JP2006245362A - Semiconductor apparatus and electrode terminal used for the same - Google Patents

Semiconductor apparatus and electrode terminal used for the same Download PDF

Info

Publication number
JP2006245362A
JP2006245362A JP2005060050A JP2005060050A JP2006245362A JP 2006245362 A JP2006245362 A JP 2006245362A JP 2005060050 A JP2005060050 A JP 2005060050A JP 2005060050 A JP2005060050 A JP 2005060050A JP 2006245362 A JP2006245362 A JP 2006245362A
Authority
JP
Japan
Prior art keywords
electrode
electrode terminal
bent
stress
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005060050A
Other languages
Japanese (ja)
Inventor
Tatsuya Iwaasa
辰哉 磐浅
Yoshihisa Oguri
慶久 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005060050A priority Critical patent/JP2006245362A/en
Publication of JP2006245362A publication Critical patent/JP2006245362A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor apparatus which has a high reliability with use of an electrode terminal which is improved in the stress strength between a stress buffer and an electrode (and conductive part). <P>SOLUTION: The semiconductor apparatus comprises an electrode terminal 20. The electrode terminal 20 has a bent part 32, a plate-shaped stress buffer 30 of a pair of flat parts integrally formed with both ends of the bent part, an electrode 22 connected to one of flat parts, and a conductive part 24 connected to the other flat part. The semiconductor apparatus also comprises a semiconductor device electrically connected to the conductive part. The stress buffer has a constant thickness that is smaller than the electrode and the conductive part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体装置およびこれに用いられる電極端子に関する。   The present invention relates to a semiconductor device and an electrode terminal used therefor.

一般に、産業用および車載用のモータを駆動するためには大容量電流を必要とするが、これを制御するためにさまざまな電力用半導体装置が提案されている。中でも、絶縁基板上に絶縁ゲートバイポーラトランジスタなどの電力用半導体素子が実装された基板タイプの電力用半導体素子が数多く市販されている。   In general, a large capacity current is required to drive industrial and vehicle-mounted motors, and various power semiconductor devices have been proposed to control this. In particular, many substrate-type power semiconductor elements are commercially available in which a power semiconductor element such as an insulated gate bipolar transistor is mounted on an insulating substrate.

こうした基板タイプの電力用半導体装置によれば、電力用半導体素子を実装した絶縁基板がベース板上に取り付けられるとともに、樹脂ケースが電力用半導体素子を包囲するようにベース板に固定される。そして樹脂ケース中には、エポキシ樹脂などの絶縁充填剤を充填した後、絶縁材料からなる蓋が配設される。このとき、樹脂ケース内部の電力用半導体素子から延び、バスバーなどの外部端子に接続される電極端子は、極めて大きな電流が流れ、自らの抵抗成分により無視できない程度の熱量が発生する。   According to such a substrate type power semiconductor device, the insulating substrate on which the power semiconductor element is mounted is mounted on the base plate, and the resin case is fixed to the base plate so as to surround the power semiconductor element. The resin case is filled with an insulating filler such as an epoxy resin, and then a lid made of an insulating material is disposed. At this time, an extremely large current flows through an electrode terminal extending from the power semiconductor element inside the resin case and connected to an external terminal such as a bus bar, and generates a heat quantity that cannot be ignored due to its own resistance component.

また、電極端子は、樹脂ケース内では電力用半導体素子から蓋の方へ垂直方向に延び、バスバーは蓋に対して平行に配設されるため、蓋に設けた開口部に貫通させた後に、ほぼ直角に折り曲げる必要がある。すなわち、電力用半導体装置のアセンブリ工程において折り曲げやすいように、作業性の高い電極端子を用いることが求められる。   In addition, the electrode terminal extends in a vertical direction from the power semiconductor element toward the lid in the resin case, and the bus bar is disposed in parallel to the lid, so that after passing through the opening provided in the lid, It needs to be bent almost at right angles. That is, it is required to use an electrode terminal with high workability so that it can be easily bent in the assembly process of the power semiconductor device.

このような作業性の高い電極端子が、例えば特許文献1に開示されている。特許文献1によれば、図8(a)〜(c)に示すように、電極端子3は、外部接合端3aとコイニング部14とを有し、コイニング部14の幅を狭め、または厚みを薄くすることにより、小さい力で容易に折り曲げられ、この部分を折り曲げ中心とすることが記載されている(例えば、〔0005〕を参照されたい。)。   Such an electrode terminal with high workability is disclosed in Patent Document 1, for example. According to Patent Document 1, as shown in FIGS. 8A to 8C, the electrode terminal 3 has an external joint end 3 a and a coining portion 14, and the width of the coining portion 14 is reduced or increased in thickness. It is described that by making it thin, it can be easily bent with a small force, and this portion is the center of bending (see, for example, [0005]).

同様に、特許文献2の図4および図5に開示された外部電極3は、折り曲げ部分に凹溝および切り欠きが形成されており、外部電極3の外部接続部3bを直角に曲げることにより、パワーデバイスが組み立てられる。そして特許文献2において、レーザ光を用いて、折り曲げ部分をアニール処理することにより、精度よく確実に折り曲げ加工できる手法が記載されている。   Similarly, the external electrode 3 disclosed in FIGS. 4 and 5 of Patent Document 2 has a groove and a notch formed in the bent portion, and by bending the external connection portion 3b of the external electrode 3 at a right angle, A power device is assembled. And in patent document 2, the technique which can bend accurately and reliably is described by annealing a bending part using a laser beam.

さらに、特許文献3によれば、パワー半導体装置に用いられるS字型ベンド部6のリード幅を平板導電リード端子5より大きくし、その厚さを薄くすることにより、S字型ベンド部6の導電容量を平板導電リード端子5と実質的に同じにすることが開示されている。   Further, according to Patent Document 3, the lead width of the S-shaped bend portion 6 used in the power semiconductor device is made larger than that of the flat conductive lead terminal 5 and the thickness thereof is reduced, thereby reducing the thickness of the S-shaped bend portion 6. It is disclosed that the conductive capacity is substantially the same as the flat conductive lead terminal 5.

特開平9−45831号公報JP 9-45831 A 特開平3−60147号公報Japanese Patent Laid-Open No. 3-60147 特開平9−129797号公報Japanese Patent Laid-Open No. 9-129797

しかしながら、特許文献1においては、コイニング部14はその長手方向の寸法が短く設計され、電極端子3はコイニング部14を折り曲げ中心として折り曲げられるため、この折り曲げ中心に機械的応力が集中し、コイニング部14の外側表面からクラックが生じやすい。しかも、コイニング部14の断面積(幅と厚み)が外部接合端3aより小さいので、折り曲げ中心部分における電気抵抗成分が大きくなり、発熱量も大きくなる。すなわち、狭小なコイニング部14は、隣接する外部接合端3aよりも熱くなり、両者の境界部における温度勾配が極めて大きくなる。したがって、コイニング部14において、導通時に大きな熱応力がかかり、上述の機械的応力と相まってクラックの進行を促進する結果となり得る。   However, in Patent Document 1, the coining portion 14 is designed to have a short dimension in the longitudinal direction, and the electrode terminal 3 is bent with the coining portion 14 as a folding center. Therefore, mechanical stress concentrates on the folding center, and the coining portion 14 14 is likely to crack from the outer surface. In addition, since the cross-sectional area (width and thickness) of the coining portion 14 is smaller than the external joint end 3a, the electrical resistance component at the bending center portion increases and the amount of heat generation also increases. That is, the narrow coining portion 14 becomes hotter than the adjacent external joint end 3a, and the temperature gradient at the boundary portion between both becomes extremely large. Therefore, in the coining portion 14, a large thermal stress is applied at the time of conduction, which can result in promoting the progress of cracks in combination with the above-described mechanical stress.

また特許文献2によれば、外部電極3は、特許文献1と同様に、折り曲げ部分に凹溝および切り欠きを有し、折り曲げ部分から破断されることがあった(例えば、2頁右上欄18−19行を参照されたい。)。   Further, according to Patent Document 2, the external electrode 3 has a concave groove and a notch in the bent portion as in Patent Document 1, and may be broken from the bent portion (for example, upper right column 18 on page 2). (See line 19).

さらに、特許文献3のパワー半導体装置においても同様に、S字型ベンド部6と平板導電リード端子5の境界部に機械的応力が集中する。しかも、この境界部は、平板導電リード端子5より薄く形成されているので、応力に対して脆弱である。したがって、特許文献3のS字型ベンド部6と平板導電リード端子5の境界部は、特許文献1および2と同様、応力に弱く破断しやすい。   Further, similarly in the power semiconductor device of Patent Document 3, mechanical stress concentrates on the boundary portion between the S-shaped bend portion 6 and the flat conductive lead terminal 5. In addition, since this boundary portion is formed thinner than the flat conductive lead terminal 5, it is vulnerable to stress. Therefore, the boundary part between the S-shaped bend part 6 and the flat conductive lead terminal 5 of Patent Document 3 is vulnerable to stress and easily breaks, as in Patent Documents 1 and 2.

本発明に係る半導体装置は、折曲部およびその両端に一体に形成された一対の平坦部からなる板状の応力緩衝部、一方の前記平坦部に連結された電極部、および他方の前記平坦部に連結された導電部を有する電極端子と、前記導電部に電気的に接続された半導体素子とを備え、前記応力緩衝部は、その厚みが一定で、前記電極部および前記導電部よりも薄いことを特徴とする。   The semiconductor device according to the present invention includes a plate-shaped stress buffer portion formed of a bent portion and a pair of flat portions integrally formed at both ends thereof, an electrode portion connected to one of the flat portions, and the other flat portion. An electrode terminal having a conductive portion connected to the conductive portion, and a semiconductor element electrically connected to the conductive portion, and the stress buffering portion has a constant thickness and is larger than the electrode portion and the conductive portion. It is thin.

本発明によれば、応力緩衝部と電極部(および導電部)との間の応力強度が改善された電極端子を用いて、信頼性の高い半導体装置を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, a highly reliable semiconductor device is realizable using the electrode terminal by which the stress intensity | strength between a stress buffer part and an electrode part (and conductive part) was improved.

以下、添付図面を参照して本発明に係る半導体装置の実施の形態を説明する。各実施の形態の説明において、理解を容易にするために方向を表す用語(例えば、「上方」および「下方」など)を適宜用いるが、これは説明のためのものであって、これらの用語は本発明を限定するものでない。   Embodiments of a semiconductor device according to the present invention will be described below with reference to the accompanying drawings. In the description of each embodiment, a term indicating a direction (for example, “upward” and “downward”) is used as appropriate for easy understanding. Does not limit the invention.

実施の形態1.
図1〜図5を参照しながら、本発明に係るパワーモジュール(半導体装置)の実施の形態1について以下に説明する。図1に示すパワーモジュールは、概略、樹脂などの絶縁材料からなるケース10と、良好な熱伝導性を有する銅などの金属板からなる金属ベース板12とを有する。ケース10は、金属ベース板12にねじ(図示せず)などを用いて固定され、金属ベース板12は、その四隅に貫通孔14を有し、ねじなどを用いて金属放熱フィン(ともに図示せず)に取り付けられる。さらに、パワーモジュールは、複数の制御端子16を有する。
Embodiment 1 FIG.
A power module (semiconductor device) according to a first embodiment of the present invention will be described below with reference to FIGS. The power module shown in FIG. 1 generally includes a case 10 made of an insulating material such as a resin and a metal base plate 12 made of a metal plate such as copper having good thermal conductivity. The case 10 is fixed to the metal base plate 12 using screws (not shown) or the like. The metal base plate 12 has through holes 14 at four corners thereof, and the metal radiating fins (both not shown) using screws or the like. Attached). Further, the power module has a plurality of control terminals 16.

また詳細図示しないが、パワーモジュールは、ケース10の内部において、絶縁基板が金属ベース板12上に固定され、絶縁ゲート型バイポーラトランジスタ(IGBT)およびフリーホイールダイオード(FWD)などの少なくとも1つの電力用半導体素子が、絶縁基板上に実装されている。また、電力用半導体素子の上方を含むケース10の内部空間には、シリコンゲルが充填され、エポキシ樹脂を用いてその上方が封止され、さらにその上方に蓋18が配置されている。   Although not shown in detail, in the power module, the insulating substrate is fixed on the metal base plate 12 inside the case 10, and the power module is for at least one power such as an insulated gate bipolar transistor (IGBT) and a free wheel diode (FWD). A semiconductor element is mounted on an insulating substrate. In addition, the internal space of the case 10 including the upper portion of the power semiconductor element is filled with silicon gel, the upper portion is sealed with epoxy resin, and the lid 18 is further disposed above the inner space.

この実施の形態のパワーモジュールは、図1に示すように、電極端子20を有し、外部の電気回路装置(図示せず)と電気的に接続されたバスバー40を、ボルト42と電極端子20の一方の端部(「電極部22」という。図2参照)の間で保持した状態で、ボルト42を締め付けることにより、電極端子20と外部の電気回路装置とを電気的に接続する。そして、電極端子20は、他方の端部(「導電部24」という。図2参照)がケース10の内部において電力用半導体素子の電極と電気的に接続され、上方に(蓋18に垂直に)延び、ケース10の外側においては横方向に(蓋18に平行に)延びている。こうして、外部電気回路装置と半導体素子が電気的に接続される。   As shown in FIG. 1, the power module of this embodiment includes an electrode terminal 20, a bus bar 40 electrically connected to an external electric circuit device (not shown), a bolt 42 and an electrode terminal 20. The electrode terminal 20 and an external electric circuit device are electrically connected by tightening the bolt 42 while being held between the one end portions (referred to as “electrode portion 22”, see FIG. 2). The other end of the electrode terminal 20 (referred to as “conductive portion 24”, see FIG. 2) is electrically connected to the electrode of the power semiconductor element inside the case 10, and upward (perpendicular to the lid 18). And extends laterally outside the case 10 (parallel to the lid 18). Thus, the external electric circuit device and the semiconductor element are electrically connected.

ここで、この実施の形態に係る電極端子20の詳細な構造およびパワーモジュールの組み立て方法について以下説明する。
上述のように、図1および図2に示す電極端子20は、バスバー40に接続される電極部22と、半導体素子に接続される導通部24とを有する。また電極端子20は、パワーモジュールに組み込まれる前の状態を示す図3(a)のように、電極部22と導通部24の間に配設された長手方向に直線的に延びる応力緩衝部30を有する。
さらに応力緩衝部30は、折曲部32およびその両端に一体に形成された一対の平坦部34,35からなり、この実施の形態に係る応力緩衝部30(折曲部32および平坦部34,35)は、図3(b)に示すように、その厚みが一定で、電極部22および導電部24と比較すると薄くなるように設計されている。例えば、電極部22および導通部24の厚みを1.5mmとし、応力緩衝部30の厚みを1.2mmとしてもよい。
Here, the detailed structure of the electrode terminal 20 and the method for assembling the power module according to this embodiment will be described below.
As described above, the electrode terminal 20 shown in FIGS. 1 and 2 has the electrode part 22 connected to the bus bar 40 and the conduction part 24 connected to the semiconductor element. Moreover, the electrode terminal 20 is a stress buffering portion 30 linearly extending in the longitudinal direction disposed between the electrode portion 22 and the conducting portion 24 as shown in FIG. Have
Further, the stress buffering portion 30 includes a bent portion 32 and a pair of flat portions 34 and 35 integrally formed at both ends thereof, and the stress buffering portion 30 (the bent portion 32 and the flat portion 34, 35) according to this embodiment. 35), as shown in FIG. 3B, the thickness is constant, and it is designed to be thinner than the electrode part 22 and the conductive part 24. For example, the thickness of the electrode part 22 and the conduction part 24 may be 1.5 mm, and the thickness of the stress buffer part 30 may be 1.2 mm.

こうして構成された電極端子20の導電部24が半導体素子に接続された後、電極部22および応力緩衝部30が蓋18に事前に設けられた開口部11を通って上方に突出するように、蓋18がケース10上に配置される。そして、蓋18をケース10上に配置した後に、応力緩衝部30の折曲部32において所定の曲率半径Rで所定の折曲方向に折れ曲がる(湾曲する)ように電極端子20が折り曲げられる(図2および図4)。すなわち、折曲部32が所定の曲率半径Rで湾曲するが、平坦部34,35が湾曲することなく平坦性を維持するように、電極端子20は折り曲げられる。このとき、例えば、応力緩衝部30の長手方向の長さが6.0mmで、折曲部32の曲率半径Rが1.5mmとなるように設計することができる。   After the conductive portion 24 of the electrode terminal 20 thus configured is connected to the semiconductor element, the electrode portion 22 and the stress buffer portion 30 protrude upward through the opening 11 provided in advance in the lid 18. A lid 18 is disposed on the case 10. And after arrange | positioning the lid | cover 18 on the case 10, the electrode terminal 20 is bend | folded so that it may bend (curve) in the predetermined bending direction by the predetermined curvature radius R in the bending part 32 of the stress buffer part 30 (FIG. 2 and FIG. 4). That is, the bent portion 32 is bent at a predetermined radius of curvature R, but the electrode terminal 20 is bent so that the flat portions 34 and 35 are kept flat without being bent. At this time, for example, the length of the stress buffer portion 30 in the longitudinal direction can be designed to be 6.0 mm and the curvature radius R of the bent portion 32 can be 1.5 mm.

このように、折曲部32とその両端にある平坦部34,35が一体に形成され、その厚みが一定であるので、折曲部32と平坦部34,35の間において機械的応力が集中することを防止でき、折曲部32が所定の曲率半径Rで折り曲げられているので、機械的応力を分散させることができる。また、折曲部32と平坦部34,35の厚みが一定であるので、その電気抵抗成分(発熱量)が一定となり、両者間において生じ得る急峻な温度勾配(大きな熱応力)を回避することができる。
加えて、折曲部32および平坦部34,35は、電極部22および導電部24よりも薄くなるように設計されているので、小さい力で折り曲げやすく、パワーモジュールの高いアセンブリ作業性が期待できる。しかも、平坦部34,35を電極部22よりも薄くすると、図2および図4に示すように、電極部22が平坦部34,35より上に凸となるように形成されるので、バスバー40の取り付け作業が容易になる。
こうして、機械的応力および熱応力が局所的に集中することなく、破断しにくい電極端子20を用いて、信頼性の高いパワーモジュールを容易に実現することができる。
Thus, since the bent portion 32 and the flat portions 34 and 35 at both ends thereof are integrally formed and the thickness thereof is constant, mechanical stress is concentrated between the bent portion 32 and the flat portions 34 and 35. Since the bent portion 32 is bent at a predetermined radius of curvature R, mechanical stress can be dispersed. Further, since the thickness of the bent portion 32 and the flat portions 34 and 35 is constant, the electric resistance component (heat generation amount) is constant, and a steep temperature gradient (large thermal stress) that may occur between the two is avoided. Can do.
In addition, since the bent portion 32 and the flat portions 34 and 35 are designed to be thinner than the electrode portion 22 and the conductive portion 24, it is easy to bend with a small force, and high assembly workability of the power module can be expected. . In addition, when the flat portions 34 and 35 are made thinner than the electrode portion 22, the electrode portion 22 is formed so as to protrude above the flat portions 34 and 35 as shown in FIGS. The mounting work becomes easier.
In this way, a highly reliable power module can be easily realized by using the electrode terminal 20 that is not easily broken without mechanical and thermal stresses being concentrated locally.

なお、電極部、応力緩衝部30(折曲部32および平坦部34,35)および導電部24のそれぞれが、折曲部32の折れ曲がる側に面した面を内面36、これに対向する面を外面38とすると、図4に示すように外面38が凹むように薄層化されることが、図5のように内面36が凹むように薄層化される場合よりも好ましい。
換言すると、応力緩衝部30の薄層化した側の面が外面38となるように、電極端子20は折り曲げられる。これにより、図5とは異なり図4に示すように折曲部32を折り曲げる際、特別の寸法および形状を有する折り曲げ治具を用いる必要性を排除できる。
Each of the electrode portion, the stress buffering portion 30 (the bent portion 32 and the flat portions 34 and 35), and the conductive portion 24 has a surface facing the bent side of the bent portion 32 as an inner surface 36, and a surface facing the inner surface 36. In the case of the outer surface 38, it is preferable that the outer surface 38 is thinned so as to be recessed as shown in FIG. 4 than the case where the inner surface 36 is thinned so as to be recessed as shown in FIG.
In other words, the electrode terminal 20 is bent so that the thinned surface of the stress buffer portion 30 becomes the outer surface 38. Thereby, unlike FIG. 5, when bending the bending part 32 as shown in FIG. 4, the necessity to use the bending jig | tool which has a special dimension and shape can be excluded.

実施の形態2.
図6〜図8を参照しながら、本発明に係るパワーモジュール(半導体装置)の実施の形態2について以下に説明する。実施の形態2のパワーモジュールは、電極端子の形状が異なる点を除き、実施の形態1のパワーモジュールと同様の構成を有するので、重複する部分に関する詳細な説明を省略する。
Embodiment 2. FIG.
A second embodiment of a power module (semiconductor device) according to the present invention will be described below with reference to FIGS. The power module according to the second embodiment has the same configuration as that of the power module according to the first embodiment except that the shape of the electrode terminals is different. Therefore, detailed description regarding overlapping parts is omitted.

実施の形態2の応力緩衝部30は、その厚みが一定で、電極部22および導電部24よりも薄くなるように構成されていたのに対し、実施の形態2のパワーモジュールの応力緩衝部30は、その幅が一定で、電極部および導電部よりも狭い点が異なる。
すなわち、実施の形態2の電極端子20は、図6および図7に示すように、バスバー40に接続される電極部22と、半導体素子に接続される導通部24と、電極部22と導通部24の間に一体に形成された長手方向に直線的に延びる応力緩衝部30とを有し、この実施の形態2の応力緩衝部30(折曲部32および平坦部34,35)は、その幅が一定で、電極部22および導電部24と比較すると狭くなるように設計されている。例えば、電極部22および導通部24の幅20mmとし、応力緩衝部30の厚みを15mmとしてもよい。また、パワーモジュールの電極部22、応力緩衝部30、および導電部24の厚みは同じであってもよい。
The stress buffering portion 30 of the second embodiment has a constant thickness and is configured to be thinner than the electrode portion 22 and the conductive portion 24, whereas the stress buffering portion 30 of the power module of the second embodiment. Is different in that the width is constant and narrower than the electrode part and the conductive part.
That is, as shown in FIGS. 6 and 7, the electrode terminal 20 of the second embodiment includes an electrode part 22 connected to the bus bar 40, a conduction part 24 connected to the semiconductor element, and the electrode part 22 and the conduction part. 24, the stress buffering portion 30 that is formed integrally in the longitudinal direction and that extends linearly, and the stress buffering portion 30 (the bent portion 32 and the flat portions 34 and 35) of the second embodiment is The width is constant and is designed to be narrower than the electrode portion 22 and the conductive portion 24. For example, the electrode portion 22 and the conductive portion 24 may have a width of 20 mm, and the stress buffer portion 30 may have a thickness of 15 mm. Moreover, the thickness of the electrode part 22, the stress buffer part 30, and the conductive part 24 of the power module may be the same.

パワーモジュールをアセンブリする際、実施の形態1と同様、電極端子20は、応力緩衝部30の折曲部32において所定の曲率半径Rで湾曲するように折り曲げられ、平坦部34,35の平坦性は同様に維持される(図8)。   When assembling the power module, as in the first embodiment, the electrode terminal 20 is bent at the bent portion 32 of the stress buffer portion 30 so as to be bent at a predetermined radius of curvature R, and the flatness of the flat portions 34 and 35 is increased. Is similarly maintained (FIG. 8).

こうして組み立てられたパワーモジュールにおいて、折曲部32とその両端にある平坦部34,35が一体に形成され、その幅が一定となるように構成されているので、折曲部32と平坦部34,35の間における機械的な応力集中を回避することができるとともに、折曲部32が所定の曲率半径Rで折り曲げられているので、機械的応力を分散させることができる。また、折曲部32と平坦部34,35の幅が一定であるので、その電気抵抗成分(発熱量)が一定となり、通電時の両者間における温度勾配(大きな熱応力)を低減することができる。
加えて、応力緩衝部30は、電極部22および導電部24よりも幅狭となるように設計されているので、小さい力で折り曲げやすく、パワーモジュールの組み立て作業性を改善することができる。
こうして、機械的応力および熱応力が局所的に集中することなく、破断しにくい電極端子20を用いて、信頼性の高い半導体装置を容易に実現することができる。
In the power module assembled in this manner, the bent portion 32 and the flat portions 34 and 35 at both ends thereof are integrally formed and the width thereof is constant, so that the bent portion 32 and the flat portion 34 are configured. , 35 can be avoided, and the bent portion 32 is bent at a predetermined radius of curvature R, so that the mechanical stress can be dispersed. Further, since the widths of the bent portion 32 and the flat portions 34 and 35 are constant, the electrical resistance component (heat generation amount) becomes constant, and the temperature gradient (large thermal stress) between the two during energization can be reduced. it can.
In addition, since the stress buffer portion 30 is designed to be narrower than the electrode portion 22 and the conductive portion 24, the stress buffer portion 30 can be easily bent with a small force, and the assembly workability of the power module can be improved.
Thus, a highly reliable semiconductor device can be easily realized by using the electrode terminal 20 that is not easily broken without mechanical and thermal stresses being concentrated locally.

実施の形態3.
図9を参照しながら、本発明に係るパワーモジュール(半導体装置)の実施の形態3について以下に説明する。図9に示す実施の形態3の電極端子20によれば、応力緩衝部30は、実施の形態1と同様、その厚みが一定で、電極部22および導電部24よりも薄く、かつ実施の形態2と同様、その幅が一定で、電極部および導電部よりも狭くなるように設計されている。
Embodiment 3 FIG.
A third embodiment of the power module (semiconductor device) according to the present invention will be described below with reference to FIG. According to the electrode terminal 20 of the third embodiment shown in FIG. 9, the stress buffer portion 30 has a constant thickness, is thinner than the electrode portion 22 and the conductive portion 24, as in the first embodiment, and the embodiment. Similar to 2, the width is constant and designed to be narrower than the electrode portion and the conductive portion.

このように、実施の形態3の応力緩衝部30の折曲部32は、実施の形態1および2より折り曲げやすいので、さらにパワーモジュールの組み立て作業性を改善することができる。さらに、機械的応力および熱応力の局所的な集中を緩和することにより、破断しにくい電極端子20を用いて、信頼性の高い半導体装置を容易に実現することができる。   As described above, since the bent portion 32 of the stress buffer portion 30 of the third embodiment is easier to bend than the first and second embodiments, the assembly workability of the power module can be further improved. Furthermore, by relaxing local concentration of mechanical stress and thermal stress, a highly reliable semiconductor device can be easily realized by using the electrode terminal 20 that is not easily broken.

本発明に係るパワーモジュールの斜視図である。It is a perspective view of the power module concerning the present invention. 第1の実施の形態による電極端子の拡大斜視図である。It is an expansion perspective view of the electrode terminal by a 1st embodiment. パワーモジュールに組み込まれる前の図2に示す電極端子の平面図および側面図である。It is the top view and side view of an electrode terminal which are shown in FIG. 2 before incorporating in a power module. パワーモジュールに組み込まれた後の図2に示す電極端子の側面図である。FIG. 3 is a side view of the electrode terminal shown in FIG. 2 after being assembled in a power module. 好適でない方向に折り曲げられた電極端子の図4と同様の側面図である。It is a side view similar to FIG. 4 of the electrode terminal bent in the unsuitable direction. 第2の実施の形態による電極端子の拡大斜視図である。It is an expansion perspective view of the electrode terminal by 2nd Embodiment. パワーモジュールに組み込まれる前の図6に示す電極端子の平面図である。It is a top view of the electrode terminal shown in FIG. 6 before incorporating in a power module. パワーモジュールに組み込まれた後の図6に示す電極端子の側面図である。It is a side view of the electrode terminal shown in FIG. 6 after incorporating in a power module. 第3の実施の形態による電極端子の拡大斜視図である。It is an expansion perspective view of the electrode terminal by 3rd Embodiment.

符号の説明Explanation of symbols

10 ケース、12 金属ベース板、14 貫通孔、16 制御端子、18 蓋、20 電極端子、22 電極部、24 導電部、30 応力緩衝部、32 折曲部、34,35 平坦部、36 内面、38 外面、40 バスバー、42 ボルト。

10 Case, 12 Metal base plate, 14 Through hole, 16 Control terminal, 18 Lid, 20 Electrode terminal, 22 Electrode part, 24 Conductive part, 30 Stress buffer part, 32 Bent part, 34, 35 Flat part, 36 Inner surface, 38 exterior, 40 busbar, 42 bolts.

Claims (4)

折曲部およびその両端に一体に形成された一対の平坦部からなる板状の応力緩衝部、一方の前記平坦部に連結された電極部、および他方の前記平坦部に連結された導電部を有する電極端子と、
前記導電部に電気的に接続された半導体素子とを備え、
前記応力緩衝部は、その厚みが一定で、前記電極部および前記導電部よりも薄いことを特徴とする半導体装置。
A plate-shaped stress buffering portion comprising a bent portion and a pair of flat portions integrally formed at both ends thereof, an electrode portion connected to one of the flat portions, and a conductive portion connected to the other flat portion. Having electrode terminals;
A semiconductor element electrically connected to the conductive portion,
The stress buffer portion has a constant thickness and is thinner than the electrode portion and the conductive portion.
前記電極部、前記応力緩衝部、および前記導電部のそれぞれは、前記折曲部が折れ曲がる側に面した内面とこれに対向する外面とを有し、
前記応力緩衝部が前記外面において凹となるように形成されていることを特徴とする請求項1に記載の半導体装置。
Each of the electrode portion, the stress buffering portion, and the conductive portion has an inner surface facing the side where the bent portion is bent and an outer surface facing the inner surface.
The semiconductor device according to claim 1, wherein the stress buffer portion is formed to be concave on the outer surface.
折曲部およびその両端に一体に形成された一対の平坦部からなる板状の応力緩衝部、一方の前記平坦部に連結された電極部、および他方の前記平坦部に連結された導電部を有する電極端子と、
前記導電部に電気的に接続された半導体素子とを備え、
前記応力緩衝部は、その幅が一定で、前記電極部および前記導電部よりも狭いことを特徴とする半導体装置。
A plate-shaped stress buffering portion comprising a bent portion and a pair of flat portions integrally formed at both ends thereof, an electrode portion connected to one of the flat portions, and a conductive portion connected to the other flat portion. Having electrode terminals;
A semiconductor element electrically connected to the conductive portion,
The stress buffer portion has a constant width and is narrower than the electrode portion and the conductive portion.
請求項1〜3に記載の半導体装置に用いられる前記電極端子。

The said electrode terminal used for the semiconductor device of Claims 1-3.

JP2005060050A 2005-03-04 2005-03-04 Semiconductor apparatus and electrode terminal used for the same Pending JP2006245362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005060050A JP2006245362A (en) 2005-03-04 2005-03-04 Semiconductor apparatus and electrode terminal used for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060050A JP2006245362A (en) 2005-03-04 2005-03-04 Semiconductor apparatus and electrode terminal used for the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010207417A Division JP2011018933A (en) 2010-09-16 2010-09-16 Semiconductor device, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2006245362A true JP2006245362A (en) 2006-09-14

Family

ID=37051440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060050A Pending JP2006245362A (en) 2005-03-04 2005-03-04 Semiconductor apparatus and electrode terminal used for the same

Country Status (1)

Country Link
JP (1) JP2006245362A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283567A (en) * 2008-05-20 2009-12-03 Toyota Industries Corp Semiconductor device
WO2010137116A1 (en) * 2009-05-26 2010-12-02 三菱電機株式会社 Apparatus for packing power semiconductor device
JP2012209598A (en) * 2012-07-30 2012-10-25 Toyota Industries Corp Semiconductor device
EP2099121A3 (en) * 2008-03-04 2015-03-11 Kabushiki Kaisha Toyota Jidoshokki Power converter apparatus
JP5892250B2 (en) * 2012-11-05 2016-03-23 日本精工株式会社 Semiconductor module
WO2021220351A1 (en) * 2020-04-27 2021-11-04 三菱電機株式会社 Electrical conduction structure and power semiconductor module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104058A (en) * 1985-06-04 1987-05-14 Mitsubishi Electric Corp Semiconductor device
JPH02142548U (en) * 1989-04-28 1990-12-04
JPH0360147A (en) * 1989-07-28 1991-03-15 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH0345653U (en) * 1989-09-12 1991-04-26
JPH0637220A (en) * 1992-07-17 1994-02-10 Honda Motor Co Ltd Power module
JP2001060659A (en) * 1999-08-23 2001-03-06 Toyota Autom Loom Works Ltd Connection structure of semiconductor module and inverter
JP2002043496A (en) * 2000-07-21 2002-02-08 Hitachi Ltd Semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104058A (en) * 1985-06-04 1987-05-14 Mitsubishi Electric Corp Semiconductor device
JPH02142548U (en) * 1989-04-28 1990-12-04
JPH0360147A (en) * 1989-07-28 1991-03-15 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH0345653U (en) * 1989-09-12 1991-04-26
JPH0637220A (en) * 1992-07-17 1994-02-10 Honda Motor Co Ltd Power module
JP2001060659A (en) * 1999-08-23 2001-03-06 Toyota Autom Loom Works Ltd Connection structure of semiconductor module and inverter
JP2002043496A (en) * 2000-07-21 2002-02-08 Hitachi Ltd Semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2099121A3 (en) * 2008-03-04 2015-03-11 Kabushiki Kaisha Toyota Jidoshokki Power converter apparatus
JP2009283567A (en) * 2008-05-20 2009-12-03 Toyota Industries Corp Semiconductor device
WO2010137116A1 (en) * 2009-05-26 2010-12-02 三菱電機株式会社 Apparatus for packing power semiconductor device
CN102448847B (en) * 2009-05-26 2013-12-04 三菱电机株式会社 Apparatus for packing power semiconductor device
JP5449341B2 (en) * 2009-05-26 2014-03-19 三菱電機株式会社 Power semiconductor device packaging equipment
US8872313B2 (en) 2009-05-26 2014-10-28 Mitsubishi Electric Corporation Package apparatus of power semiconductor device
JP2012209598A (en) * 2012-07-30 2012-10-25 Toyota Industries Corp Semiconductor device
JP5892250B2 (en) * 2012-11-05 2016-03-23 日本精工株式会社 Semiconductor module
US9402311B2 (en) 2012-11-05 2016-07-26 Nsk Ltd. Semiconductor module
WO2021220351A1 (en) * 2020-04-27 2021-11-04 三菱電機株式会社 Electrical conduction structure and power semiconductor module

Similar Documents

Publication Publication Date Title
JP5881860B2 (en) Power module
JP5257817B2 (en) Semiconductor device
US20070052072A1 (en) Resin mold type semiconductor device
US8610263B2 (en) Semiconductor device module
EP2701192B1 (en) Semiconductor device, inverter device provided with semiconductor device, and in-vehicle rotating electrical machine provided with semiconductor device and inverter device
US8860220B2 (en) Semiconductor device and method for manufacturing the same
US20200051892A1 (en) Power semiconductor module and vehicle
JP2011018933A (en) Semiconductor device, and method of manufacturing the same
JP2009130044A (en) Method of manufacturing semiconductor device
JP2006245362A (en) Semiconductor apparatus and electrode terminal used for the same
JP6200759B2 (en) Semiconductor device and manufacturing method thereof
JP5217015B2 (en) Power converter and manufacturing method thereof
US10373919B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP4715283B2 (en) Power converter and manufacturing method thereof
JP2007095875A (en) Mounting structure of semiconductor device
JP2007234694A (en) Semiconductor device, and bonding method of external connection terminal of same and external electrode
JP2009094164A (en) Power semiconductor element in inverter device
JP5164793B2 (en) Power semiconductor device
JP6992913B2 (en) Lead frame wiring structure and semiconductor module
JP5040418B2 (en) Semiconductor device
JP2009164511A (en) Semiconductor device and method of manufacturing the same
JP4992302B2 (en) Power semiconductor module
JP4555187B2 (en) Power module and manufacturing method thereof
JP2005033123A (en) Semiconductor power module
US20230395470A1 (en) Power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070614

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Effective date: 20100524

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622

A521 Written amendment

Effective date: 20100916

Free format text: JAPANESE INTERMEDIATE CODE: A523