JP2006240935A - Method for producing hydrogen gas - Google Patents

Method for producing hydrogen gas Download PDF

Info

Publication number
JP2006240935A
JP2006240935A JP2005060806A JP2005060806A JP2006240935A JP 2006240935 A JP2006240935 A JP 2006240935A JP 2005060806 A JP2005060806 A JP 2005060806A JP 2005060806 A JP2005060806 A JP 2005060806A JP 2006240935 A JP2006240935 A JP 2006240935A
Authority
JP
Japan
Prior art keywords
hydrogen gas
solid content
liquid
abrasive grains
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005060806A
Other languages
Japanese (ja)
Other versions
JP4520331B2 (en
Inventor
Kimihiko Kajimoto
公彦 梶本
Takashi Fukushima
隆史 福島
Naoteru Yoshimi
直輝 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005060806A priority Critical patent/JP4520331B2/en
Publication of JP2006240935A publication Critical patent/JP2006240935A/en
Application granted granted Critical
Publication of JP4520331B2 publication Critical patent/JP4520331B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Sludge (AREA)
  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing hydrogen gas using used slurry. <P>SOLUTION: The method for producing hydrogen gas comprises: the steps of (1) recovering an abrasive grain-based solid component by primarily centrifuging the used slurry including silicon grains in the slurry comprising abrasive grains and a water-soluble dispersion medium dispersing those; (2) secondarily centrifuging a liquid component obtained by the primary centrifugation to separate a liquid component based on the dispersion medium from the residual sludge; (3) subjecting a solid component obtained by distilling the liquid component obtained by the secondary centrifugation to comminution and removal of organic residue to pulverize the solid component; and (4) generating hydrogen gas by reacting the pulverized solid component with an alkaline solution. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、マルチワイヤソー(以下、「MWS」とする)やラッピング装置を使用し、例えば太陽電池用多結晶シリコン用や半導体材料用としてシリコンウエハ等を製造する際に用いられた使用済みスラリの処理において、使用済みスラリに含まれるシリコン切屑から水素ガスを製造する方法に好適に用いられるものである。   The present invention uses a multi-wire saw (hereinafter referred to as “MWS”) or a wrapping apparatus, and for example, a used slurry used for manufacturing a silicon wafer or the like for polycrystalline silicon for solar cells or semiconductor materials. In processing, it is suitably used for a method of producing hydrogen gas from silicon chips contained in a used slurry.

シリコンのインゴットからウェハ(薄い板)にスライスする方法として、ワイヤソーを使用する方法があり、その際にはスラリと呼ばれる砥粒と分散媒を混合したものを切断箇所に供給する方法が一般的である。またスラリは繰り返し使用されるのが一般的であるが、スライス加工の度にシリコンの切屑などが混入し、徐々にワイヤソーの切削性能を低下させる。またスライス処理により磨耗した砥粒はスライスに寄与しないため、特許文献1、特許文献2、特許文献3などに示されるように、使用済みスラリにはシリコンの切屑および磨耗した砥粒を除去する処理が施され、再生スラリとして使用されている。
上述のように使用済みスラリの中にはシリコンの切屑が含まれるが、これまでこれらのシリコン屑は利用されないまま廃棄処理されるか、もしくは特許文献4に示されるように、HFや無機酸を使用し、濾過や乾燥工程など多くの処理を施されて回収されていた。
特開平9−225937号公報 特表2002−519209号公報 特開2003−225700号公報 特開2001−278612号公報
As a method of slicing a silicon ingot into a wafer (thin plate), there is a method using a wire saw. In that case, a method of supplying a mixture of abrasive grains called a slurry and a dispersion medium to a cutting site is common. is there. Slurries are generally used repeatedly, but silicon chips and the like are mixed every time slicing is performed, and the cutting performance of the wire saw is gradually lowered. In addition, since abrasive grains worn by slicing do not contribute to slicing, as shown in Patent Document 1, Patent Document 2, Patent Document 3, and the like, a process of removing silicon chips and worn abrasive grains in used slurry. Has been applied and used as a recycled slurry.
As described above, scraps of silicon are contained in the used slurry. Until now, these silicon scraps are disposed of without being used, or as shown in Patent Document 4, HF and inorganic acids are added. It was used and recovered after many treatments such as filtration and drying.
JP-A-9-225937 Special Table 2002-519209 JP 2003-225700 A JP 2001-278612 A

しかしながら、使用済みスラリに含まれるシリコンを回収する従来の技術では、設備が大掛かりになり、また工数も多く手間がかかっていた。特に、スラリに鉱物油を使用している場合は、有機溶剤などが必要で、安全設備や環境汚染防止の処理に非常に多大なコストが必要となっていた。また、濾過装置を必要とするため濾過フィルター費用もコストUPの要因となっていた。すなわち、使用済みスラリの有効な処理方法が望まれていた。   However, the conventional technique for recovering silicon contained in the used slurry requires a large amount of equipment and a lot of man-hours. In particular, when mineral oil is used in the slurry, an organic solvent or the like is required, and a very large cost is required for safety equipment and processing for preventing environmental pollution. Further, since a filtration device is required, the cost of the filtration filter has been a factor in increasing the cost. That is, an effective processing method for used slurry has been desired.

本発明は、係る事情に鑑みてなされたものであり、使用済みスラリを用いて、水素ガスを製造する方法を提供するものである。   This invention is made | formed in view of the situation which concerns, and provides the method of manufacturing hydrogen gas using a used slurry.

本発明の水素ガスの製造方法は、(1)砥粒とそれを分散する水溶性の分散媒とからなるスラリにシリコン粒が混入した使用済みスラリを、1次遠心分離することにより、砥粒が主成分の固形分を回収し、(2)1次遠心分離により得られた液分を2次遠心分離することにより、分散媒が主成分の液分と、その残りのスラッジとに分離し、(3)2次遠心分離により得られた液分を蒸留することにより得られる固形分について粉砕及び有機物残渣の除去を行うことにより固形分を微粉化し、(4)微粉化した固形分にアルカリ性溶液を反応させて水素ガスを発生させる工程を備える。   The method for producing hydrogen gas according to the present invention includes (1) primary centrifugation of used slurry in which silicon particles are mixed in a slurry composed of abrasive grains and a water-soluble dispersion medium in which the abrasive grains are dispersed. (2) The liquid obtained by the primary centrifugation is subjected to secondary centrifugation, so that the dispersion medium is separated into the main liquid and the remaining sludge. (3) The solid content obtained by distilling the liquid obtained by the secondary centrifugation is pulverized and the organic matter residue is removed to pulverize the solid content, and (4) the pulverized solid content is alkaline. A step of reacting the solution to generate hydrogen gas.

本発明では、2次遠心分離により得られた液分を蒸留することにより得られる固形分を微粉化した後、アルカリ性溶液と反応させているので、水素ガスが効率的に発生する。また、反応後の残留物の液分を蒸留濃縮させることにより、珪酸ナトリウムを得ることができる。本発明では、廃棄される使用済みスラリ(特に、その固形分)を用いるので、水素ガス及び珪酸ナトリウムを安価に製造することができる。
また、水素ガス及び珪酸ナトリウムは、それぞれ、燃料や種々の製品の原材料として利用可能であるため、コスト低減の効果がある。
In the present invention, since the solid content obtained by distilling the liquid obtained by the secondary centrifugation is pulverized and then reacted with the alkaline solution, hydrogen gas is efficiently generated. Moreover, sodium silicate can be obtained by distilling and concentrating the liquid of the residue after reaction. In the present invention, the used slurry (particularly its solid content) to be discarded is used, so that hydrogen gas and sodium silicate can be produced at low cost.
Moreover, since hydrogen gas and sodium silicate can be used as raw materials for fuel and various products, respectively, there is an effect of cost reduction.

1.第1の実施形態
本発明の第1の実施形態に係る水素ガスの製造方法は、(1)砥粒とそれを分散する水溶性の分散媒とからなるスラリにシリコン粒が混入した使用済みスラリを、1次遠心分離することにより、砥粒が主成分の固形分を回収し、(2)1次遠心分離により得られた液分を2次遠心分離することにより、分散媒が主成分の液分と、その残りのスラッジとに分離し、(3)2次遠心分離により得られた液分を蒸留することにより得られる固形分について粉砕及び有機物残渣の除去を行うことにより固形分を微粉化し、(4)微粉化した固形分にアルカリ性溶液を反応させて水素ガスを発生させる工程を備える。
1. First Embodiment A method for producing hydrogen gas according to a first embodiment of the present invention includes (1) a used slurry in which silicon particles are mixed in a slurry composed of abrasive grains and a water-soluble dispersion medium that disperses the abrasive grains. The solid content of the abrasive grains is recovered by primary centrifugation, and (2) the liquid content obtained by the primary centrifugation is subjected to secondary centrifugation, whereby the dispersion medium is the main component. (3) The solid content obtained by distilling the liquid content obtained by the secondary centrifugation is pulverized and the organic matter residue is removed to finely pulverize the solid content. And (4) a step of reacting an alkaline solution with the pulverized solid to generate hydrogen gas.

1−1.砥粒とそれを分散する水溶性の分散媒とからなるスラリにシリコン粒が混入した使用済みスラリを、1次遠心分離することにより、砥粒が主成分の固形分を回収する工程
砥粒は、例えば、SiC、ダイヤモンド、CBN、アルミナなどからなる。水溶性(水性)の分散媒は、例えば、エチレングリコール、プロピレングリコール又はポリエチレングリコールなどの水溶性の溶媒(水溶性の有機溶媒)からなる。また、水溶性の分散媒は、5%〜15%程度の水を含んでいてもよい。この場合、この分散媒が消防法上の危険物となるのを避けることができる。さらに、分散媒には、通常、砥粒やSi切り屑を分散させるための分散剤(ベントナイト)など(数%程度)が添加されている。シリコン粒とは、例えば、シリコンインゴットをスライスしてシリコンウエハを作成するときに発生するシリコン切屑、又はシリコンウエハをラッピングするときに発生する研磨屑である。使用済みスラリとは、例えば、シリコンインゴットをスライスしてシリコンウエハを作成するときに使用されてシリコン切屑などのシリコン粒が混入した状態のスラリである。1次遠心分離は、好ましくは、100〜1000Gで行う。1次遠心分離により、使用済みスラリが、第1の固形分と第1の液分とに分離される。第1の固形分は、砥粒が主成分である。砥粒は、一般にシリコン粒よりも比重が大きいので、シリコン粒よりも速く沈降する。このため、低速の遠心分離を行うと、砥粒が選択的に沈降する。第1の固形分には、多くの砥粒が含まれているので、第1の固形分は、スラリの再生に用いることができる。一方、第1の液分には、主に分散媒及びシリコン粒が含まれている。
1-1. The process of recovering the solid content of abrasive grains as a main component by first centrifuging a used slurry in which silicon grains are mixed in a slurry composed of abrasive grains and a water-soluble dispersion medium that disperses the abrasive grains. For example, it is made of SiC, diamond, CBN, alumina or the like. The water-soluble (aqueous) dispersion medium is made of, for example, a water-soluble solvent (water-soluble organic solvent) such as ethylene glycol, propylene glycol, or polyethylene glycol. The water-soluble dispersion medium may contain about 5% to 15% water. In this case, it is possible to avoid the dispersion medium from becoming a hazardous material under the Fire Service Law. Furthermore, a dispersing agent (bentonite) or the like (approximately several percent) for dispersing abrasive grains or Si chips is usually added to the dispersion medium. The silicon grains are, for example, silicon chips generated when a silicon wafer is formed by slicing a silicon ingot, or polishing chips generated when lapping a silicon wafer. The used slurry is, for example, a slurry in which silicon particles such as silicon chips are mixed and used when a silicon wafer is formed by slicing a silicon ingot. The primary centrifugation is preferably performed at 100 to 1000G. The primary slurry separates the used slurry into a first solid content and a first liquid content. The first solid content is mainly composed of abrasive grains. Abrasive grains generally have a specific gravity greater than that of silicon grains, and therefore settle faster than silicon grains. For this reason, when low-speed centrifugation is performed, abrasive grains selectively settle. Since the first solid content contains many abrasive grains, the first solid content can be used for slurry regeneration. On the other hand, the first liquid component mainly contains a dispersion medium and silicon particles.

1−2.1次遠心分離により得られた液分を2次遠心分離することにより、分散媒が主成分の液分と、その残りのスラッジとに分離する工程
2次遠心分離は、好ましくは、2000〜5000Gで行う。このような高速の遠心分離を行うと、1次遠心分離では、沈降しなかった固形分も沈降する。この工程で得られるスラッジ(第2の固形分)には、シリコン粒と、1次遠心分離で沈降しなかった砥粒が含まれている。分散媒が主成分の液分(第2の液分)には、砥粒及びシリコン粒も含まれている。第2の液分は、通常、スラリの再生に利用されるが、その全量をそのままスラリの再生に用いると、再生したスラリのシリコン質量比が大きくなりすぎて、好ましくない。そこで、第2の液分の少なくとも一部を蒸留し、蒸留により得られた液分を回収してスラリの再生に用いることが好ましい。
1-2. Step of separating the liquid obtained by the primary centrifugation into the liquid containing the dispersion medium as a main component and the remaining sludge by secondary centrifugation The secondary centrifugation is preferably , 2000-5000G. When such high-speed centrifugation is performed, solid components that have not settled in the primary centrifugation also settle. The sludge (second solid content) obtained in this step contains silicon grains and abrasive grains that have not settled by primary centrifugation. The liquid component (second liquid component) whose main component is the dispersion medium contains abrasive grains and silicon grains. The second liquid component is usually used for slurry regeneration, but if the entire amount is used as it is for slurry regeneration, the silicon mass ratio of the regenerated slurry becomes too large, which is not preferable. Therefore, it is preferable to distill at least a part of the second liquid, collect the liquid obtained by distillation, and use it to regenerate the slurry.

1−3.2次遠心分離により得られた液分を蒸留することにより得られる固形分について粉砕及び有機物残渣の除去を行うことにより固形分を微粉化する工程
「2次遠心分離により得られた液分(第2の液分)を蒸留」には、この液分の一部を蒸留する場合も含まれる。例えば、第2の液分の一部をそのままスラリの再生に用い、残りは蒸留してからスラリの再生に用いる。蒸留により得られる液分は、通常、実質的に分散媒のみからなる(すなわち、シリコンが含まれていない)ので、この液分をスラリの再生に用いることにより、再生されるスラリのシリコン質量比を小さくすることができる。また、例えば、第2の液分の一部にスラッジを加えて得られる混合液を蒸留してもよい。この場合、スラッジ中に含まれるシリコンも水素ガスの製造に利用することができる。
1-3. Step of pulverizing solid content obtained by distilling the liquid obtained by secondary centrifugation and pulverizing the solid matter by removing organic residue “obtained by secondary centrifugation “Distilling the liquid component (second liquid component)” includes a case where a part of this liquid component is distilled. For example, a portion of the second liquid is used as it is for slurry regeneration, and the remainder is distilled and then used for slurry regeneration. Since the liquid component obtained by distillation usually consists essentially of a dispersion medium (ie, does not contain silicon), the silicon mass ratio of the slurry to be regenerated can be obtained by using this liquid component for slurry regeneration. Can be reduced. Further, for example, a mixed liquid obtained by adding sludge to a part of the second liquid may be distilled. In this case, silicon contained in the sludge can also be used for the production of hydrogen gas.

蒸留は、真空(20Torr以下程度)中で行うことが好ましい。なぜなら、常圧下での蒸留では、蒸留中に発火する危険性があるからである。また、真空中での沸点は常圧中に比べて低いので、エネルギーの節約の意味でも真空中で行うことが好ましい。   The distillation is preferably performed in a vacuum (about 20 Torr or less). This is because there is a risk of ignition during distillation in distillation under normal pressure. Further, since the boiling point in vacuum is lower than that in normal pressure, it is preferable to carry out in vacuum from the viewpoint of saving energy.

粉砕及び有機物残渣の除去は、別々の工程で行ってもよいが、振動真空粉砕によって同時に行ってもよい。通常、粒径の大きな粒子には多量の有機物が含まれているので(有機物残渣がシリコン粒を凝集させているため)、粉砕して小さな粒径の粒子にすることにより有機物の含有量を減少させることができる。また、有機物の含有量を減少させることによって、粉砕が進行しやすい。このため、振動真空粉砕によって、粉砕及び有機物残渣の除去を同時に行えば効率的である。固形分の粉砕によって固形分とアルカリ性溶液との反応性を向上させ、有機物残渣の除去により発生する水素ガスの純度を高めることができる。   The pulverization and the removal of organic residue may be performed in separate steps, or may be performed simultaneously by vibration vacuum pulverization. Usually, large particles contain a large amount of organic matter (because organic residues agglomerate silicon particles), so the content of organic matter is reduced by crushing into small particles. Can be made. Further, the pulverization tends to proceed by reducing the content of the organic matter. For this reason, it is efficient if pulverization and removal of organic residue are simultaneously performed by vibration vacuum pulverization. The reactivity between the solid content and the alkaline solution can be improved by pulverizing the solid content, and the purity of the hydrogen gas generated by the removal of the organic residue can be increased.

微粉化の後、微粉化した固形分を粒径によって選別する工程をさらに備えてもよい。アルカリ性溶液との反応の前に、予め選別を行っておくことにより、所定粒径未満の固形分のみをアルカリ性溶液と反応させることができる。所定粒径とは、例えば、0.1mmである。0.1mm以上の固形分は、アルカリ性溶液との反応に時間がかかり、また、これには、多量の有機物残渣が含有されているためである。   You may further provide the process of classifying the pulverized solid content according to a particle size after pulverization. By selecting in advance before the reaction with the alkaline solution, it is possible to react only the solid content of less than a predetermined particle size with the alkaline solution. The predetermined particle size is, for example, 0.1 mm. This is because a solid content of 0.1 mm or more takes a long time to react with the alkaline solution, and this contains a large amount of organic residue.

また、所定粒径以上の固形分については、再度、粉砕工程に投入してもよい。再度の粉砕によって、さらなる微粉化が可能だからである。なお、この選別は、種々の方法で行うことができ、例えば、篩を用いることができる。   Moreover, about solid content more than predetermined particle diameter, you may throw in into a grinding | pulverization process again. This is because further pulverization is possible by pulverization again. This sorting can be performed by various methods, for example, a sieve can be used.

1−4.微粉化した固形分にアルカリ性溶液を反応させて水素ガスを発生させる工程
アルカリ性溶液は、NaOH又はKOH溶液などからなる。アルカリ性溶液の濃度は、好ましくは、2%〜48%程度である。数%程度の濃度(薄い)の場合、反応の進行が緩やかで反応容器の温度上昇も小さく、水素の時間当たりの発生量も少ない。十数%以上になると、反応が激しく進行するため、反応容器の大きさも大きくなり、また温度も急激に上昇する。その分水素の時間当たりの発生量も多い。ゆえに、大規模設備で原材料を大量に使用して、水素を大量に必要とする場合は、高濃度のアルカリ性溶液を添加するのがよく、小規模設備で、少量の水素の発生ですむ場合は、薄い濃度のアルカリ性溶液を添加し制御するのがよい。上記工程により得られた固形分にアルカリ性溶液を反応させることにより、水素ガスが発生する。
1-4. Process of reacting alkaline solution with finely divided solid to generate hydrogen gas The alkaline solution is composed of NaOH or KOH solution. The concentration of the alkaline solution is preferably about 2% to 48%. When the concentration is about several percent (thin), the reaction proceeds slowly, the temperature rise of the reaction vessel is small, and the amount of hydrogen generated per hour is small. If it exceeds 10%, the reaction proceeds violently, so that the size of the reaction vessel increases and the temperature rises rapidly. Accordingly, the amount of hydrogen generated per hour is also large. Therefore, if a large amount of raw material is used in a large-scale facility and a large amount of hydrogen is required, it is better to add a high-concentration alkaline solution, and a small amount of hydrogen is generated in a small-scale facility. It is better to add and control a thin alkaline solution. Hydrogen gas is generated by reacting the alkaline solution with the solid content obtained in the above step.

この工程は、例えば、水素ガスを発生させる反応が起こる反応容器と、反応容器から水素ガスを外部に取り出すための水素ガス管とを備える反応器で行われ、前記水素ガス管は、凝集器を備える。水素ガス管に凝集器を設けることにより、不純物となる有機物ガスを捕集することができ、回収される水素ガスの純度を高めることができる。   This step is performed, for example, in a reactor including a reaction vessel in which a reaction for generating hydrogen gas occurs and a hydrogen gas pipe for taking out the hydrogen gas from the reaction vessel. The hydrogen gas pipe includes a coagulator. Prepare. By providing the aggregator in the hydrogen gas pipe, the organic gas that becomes an impurity can be collected, and the purity of the recovered hydrogen gas can be increased.

反応後の残留物を固液分離して得られる固形分を中和もしくは水洗、および分級処理して再利用可能な砥粒を得てもよい。分級処理で得られる所定粒径以上の砥粒は、再生砥粒として用い、所定粒径未満の砥粒は、スライス用砥粒には、使用できないものもガラス研磨用微細砥粒として再利用可能である。   The solid content obtained by solid-liquid separation of the residue after the reaction may be neutralized or washed with water, and classified to obtain reusable abrasive grains. Abrasive grains larger than a predetermined grain size obtained by classification are used as recycled abrasive grains. Abrasive grains less than a predetermined grain size can be reused as fine abrasive grains for glass polishing even if they cannot be used as slicing abrasive grains. It is.

また、反応後の残留物を固液分離して得られる液分を蒸留濃縮して珪酸ナトリウムを析出させてもよい。この液分には、水素ガス発生反応時に生成された多量の珪酸ナトリウムが溶解しており、蒸留により濃度を高めると、珪酸ナトリウムが析出する。この析出した珪酸ナトリウムは、濾過などによって回収し、種々の製品の材料として用いる。   Alternatively, sodium silicate may be precipitated by distilling and concentrating a liquid obtained by solid-liquid separation of the residue after the reaction. A large amount of sodium silicate produced during the hydrogen gas generation reaction is dissolved in this liquid, and when the concentration is increased by distillation, sodium silicate precipitates. The precipitated sodium silicate is recovered by filtration or the like and used as a material for various products.

2.第2の実施形態
本発明の第2の実施形態に係る水素ガスの製造方法は、(1)砥粒とそれを分散する水溶性の分散媒とからなるスラリにシリコン粒が混入した使用済みスラリを固液分離して得られる固形分について粉砕及び有機物残渣の除去を行うことにより固形分を微粉化し、(2)微粉化した固形分にアルカリ性溶液を反応させて水素ガスを発生させる工程を備える。
2. Second Embodiment A method for producing hydrogen gas according to a second embodiment of the present invention includes (1) a used slurry in which silicon particles are mixed in a slurry composed of abrasive grains and a water-soluble dispersion medium that disperses the abrasive grains. The solid content obtained by solid-liquid separation of the solid is pulverized and the organic matter residue is removed to pulverize the solid content, and (2) the step of reacting the alkaline solution with the pulverized solid content to generate hydrogen gas is provided. .

第1の実施形態についての説明は、基本的に、第2の実施形態についても当てはまる。
第1の実施形態では、遠心分離及び蒸留の組み合わせにより、使用済みスラリを固形分と液分とに分離していたが、第2の実施形態では、固液分離は、遠心分離、濾過又は蒸留によって行ってもよく、又はこれらの組み合わせによって行ってもよい。また、固液分離は、一段階であってもよく、二段階以上であってもよい。
The description of the first embodiment is basically applicable to the second embodiment.
In the first embodiment, the used slurry is separated into a solid content and a liquid content by a combination of centrifugation and distillation. In the second embodiment, solid-liquid separation is performed by centrifugation, filtration, or distillation. Or a combination thereof. Further, the solid-liquid separation may be performed in one stage or in two or more stages.

本発明の実施例について説明する。ここでは、太陽電池用シリコンを主として実施例を説明する。太陽電池用のMWSでは、生産能力を主眼に置いたMWSを使用するため、1回のスライスで、4本のシリコンインゴット(125W×125D×400L)を一度に加工し、ウェハ(125W×125D×0.3L)を3200枚程度加工することが可能となる。加工時に使用するスラリタンクは200L程度の大きさのものを使用し、砥粒(比重:3.21)と水溶性の分散媒(比重:1)を1:1の質量比に混合して使用する。具体的には、砥粒には、平均粒径が14μm(800番)であるSiC粒を用い、分散媒には、プロピレングリコール、水(5%〜15%程度、消防法上の危険物となることを避ける為)を混合し、ここに、砥粒やSi切り屑を分散させるための分散剤としてベントナイト(0.5%程度)を添加したものを用いる。主成分のプロピレングリコールの沸点は、200度程度である。この時に一回当り約20kg程度のシリコン切屑などの固形物がスラリの中に混入することになる。   Examples of the present invention will be described. Here, an embodiment will be described mainly using silicon for solar cells. Since MWS for solar cells uses MWS with the focus on production capacity, four silicon ingots (125W × 125D × 400L) are processed at a time in one slice and wafers (125W × 125D × 0.3L) can be processed about 3200 sheets. The slurry tank used at the time of processing is about 200L in size and used by mixing abrasive grains (specific gravity: 3.21) and water-soluble dispersion medium (specific gravity: 1) at a mass ratio of 1: 1. To do. Specifically, SiC grains having an average particle diameter of 14 μm (No. 800) are used as abrasive grains, and propylene glycol, water (about 5% to 15%, dangerous substances in the Fire Service Act are used as a dispersion medium. In order to avoid this, a mixture of bentonite (about 0.5%) is used as a dispersant for dispersing abrasive grains and Si chips. The boiling point of propylene glycol as the main component is about 200 degrees. At this time, about 20 kg of solid matter such as silicon chips is mixed into the slurry at one time.

この使用済みスラリを従来のスラリ再生装置を利用して再生とスライスを繰り返すと、使用済みスラリには12%程度のシリコン切屑が残留し、再生スラリの中には、6%程度の濃度のシリコン切屑が残留することになる。この残留するシリコン切屑を抑える方法として、二次分離液を50%〜70%程度廃棄しているのが実情である。つまりデカンター方式のスラリ再生装置では二次分離液を50%〜70%程度廃棄してもシリコン切屑の除去率が50%程度である。この系において、砥粒の回収率は90%〜95%、分散媒の回収率は30%〜50%程度が実情である。また、この系から廃棄される廃棄物は、二次分離液のうちスラリの再生に使用しない部分と、砥粒とシリコン屑が主成分のスラッジの2種類である。本実施例は、この2種類の廃棄物を再利用し、廃棄物を減らすことに主眼をおいてなされた。   When this used slurry is repeatedly regenerated and sliced using a conventional slurry regenerator, about 12% silicon chips remain in the used slurry, and silicon with a concentration of about 6% remains in the regenerated slurry. Chips will remain. As a method for suppressing the remaining silicon chips, the fact is that about 50% to 70% of the secondary separation liquid is discarded. That is, in the decanter type slurry regenerating apparatus, even if the secondary separation liquid is discarded by about 50% to 70%, the removal rate of silicon chips is about 50%. In this system, the recovery rate of abrasive grains is 90% to 95%, and the recovery rate of dispersion medium is about 30% to 50%. Moreover, there are two types of wastes discarded from this system: a portion of the secondary separation liquid that is not used for slurry regeneration and sludge mainly composed of abrasive grains and silicon waste. In this embodiment, the two types of waste are reused to reduce waste.

ここで、図1を使用して、実施例1について説明する。
1.1次遠心分離
まず、使用済みのスラリ1を、1次遠心分離機に導き、遠心力を500Gの超低Gで、1次遠心分離を行い、砥粒が主成分の第1の固形分3bと、分散媒+切屑(たとえばシリコン切屑)が主成分の第1の液分3aとに分離した。第1の固形分3bは、回収してスラリの再生に用いた(回収砥粒4)。
Here, Example 1 will be described with reference to FIG.
1. Primary Centrifugation First, the used slurry 1 is guided to a primary centrifuge and subjected to primary centrifugation at an ultra-low G of 500 G, and a first solid mainly composed of abrasive grains. The part 3b and the dispersion medium + chip (for example, silicon chips) were separated into the first liquid part 3a containing the main component. The first solid content 3b was recovered and used for slurry regeneration (recovered abrasive grains 4).

2.2次遠心分離
次に、第1の液分3aを、2次遠心分離機に導き、遠心力を3500GのGで、2次遠心分離を行うことより有機溶媒が主成分の第2の液分5aと、切屑(たとえばシリコン切屑)と砥粒が主成分のスラッジ5bに分離した。第2の液分5aは、回収し、その一部をそのままスラリの再生に用いた(再生分散媒6)。
2.2 Secondary Centrifugation Next, the first liquid component 3a is guided to a secondary centrifuge, and the second centrifugal separation is performed with a centrifugal force of 3500 G, so that the second organic solvent is the main component. The liquid 5a, chips (for example, silicon chips) and abrasive grains separated into the main component sludge 5b. The second liquid 5a was recovered, and a part of the second liquid 5a was directly used for slurry regeneration (regenerated dispersion medium 6).

3.真空蒸留
スラッジ5b、及びスラリの再生に用いなかった第2の液分5a(これらは、従来は、そのまま廃棄されていた。)を、真空蒸留装置に導いた。このとき、スラッジ5bは、廃棄又は別工程で処理して、第2の液分5aのみを真空蒸留装置に送ってもよい。また、第2の液分の5aの全部を真空蒸留装置に送ってもよい。
3. Vacuum Distillation Sludge 5b and second liquid 5a that was not used for slurry regeneration (these were conventionally discarded as they were) were led to a vacuum distillation apparatus. At this time, the sludge 5b may be discarded or processed in a separate process, and only the second liquid 5a may be sent to the vacuum distillation apparatus. Further, the entire 5a of the second liquid may be sent to a vacuum distillation apparatus.

500kgの使用済みスラリを処理すると、真空蒸留装置に導くスラッジ5b及び第2の液分5aの重量は、それぞれ100kg、80kgとなった。それぞれの組成を表1に示す。表1〜表6において、%は、重量%を意味する。   When 500 kg of used slurry was processed, the weights of the sludge 5b and the second liquid component 5a led to the vacuum distillation apparatus were 100 kg and 80 kg, respectively. The respective compositions are shown in Table 1. In Tables 1 to 6, “%” means “% by weight”.

Figure 2006240935
Figure 2006240935

真空蒸留装置に導いたスラッジ5b及び第2の液分5aを、混合し、真空蒸留(温度:160℃、最終到達真空度10Torr)により、第3の液分7aと第3の固形分7bとに分離した。第3の液分7aは、成分調整してスラリの再生に利用した(蒸留分散媒8)。第3の固形分7bの組成を表2に示す。   The sludge 5b and the second liquid component 5a led to the vacuum distillation apparatus are mixed, and the third liquid component 7a and the third solid content 7b are mixed by vacuum distillation (temperature: 160 ° C., final vacuum 10 Torr). Separated. The third liquid component 7a was used for slurry regeneration after component adjustment (distilled dispersion medium 8). Table 2 shows the composition of the third solid content 7b.

Figure 2006240935
Figure 2006240935

4.振動真空粉砕
得られた固形分7bに振動真空粉砕を施した。本実施例における振動真空粉砕とは、真空容器の中に、アルミナボールと試料(固形分)を投入し、振動数2000VPM、振幅5mm、温度150℃真空度1torrという状態で試料を振動粉砕し、同時に真空中への残存溶媒(有機物残渣)の除去を促す操作である。98kgの固形分を処理するための時間は2時間程度であった。振動真空粉砕前後の粒径の変化は、表3に示す通りである。
4). Vibration vacuum pulverization The obtained solid content 7b was subjected to vibration vacuum pulverization. In the vibration vacuum pulverization in this example, an alumina ball and a sample (solid content) are put into a vacuum container, and the sample is vibrationally pulverized in a state of a frequency of 2000 VPM, an amplitude of 5 mm, a temperature of 150 ° C. and a vacuum degree of 1 torr, At the same time, it is an operation for promoting the removal of the residual solvent (organic residue) in vacuum. The time for processing 98 kg of solids was about 2 hours. The change in particle size before and after vibration vacuum pulverization is as shown in Table 3.

Figure 2006240935
Figure 2006240935

また、振動真空粉砕前後の固形分中の分散媒濃度は、表4に示す通りである。   The dispersion medium concentration in the solid content before and after vibration vacuum pulverization is as shown in Table 4.

Figure 2006240935
Figure 2006240935

表4の2段目に振動真空粉砕後に篩による分級を行ったもの、3段目に振動真空粉砕後に篩による分級を行って0.1mm以上の粒を除去したもののデータを示した。本実施例では振動真空粉砕後に篩による分級を行ったが、篩による分級の効果を示すため、篩をかけなかったもののデータも示した。   In Table 4, data was obtained by classifying with a sieve after vibration vacuum pulverization in the second stage, and by classifying with sieve after vibration vacuum pulverization in the third stage, and removing particles of 0.1 mm or more. In this example, classification by sieving was performed after vibration vacuum pulverization, but in order to show the effect of sieving by sieving, data of those that were not sieved were also shown.

5.NaOH水溶液との反応
次に、図2に示す水素ガス発生反応器を用いて、振動真空乾燥後の固形分(以下、「原料」と呼ぶ)87kgを35%のNaOH水溶液1000Lと反応させた。原料中のシリコンとNaOH水溶液との反応により、水素ガスが約100m3発生し、同時に副反応生成物である珪酸ナトリウムも溶液中に約300kg生成した。また、微量に混入している二酸化珪素も水酸化ナトリウム溶液と反応して溶解した。同じく微量に混入している金属類(鉄、銅)は水酸化物として析出した。それらの化学反応式は、式1〜4の通りである。
(式1)Si+2NaOH+H2O→Na2SiO3+2H2
(式2)SiO2+2NaOH→Na2SiO3+H2
(式3)Fe+2H2O→Fe(OH)2+H2
(式4)Cu+2H2O→Cu(OH)2+H2
5. Reaction with NaOH Aqueous Solution Next, using a hydrogen gas generation reactor shown in FIG. 2, 87 kg of solid content after vibration vacuum drying (hereinafter referred to as “raw material”) was reacted with 1000 L of 35% NaOH aqueous solution. About 100 m 3 of hydrogen gas was generated by the reaction between silicon in the raw material and aqueous NaOH solution, and at the same time, about 300 kg of sodium silicate as a side reaction product was generated in the solution. Moreover, silicon dioxide mixed in a trace amount also reacted with the sodium hydroxide solution and dissolved. Similarly, metals (iron, copper) mixed in a trace amount were precipitated as hydroxides. Their chemical reaction formulas are as shown in Formulas 1-4.
(Formula 1) Si + 2NaOH + H 2 O → Na 2 SiO 3 + 2H 2
(Formula 2) SiO 2 + 2NaOH → Na 2 SiO 3 + H 2 O
(Formula 3) Fe + 2H 2 O → Fe (OH) 2 + H 2
(Formula 4) Cu + 2H 2 O → Cu (OH) 2 + H 2

ここで、図2に示す水素ガス発生反応器の詳細な制御方法について説明する。まず、ホッパー13に原料14を投入する。次に、1次原料タンク15上部に設置したバルブ17を開放し、原料14をホッパー13から1次原料タンク15に供給し、バルブ17を閉じる。その後、バルブ17を開き、パイプ18を介して、1次原料タンク15から反応容器19内に原料14を投入する。原料14の投入前より、攪拌モータ21にシャフト23を介して連結された攪拌羽根25を回転させておくことにより、反応容器19内に均一に原料14がばら撒かれるようにする。このとき、取水口27及び排水口29を有する冷却&加温ジャケット31内に、温水を流して、このジャケット31の温度を80℃にして原料14を加温する。原料が75℃〜80℃になった時点で、真空ポンプ(図示せず)に接続されたパイプ33のバルブ35を開き、反応容器19内の空気を排気する。反応容器19内の圧力が1Toor以下になった時点で、バルブ35を閉じ、窒素ポンベ(図示せず)に接続されたパイプ37のバルブ39を開いて窒素を供給し、反応容器19内の圧力を常圧まで戻す。真空ポンプによる排気と窒素の供給を2回繰り返す。その後、容器内を再度真空にする。(1Toor以下)   Here, a detailed control method of the hydrogen gas generation reactor shown in FIG. 2 will be described. First, the raw material 14 is put into the hopper 13. Next, the valve 17 installed in the upper part of the primary raw material tank 15 is opened, the raw material 14 is supplied from the hopper 13 to the primary raw material tank 15, and the valve 17 is closed. Thereafter, the valve 17 is opened, and the raw material 14 is charged into the reaction vessel 19 from the primary raw material tank 15 through the pipe 18. The stirring blade 25 connected to the stirring motor 21 via the shaft 23 is rotated before the starting material 14 is charged, so that the starting material 14 is uniformly distributed in the reaction vessel 19. At this time, warm water is allowed to flow through a cooling & warming jacket 31 having a water intake 27 and a water discharge port 29, and the temperature of the jacket 31 is set to 80 ° C. to heat the raw material 14. When the raw material reaches 75 ° C. to 80 ° C., the valve 35 of the pipe 33 connected to a vacuum pump (not shown) is opened, and the air in the reaction vessel 19 is exhausted. When the pressure in the reaction vessel 19 becomes 1 Toor or less, the valve 35 is closed, the valve 39 of the pipe 37 connected to a nitrogen pump (not shown) is opened, nitrogen is supplied, and the pressure in the reaction vessel 19 is Return to normal pressure. Exhaust by a vacuum pump and supply of nitrogen are repeated twice. Thereafter, the inside of the container is evacuated again. (1Toor or less)

次に、バルブ41,42を開いてポッパー43,44からタンク45,46にNaOH水溶液47,水48をそれぞれ供給し、バルブ41,42を閉じる。その後、バルブ48を開き、パイプ50を介して、タンク45から反応容器19内にNaOH水溶液47を投入する。投入後、上記反応が開始する。この反応は、発熱反応になるため、反応が始まってから、90℃を超える場合は、冷却&加温ジャケット31に冷却水を通して冷却する。水素ガスの発生が始まれば、供給バルブを全て閉じ、水素ガス管51のバルブ53を開放する。冷却ジャケット(凝集器)55は0℃にして、発生する有機物ガスを凝集させて除去する。反応が弱まってきた場合は、再度NaOH水溶液47を添加し、冷却&加温ジャケット31に温水を通して加温する。液の色が薄緑色になった時点(黒い粒粒が無くなった時点で)で、バルブ49を開き、パイプ50を介して、タンク46から反応容器19内に水48を供給し、反応の進行を遅くする。その後、水素ガス管51のバルブ53を閉じ、パイプ57のバルブ59を開き、反応後の残留物を排出する。   Next, the valves 41 and 42 are opened, the NaOH aqueous solution 47 and the water 48 are supplied from the poppers 43 and 44 to the tanks 45 and 46, respectively, and the valves 41 and 42 are closed. Thereafter, the valve 48 is opened, and the NaOH aqueous solution 47 is introduced into the reaction vessel 19 from the tank 45 through the pipe 50. After the addition, the above reaction starts. Since this reaction is an exothermic reaction, if it exceeds 90 ° C. after the reaction has started, cooling water is passed through the cooling and heating jacket 31. When the generation of hydrogen gas starts, all the supply valves are closed and the valve 53 of the hydrogen gas pipe 51 is opened. The cooling jacket (aggregator) 55 is brought to 0 ° C. to coagulate and remove the generated organic gas. When the reaction is weakened, the NaOH aqueous solution 47 is added again, and the cooling & warming jacket 31 is heated through warm water. When the color of the liquid becomes light green (when the black particles disappear), the valve 49 is opened, and water 48 is supplied from the tank 46 into the reaction vessel 19 through the pipe 50, and the reaction proceeds. To slow down. Thereafter, the valve 53 of the hydrogen gas pipe 51 is closed, the valve 59 of the pipe 57 is opened, and the residue after the reaction is discharged.

水素ガスの純度については、振動真空粉砕後に篩にて0.1mm以上の粒塊を除去した試料を用いた場合、発生した水素ガスに混入するグリコール成分は、100PPM以下であった。振動真空粉砕後に0.1mm以上の粒が残っている試料では、水素ガスに混入するグリコール成分は、100〜1000PPM程度であった。   Regarding the purity of hydrogen gas, when a sample from which agglomerates of 0.1 mm or more were removed with a sieve after vibration vacuum pulverization was used, the glycol component mixed in the generated hydrogen gas was 100 PPM or less. In the sample in which particles of 0.1 mm or more remained after vibration vacuum pulverization, the glycol component mixed in the hydrogen gas was about 100 to 1000 PPM.

6.NaOH水溶液との反応前後の固形分の粒径と含有比率
NaOH水溶液との反応前後の固形分の粒径と含有比率を調査した。その結果を表5及び表6に示す。表5は、NaOH水溶液との反応前の微粉の粒度分布を示し、表6は、応後の微粉の粒度分布を示す。粒度分布は、反応後の残留物から固形分を取り出し、この固形分を乾燥させたものについて測定した。
6). Particle size and content ratio of solid before and after reaction with NaOH aqueous solution The particle size and content ratio of solid before and after reaction with NaOH aqueous solution were investigated. The results are shown in Tables 5 and 6. Table 5 shows the particle size distribution of the fine powder before the reaction with the NaOH aqueous solution, and Table 6 shows the particle size distribution of the fine powder after the reaction. The particle size distribution was measured on a solid content taken out from the residue after the reaction and dried.

Figure 2006240935
Figure 2006240935

Figure 2006240935
Figure 2006240935

反応後の残留物の元素分析を行ったところ、篩ありの場合の分析結果は95%がSiCあった。またSiCは緑色のものを使用したため、残留物の色もほぼ緑であった。また、篩なしの場合については、粒状の塊が残渣中に残っており、反応後の物質の元素分析を行ったところSiが50%、SiCが40%含まれており、SiとNaOH水溶液との反応が十分行われていないことが判った。   When elemental analysis of the residue after the reaction was performed, 95% of the analysis results with a sieve were SiC. Further, since the green SiC was used, the color of the residue was almost green. In the case of no sieve, a granular lump remains in the residue, and elemental analysis of the substance after the reaction contains 50% Si and 40% SiC. Si and NaOH aqueous solution and It was found that this reaction was not sufficiently performed.

7.反応後の残留物の処理
水素ガス9が発生した後の残留物10を固液分離した。固液分離には遠心分離、UF膜を利用して濾過する方法があるが、今回はUF膜を利用した濾過により実施した。濾過後の固形分11b(水逆洗にて取り出す。)を乾燥炉にて乾燥させた。乾燥時に出てくる水蒸気は、液化して濾過の水逆洗用として再利用した。
7). Treatment of residue after reaction The residue 10 after the generation of hydrogen gas 9 was subjected to solid-liquid separation. Solid-liquid separation includes centrifugation and filtration using a UF membrane. This time, filtration was performed using a UF membrane. The solid content 11b after filtration (taken out by back washing with water) was dried in a drying furnace. The water vapor generated during drying was liquefied and reused for back washing of water for filtration.

この操作によりSiCを主成分とし、不純物としてFe(OH)2、Cu(OH)2を含む固形物が得られる。これを粉砕(ジェットミルを使用)、分級(風飛タイプを使用)し、各成分を選別した。SiCは、スラッジ及び残存分散媒に22%程度混入していたが、その内の90%を再生用砥粒として回収できた。残り10%の微粉化したSiCは、スライス用砥粒には使用できないものの、ガラス研磨用微細砥粒としての再利用は可能であった。不純物として得られたFe(OH)2、Cu(OH)2は廃棄した。 By this operation, a solid containing SiC as a main component and Fe (OH) 2 and Cu (OH) 2 as impurities is obtained. This was pulverized (using a jet mill) and classified (using a flying type) to select each component. About 22% of SiC was mixed in the sludge and the residual dispersion medium, and 90% of the SiC could be recovered as reclaimed abrasive grains. Although the remaining 10% of finely ground SiC cannot be used for slicing abrasive grains, it could be reused as fine abrasive grains for glass polishing. Fe (OH) 2 and Cu (OH) 2 obtained as impurities were discarded.

次に、UF膜を使用した濾過により得られた液分(濾液)11aの処理方法を説明する。液分11aには主に珪酸ナトリウムが溶解している。この液分11aを蒸留濃縮する事により、固形分12bとして珪酸ナトリウムを得た。また、液分12aとして水が得られ、この水は、水酸化ナトリウム水溶液作成用の希釈水として再利用した。   Next, a method for treating the liquid (filtrate) 11a obtained by filtration using a UF membrane will be described. Sodium silicate is mainly dissolved in the liquid 11a. This liquid 11a was distilled and concentrated to obtain sodium silicate as the solid 12b. Moreover, water was obtained as the liquid component 12a, and this water was reused as dilution water for preparing a sodium hydroxide aqueous solution.

本発明の実施例1の水素ガスの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the hydrogen gas of Example 1 of this invention. 本発明の実施例1の水素ガスの製造に使用する反応器の構造図である。It is a structural diagram of the reactor used for manufacture of the hydrogen gas of Example 1 of this invention.

符号の説明Explanation of symbols

13,43,44:ホッパー 14:原料 15:1次原料タンク 16,17,35,39,41,42,48,49,53,59:バルブ 19:反応容器 21:攪拌モータ 23:シャフト 25:攪拌羽根 27:取水口 29:排水口 31:冷却&加温ジャケット 18,33,37,50,57:パイプ 45,46:タンク 47:NaOH水溶液 147:水 51:水素ガス管 55:冷却ジャケット(凝集器) 13, 43, 44: Hopper 14: Raw material 15: Primary raw material tank 16, 17, 35, 39, 41, 42, 48, 49, 53, 59: Valve 19: Reaction vessel 21: Stirring motor 23: Shaft 25: Stirrer blade 27: Intake port 29: Drain port 31: Cooling & heating jacket 18, 33, 37, 50, 57: Pipe 45, 46: Tank 47: NaOH aqueous solution 147: Water 51: Hydrogen gas pipe 55: Cooling jacket ( Aggregator)

Claims (19)

(1)砥粒とそれを分散する水溶性の分散媒とからなるスラリにシリコン粒が混入した使用済みスラリを、1次遠心分離することにより、砥粒が主成分の固形分を回収し、
(2)1次遠心分離により得られた液分を2次遠心分離することにより、分散媒が主成分の液分と、その残りのスラッジとに分離し、
(3)2次遠心分離により得られた液分を蒸留することにより得られる固形分について粉砕及び有機物残渣の除去を行うことにより固形分を微粉化し、
(4)微粉化した固形分にアルカリ性溶液を反応させて水素ガスを発生させる工程を備える水素ガスの製造方法。
(1) The used slurry in which silicon grains are mixed in a slurry composed of abrasive grains and a water-soluble dispersion medium in which the abrasive grains are dispersed is subjected to primary centrifugal separation, thereby recovering a solid content mainly composed of abrasive grains,
(2) The liquid obtained by the primary centrifugation is subjected to secondary centrifugation, so that the dispersion medium is separated into the main liquid and the remaining sludge;
(3) The solid content obtained by distilling the liquid obtained by the secondary centrifugation is pulverized and the organic matter residue is removed to pulverize the solid content.
(4) A method for producing hydrogen gas comprising a step of reacting an alkaline solution with finely divided solids to generate hydrogen gas.
工程(3)は、2次遠心分離により得られた液分の一部にスラッジを加えて得られる液分を蒸留することにより得られる固形分について粉砕及び有機物残渣の除去を行う工程である請求項1に記載の方法。 Step (3) is a step of pulverizing and removing organic residue from the solid content obtained by distilling the liquid obtained by adding sludge to a part of the liquid obtained by secondary centrifugation. Item 2. The method according to Item 1. 工程(3)において、2次遠心分離により得られた液分の残りをスラリの再生に用いる請求項2に記載の方法。 The method according to claim 2, wherein in step (3), the remaining liquid obtained by secondary centrifugation is used for slurry regeneration. 工程(3)の蒸留は、真空蒸留である請求項1に記載の方法。 The method according to claim 1, wherein the distillation in step (3) is vacuum distillation. 工程(3)の粉砕及び有機物残渣の除去は、振動真空粉砕によって行う請求項1に記載の方法。 The method according to claim 1, wherein the pulverization and the removal of organic residue in the step (3) are performed by vibration vacuum pulverization. 微粉化した固形分を粒径によって選別する工程をさらに備え、所定粒径未満の固形分のみをアルカリ性溶液と反応させる請求項1に記載の方法。 The method according to claim 1, further comprising a step of selecting the finely divided solid content according to the particle size, and reacting only the solid content having a particle size less than the predetermined particle size with the alkaline solution. 所定粒径は、0.1mmである請求項6に記載の方法。 The method according to claim 6, wherein the predetermined particle size is 0.1 mm. 所定粒径以上の固形分について再度、粉砕及び有機物残渣の除去を行う請求項6に記載の方法。 The method according to claim 6, wherein the solid content having a predetermined particle size or more is again pulverized and organic residue is removed. 選別は、篩を用いて行う請求項6に記載の方法。 The method according to claim 6, wherein the selection is performed using a sieve. アルカリ性溶液は、NaOH又はKOH水溶液からなる請求項1に記載の方法。 The method according to claim 1, wherein the alkaline solution comprises an aqueous NaOH or KOH solution. 水素ガスを発生させる工程は、水素ガスを発生させる反応が起こる反応容器と、反応容器から水素ガスを外部に取り出すための水素ガス管とを備える反応器で行われ、前記水素ガス管は、凝集器を備える請求項1に記載の方法。 The step of generating hydrogen gas is performed in a reactor including a reaction vessel in which a reaction for generating hydrogen gas occurs and a hydrogen gas pipe for taking out the hydrogen gas from the reaction vessel. The hydrogen gas pipe is agglomerated. The method of claim 1 comprising a vessel. 反応後の残留物を固液分離して得られる固形分を中和もしくは水洗、および分級処理して再利用可能な砥粒を得る請求項1に記載の方法。 The method according to claim 1, wherein the solid content obtained by solid-liquid separation of the residue after the reaction is neutralized or washed with water, and classified to obtain reusable abrasive grains. 反応後の残留物を固液分離して得られる液分を濃縮して珪酸ナトリウムを析出させる請求項1に記載の方法。 The method according to claim 1, wherein a solution obtained by solid-liquid separation of the residue after the reaction is concentrated to precipitate sodium silicate. (1)砥粒とそれを分散する水溶性の分散媒とからなるスラリにシリコン粒が混入した使用済みスラリを固液分離して得られる固形分について粉砕及び有機物残渣の除去を行うことにより固形分を微粉化し、
(2)微粉化した固形分にアルカリ性溶液を反応させて水素ガスを発生させる工程を備える水素ガスの製造方法。
(1) The solid content obtained by solid-liquid separation of a used slurry in which silicon particles are mixed in a slurry composed of abrasive grains and a water-soluble dispersion medium that disperses them is solidified by pulverizing and removing organic residues. Pulverize the minute,
(2) A method for producing hydrogen gas comprising a step of reacting an alkaline solution with finely divided solids to generate hydrogen gas.
粉砕及び有機物残渣の除去は、振動真空粉砕によって行う請求項14に記載の方法。 15. The method according to claim 14, wherein the pulverization and the removal of organic residue are performed by vibration vacuum pulverization. 微粉化した固形分を粒径によって選別する工程をさらに備え、所定粒径未満の固形分のみをアルカリ性溶液と反応させる請求項14に記載の方法。 The method according to claim 14, further comprising a step of selecting the finely divided solid content by the particle size, and reacting only the solid content having a particle size less than the predetermined particle size with the alkaline solution. アルカリ性溶液は、NaOH又はKOH水溶液からなる請求項14に記載の方法。 The method according to claim 14, wherein the alkaline solution comprises an aqueous NaOH or KOH solution. 反応後の残留物を固液分離して得られる固形分を中和もしくは水洗、および分級処理して再利用可能な砥粒を得る請求項14に記載の方法。 The method according to claim 14, wherein the solid content obtained by solid-liquid separation of the residue after the reaction is neutralized or washed with water, and classified to obtain reusable abrasive grains. 反応後の残留物を固液分離して得られる液分を濃縮して珪酸ナトリウムを析出させる請求項14に記載の方法。 The method according to claim 14, wherein the liquid obtained by solid-liquid separation of the residue after the reaction is concentrated to precipitate sodium silicate.
JP2005060806A 2005-03-04 2005-03-04 Method for producing hydrogen gas Expired - Fee Related JP4520331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005060806A JP4520331B2 (en) 2005-03-04 2005-03-04 Method for producing hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060806A JP4520331B2 (en) 2005-03-04 2005-03-04 Method for producing hydrogen gas

Publications (2)

Publication Number Publication Date
JP2006240935A true JP2006240935A (en) 2006-09-14
JP4520331B2 JP4520331B2 (en) 2010-08-04

Family

ID=37047713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060806A Expired - Fee Related JP4520331B2 (en) 2005-03-04 2005-03-04 Method for producing hydrogen gas

Country Status (1)

Country Link
JP (1) JP4520331B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156159A (en) * 2006-12-22 2008-07-10 Equos Research Co Ltd Hydrogen generating apparatus and power generation system
JP2009149484A (en) * 2007-12-18 2009-07-09 Fukuhara Co Ltd Manufacturing process of high pressure hydrogen gas and manufacturing apparatus
JP2009249224A (en) * 2008-04-04 2009-10-29 Nippon Steel Corp Method for producing sodium silicate solution and method for using sodium silicate solution
JP2009274944A (en) * 2008-05-16 2009-11-26 Fukuhara Co Ltd Method and apparatus for producing hydrogen gas
EP2357152A1 (en) * 2010-02-17 2011-08-17 Woongjin Coway Co., Ltd. Hydrogen energy production system utilizing silicon wastewater and method for production of hydrogen energy using the same
WO2015033815A1 (en) * 2013-09-05 2015-03-12 株式会社Kit Hydrogen production device, hydrogen production method, silicon fine particles for hydrogen production, and production method for silicon fine particles for hydrogen production
CN112429701A (en) * 2020-12-02 2021-03-02 中国计量大学 Waste silicon wafer treatment method for hydrogen production by hydrolysis
WO2021199644A1 (en) * 2020-04-02 2021-10-07 株式会社ボスケシリコン Composite material
CN114604826A (en) * 2020-12-09 2022-06-10 中国科学院上海硅酸盐研究所 Hydrogen production method based on fine silicon powder and sodium silicate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168313A (en) * 1984-09-07 1986-04-08 Osaka Titanium Seizo Kk Recovery of high purity silicon from silicon chip
JPH02166276A (en) * 1988-12-21 1990-06-26 Toshiba Corp Target made of refractory metal silicide and its production
JPH10324514A (en) * 1997-03-25 1998-12-08 Kawasaki Steel Corp Method for reutilizing metallic silicon
JP2000191303A (en) * 1998-12-25 2000-07-11 Sugino Mach Ltd Device and method for producing hydrogen
JP2001213609A (en) * 2000-01-28 2001-08-07 Sugino Mach Ltd Process of producing hydrogen and apparatus therefor
JP2003225700A (en) * 2002-01-31 2003-08-12 Mimasu Semiconductor Industry Co Ltd System for recycling waste sludge
JP2003340719A (en) * 2002-05-24 2003-12-02 Sharp Corp Slurry regenerating method
JP2004307328A (en) * 2003-03-25 2004-11-04 Sanyo Electric Co Ltd Hydrogen producing method, hydrogen producing apparatus and motor equipped with the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168313A (en) * 1984-09-07 1986-04-08 Osaka Titanium Seizo Kk Recovery of high purity silicon from silicon chip
JPH02166276A (en) * 1988-12-21 1990-06-26 Toshiba Corp Target made of refractory metal silicide and its production
JPH10324514A (en) * 1997-03-25 1998-12-08 Kawasaki Steel Corp Method for reutilizing metallic silicon
JP2000191303A (en) * 1998-12-25 2000-07-11 Sugino Mach Ltd Device and method for producing hydrogen
JP2001213609A (en) * 2000-01-28 2001-08-07 Sugino Mach Ltd Process of producing hydrogen and apparatus therefor
JP2003225700A (en) * 2002-01-31 2003-08-12 Mimasu Semiconductor Industry Co Ltd System for recycling waste sludge
JP2003340719A (en) * 2002-05-24 2003-12-02 Sharp Corp Slurry regenerating method
JP2004307328A (en) * 2003-03-25 2004-11-04 Sanyo Electric Co Ltd Hydrogen producing method, hydrogen producing apparatus and motor equipped with the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156159A (en) * 2006-12-22 2008-07-10 Equos Research Co Ltd Hydrogen generating apparatus and power generation system
JP2009149484A (en) * 2007-12-18 2009-07-09 Fukuhara Co Ltd Manufacturing process of high pressure hydrogen gas and manufacturing apparatus
JP2009249224A (en) * 2008-04-04 2009-10-29 Nippon Steel Corp Method for producing sodium silicate solution and method for using sodium silicate solution
JP2009274944A (en) * 2008-05-16 2009-11-26 Fukuhara Co Ltd Method and apparatus for producing hydrogen gas
EP2357152A1 (en) * 2010-02-17 2011-08-17 Woongjin Coway Co., Ltd. Hydrogen energy production system utilizing silicon wastewater and method for production of hydrogen energy using the same
CN102161472A (en) * 2010-02-17 2011-08-24 熊津豪威株式会社 Hydrogen energy production system utilizing silicon wastewater and method for production of hydrogen energy using the same
JP2011168478A (en) * 2010-02-17 2011-09-01 Woongjin Coway Co Ltd Hydrogen energy production system and method for producing hydrogen energy utilizing silicon wastewater
KR101273254B1 (en) * 2010-02-17 2013-06-11 코웨이 주식회사 System for producing hydrogen energy using the sillicon waste water and method for producing hydrogen energy using the sillicon waste water
CN102161472B (en) * 2010-02-17 2013-07-17 熊津豪威株式会社 Hydrogen energy production system utilizing silicon wastewater and method for production of hydrogen energy using the same
US8642002B2 (en) 2010-02-17 2014-02-04 Woongjin Coway Co., Ltd. Hydrogen gas production system utilizing silicon wastewater and method for production of hydrogen energy using the same
WO2015033815A1 (en) * 2013-09-05 2015-03-12 株式会社Kit Hydrogen production device, hydrogen production method, silicon fine particles for hydrogen production, and production method for silicon fine particles for hydrogen production
JPWO2015033815A1 (en) * 2013-09-05 2017-03-02 小林 光 Hydrogen production apparatus, hydrogen production method, silicon fine particles for hydrogen production, and method for producing silicon fine particles for hydrogen production
TWI630171B (en) * 2013-09-05 2018-07-21 小林光 Hydrogen production apparatus, process for producing hydrogen, silicon fine particles for hydrogen production, and manufacturing method of silicon fine particles for hydrogen production
JP2019089699A (en) * 2013-09-05 2019-06-13 小林 光 Hydrogen production apparatus, hydrogen production method, silicon fine particles for hydrogen production and method for producing silicon fine particles for hydrogen production
JP2022028696A (en) * 2013-09-05 2022-02-16 日新化成株式会社 Hydrogen production apparatus, hydrogen production method, and method for producing silicon fine particles for hydrogen production
JP7291968B2 (en) 2013-09-05 2023-06-16 日新化成株式会社 Hydrogen production device, hydrogen production method, and production method of silicon fine particles for hydrogen production
US11840450B2 (en) 2013-09-05 2023-12-12 Nisshin Kasei Co., Ltd. Hydrogen production apparatus, hydrogen production method, silicon fine particles for hydrogen production, and production method for silicon fine particles for hydrogen production
WO2021199644A1 (en) * 2020-04-02 2021-10-07 株式会社ボスケシリコン Composite material
CN112429701A (en) * 2020-12-02 2021-03-02 中国计量大学 Waste silicon wafer treatment method for hydrogen production by hydrolysis
CN114604826A (en) * 2020-12-09 2022-06-10 中国科学院上海硅酸盐研究所 Hydrogen production method based on fine silicon powder and sodium silicate

Also Published As

Publication number Publication date
JP4520331B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4520331B2 (en) Method for producing hydrogen gas
JP5722601B2 (en) Silicon cutting waste treatment method
JP4980793B2 (en) Silicon recovery method and silicon recovery apparatus
WO2005110918A1 (en) Method for producing halosilane and method for purifying solid component
US20110280785A1 (en) Methods and apparatus for recovery of silicon and silicon carbide from spent wafer-sawing slurry
US20100068115A1 (en) Silicon reclamation apparatus and method of reclaiming silicon
JP2001278612A (en) Method of recovering silicon
JP4966938B2 (en) Silicon regeneration method
JP2003340719A (en) Slurry regenerating method
JP2009196849A (en) Silicon recovery method and silicon recovery apparatus
JP5114436B2 (en) Metal content removal method and silicon purification method
KR101179521B1 (en) The method and device for the recycling of waste silicon wafer sludge
CN102295285A (en) Recovery method of silicon slice cutting waste mortar
JP2006315099A (en) Recovery treatment method of waste liquid of silicon cutting slurry
JP2007246367A (en) Method for recovering silicon-containing material
WO2010001961A1 (en) Method of regenerating coolant and method of regenerating slurry
JP2011218503A (en) Method for disposing silicon-containing waste liquid
JP2005313030A (en) Slurry regeneration method
WO2009081725A1 (en) Silicon reclamation method
CN106241794B (en) It is a kind of that the method and product that diamond is reclaimed in slug are ground from sapphire
JP2009084069A (en) Apparatus and method for regenerating silicon
TWI458680B (en) Recovery method for solid particle
KR101126229B1 (en) System and method for recycling waste slurry from silicone wafer cutting process
CN106829953B (en) A kind of method and product that diamond is recycled and recycled
JP2002028866A (en) Recovering method for abrasive grain and grinding slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees