JP2005116702A - Power semiconductor module - Google Patents

Power semiconductor module Download PDF

Info

Publication number
JP2005116702A
JP2005116702A JP2003347356A JP2003347356A JP2005116702A JP 2005116702 A JP2005116702 A JP 2005116702A JP 2003347356 A JP2003347356 A JP 2003347356A JP 2003347356 A JP2003347356 A JP 2003347356A JP 2005116702 A JP2005116702 A JP 2005116702A
Authority
JP
Japan
Prior art keywords
semiconductor element
high thermal
thermal conductor
semiconductor module
power semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003347356A
Other languages
Japanese (ja)
Inventor
Yoshinari Ikeda
良成 池田
Takashi Fujii
岳志 藤井
Katsuhiko Yoshihara
克彦 吉原
Yuji Iizuka
祐二 飯塚
Mitsuo Yamashita
満男 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003347356A priority Critical patent/JP2005116702A/en
Publication of JP2005116702A publication Critical patent/JP2005116702A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power semiconductor module that can reduce the surface temperature of a semiconductor device and uniformize its in-plane temperature distribution. <P>SOLUTION: The power semiconductor module temporarily suspends heat generated in a semiconductor device 13 by means of a high thermal conductivity body 20 so as to suppress the surface temperature rise of the semiconductor device 13. Especially, the thermal conductivity of the body 20 is higher than that of the semiconductor device 13, so that the generated heat is conducted swiftly, resulting in permitting temperature suppression effect exhibited. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、発熱性の半導体素子を絶縁基板上に構成された回路パターンに接合して構成されるパワー半導体モジュールに関する。   The present invention relates to a power semiconductor module configured by bonding a heat-generating semiconductor element to a circuit pattern formed on an insulating substrate.

近年、IGBT(Insulated Gate Bipolar Transistor)モジュールなどのパワー半導体モジュールのパッケージ構造は、図8に示すようなケース構造と呼ばれるものが主流となっている。同図(A)は、そのIGBTモジュールの主要部を表す平面図であり、同図(B)は、そのA−A断面に相当する矢視断面図である。   In recent years, a package structure of a power semiconductor module such as an IGBT (Insulated Gate Bipolar Transistor) module has been mainly used as a case structure as shown in FIG. FIG. 2A is a plan view showing the main part of the IGBT module, and FIG. 2B is a cross-sectional view taken along the line AA.

これらの図に示されるように、IGBTモジュールは、ヒートシンク111,絶縁基板112及び半導体素子113を半田114により一体的に接合して、この一体となった構造物を樹脂成形されたケース115に接着し、さらに配線用の複数のワイヤ116を接続することにより構成されている。そして、これら絶縁基板112,半導体素子113及びワイヤ116を水分,湿気,塵などから保護するために、ケース115内はゲル117で封止されている。   As shown in these drawings, in the IGBT module, the heat sink 111, the insulating substrate 112, and the semiconductor element 113 are integrally joined by the solder 114, and the integrated structure is bonded to the resin-molded case 115. In addition, a plurality of wiring wires 116 are connected. In order to protect the insulating substrate 112, the semiconductor element 113, and the wire 116 from moisture, moisture, dust, and the like, the inside of the case 115 is sealed with a gel 117.

このIGBTモジュールの電気的接続については、同図に示すように、半導体素子113の表面電極にワイヤ116がボンディングされる一方、裏面電極が絶縁基板112上の回路パターン118(主にCuで構成)に半田接合されている。また、複数の回路パターン118の間や、各回路パターン118と外部電極用端子119との間にもワイヤ116がボンディングされ、電気的な接続が確保されている。   As for the electrical connection of the IGBT module, as shown in the figure, the wire 116 is bonded to the front surface electrode of the semiconductor element 113, while the back surface electrode is a circuit pattern 118 (mainly composed of Cu) on the insulating substrate 112. Are soldered together. Further, the wires 116 are bonded between the plurality of circuit patterns 118 and between each circuit pattern 118 and the external electrode terminal 119 to ensure electrical connection.

しかしながら、ワイヤ116による電気配線では半導体素子113で発生した熱を放熱させる作用が少ない。また、半導体素子113で発生した熱は絶縁基板112にて拡散してヒートシンク111に伝導されて放熱されるが、特に半導体素子113の中央部は端部に比べて発生した熱が絶縁基板112内で広がり難い。このため、実使用時に半導体素子113の中心部の温度が極端に上昇し、パワー半導体モジュールの性能及び信頼性を低下させてしまうといった問題があった。   However, the electrical wiring using the wires 116 has little effect of radiating the heat generated in the semiconductor element 113. The heat generated in the semiconductor element 113 is diffused in the insulating substrate 112 and is conducted to the heat sink 111 to be dissipated. In particular, the heat generated in the central portion of the semiconductor element 113 is larger in the insulating substrate 112 than in the end portion. It is difficult to spread. For this reason, there has been a problem that the temperature of the central portion of the semiconductor element 113 is extremely increased during actual use, thereby reducing the performance and reliability of the power semiconductor module.

こうした中、例えば半導体素子の表面電極に金属板を接合し、この金属板を介して半導体素子で発生した熱を放熱する技術が提案されている(例えば特許文献1)。
特開2000−68447号公報
Under such circumstances, for example, a technique has been proposed in which a metal plate is joined to a surface electrode of a semiconductor element and heat generated in the semiconductor element is radiated through the metal plate (for example, Patent Document 1).
JP 2000-68447 A

しかしながら、上記特許文献には、導電性の良い金属板を用いるとあるのみで、放熱に関するその金属板の具体的特性については触れられておらず、どの程度の放熱効果があるかについても開示されていない。   However, the above-mentioned patent document only uses a metal plate with good electrical conductivity, and does not touch on the specific characteristics of the metal plate with respect to heat dissipation, and discloses how much heat dissipation is effective. Not.

一方、上記問題を解決するためには、パワー半導体モジュールにおいて電流のオン/オフにより温度負荷が繰返される実使用時に生じる半田接合部の歪みを低減させ、その半田接合部の電気的安定性(電流の流れの均一化),熱的な性能(表面温度分布の均一化)と、その長期信頼性を確保する必要がある。そして、その長期信頼性を確保するためには、半導体素子の表面温度の低減、さらにその面内温度分布の均一化を如何に実現するかが課題となる。   On the other hand, in order to solve the above problem, in the power semiconductor module, distortion of the solder joint that occurs during actual use in which the temperature load is repeated due to current on / off is reduced, and the electrical stability (current) of the solder joint is reduced. And the long-term reliability of the thermal performance (uniform surface temperature distribution). And in order to ensure the long-term reliability, it becomes a subject how to implement | achieve reduction of the surface temperature of a semiconductor element, and also uniformization of the in-plane temperature distribution.

本発明はこのような点に鑑みてなされたものであり、半導体素子の表面温度の低減、及びその面内温度分布の均一化を実現できるパワー半導体モジュールを提供することを目的とする。   The present invention has been made in view of these points, and an object of the present invention is to provide a power semiconductor module that can reduce the surface temperature of a semiconductor element and make the in-plane temperature distribution uniform.

本発明では上記問題を解決するために、絶縁基板の表面に形成された回路パターンの所定位置に半導体素子をロー付接合して構成されるパワー半導体モジュールにおいて、前記半導体素子の前記絶縁基板とは反対側に形成された表面電極に、前記半導体素子の熱伝導率以上の熱伝導率を有する高熱伝導体をロー付接合したことを特徴とするパワー半導体モジュールが提供される。   In the present invention, in order to solve the above problem, in a power semiconductor module configured by brazing a semiconductor element to a predetermined position of a circuit pattern formed on the surface of the insulating substrate, the insulating substrate of the semiconductor element is defined as A power semiconductor module is provided in which a high thermal conductor having a thermal conductivity equal to or higher than the thermal conductivity of the semiconductor element is brazed to a surface electrode formed on the opposite side.

ここでいう「ロー付接合」には、半田接合その他のロー材による接合が含まれる。また、絶縁基板やこれに接合される半導体素子は一つであっても複数含まれていてもよい。
このようなパワー半導体モジュールによれば、高熱伝導体により半導体素子で発生した熱を一時的に保留し、半導体素子の表面温度の上昇を抑制することができる。特に、高熱伝導体の熱伝導率が半導体素子の熱伝導率以上になっているため、その発生熱を速やかに伝導させて温度抑制効果を発揮させることができる。
Here, “joining with brazing” includes joining by soldering or other brazing material. In addition, the insulating substrate and the semiconductor element bonded thereto may be one or plural.
According to such a power semiconductor module, it is possible to temporarily hold the heat generated in the semiconductor element by the high thermal conductor and suppress an increase in the surface temperature of the semiconductor element. In particular, since the thermal conductivity of the high thermal conductor is equal to or higher than the thermal conductivity of the semiconductor element, the generated heat can be conducted quickly and the temperature suppressing effect can be exhibited.

一般的には、半導体素子の熱伝導率は100W/m・K程度のものがほとんどであるため、高熱伝導体として、その熱伝導率が100W/m・K以上であるものを選択するのが好ましい。   In general, most of the semiconductor devices have a thermal conductivity of about 100 W / m · K. Therefore, a high thermal conductor having a thermal conductivity of 100 W / m · K or more is selected. preferable.

この場合、高熱伝導体における半導体素子の表面電極との接合面積が大きいほど熱伝導が良くなり、半導体素子の表面温度の低減効果を発揮する傾向にあるが、発明者らの解析により、ある接合面積以上になるとその効果が収束する傾向にあることが分かった。すなわち、後述する実施の形態でも述べるように、その接合面積が半導体素子の中心部を含め表面電極全体の面積の40%以上となるように構成するとよい。   In this case, the larger the bonding area with the surface electrode of the semiconductor element in the high thermal conductor, the better the heat conduction, and the effect of reducing the surface temperature of the semiconductor element tends to be exerted. It turns out that the effect tends to converge when the area is exceeded. That is, as described in the embodiments described later, the junction area may be 40% or more of the total area of the surface electrode including the central portion of the semiconductor element.

同様に、発明者らの解析により、高熱伝導体の厚みが、半導体素子の厚みと、半導体素子との間に介装されるロー材の厚みとを合計した厚み以上となるように構成されていると、高熱伝導体による温度抑制効果を大きく発揮させることができる。具体的には、後述する実施の形態から、高熱伝導体の厚みが0.25mm以上となるように構成されるのが好ましい。   Similarly, according to the analysis by the inventors, the thickness of the high thermal conductor is configured to be equal to or greater than the sum of the thickness of the semiconductor element and the thickness of the brazing material interposed between the semiconductor element. When it is, the temperature suppression effect by a high heat conductor can be exhibited largely. Specifically, it is preferable that the thickness of the high thermal conductor is 0.25 mm or more from the embodiments described later.

さらに、高熱伝導体が、半導体素子と絶縁基板の回路パターンとを接続する電気伝導体を構成するようにしてもよい。
このように構成すれば、高熱伝導体において半導体素子から受け取った熱を、絶縁基板側に伝導して放熱することができ、半導体素子の表面温度の速やかな低減を実現することができる。
Further, the high thermal conductor may constitute an electrical conductor that connects the semiconductor element and the circuit pattern of the insulating substrate.
If comprised in this way, the heat received from the semiconductor element in the high thermal conductor can be conducted and radiated to the insulating substrate side, and a rapid reduction of the surface temperature of the semiconductor element can be realized.

例えば、高熱伝導体をリードフレームとして構成することができ、その厚みが最小となる部分の厚さが0.25mm以上となるように構成すれば、表面温度の良好な低減効果が得られる。   For example, a high thermal conductor can be formed as a lead frame, and if the thickness of the portion where the thickness is minimized is 0.25 mm or more, a good effect of reducing the surface temperature can be obtained.

本発明のパワー半導体モジュールによれば、高熱伝導体により半導体素子での発生熱を保留することができるため、その半導体素子の表面温度を低減させることができる。その結果、半導体素子の表面の温度勾配が小さくなり、その面内温度分布の均一化を実現することができる。   According to the power semiconductor module of the present invention, the generated heat in the semiconductor element can be retained by the high thermal conductor, so that the surface temperature of the semiconductor element can be reduced. As a result, the temperature gradient on the surface of the semiconductor element is reduced, and the in-plane temperature distribution can be made uniform.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
[第1の実施の形態]
まず、本発明の第1の実施の形態について説明する。尚、本実施の形態のパワー半導体モジュールは、半導体素子としてIGBTを用いたものであり、図1はそのパワー半導体モジュール(IGBTモジュール)の構造を表す断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
First, a first embodiment of the present invention will be described. In addition, the power semiconductor module of this Embodiment uses IGBT as a semiconductor element, FIG. 1 is sectional drawing showing the structure of the power semiconductor module (IGBT module).

図1に示すように、本実施の形態のパワー半導体モジュール1は、長方形板状の絶縁基板11の表面に形成された回路パターン12の所定位置に、複数の発熱性の半導体素子13(IGBT:本実施の形態では熱伝導率約85W/m・K)を半田51を介して半田接合して構成されている(図8(a)と同様)。尚、図1においては、その複数の半導体素子13の一つが表示されている。   As shown in FIG. 1, the power semiconductor module 1 of the present embodiment has a plurality of exothermic semiconductor elements 13 (IGBT: IGBT) at predetermined positions of a circuit pattern 12 formed on the surface of a rectangular plate-like insulating substrate 11. In this embodiment, a thermal conductivity of about 85 W / m · K) is soldered via a solder 51 (similar to FIG. 8A). In FIG. 1, one of the plurality of semiconductor elements 13 is displayed.

絶縁基板11の裏面には、この絶縁基板11よりも大きな長方形板状の銅(Cu)板からなるヒートシンク14が半田52を介して半田接合されており、そのヒートシンク14の上端縁に沿って半導体素子13を取り囲むように、樹脂成形されたケース15が接着されている。ケース15の内壁には外部接続端子として、エミッタ用端子21やコレクタ用端子22等が設けられており、それぞれ複数本のアルミワイヤ31,32等を介して絶縁基板11の回路パターン12に電気的に接続されている。   A heat sink 14 made of a rectangular copper (Cu) plate larger than the insulating substrate 11 is solder-bonded to the back surface of the insulating substrate 11 via solder 52, and a semiconductor is formed along the upper edge of the heat sink 14. A resin-molded case 15 is bonded so as to surround the element 13. The inner wall of the case 15 is provided with an emitter terminal 21 and a collector terminal 22 as external connection terminals, which are electrically connected to the circuit pattern 12 of the insulating substrate 11 via a plurality of aluminum wires 31 and 32, respectively. It is connected to the.

半導体素子13の表面電極は、図示しないアルミ(Al)で成膜されているが、無電解Ni/Auめっき処理を施しているため、半田接合が可能となっている。そして、半導体素子13の絶縁基板11とは反対側に形成された表面電極には、低電気抵抗率で高熱伝導率を有する銅からなる長方形板状の高熱伝導体20が半田53を介して半田接合されている。この高熱伝導体20は、半導体素子13の表面に形成されたエミッタ電極に接続されており、その上面にはエミッタ電流を絶縁基板11側に流すアルミワイヤ33の一端がボンディングされ、その他端が回路パターン12に接続されている。半導体素子13の裏面にはコレクタ電極が形成されており、半田51を介して絶縁基板11の回路パターン12に接続されている。   Although the surface electrode of the semiconductor element 13 is formed of aluminum (Al) (not shown), since it is subjected to electroless Ni / Au plating, solder bonding is possible. Then, on the surface electrode formed on the side opposite to the insulating substrate 11 of the semiconductor element 13, a rectangular plate-shaped high thermal conductor 20 made of copper having low electrical resistivity and high thermal conductivity is soldered via the solder 53. It is joined. The high thermal conductor 20 is connected to an emitter electrode formed on the surface of the semiconductor element 13, and one end of an aluminum wire 33 for passing an emitter current to the insulating substrate 11 side is bonded to the upper surface thereof, and the other end is connected to a circuit. Connected to the pattern 12. A collector electrode is formed on the back surface of the semiconductor element 13 and is connected to the circuit pattern 12 of the insulating substrate 11 via the solder 51.

また、半導体素子13の表面にはゲート電極も形成されており、このゲート電極と回路パターン12とをつなぐアルミワイヤ34がボンディングされている。このゲート電極と電気的に接続される回路パターン12の部分からは、さらにアルミワイヤ35が延出しており、その先端がケース15の内壁に設けられた図示しないゲート用端子に接続されている。つまり、各アルミワイヤによって電気配線が形成されている。   A gate electrode is also formed on the surface of the semiconductor element 13, and an aluminum wire 34 connecting the gate electrode and the circuit pattern 12 is bonded. An aluminum wire 35 further extends from the portion of the circuit pattern 12 that is electrically connected to the gate electrode, and its tip is connected to a gate terminal (not shown) provided on the inner wall of the case 15. That is, electric wiring is formed by each aluminum wire.

さらに、これら絶縁基板11,半導体素子13,高熱伝導体20及び各アルミワイヤを水分,湿気,塵などから保護するために、ケース15内はゲル17で封止されている。
次に、本実施の形態の高熱伝導体20を設けたことによる温度低減効果について説明する。図2は、FEM(有限要素法)による解析結果であり、高熱伝導体20の接合面積と半導体素子13の表面温度との関係を示している。同図において、横軸は、半導体素子13の表面電極の面積(活性面積)に対する高熱伝導体20の接合面積の比率(%)を表し、縦軸は、半導体素子13の表面温度(℃)を表している。
Further, the inside of the case 15 is sealed with a gel 17 in order to protect the insulating substrate 11, the semiconductor element 13, the high thermal conductor 20, and each aluminum wire from moisture, moisture, dust, and the like.
Next, the temperature reduction effect by providing the high thermal conductor 20 of this Embodiment is demonstrated. FIG. 2 is an analysis result by FEM (finite element method), and shows the relationship between the junction area of the high thermal conductor 20 and the surface temperature of the semiconductor element 13. In the figure, the horizontal axis represents the ratio (%) of the junction area of the high thermal conductor 20 to the area (active area) of the surface electrode of the semiconductor element 13, and the vertical axis represents the surface temperature (° C.) of the semiconductor element 13. Represents.

このFEM解析の解析条件としては、高熱伝導体20を厚さ1.0mm,熱伝導率390W/m・Kの銅で形成し、半導体素子13を一辺9.25mm,厚さ100μmの正方形板状のものとした。また、半導体素子13の発生熱量を160W,パワー半導体モジュール1の周囲温度を25℃、冷却については強制空冷とした(以下の解析についても全て同条件である)。   As analysis conditions for this FEM analysis, the high thermal conductor 20 is formed of copper having a thickness of 1.0 mm and a thermal conductivity of 390 W / m · K, and the semiconductor element 13 is a square plate having a side of 9.25 mm and a thickness of 100 μm. It was a thing. Further, the generated heat amount of the semiconductor element 13 was 160 W, the ambient temperature of the power semiconductor module 1 was 25 ° C., and the cooling was forced air cooling (the same applies to the following analysis).

同図によれば、高熱伝導体20の接合面積が大きいほど表面温度を低減できることが分かり、特に、高熱伝導体20の接合面積が半導体素子13の表面電極の面積に対する面積比で40%以上であれば、表面温度を大幅(15℃以上)に低減できることが分かる。また、同面積比が40%以上になると、その表面温度が収束していることも分かる。   According to the figure, it can be seen that the surface temperature can be reduced as the junction area of the high thermal conductor 20 is increased. If it exists, it turns out that surface temperature can be reduced significantly (15 degreeC or more). It can also be seen that when the area ratio is 40% or more, the surface temperature converges.

次に、図3は、上述した接合面積比(図2参照)が78%の場合と、0%の場合(つまり、高熱伝導体20が無い場合)についての半導体素子13の表面の温度分布を示している。同図において、横軸は、半導体素子13の表面における幅方向の位置(一端縁からの距離)を表し、縦軸は、その表面温度(℃)を表している。   Next, FIG. 3 shows the temperature distribution on the surface of the semiconductor element 13 when the above-mentioned junction area ratio (see FIG. 2) is 78% and 0% (that is, when there is no high thermal conductor 20). Show. In the figure, the horizontal axis represents the position in the width direction (distance from one edge) on the surface of the semiconductor element 13, and the vertical axis represents the surface temperature (° C.).

同図によれば、半導体素子13の表面電極に高熱伝導体20を半田接合した場合のほうが、高熱伝導体20を接合していない場合に比べてその半導体素子13の表面温度が大きく低下していることが分かる。また、高熱伝導体20を接合した場合のほうが表面温度分布の差が小さく、表面温度分布が均一化される傾向にあることが分かる。   According to the figure, the surface temperature of the semiconductor element 13 is much lower when the high thermal conductor 20 is soldered to the surface electrode of the semiconductor element 13 than when the high thermal conductor 20 is not bonded. I understand that. It can also be seen that when the high thermal conductor 20 is bonded, the difference in surface temperature distribution is smaller and the surface temperature distribution tends to be uniform.

次に、図4は、高熱伝導体20の厚さを変化させた場合の表面温度の変化を示している。同図において、横軸は、高熱伝導体20の厚さ(mm)を表し、縦軸は、表面温度(℃)を表している。   Next, FIG. 4 shows changes in the surface temperature when the thickness of the high thermal conductor 20 is changed. In the figure, the horizontal axis represents the thickness (mm) of the high thermal conductor 20, and the vertical axis represents the surface temperature (° C.).

同図によれば、高熱伝導体20の厚さが0.25mm以上のときに特に表面温度の低減効果が大きいことが分かる。
以上に説明したように、本実施の形態のパワー半導体モジュール1は、高熱伝導体20により半導体素子13で発生した熱を一時的に保留し、半導体素子13の表面温度の上昇を抑制することができる。特に、高熱伝導体20の熱伝導率が半導体素子13の熱伝導率よりも大きいため、その発生熱を速やかに伝導させて温度抑制効果を発揮させることができる。
According to the figure, it can be seen that the effect of reducing the surface temperature is particularly great when the thickness of the high thermal conductor 20 is 0.25 mm or more.
As described above, the power semiconductor module 1 according to the present embodiment temporarily holds the heat generated in the semiconductor element 13 by the high thermal conductor 20 and suppresses an increase in the surface temperature of the semiconductor element 13. it can. In particular, since the thermal conductivity of the high thermal conductor 20 is larger than the thermal conductivity of the semiconductor element 13, the generated heat can be quickly conducted to exert a temperature suppressing effect.

その結果、半導体素子13と絶縁基板11との接合部の熱応力による歪を低減することもでき、信頼性の高い接合が可能となる。
[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。図5は、本実施の形態にかかるパワー半導体モジュールの構造を表す断面図である。尚、本実施の形態は、高熱伝導体の構成を除けば上記第1の実施の形態の構成と同様であるため、同様の構成部分については同一の符号を付す等してその説明を省略する。
As a result, distortion due to thermal stress at the joint between the semiconductor element 13 and the insulating substrate 11 can be reduced, and highly reliable joining is possible.
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 5 is a cross-sectional view showing the structure of the power semiconductor module according to the present embodiment. Since the present embodiment is the same as the configuration of the first embodiment except for the configuration of the high thermal conductor, the same components are denoted by the same reference numerals and the description thereof is omitted. .

図5に示すように、本実施の形態のパワー半導体モジュール201においては、高熱伝導体220を二股のリードフレーム(電気伝導体)として構成している。その材質は銅(Cu)であり、第1の実施の形態と同様である。   As shown in FIG. 5, in the power semiconductor module 201 of the present embodiment, the high thermal conductor 220 is configured as a bifurcated lead frame (electric conductor). The material is copper (Cu), which is the same as in the first embodiment.

すなわち、高熱伝導体220は、上記高熱伝導体20と同形状の本体221の側方に、半田54を介して絶縁基板11の回路パターン12に電気的に接続されるリードフレーム部222を有している。この本体221とリードフレーム部222とはその上端縁が架橋部223によって接続されている。   That is, the high thermal conductor 220 has a lead frame portion 222 that is electrically connected to the circuit pattern 12 of the insulating substrate 11 via the solder 54 on the side of the main body 221 having the same shape as the high thermal conductor 20. ing. The upper end edge of the main body 221 and the lead frame portion 222 are connected by a bridging portion 223.

次に、本実施の形態の高熱伝導体220を設けたことによる放熱効果について説明する。図6は、FEMによる解析結果であり、高熱伝導体220の厚さと半導体素子13の表面温度との関係を示している。同図において、横軸は、高熱伝導体220において厚みが最小となる架橋部223の厚さ(mm)を表し、縦軸は、半導体素子13の表面温度(℃)を表している。尚、このFEM解析の解析条件については、高熱伝導体220の形状を除いて第1の実施の形態の場合と同様である。   Next, the heat radiation effect by providing the high thermal conductor 220 of the present embodiment will be described. FIG. 6 is an analysis result by FEM, and shows the relationship between the thickness of the high thermal conductor 220 and the surface temperature of the semiconductor element 13. In the figure, the horizontal axis represents the thickness (mm) of the bridging portion 223 having the smallest thickness in the high thermal conductor 220, and the vertical axis represents the surface temperature (° C.) of the semiconductor element 13. The analysis conditions for this FEM analysis are the same as those in the first embodiment except for the shape of the high thermal conductor 220.

同図によれば、架橋部223が厚くなるほど表面温度が低下することが分かる。尚、信頼性試験の一つであるパワーサイクル試験では、表面温度が5℃下がると接合部の寿命は2倍になると推定される(例えば富士時報 Vol.74, No.2, pp145-148, 2001)。   According to the figure, it can be seen that the surface temperature decreases as the bridging portion 223 becomes thicker. In the power cycle test, which is one of the reliability tests, it is estimated that the life of the joint is doubled when the surface temperature drops by 5 ° C (for example, Fuji Time Report Vol.74, No.2, pp145-148, 2001).

ここで、同図において、高熱伝導体220を設けない場合(架橋部223の厚みが0)と比較して、表面温度が5℃程度低減される厚さは0.25mm程度ということになる。このため、架橋部223の厚さが0.25mm以上あれば、パワー半導体モジュール201の寿命を大きく延ばすことができることが分かる。   Here, in the same figure, the thickness at which the surface temperature is reduced by about 5 ° C. is about 0.25 mm as compared with the case where the high thermal conductor 220 is not provided (the thickness of the bridging portion 223 is 0). For this reason, if the thickness of the bridge | crosslinking part 223 is 0.25 mm or more, it turns out that the lifetime of the power semiconductor module 201 can be extended significantly.

次に、図7は、高熱伝導体220による半導体素子13の小型化の可能性を検討した解析結果である。すなわち、本実施の形態において、仮に従来のワイヤボンディング配線(アルミワイヤのみで高熱伝導体220がない場合)と同様の表面温度を許容した場合に、半導体素子13をどの程度小型化できるかを検証したものである。   Next, FIG. 7 is an analysis result of examining the possibility of miniaturization of the semiconductor element 13 by the high thermal conductor 220. That is, in this embodiment, it is verified how small the semiconductor element 13 can be when the same surface temperature as that of the conventional wire bonding wiring (when only the aluminum wire is used and the high thermal conductor 220 is not allowed) is allowed. It is a thing.

ここでは、高熱伝導体220の半導体素子13の表面電極の面積に占める接合面積の面積比を80%、高熱伝導体220の本体221の厚さを1.0mmとし、架橋部223の厚さを0.05〜1.0mmで変化させて解析を行った。   Here, the area ratio of the bonding area occupying the area of the surface electrode of the semiconductor element 13 of the high thermal conductor 220 is 80%, the thickness of the main body 221 of the high thermal conductor 220 is 1.0 mm, and the thickness of the bridging portion 223 is The analysis was performed while changing the thickness from 0.05 to 1.0 mm.

同図によれば、架橋部223の厚さを0.25mm以上にすることで、従来の半導体素子の大きさの80%以下にすることができ、つまり20%以上の小型化が可能なことが分かる。さらに、架橋部223の厚さを0.5mmとすると、30%程度の小型化が可能となることが分かる。これは、本発明を利用することで、省スペースに対応したパワー半導体モジュールも提供可能であることを示している。   According to the figure, by setting the thickness of the bridging portion 223 to 0.25 mm or more, the size of the conventional semiconductor element can be reduced to 80% or less, that is, the size can be reduced by 20% or more. I understand. Furthermore, when the thickness of the bridging portion 223 is 0.5 mm, it can be seen that the size can be reduced by about 30%. This indicates that a power semiconductor module corresponding to space saving can be provided by using the present invention.

以上に説明したように、本実施の形態のパワー半導体モジュール201は、二股のリードフレームとして構成した高熱伝導体220により、半導体素子13で発生した熱を絶縁基板11側に伝導して放熱することができ、半導体素子13の表面温度をより速やかに低減することができる。その結果、半導体素子13と絶縁基板11との接合部の熱応力による歪を低減することもでき、信頼性の高い接合が可能となる。   As described above, the power semiconductor module 201 of the present embodiment conducts heat generated in the semiconductor element 13 to the insulating substrate 11 side and dissipates it by the high thermal conductor 220 configured as a bifurcated lead frame. The surface temperature of the semiconductor element 13 can be reduced more quickly. As a result, distortion due to thermal stress at the joint between the semiconductor element 13 and the insulating substrate 11 can be reduced, and highly reliable joining is possible.

また、仮に半導体素子13の温度低減を意図しない場合でも、その温度上昇の抑制効果を利用することで、半導体素子13の小型化を可能にし、省スペース化を実現することができる。   Even if the temperature of the semiconductor element 13 is not intended to be reduced, the semiconductor element 13 can be reduced in size and space can be saved by utilizing the effect of suppressing the temperature rise.

以上、本発明の好適な実施の形態について説明したが、本発明はその特定の実施の形態に限定されるものではなく、本発明の精神の範囲内での変化変形が可能であることはいうまでもない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the specific embodiment, and it can be changed and modified within the spirit of the present invention. Not too long.

例えば、上記実施の形態では、高熱伝導体20,220として銅からなるものを示したが、低電気抵抗率で高熱伝導率を有するものとして、銀(Ag)やアルミニウム(Al)等の他の金属からなるものや、このような金属を含有した導電性セラミック等からなるものでもよい。   For example, in the above embodiment, the high thermal conductors 20 and 220 are made of copper. However, the high thermal conductors 20 and 220 have a low electrical resistivity and a high thermal conductivity. It may be made of a metal or a conductive ceramic containing such a metal.

また、上記第2の実施の形態では、高熱伝導体220を二股のリードフレームとして構成した例を示したが、三股以上のリードフレームとして構成することもできる。   In the second embodiment, the example in which the high thermal conductor 220 is configured as a bifurcated lead frame has been described. However, the high thermal conductor 220 may be configured as a trifurcated lead frame.

発熱性の半導体素子を備えたパワー半導体モジュールであって、その半導体素子の温度上昇の抑制が要求されるものに対して適用することができる。   The present invention can be applied to a power semiconductor module including a heat-generating semiconductor element that requires suppression of a temperature rise of the semiconductor element.

第1の実施の形態にかかるパワー半導体モジュールの構造を表す断面図である。It is sectional drawing showing the structure of the power semiconductor module concerning 1st Embodiment. 第1の実施の形態の効果に関する解析結果を表す説明図である。It is explanatory drawing showing the analysis result regarding the effect of 1st Embodiment. 第1の実施の形態の効果に関する解析結果を表す説明図である。It is explanatory drawing showing the analysis result regarding the effect of 1st Embodiment. 第1の実施の形態の効果に関する解析結果を表す説明図である。It is explanatory drawing showing the analysis result regarding the effect of 1st Embodiment. 第2の実施の形態にかかるパワー半導体モジュールの構造を表す断面図である。It is sectional drawing showing the structure of the power semiconductor module concerning 2nd Embodiment. 第2の実施の形態の効果に関する解析結果を表す説明図である。It is explanatory drawing showing the analysis result regarding the effect of 2nd Embodiment. 第2の実施の形態の効果に関する解析結果を表す説明図である。It is explanatory drawing showing the analysis result regarding the effect of 2nd Embodiment. 従来のパワー半導体モジュールの構造を表す平面図及び断面図である。It is the top view and sectional drawing showing the structure of the conventional power semiconductor module.

符号の説明Explanation of symbols

1,201 パワー半導体モジュール
11 絶縁基板
12 回路パターン
13 半導体素子
14 ヒートシンク
15 ケース
20,220 高熱伝導体
31,32,33,34,35 アルミワイヤ
51,52,53,54 半田
221 本体
222 リードフレーム部
223 架橋部
1,201 Power semiconductor module 11 Insulating substrate 12 Circuit pattern 13 Semiconductor element 14 Heat sink 15 Case 20, 220 High thermal conductor 31, 32, 33, 34, 35 Aluminum wire 51, 52, 53, 54 Solder 221 Main body 222 Lead frame portion 223 Cross-linking part

Claims (7)

絶縁基板の表面に形成された回路パターンの所定位置に半導体素子をロー付接合して構成されるパワー半導体モジュールにおいて、
前記半導体素子の前記絶縁基板とは反対側に形成された表面電極に、前記半導体素子の熱伝導率以上の熱伝導率を有する高熱伝導体をロー付接合したことを特徴とするパワー半導体モジュール。
In a power semiconductor module configured by brazing a semiconductor element at a predetermined position of a circuit pattern formed on the surface of an insulating substrate,
A power semiconductor module, wherein a high thermal conductor having a thermal conductivity equal to or higher than that of the semiconductor element is brazed to a surface electrode formed on the opposite side of the semiconductor element from the insulating substrate.
前記高熱伝導体の熱伝導率が100W/m・K以上であることを特徴とする請求項1記載のパワー半導体モジュール。   The power semiconductor module according to claim 1, wherein the high thermal conductor has a thermal conductivity of 100 W / m · K or more. 前記高熱伝導体における前記半導体素子の表面電極との接合面積が、前記表面電極全体の面積の40%以上となるように構成されたことを特徴とする請求項1又は請求項2に記載のパワー半導体モジュール。   3. The power according to claim 1, wherein a junction area of the high thermal conductor with a surface electrode of the semiconductor element is 40% or more of an area of the entire surface electrode. Semiconductor module. 前記高熱伝導体の厚みが、前記半導体素子の厚みと、前記半導体素子との間に介装されるロー材の厚みとを合計した厚み以上となるように構成されたことを特徴とする請求項1〜3のいずれかに記載のパワー半導体モジュール。   The thickness of the high thermal conductor is configured to be equal to or greater than a total thickness of a thickness of the semiconductor element and a thickness of a brazing material interposed between the semiconductor element. The power semiconductor module in any one of 1-3. 前記高熱伝導体の厚みが0.25mm以上となるように構成されたことを特徴とする請求項1〜3のいずれかに記載のパワー半導体モジュール。   The power semiconductor module according to claim 1, wherein the high thermal conductor is configured to have a thickness of 0.25 mm or more. 前記高熱伝導体が、前記半導体素子と前記絶縁基板の前記回路パターンとを接続する電気伝導体を構成することを特徴とする請求項1〜5のいずれかに記載のパワー半導体モジュール。   The power semiconductor module according to claim 1, wherein the high thermal conductor constitutes an electrical conductor that connects the semiconductor element and the circuit pattern of the insulating substrate. 前記高熱伝導体がリードフレームとして構成されており、その厚みが最小となる部分の厚さが0.25mm以上となるように構成されたことを特徴とする請求項6記載のパワー半導体モジュール。
The power semiconductor module according to claim 6, wherein the high thermal conductor is configured as a lead frame, and a thickness of a portion where the thickness is minimum is 0.25 mm or more.
JP2003347356A 2003-10-06 2003-10-06 Power semiconductor module Pending JP2005116702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347356A JP2005116702A (en) 2003-10-06 2003-10-06 Power semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347356A JP2005116702A (en) 2003-10-06 2003-10-06 Power semiconductor module

Publications (1)

Publication Number Publication Date
JP2005116702A true JP2005116702A (en) 2005-04-28

Family

ID=34539959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347356A Pending JP2005116702A (en) 2003-10-06 2003-10-06 Power semiconductor module

Country Status (1)

Country Link
JP (1) JP2005116702A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110002A (en) * 2005-10-17 2007-04-26 Fuji Electric Device Technology Co Ltd Semiconductor device
US7705443B2 (en) 2006-10-16 2010-04-27 Fuji Electric Device Technology Co., Ltd. Semiconductor device with lead frame including conductor plates arranged three-dimensionally
US7888173B2 (en) 2008-03-25 2011-02-15 Fuji Electric Device Technology Co., Ltd. Semiconductor device manufacturing method
JP2013219267A (en) * 2012-04-11 2013-10-24 Mitsubishi Electric Corp Power module
US8779584B2 (en) 2006-10-16 2014-07-15 Fuji Electric Co., Ltd. Semiconductor apparatus
US8928087B2 (en) 2011-11-29 2015-01-06 Toyota Jidosha Kabushiki Kaisha Semiconductor device
JP2015222743A (en) * 2014-05-22 2015-12-10 三菱電機株式会社 Semiconductor device
US9735081B2 (en) 2014-07-07 2017-08-15 Toyota Jidosha Kabushiki Kaisha Semiconductor device
US9741678B2 (en) 2013-08-14 2017-08-22 Fuji Electric Co., Ltd. Laser welding machine and laser welding method using the same
DE102017104298A1 (en) 2016-03-22 2017-09-28 Fuji Electric Co., Ltd. Resin composition
WO2017175426A1 (en) * 2016-04-06 2017-10-12 三菱電機株式会社 Semiconductor device for power
CN107427968A (en) * 2015-09-17 2017-12-01 富士电机株式会社 Semiconductor device solderable material
US10002845B2 (en) 2014-10-17 2018-06-19 Fuji Electric Co., Ltd. Lead-free soldering method and soldered article
DE112017000184T5 (en) 2016-06-16 2018-08-02 Fuji Electric Co., Ltd. solder
US10199365B2 (en) 2017-02-09 2019-02-05 Kabushiki Kaisha Toshiba Semiconductor module
US11890702B2 (en) 2019-01-28 2024-02-06 Fuji Electric Co., Ltd. Solder joint

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110002A (en) * 2005-10-17 2007-04-26 Fuji Electric Device Technology Co Ltd Semiconductor device
US7705443B2 (en) 2006-10-16 2010-04-27 Fuji Electric Device Technology Co., Ltd. Semiconductor device with lead frame including conductor plates arranged three-dimensionally
US8779584B2 (en) 2006-10-16 2014-07-15 Fuji Electric Co., Ltd. Semiconductor apparatus
US7888173B2 (en) 2008-03-25 2011-02-15 Fuji Electric Device Technology Co., Ltd. Semiconductor device manufacturing method
US8928087B2 (en) 2011-11-29 2015-01-06 Toyota Jidosha Kabushiki Kaisha Semiconductor device
JP2013219267A (en) * 2012-04-11 2013-10-24 Mitsubishi Electric Corp Power module
US9741678B2 (en) 2013-08-14 2017-08-22 Fuji Electric Co., Ltd. Laser welding machine and laser welding method using the same
JP2015222743A (en) * 2014-05-22 2015-12-10 三菱電機株式会社 Semiconductor device
US9735081B2 (en) 2014-07-07 2017-08-15 Toyota Jidosha Kabushiki Kaisha Semiconductor device
US10002845B2 (en) 2014-10-17 2018-06-19 Fuji Electric Co., Ltd. Lead-free soldering method and soldered article
US10727194B2 (en) 2015-09-17 2020-07-28 Fuji Electric Co., Ltd. Solder material for semiconductor device
CN107427968A (en) * 2015-09-17 2017-12-01 富士电机株式会社 Semiconductor device solderable material
US11145615B2 (en) 2015-09-17 2021-10-12 Fuji Electric Co., Ltd. Solder material for semiconductor device
DE102017104298A1 (en) 2016-03-22 2017-09-28 Fuji Electric Co., Ltd. Resin composition
WO2017175426A1 (en) * 2016-04-06 2017-10-12 三菱電機株式会社 Semiconductor device for power
JPWO2017175426A1 (en) * 2016-04-06 2018-08-09 三菱電機株式会社 Power semiconductor device
US10504868B2 (en) 2016-06-16 2019-12-10 Fuji Electric Co., Ltd. Solder joining
DE112017000184T5 (en) 2016-06-16 2018-08-02 Fuji Electric Co., Ltd. solder
US10199365B2 (en) 2017-02-09 2019-02-05 Kabushiki Kaisha Toshiba Semiconductor module
US11890702B2 (en) 2019-01-28 2024-02-06 Fuji Electric Co., Ltd. Solder joint

Similar Documents

Publication Publication Date Title
JP5558714B2 (en) Semiconductor package
JP2002026251A (en) Semiconductor device
JP6218898B2 (en) Power semiconductor device
JP2005116702A (en) Power semiconductor module
KR100536115B1 (en) Power semiconductor device
JP2007234690A (en) Power semiconductor module
JP5965687B2 (en) Power semiconductor module
US20140110833A1 (en) Power module package
US10763201B2 (en) Lead and lead frame for power package
JP6653199B2 (en) Semiconductor device
JP2005142189A (en) Semiconductor device
JP2018074088A (en) Semiconductor device
JP2000156439A (en) Power semiconductor module
EP2178117A1 (en) Power semiconductor module with double side cooling
US20180019181A1 (en) Semiconductor device
JP4797492B2 (en) Semiconductor device
JP2001332664A (en) Semiconductor device and manufacturing method thereof
JP6540587B2 (en) Power module
JP2002026246A (en) Semiconductor device
JP2006294729A (en) Semiconductor device
JP2010098144A (en) Lead frame and semiconductor device
JP2009076675A (en) Semiconductor device
JP2007042754A (en) Power module
JPH09283887A (en) Semiconductor device and metal insulation substrate used for this device
JP3449312B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415