JP4555187B2 - Power module and manufacturing method thereof - Google Patents

Power module and manufacturing method thereof Download PDF

Info

Publication number
JP4555187B2
JP4555187B2 JP2005223245A JP2005223245A JP4555187B2 JP 4555187 B2 JP4555187 B2 JP 4555187B2 JP 2005223245 A JP2005223245 A JP 2005223245A JP 2005223245 A JP2005223245 A JP 2005223245A JP 4555187 B2 JP4555187 B2 JP 4555187B2
Authority
JP
Japan
Prior art keywords
bump
power module
heating element
wiring board
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005223245A
Other languages
Japanese (ja)
Other versions
JP2007042754A (en
Inventor
孝司 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2005223245A priority Critical patent/JP4555187B2/en
Publication of JP2007042754A publication Critical patent/JP2007042754A/en
Application granted granted Critical
Publication of JP4555187B2 publication Critical patent/JP4555187B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Description

本発明は、パワーモジュールに関するものであり、特にインバータ装置などの発熱素子を冷却するための冷却構造に関するものである。   The present invention relates to a power module, and more particularly to a cooling structure for cooling a heating element such as an inverter device.

電気自動車等に用いられている従来のインバータ装置には、トランジスタやFET、IGBT等の半導体スイッチング素子が用いられているが、大電流を制御していることから消費電力も大きく、多量の熱が発生する。
このような半導体スイッチング素子からの発熱を放置しておくと、電子部品が劣化して寿命が短くなるばかりでなく、破壊するおそれもあるため、極力、放熱し、温度上昇を抑制して使用する必要がある。
Conventional inverter devices used in electric vehicles and the like use semiconductor switching elements such as transistors, FETs, and IGBTs. However, since they control large currents, power consumption is large and a large amount of heat is generated. appear.
If such heat generation from the semiconductor switching element is left unattended, not only will the electronic components deteriorate and the service life will be shortened, but there is also a risk of destruction. There is a need.

従来のパワーモジュールとしては、図3、4に示す断面図のようなものがあり、このパワーモジュールは、冷却装置を備えた汎用のIGBT(Insulated Gate Bipolar Transistor)モジュールである(例えば特許文献1参照)。
特開2000−68447号公報
3 and 4 are conventional power modules, and this power module is a general-purpose IGBT (Insulated Gate Bipolar Transistor) module including a cooling device (see, for example, Patent Document 1). ).
JP 2000-68447 A

図3において、1はパワーモジュール、5はアルミニウムや銅等からなる放熱板(金属ベース板)、4は両面に銅等の金属箔を固着させたアルミナや窒化アルミニウム等からなる絶縁基板、2はIGBT等の半導体スイッチング素子(発熱素子)である。
また、9はブスバー、8は中継基板、10は半導体スイッチング素子と中継基板を接続するアルミワイヤ、3ははんだ、11はパワーモジュール1の内部を封止するシリコン樹脂、7はヒートシンク、6はシリコングリース等のコンパウンドである。
図3に示すように、半導体スイッチング素子2は、絶縁基板4の上にはんだ3を介して接合され、また、絶縁基板4は放熱板5の上にはんだ3を介して接合され、放熱板5はヒートシンク7にコンパウンド6を介して固着されている。
パワーモジュールの動作時に半導体スイッチング素子2から発生する熱は、絶縁基板4と放熱板5とを経由してヒートシンク7に伝導し、半導体スイッチング素子2が冷却される。
In FIG. 3, 1 is a power module, 5 is a heat radiating plate (metal base plate) made of aluminum, copper or the like, 4 is an insulating substrate made of alumina, aluminum nitride or the like with a metal foil such as copper fixed on both sides, 2 A semiconductor switching element (heating element) such as an IGBT.
Also, 9 is a bus bar, 8 is a relay board, 10 is an aluminum wire for connecting the semiconductor switching element and the relay board, 3 is solder, 11 is a silicon resin for sealing the inside of the power module 1, 7 is a heat sink, and 6 is silicon. A compound such as grease.
As shown in FIG. 3, the semiconductor switching element 2 is joined to the insulating substrate 4 via the solder 3, and the insulating substrate 4 is joined to the heat sink 5 via the solder 3. Is fixed to the heat sink 7 via a compound 6.
Heat generated from the semiconductor switching element 2 during operation of the power module is conducted to the heat sink 7 via the insulating substrate 4 and the heat sink 5, and the semiconductor switching element 2 is cooled.

上記のパワーモジュールは、使用されている各部材の線膨張係数が互いに異なるので、動作時の温度変化により熱変形が起こり、これにより熱応力が発生する。
また、大容量化に伴って半導体スイッチング素子の発熱量が増加するとともに、熱サイクル数も増大しているため、長期にわたる信頼性に関しても問題がある。
例えば、パワーモジュール1では、絶縁基板4が窒化アルミニウムである場合、その線膨張係数が約4×10−6/Kであるのに対して、放熱板5が銅の場合、約16×10−6/Kであり、アルミニウムの場合、約23×10−6/Kとその差が非常に大きく、このため動作時に生じる温度変化によって、絶縁基板4と放熱板5の接合部に熱応力が発生し、従来のはんだ3のような硬い材料で構成した場合、亀裂が発生しやすく、長期信頼性に問題があった。
さらに、放熱板5とヒートシンク7との間に、熱伝導率の低いコンパウンド6を介在させる構造となっているため、熱抵抗が高く、冷却性能が低いという問題もあった。
In the power module described above, since the linear expansion coefficients of the members used are different from each other, thermal deformation occurs due to temperature changes during operation, thereby generating thermal stress.
Further, as the capacity increases, the amount of heat generated by the semiconductor switching element increases and the number of thermal cycles also increases, so there is a problem with long-term reliability.
For example, in the power module 1, when the insulating substrate 4 is aluminum nitride, the coefficient of linear expansion is about 4 × 10 −6 / K, whereas when the heat sink 5 is copper, it is about 16 × 10 − 6 / K, and in the case of aluminum, the difference is very large, about 23 × 10 −6 / K. Therefore, thermal stress is generated at the joint between the insulating substrate 4 and the heat sink 5 due to temperature change during operation. However, when it is made of a hard material such as the conventional solder 3, cracks are likely to occur, and there is a problem in long-term reliability.
Furthermore, since the compound 6 having a low thermal conductivity is interposed between the heat sink 5 and the heat sink 7, there is a problem that the thermal resistance is high and the cooling performance is low.

また、他の従来例として、図4のように、半導体スイッチング素子2を絶縁基板4に載置させ、該絶縁基板4を放熱板5に固着させた上で、放熱フィン付きのヒートシンク7に取付けるとともに、半導体スイッチング素子2の電極を金属板20に接合させ、該金属板20を、絶縁膜21を介して上部冷却板22に接続させる構造のものがある。   As another conventional example, as shown in FIG. 4, the semiconductor switching element 2 is mounted on an insulating substrate 4, the insulating substrate 4 is fixed to a heat radiating plate 5, and then attached to a heat sink 7 with radiating fins. In addition, there is a structure in which the electrode of the semiconductor switching element 2 is bonded to the metal plate 20 and the metal plate 20 is connected to the upper cooling plate 22 through the insulating film 21.

しかし、上記の構造は複雑であり、組立に工数がかかり、部材コストが高くなる上、上部冷却板22に接続する絶縁膜21により熱伝導性が低下するという問題があった。   However, the above-described structure is complicated, which requires man-hours for assembly, increases the member cost, and reduces the thermal conductivity due to the insulating film 21 connected to the upper cooling plate 22.

上記のパワーモジュールにおいては、半導体スイッチング素子2を搭載した絶縁基板4を金属製の放熱板5にはんだ付けし、さらに放熱板5の下面と冷却ブロックの接する面にシリコングリース等のコンパウンド6を塗布して使用し、半導体スイッチング素子の冷却効果を高めているものの、シリコングリースの熱伝導率が約1W/m・Kであり、放熱板や絶縁基板と比較して2桁以上小さく、シリコングリース界面における熱抵抗が大きくなるために高い放熱性を期待できない。   In the power module described above, the insulating substrate 4 on which the semiconductor switching element 2 is mounted is soldered to a metal heat sink 5 and a compound 6 such as silicon grease is applied to the lower surface of the heat sink 5 and the surface in contact with the cooling block. Although the cooling effect of the semiconductor switching element is enhanced, the thermal conductivity of silicon grease is about 1 W / m · K, which is two orders of magnitude smaller than the heat sink and insulating substrate, and the silicon grease interface High heat dissipation cannot be expected due to the increase in thermal resistance.

また、絶縁基板4と、上記の半導体スイッチング素子2、放熱板5との界面、半導体スイッチング素子2と金属板20との界面に存在する接合はんだ3も、他の構成部材と比較して、熱抵抗が大きいため、放熱板の熱伝導性を向上させたとしても、高い放熱性を期待できない。   In addition, the bonding solder 3 present at the interface between the insulating substrate 4 and the semiconductor switching element 2 and the heat sink 5 and the interface between the semiconductor switching element 2 and the metal plate 20 is also more heat-resistant than other components. Since the resistance is large, even if the thermal conductivity of the heat sink is improved, high heat dissipation cannot be expected.

上記のような問題があったため、簡単な構造で、かつ半導体スイッチング素子からの放熱性を改善することができる電子部品の冷却構造が求められていた。   Because of the above problems, there has been a demand for a cooling structure for electronic components that has a simple structure and can improve heat dissipation from the semiconductor switching element.

本発明は、上記課題を解決するもので、発熱素子が実装された絶縁基板と、該絶縁基板が固着された放熱板と、該発熱素子を外装する樹脂とで構成されるパワーモジュールにおいて、金または銅からなり、前記発熱素子の電極上に形成され、前記樹脂で覆われながらも上面が平坦化されて前記樹脂から露出したバンプと、前記バンプ上面に配置され、前記バンプを介して前記発熱素子と接続される金属配線板とを備え、前記金属配線板は、絶縁材を基材として該基材上に金属を張り合わせることにより配線が施されていることを特徴とするパワーモジュールである。
また、発熱素子が実装された絶縁基板と、該絶縁基板が固着された放熱板と、該発熱素子を外装する樹脂とで構成されるパワーモジュールの製造方法において、発熱素子の電極上に金または銅からなるバンプを形成する第1工程と、前記バンプと前記発熱素子とを覆うように樹脂外装する第2工程と、前記バンプ上面の樹脂を切削除去し平坦化してバンプ上面を露出させる第3工程と、前記バンプ上面に金属配線板を配置し、該金属配線板と前記発熱素子とを前記バンプを介して接続する第4工程とを備え、前記第4工程で配置される前記金属配線板は、絶縁材を基材として該基材上に金属を張り合わせることにより配線が施されていることを特徴とするパワーモジュールの製造方法である。
The present invention is intended to solve the above problems, an insulating substrate on which heat generating elements are mounted, and a heat sink the insulating substrate is fixed, in the power module composed of a resin sheathing of the heat generating element, gold Alternatively, the bump is made of copper, formed on the electrode of the heat generating element and covered with the resin, and the upper surface is flattened and exposed from the resin, and the bump is disposed on the bump upper surface, and the heat is generated through the bump. And a metal wiring board connected to the element, wherein the metal wiring board is a power module in which wiring is applied by bonding a metal on the base material using an insulating material as a base material. .
Further, in a method of manufacturing a power module including an insulating substrate on which a heat generating element is mounted, a heat sink to which the insulating substrate is fixed, and a resin that covers the heat generating element, gold or gold is formed on the electrode of the heat generating element. A first step of forming a bump made of copper, a second step of covering the bump and the heat generating element with a resin, and a third step of cutting and removing the resin on the bump upper surface to expose the bump upper surface. A metal wiring board disposed on the upper surface of the bump, and a fourth process of connecting the metal wiring board and the heating element via the bump, and the metal wiring board disposed in the fourth process. Is a method of manufacturing a power module, characterized in that wiring is applied by bonding a metal onto the base material using an insulating material as the base material.

また、上記のバンプと発熱素子との当接する部分の面積が、該素子のバンプ側の面積の30%以上であることを特徴とするパワーモジュールである。   The power module is characterized in that the area of the contact portion between the bump and the heat generating element is 30% or more of the area of the bump side of the element.

さらに、上記のバンプの厚さが発熱素子の厚さの0.3〜3.0倍であることを特徴とするパワーモジュールである。   Further, the power module is characterized in that the thickness of the bump is 0.3 to 3.0 times the thickness of the heating element.

そして、上記の金属配線板がポリイミド樹脂、エポキシ樹脂、フェノール樹脂、ガラス繊維等の絶縁材を基材とし、銅、アルミニウム等の金属張りとし、銅、アルミニウム等により配線を施してなることを特徴とするパワーモジュールである。   The above-mentioned metal wiring board is made of an insulating material such as polyimide resin, epoxy resin, phenol resin, glass fiber, etc., and is covered with metal such as copper or aluminum, and is wired with copper or aluminum. It is a power module.

上記の半導体スイッチング素子の発熱を、熱伝導性の高い金または銅からなるバンプを介して上面の放熱用の金属配線板に伝導させ、放熱することにより、半導体スイッチング素子下面の絶縁基板、放熱板だけでは十分に放熱できない熱をも逃がすことができ、放熱性向上を図ることが可能となる。
このとき、上記バンプの半導体スイッチング素子と当接する部分の面積を、該素子のバンプ側の面積の30%以上とし、バンプの厚さを該素子の厚さの0.3〜3.0倍とすることで、上記の熱伝導性が改善されるとともに、半導体スイッチング素子と金属配線板との接続強度も維持することができ、また、該金属配線板を銅、アルミニウム等の金属張りとし、銅、アルミニウム等により配線することにより、放熱性がさらに向上する。
よって、信頼性の高い電子部品冷却構造を提供することができる。
Heat generated from the semiconductor switching element is conducted to a heat dissipating metal wiring board through bumps made of gold or copper having high thermal conductivity, and is dissipated to dissipate the insulating substrate and heat sink on the lower surface of the semiconductor switching element. Heat that cannot be sufficiently dissipated by itself can be released, and heat dissipation can be improved.
At this time, the area of the bump contacting the semiconductor switching element is 30% or more of the bump side area of the element, and the bump thickness is 0.3 to 3.0 times the thickness of the element. As a result, the thermal conductivity is improved and the connection strength between the semiconductor switching element and the metal wiring board can be maintained, and the metal wiring board is made of metal such as copper or aluminum, and the copper Further, the heat dissipation is further improved by wiring with aluminum or the like.
Therefore, a highly reliable electronic component cooling structure can be provided.

以下、本発明による実施例について、図面を参照して説明する。
パワーモジュールに使用される、本発明の電子部品冷却装置の断面図を図1に示す。また、図1のバンプ16、エポキシ樹脂17、中継基板8のA−A’線による断面図を図2に示す。
半導体スイッチング素子2を搭載した絶縁基板4は、放熱板5にはんだ3を介してはんだ付けして実装される。
また、半導体スイッチング素子2上に冷却効果を高めるために、熱伝導性の高い金または銅からなるバンプ16を形成して、周囲をエポキシ樹脂17で固定した後、該バンプ16とエポキシ樹脂の上面を切削除去して平坦化し、さらにバンプ上部に銅またはアルミニウムを張り合わせた熱伝導性の高い金属配線板18を接合する。ここで、上記エポキシ樹脂は高さ調整の働きをする。
上記構成により、半導体スイッチング素子2から発生する熱は、はんだ3を介して絶縁基板4、放熱板5に至る経路のみでなく、バンプ16を介して金属配線板18に至る経路、すなわち、熱抵抗の大きなはんだを介さず放熱する経路を併せ持つ構造となり、放熱性を大幅に改善することができ、高い冷却能力を実現できる。
Embodiments of the present invention will be described below with reference to the drawings.
A cross-sectional view of the electronic component cooling apparatus of the present invention used in a power module is shown in FIG. Further, FIG. 2 shows a cross-sectional view of the bump 16, the epoxy resin 17, and the relay substrate 8 of FIG.
The insulating substrate 4 on which the semiconductor switching element 2 is mounted is mounted by soldering to the heat sink 5 via the solder 3.
Further, in order to enhance the cooling effect on the semiconductor switching element 2, bumps 16 made of gold or copper having high thermal conductivity are formed and the periphery is fixed with an epoxy resin 17, and then the bumps 16 and the upper surface of the epoxy resin are formed. The metal wiring board 18 having high thermal conductivity in which copper or aluminum is bonded to the upper part of the bump is joined. Here, the epoxy resin functions to adjust the height.
With the above-described configuration, the heat generated from the semiconductor switching element 2 is not only the path to the insulating substrate 4 and the heat sink 5 via the solder 3 but also the path to the metal wiring board 18 via the bump 16, that is, the thermal resistance. It has a structure that also has a heat dissipation path without involving a large solder, can greatly improve the heat dissipation, and can realize a high cooling capacity.

ここで、バンプ16と半導体スイッチング素子2との当接する部分の面積と、該素子2のバンプ側面積の比[%]、バンプ16の厚さに対する半導体スイッチング素子2の厚さの比[倍]と、該素子2の温度上昇との関係を調査した。
なお、バンプの材料は、本実施例では金とした。
また、半導体スイッチング素子2のバンプ16による金属配線板18との接続強度を調査するため、振動試験を行った。
なお、上記2つの試験の条件は下記のとおりとし、試料数はn=10とした。
Here, the ratio of the area of the contact portion between the bump 16 and the semiconductor switching element 2 to the bump side area of the element 2 [%], and the ratio of the thickness of the semiconductor switching element 2 to the thickness of the bump 16 [times] And the temperature rise of the element 2 was investigated.
The bump material was gold in this embodiment.
In addition, a vibration test was performed in order to investigate the connection strength between the bump 16 of the semiconductor switching element 2 and the metal wiring board 18.
The conditions for the above two tests were as follows, and the number of samples was n = 10.

[半導体スイッチング素子の温度上昇測定]
・半導体スイッチング素子:IGBT(定格:70A−600V、サイズ:6.9×9.
0mm)
・通電条件
電流:30A、電圧:320V、時間:10分
・温度上昇測定方法
測定器:熱電対
周囲温度:60℃(恒温槽)
[Measurement of temperature rise in semiconductor switching devices]
Semiconductor switching element: IGBT (Rating: 70A-600V, Size: 6.9 × 9.
0mm)
・ Energizing conditions Current: 30A, Voltage: 320V, Time: 10 minutes ・ Temperature rise measurement method Measuring instrument: Thermocouple Ambient temperature: 60 ° C (Constant temperature chamber)

[パワーモジュールの振動試験]
パワーモジュールの金属配線板側を試験用基板にはんだ付けして、振動試験機に取り付け、下記条件にて試験した。
・振動試験条件
(周波数) (振幅) (時間)
X方向 10〜55Hz、1.5mm、2時間
Y方向 10〜55Hz、1.5mm、2時間
Z方向 10〜55Hz、1.5mm、2時間
・上記振動試験後、製品特性を測定し、不良品の発生数を調査した。
[Power module vibration test]
The metal wiring board side of the power module was soldered to a test substrate, attached to a vibration tester, and tested under the following conditions.
・ Vibration test conditions
(Frequency) (Amplitude) (Time)
X direction 10-55 Hz, 1.5 mm, 2 hours Y direction 10-55 Hz, 1.5 mm, 2 hours Z direction 10-55 Hz, 1.5 mm, 2 hours The number of occurrences was investigated.

上記試験を行い、半導体スイッチング素子の温度上昇[℃]を測定するとともに、振動試験後の特性不良品の発生数を調査した結果を、下記の表1に示す。   Table 1 below shows the results of conducting the above test, measuring the temperature rise [° C.] of the semiconductor switching element, and investigating the number of occurrences of defective products after the vibration test.

Figure 0004555187
Figure 0004555187

表1より明らかなように、バンプを介して半導体スイッチング素子の熱を金属配線板に放熱する構造の実施例1〜11は、このような放熱構造を持たない従来例1と比較して、放熱性が改善され、また、半導体スイッチング素子の金属配線板に対する接続強度(振動試験後の特性)も改善されている。
また、半導体スイッチング素子の熱を金属板を介して上部冷却板に放熱する構造の従来例2は、従来例1より放熱性が改善され、実施例1と同等であるが、半導体スイッチング素子の金属配線板に対する接続強度(振動試験後の特性)は改善されていない。
次に、実施例1〜11について比較すると、バンプ16と半導体スイッチング素子2との当接する部分の面積と、該素子12のバンプ側面積の比[%]は、30%以上とするのが良い。30%未満では、半導体スイッチング素子12の温度上昇を抑えるのに十分でなく、また、バンプ16による、半導体スイッチング素子12の金属配線板18への接続強度が十分でないので、振動試験において特性不良が発生する(実施例1、2)。
また、バンプ16の厚さに対する半導体スイッチング素子12の厚さの比[倍]は、0.3〜3.0倍とするのが良い。0.3倍未満では、接続強度が十分でないので、振動試験において特性不良が発生する(実施例4)。また、3.0倍を超えても、振動試験における不良発生率は変わらないので、材料コスト面で不利となる(実施例8)。
なお、上記実施例ではバンプの材料として金を用いたが、銅を用いても、上記と同様の効果を得ることができる。
As is apparent from Table 1, Examples 1 to 11 having a structure in which the heat of the semiconductor switching element is radiated to the metal wiring board through the bumps are radiated as compared with the conventional example 1 having no such heat radiating structure. In addition, the connection strength (characteristic after vibration test) of the semiconductor switching element to the metal wiring board is also improved.
Further, the conventional example 2 having a structure in which the heat of the semiconductor switching element is radiated to the upper cooling plate through the metal plate is improved in heat dissipation compared with the conventional example 1, and is equivalent to the first example. The connection strength (characteristic after vibration test) to the wiring board has not been improved.
Next, comparing Examples 1 to 11, the ratio [%] of the area where the bump 16 and the semiconductor switching element 2 are in contact with the bump side area of the element 12 is preferably 30% or more. . If it is less than 30%, it is not sufficient to suppress the temperature rise of the semiconductor switching element 12 and the connection strength of the semiconductor switching element 12 to the metal wiring board 18 by the bumps 16 is not sufficient. (Examples 1 and 2).
In addition, the ratio [times] of the thickness of the semiconductor switching element 12 to the thickness of the bump 16 is preferably 0.3 to 3.0 times. If it is less than 0.3 times, the connection strength is not sufficient, so that a characteristic failure occurs in the vibration test (Example 4). Moreover, even if it exceeds 3.0 times, the defect occurrence rate in the vibration test does not change, which is disadvantageous in terms of material cost (Example 8).
In the above embodiment, gold is used as the bump material, but the same effect as described above can be obtained even when copper is used.

本発明の実施例によるパワーモジュールの断面図である。It is sectional drawing of the power module by the Example of this invention. 図1のA−A’線によるパワーモジュールの断面図である。It is sectional drawing of the power module by the A-A 'line of FIG. 従来例の電子部品冷却構造によるパワーモジュールの断面図である。It is sectional drawing of the power module by the electronic component cooling structure of a prior art example. 他の従来例の電子部品冷却構造によるパワーモジュールの断面図である。 である。It is sectional drawing of the power module by the electronic component cooling structure of another prior art example. It is.

符号の説明Explanation of symbols

1 パワーモジュール
2 半導体スイッチング素子(IGBT)
3 はんだ
4 絶縁基板
5 放熱板(金属ベース板)
6 コンパウンド
7 ヒートシンク
8 中継基板
9 ブスバー
10 アルミワイヤ
11 シリコン樹脂
16 バンプ
17 エポキシ樹脂
18 金属配線板(放熱用)
19 配線用金属端子(配線用)
20 金属板
21 絶縁膜
22 上部冷却板
23 配線パターン
1 Power Module 2 Semiconductor Switching Element (IGBT)
3 Solder 4 Insulating substrate 5 Heat sink (metal base plate)
6 Compound 7 Heat sink 8 Relay board 9 Bus bar 10 Aluminum wire 11 Silicon resin 16 Bump 17 Epoxy resin 18 Metal wiring board (for heat dissipation)
19 Metal terminal for wiring (for wiring)
20 Metal plate 21 Insulating film 22 Upper cooling plate 23 Wiring pattern

Claims (4)

発熱素子が実装された絶縁基板と、該絶縁基板が固着された放熱板と、該発熱素子を外装する樹脂とで構成されるパワーモジュールにおいて、
金または銅からなり、前記発熱素子の電極上に形成され、前記樹脂で覆われながらも上面が平坦化されて前記樹脂から露出したバンプと、
前記バンプ上面に配置され、前記バンプを介して前記発熱素子と接続される金属配線板とを備え、
前記金属配線板は、絶縁材を基材として該基材上に金属を張り合わせることにより配線が施されていることを特徴とするパワーモジュール。
In a power module composed of an insulating substrate on which a heating element is mounted, a heat dissipation plate to which the insulating substrate is fixed, and a resin that covers the heating element,
A bump made of gold or copper, formed on the electrode of the heating element, and covered with the resin, the upper surface is flattened and exposed from the resin,
A metal wiring board disposed on the upper surface of the bump and connected to the heating element via the bump;
The power module is characterized in that the metal wiring board is provided with a wiring by attaching a metal to the base material using an insulating material as a base material .
請求項1記載のバンプと発熱素子との当接する部分の面積が、該素子のバンプ側の面積の30%以上であることを特徴とするパワーモジュール。   The power module according to claim 1, wherein an area of a contact portion between the bump and the heating element according to claim 1 is 30% or more of an area on the bump side of the element. 請求項2記載のバンプの厚さが発熱素子の厚さの0.3〜3.0倍であることを特徴とするパワーモジュール。   The power module according to claim 2, wherein the thickness of the bump is 0.3 to 3.0 times the thickness of the heating element. 発熱素子が実装された絶縁基板と、該絶縁基板が固着された放熱板と、該発熱素子を外装する樹脂とで構成されるパワーモジュールの製造方法において、In a method for manufacturing a power module, which includes an insulating substrate on which a heating element is mounted, a heat sink to which the insulating substrate is fixed, and a resin that covers the heating element.
発熱素子の電極上に金または銅からなるバンプを形成する第1工程と、A first step of forming a bump made of gold or copper on the electrode of the heating element;
前記バンプと前記発熱素子とを覆うように樹脂外装する第2工程と、A second step of coating the resin so as to cover the bump and the heating element;
前記バンプ上面の樹脂を切削除去し平坦化してバンプ上面を露出させる第3工程と、A third step of cutting and removing the resin on the upper surface of the bump and flattening to expose the upper surface of the bump;
前記バンプ上面に金属配線板を配置し、該金属配線板と前記発熱素子とを前記バンプを介して接続する第4工程とA fourth step of disposing a metal wiring board on the bump upper surface and connecting the metal wiring board and the heat generating element via the bump;
を備え、With
前記第4工程で配置される前記金属配線板は、絶縁材を基材として該基材上に金属を張り合わせることにより配線が施されていることを特徴とするパワーモジュールの製造方法。The method of manufacturing a power module, wherein the metal wiring board disposed in the fourth step is provided with wiring by attaching a metal to the base material using an insulating material as a base material.
JP2005223245A 2005-08-01 2005-08-01 Power module and manufacturing method thereof Expired - Fee Related JP4555187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005223245A JP4555187B2 (en) 2005-08-01 2005-08-01 Power module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005223245A JP4555187B2 (en) 2005-08-01 2005-08-01 Power module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007042754A JP2007042754A (en) 2007-02-15
JP4555187B2 true JP4555187B2 (en) 2010-09-29

Family

ID=37800481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005223245A Expired - Fee Related JP4555187B2 (en) 2005-08-01 2005-08-01 Power module and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4555187B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5201085B2 (en) * 2009-06-10 2013-06-05 日産自動車株式会社 Semiconductor device
JP2013149834A (en) * 2012-01-20 2013-08-01 Toyota Motor Corp Semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243880A (en) * 1999-02-19 2000-09-08 Sanyo Electric Co Ltd Semiconductor device and its manufacture
JP2001102400A (en) * 1998-11-09 2001-04-13 Nippon Soken Inc Electronic device and manufacturing method therefor
JP2003068959A (en) * 2001-08-22 2003-03-07 Denso Corp Semiconductor device
JP2004128176A (en) * 2002-10-02 2004-04-22 Toyota Motor Corp Junction for members having different coefficient of linear expansion
JP2004311533A (en) * 2003-04-02 2004-11-04 Denso Corp Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102400A (en) * 1998-11-09 2001-04-13 Nippon Soken Inc Electronic device and manufacturing method therefor
JP2000243880A (en) * 1999-02-19 2000-09-08 Sanyo Electric Co Ltd Semiconductor device and its manufacture
JP2003068959A (en) * 2001-08-22 2003-03-07 Denso Corp Semiconductor device
JP2004128176A (en) * 2002-10-02 2004-04-22 Toyota Motor Corp Junction for members having different coefficient of linear expansion
JP2004311533A (en) * 2003-04-02 2004-11-04 Denso Corp Semiconductor device

Also Published As

Publication number Publication date
JP2007042754A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
US10559538B2 (en) Power module
JP5257817B2 (en) Semiconductor device
JP4499577B2 (en) Semiconductor device
JP5113815B2 (en) Power module
US8610263B2 (en) Semiconductor device module
US20080136015A1 (en) High power semiconductor device
US20170271239A1 (en) Semiconductor module and manufacturing method of semiconductor module
US20170154835A1 (en) Electronic module and method of manufacturing the same
US10163752B2 (en) Semiconductor device
JP2005116702A (en) Power semiconductor module
JP6200759B2 (en) Semiconductor device and manufacturing method thereof
JP2014187264A (en) Semiconductor device
JP4555187B2 (en) Power module and manufacturing method thereof
EP2058860A2 (en) Fully testable surface mount die package configured for two-sided cooling
JP2010212620A (en) Power module
JP2007027261A (en) Power module
JP7098045B2 (en) Semiconductor devices and diagnostic methods for semiconductor devices
JP2010086977A (en) Power module
JP4861200B2 (en) Power module
US20240047430A1 (en) Semiconductor device and method of manufacturing semiconductor device
JP2005032791A (en) Heat dissipating member, circuit board, and semiconductor device
US11387210B2 (en) Semiconductor module and manufacturing method therefor
KR20130136439A (en) Method for producing an electrical circuit and electrical circuit
JP7103256B2 (en) Semiconductor equipment
JP4396366B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4555187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees