulic excavator, a frame constituting a lower traveling body, The present invention can be widely applied when through holes are provided on the side walls for various purposes.

本発明の実施の形態に係る移動式クレーンの全体構成を示す正面図である。It is a front view which shows the whole structure of the mobile crane which concerns on embodiment of this invention. 前記移動式クレーンの全体構成を示す平面図である。It is a top view which shows the whole structure of the said mobile crane. 前記移動式クレーンに含まれる上部旋回フレームの要部を示す正面図である。It is a front view which shows the principal part of the upper revolving frame contained in the said mobile crane. (a)は前記上部旋回フレームの側壁における貫通孔の形成位置に円形孔を仮想した場合の当該側壁の曲げ変形状態を模式的に示した図、(b)は当該曲げ変形状態における前記円形孔の周囲の応力分布を示す図である。(A) is the figure which showed typically the bending deformation state of the said side wall at the time of imagining the circular hole in the formation position of the through-hole in the side wall of the said upper turning frame, (b) is the said circular hole in the said bending deformation state It is a figure showing stress distribution around. (a)は前記上部旋回フレームの側壁の曲げ変形状態を模式的に示した図、(b)は当該曲げ変形状態における前記上部旋回フレームの貫通孔の周囲の応力分布を示す図である。(A) is the figure which showed typically the bending deformation state of the side wall of the said upper turning frame, (b) is a figure which shows the stress distribution around the through-hole of the said upper turning frame in the said bending deformation state. 従来の上部旋回フレームの一例を示す模式図である。It is a schematic diagram which shows an example of the conventional upper revolving frame.

符号の説明Explanation of symbols

10 移動式クレーン
12 下部走行体
14 旋回軸受(旋回支持部)
16 上部旋回体
18 ブーム
30 ガントリ
32 引張部材
40 上部旋回フレーム
42 引張部材取付孔
44 フレーム側壁
46,48 貫通孔
46′ 円形孔
48b 直線部
DESCRIPTION OF SYMBOLS 10 Mobile crane 12 Undercarriage 14 Slewing bearing (slewing support part)
16 Upper swing body 18 Boom 30 Gantry 32 Tensile member 40 Upper swing frame 42 Tensile member mounting hole 44 Frame side wall 46, 48 Through hole 46 'Circular hole 48b Linear portion

Claims (6)

側壁にその内外を貫通する貫通孔が設けられるとともに、当該側壁に特定方向の荷重が加えられる建設機械のフレームにおいて、前記貫通孔の形状は、その貫通孔の形成位置に当該貫通孔の垂直方向の寸法と略同等の直径をもつ円形孔を仮想したときに前記特定方向の荷重の付加に伴って前記円形孔の周囲に生ずる応力の絶対値が最も大きくなる最大応力角度位置での前記貫通孔の孔周縁の曲率が、前記円形孔の周囲に生ずる応力の絶対値が最も小さくなる最小応力角度位置での前記貫通孔の孔周縁の曲率よりも小さくなるように、設定されていることを特徴とする建設機械のフレーム。   In a frame of a construction machine in which a through-hole penetrating the inside and outside of the side wall is provided in the side wall and a load in a specific direction is applied to the side wall, the shape of the through-hole is in a vertical direction of the through-hole at a position where the through-hole is formed The through hole at the maximum stress angle position where the absolute value of the stress generated around the circular hole with the addition of the load in the specific direction is maximized when a circular hole having a diameter substantially equal to the diameter of the circular hole is assumed. The curvature of the hole periphery is set to be smaller than the curvature of the hole periphery of the through hole at the minimum stress angle position where the absolute value of the stress generated around the circular hole is the smallest. And the frame of construction machinery. 請求項1記載の建設機械のフレームにおいて、前記最大応力角度位置またはその近傍の角度位置で前記貫通孔の孔周縁の曲率が最小となるように当該貫通孔の孔周縁の形状が設定されていることを特徴とする建設機械のフレーム。   2. The frame of the construction machine according to claim 1, wherein the shape of the hole periphery of the through hole is set so that the curvature of the hole periphery of the through hole is minimized at the maximum stress angle position or an angular position in the vicinity thereof. A construction machine frame characterized by that. 請求項1または2記載の建設機械のフレームにおいて、前記貫通孔は、その中間部分に任意の方向に直線的に延びる直線部をもつ長孔であり、当該直線部を除く部分の曲率が前記円形孔の周囲の応力分布に基づいて設定されていることを特徴とする建設機械のフレーム。   The frame of the construction machine according to claim 1 or 2, wherein the through-hole is a long hole having a linear portion extending linearly in an arbitrary direction at an intermediate portion thereof, and a curvature of a portion excluding the linear portion is the circular shape. A frame of a construction machine, which is set based on a stress distribution around a hole. 下部走行体上に旋回支持部を介して旋回可能に搭載され、当該旋回支持部に接合される箇所から水平方向に離れた荷重支持箇所に鉛直方向の力が付加されるクレーンの上部旋回フレームにおいて、前記旋回支持部に接合される箇所から前記荷重支持箇所までの領域内に貫通孔を有する側壁を備えるとともに、前記貫通孔のうちの少なくとも一つの貫通孔の形状が、その貫通孔の形成位置に当該貫通孔の垂直方向の寸法と略同等の直径をもつ円形孔を仮想したときに前記荷重支持箇所への鉛直方向の力の付加に伴って前記円形孔の周囲に生ずる応力の絶対値が最も大きくなる最大応力角度位置での前記貫通孔の孔周縁の曲率が、前記円形孔の周囲に生ずる応力の絶対値が最も小さくなる最小応力角度位置での前記貫通孔の孔周縁の曲率よりも小さくなるように、設定されていることを特徴とするクレーンの上部旋回フレーム。   In an upper swing frame of a crane that is mounted on a lower traveling body through a swing support portion so as to be capable of swinging, and a vertical force is applied to a load support location that is horizontally separated from a location joined to the swing support portion. And a side wall having a through hole in a region from the place joined to the swivel support part to the load support place, and the shape of at least one of the through holes is the formation position of the through hole. The absolute value of the stress generated around the circular hole when a vertical force is applied to the load supporting portion when a circular hole having a diameter substantially equal to the vertical dimension of the through hole is assumed in FIG. The curvature of the hole periphery of the through hole at the maximum stress angle position where the maximum is the largest is more than the curvature of the hole periphery of the through hole at the minimum stress angle position where the absolute value of the stress generated around the circular hole is the smallest. small Kunar so on, the upper rotating frame of the crane, characterized in that it is set. 請求項4記載のクレーンの上部旋回フレームにおいて、前記最大応力角度位置またはその近傍の角度位置で前記貫通孔の孔周縁の曲率が最小となるように当該貫通孔の孔周縁の形状が設定されていることを特徴とするクレーンの上部旋回フレーム。   The upper turning frame of the crane according to claim 4, wherein the shape of the hole periphery of the through hole is set so that the curvature of the hole periphery of the through hole is minimized at the maximum stress angle position or an angular position in the vicinity thereof. An upper swing frame of the crane characterized by 請求項4または5記載のクレーンの上部旋回フレームにおいて、前記貫通孔は、その中間部分に任意の方向に直線的に延びる直線部をもつ長孔であることを特徴とするクレーンの上部旋回フレーム。   6. The upper turning frame of a crane according to claim 4 or 5, wherein the through hole is a long hole having a straight portion extending linearly in an arbitrary direction at an intermediate portion thereof.
JP2005071155A 2005-03-14 2005-03-14 Frame of construction machine Pending JP2006248756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005071155A JP2006248756A (en) 2005-03-14 2005-03-14 Frame of construction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005071155A JP2006248756A (en) 2005-03-14 2005-03-14 Frame of construction machine

Publications (1)

Publication Number Publication Date
JP2006248756A true JP2006248756A (en) 2006-09-21

Family

ID=37089647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005071155A Pending JP2006248756A (en) 2005-03-14 2005-03-14 Frame of construction machine

Country Status (1)

Country Link
JP (1) JP2006248756A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10194681A (en) * 1997-01-08 1998-07-28 Kobe Steel Ltd Boom for latticed boom crane, or jib length automatic detection method and length automatic detector thereof
JP2000072384A (en) * 1998-09-03 2000-03-07 Kobe Steel Ltd Wheel crane
JP2000143156A (en) * 1998-11-11 2000-05-23 Yutani Heavy Ind Ltd Frame structure of crane
JP2001239964A (en) * 2000-03-01 2001-09-04 Hitachi Constr Mach Co Ltd Truck frame of crawler type vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10194681A (en) * 1997-01-08 1998-07-28 Kobe Steel Ltd Boom for latticed boom crane, or jib length automatic detection method and length automatic detector thereof
JP2000072384A (en) * 1998-09-03 2000-03-07 Kobe Steel Ltd Wheel crane
JP2000143156A (en) * 1998-11-11 2000-05-23 Yutani Heavy Ind Ltd Frame structure of crane
JP2001239964A (en) * 2000-03-01 2001-09-04 Hitachi Constr Mach Co Ltd Truck frame of crawler type vehicle

Similar Documents

Publication Publication Date Title
JP4889229B2 (en) Mobile crane
JP2006273530A5 (en)
JP6587964B2 (en) Car body of work machine
JP6128163B2 (en) Mobile crane and mobile crane boom raising method
JP5119220B2 (en) Swivel frame
JP6532749B2 (en) Upper revolving unit of working machine
JP6870484B2 (en) Construction machinery
JP2006248756A (en) Frame of construction machine
JP2019002161A (en) Method for erecting leader and backstay of pile driver
JP5978859B2 (en) Crane lattice boom
JP2017137171A (en) Crane and method for mounting boom of crane
JP2016037342A (en) crane
JP2008007278A (en) Crane
JP6552393B2 (en) Pile driver
JP6531505B2 (en) Telescopic boom mounting structure
JP2019049113A (en) Pile driver
JP7463865B2 (en) boom
JP7447613B2 (en) working machine
JP6454746B2 (en) Swivel frame of work machine
JP7452399B2 (en) crane
JP5306520B1 (en) Crane attachment
JP5519269B2 (en) Crane equipment
JP4708067B2 (en) Crane equipment
JP2007119180A (en) Slewing crane
JP2012051692A (en) Mobile crane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426