JP2001213609A - Process of producing hydrogen and apparatus therefor - Google Patents

Process of producing hydrogen and apparatus therefor

Info

Publication number
JP2001213609A
JP2001213609A JP2000020026A JP2000020026A JP2001213609A JP 2001213609 A JP2001213609 A JP 2001213609A JP 2000020026 A JP2000020026 A JP 2000020026A JP 2000020026 A JP2000020026 A JP 2000020026A JP 2001213609 A JP2001213609 A JP 2001213609A
Authority
JP
Japan
Prior art keywords
hydrogen
reaction vessel
silicon
pressure
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000020026A
Other languages
Japanese (ja)
Other versions
JP4072985B2 (en
Inventor
Takayoshi Sugino
太加良 杉野
Ryoji Muratsubaki
良司 村椿
Yoshiaki Takazawa
義昭 高沢
Takami Shimizu
多可美 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sugino Machine Ltd
Original Assignee
Sugino Machine Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sugino Machine Ltd filed Critical Sugino Machine Ltd
Priority to JP2000020026A priority Critical patent/JP4072985B2/en
Publication of JP2001213609A publication Critical patent/JP2001213609A/en
Application granted granted Critical
Publication of JP4072985B2 publication Critical patent/JP4072985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PROBLEM TO BE SOLVED: To provide a process and an apparatus capable of efficiently producing hydrogen avoiding the gelling of silicic acid ion which is the cause of blocking the generation of hydrogen, and to provide a process and an apparatus capable of continuous supply of hydrogen suitable for practical use. SOLUTION: This process comprises the steps of mixing beforehand powdered silicon with water into slurry state, feeding this silicon powder slurry and alkaline solution to the reactor and catalyticly reacting in the reactor under heating to generate hydrogen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコンを原料と
する水素の製造方法および製造装置に関するものであ
る。
The present invention relates to a method and an apparatus for producing hydrogen from silicon.

【0002】[0002]

【従来の技術】我が国に消費されている水素の大半は、
石油や天然ガスから水蒸気改質法や部分酸化法によって
得られたものが、アンモニア合成やメタノール製造用と
してコンビナート内で自家消費されている。しかし、こ
れらの水素は純度が低いため、外販用の水素には、水の
電気分解や食塩電解の副生水素や、石油精製プロセスか
らの副生水素を工業用に精製したものが利用されている
のが現状である。
2. Description of the Related Art Most of the hydrogen consumed in Japan is
Oil and natural gas obtained by a steam reforming method or a partial oxidation method are consumed in-house in a complex for ammonia synthesis and methanol production. However, because of the low purity of these hydrogens, hydrogen for external sale is produced by industrial use of by-product hydrogen from water electrolysis or salt electrolysis, or by-product hydrogen from petroleum refining processes. That is the current situation.

【0003】しかしながら、このような従来の方法で得
られる水素は、数十〜数百気圧、数百℃という高温高圧
の環境下で生成され、製造に大きなエネルギーを必要と
し、コスト高である。そこで、純度の高い水素を低コス
トで得られる製造方法が望まれている。
[0003] However, hydrogen obtained by such a conventional method is generated in a high-temperature and high-pressure environment of several tens to several hundreds of atmospheres and several hundreds of degrees Celsius, requires large energy for production, and is expensive. Therefore, a production method capable of obtaining high-purity hydrogen at low cost is desired.

【0004】一方、ケイ素をアルカリ液に入れて加熱す
ると水素が発生することは以前から知られている事実で
あるが、半導体装置の製造分野において、水素源となり
得るシリコンが多量に廃棄されている事実もある。この
ようなシリコン屑など、低コストで豊富な原料の供給の
可能性や、ケイ素とアルカリ液との水素発生反応が大気
圧、百℃以下という容易に設定できる環境下で充分行え
ることからも、ケイ素を用いた水素製造方法は有望なも
のと言える。
[0004] On the other hand, it has long been known that hydrogen is generated when silicon is heated in an alkaline solution. However, in the field of manufacturing semiconductor devices, a large amount of silicon that can serve as a hydrogen source is discarded. There are facts. Because of the possibility of supplying abundant raw materials at low cost, such as silicon waste, and the fact that the hydrogen generation reaction between silicon and an alkaline solution can be sufficiently performed in an environment that can be easily set at atmospheric pressure, 100 ° C. or less, The hydrogen production method using silicon is promising.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
如きケイ素を原料とした水素製造方法についても、水素
を効率的に且つ安定に供給できるような工業化に当たっ
て実用に適したものにする必要がある。
However, the above-mentioned method for producing hydrogen using silicon as a raw material also needs to be suitable for practical use in industrialization in which hydrogen can be supplied efficiently and stably.

【0006】例えば、ケイ素とアルカリ性水溶液との混
合による水素発生反応においては、溶液中に水素ガス以
外にケイ酸イオンが生成されるが、水素ガスを多量に生
成しようとして単に過剰の高濃度アルカリ液を使用した
りケイ素を多量に供給したりすると、ケイ酸イオンがゲ
ル状となって水素ガスの生成が阻害されるという問題が
生じる。
For example, in a hydrogen generation reaction by mixing silicon and an alkaline aqueous solution, silicate ions are generated in the solution in addition to the hydrogen gas. The use of silicon or the supply of a large amount of silicon causes a problem that silicate ions become gel-like and inhibit the generation of hydrogen gas.

【0007】また、ケイ素とアルカリ性水溶液との反応
は両者の接触後直ちに激しく開始され、その数分後には
生成可能な水素ガス量の大半が発生してしまい、その後
は僅かな反応が持続するだけである。即ち、反応開始か
ら終了までの間に水素生成速度が大きく変化するため発
生した水素ガスをそのまま取り出すだけでは定量的な水
素の供給は困難である。
Further, the reaction between silicon and the alkaline aqueous solution is started violently immediately after the contact between the two, and after a few minutes, most of the amount of hydrogen gas that can be generated is generated, and after that, only a slight reaction continues. It is. That is, since the hydrogen generation rate changes greatly from the start to the end of the reaction, it is difficult to supply hydrogen quantitatively only by taking out the generated hydrogen gas as it is.

【0008】さらに、原料のケイ素は前述の如くシリコ
ン屑等の粉体として供給されることが考えられるが、こ
のような場合、アルカリ性水溶液を加温する反応系で粉
体を投入することは、水蒸気の立ちこめる容器付近での
配管内目詰まりや反応系への不純物ガス混入の原因とな
る可能性がある。
Further, as described above, it is conceivable that silicon as a raw material is supplied as powder such as silicon dust, but in such a case, it is difficult to supply powder in a reaction system for heating an alkaline aqueous solution. This may cause clogging in the pipe near the vessel where steam is trapped, or contamination of impurity gas into the reaction system.

【0009】本発明の目的は、上記問題点に鑑み、ケイ
素とアルカリ液との混合により水素を発生させる水素製
造方法において、水素ガスの生成を阻害する原因となる
ケイ酸イオンのゲル化を回避して効率よく水素を製造で
きる方法および装置を提供することにある。また本発明
は、連続的に水素の定量供給ができる実用に適した水素
の製造方法および装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a method for producing hydrogen by mixing silicon and an alkaline solution, which avoids gelation of silicate ions which hinder generation of hydrogen gas. It is an object of the present invention to provide a method and an apparatus capable of efficiently producing hydrogen. Another object of the present invention is to provide a hydrogen production method and apparatus suitable for practical use that can continuously supply hydrogen at a constant rate.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明に係る水素製造方法は、粉体
ケイ素とアルカリ液とを反応容器に供給して反応容器内
で加温下に接触反応させることにより水素を発生させる
水素製造方法において、予め粉体ケイ素を水と混合して
スラリー状態とし、このケイ素スラリーを反応容器に供
給するものである。
According to a first aspect of the present invention, there is provided a method for producing hydrogen, comprising supplying powdered silicon and an alkaline solution to a reaction vessel and heating the reaction vessel in the reaction vessel. In a hydrogen production method in which hydrogen is generated by performing a contact reaction below, powdered silicon is previously mixed with water to form a slurry, and this silicon slurry is supplied to a reaction vessel.

【0011】また、請求項2に記載の発明に係る水素製
造方法は、請求項1に記載の水素製造方法において、反
応容器内からの水素の導出流量に応じて反応容器内圧が
予め定められた圧力範囲内に保たれるようにケイ素スラ
リー及び/又はアルカリ液の供給を制御するものであ
る。
According to a second aspect of the present invention, there is provided the hydrogen production method according to the first aspect, wherein the internal pressure of the reaction vessel is determined in advance according to the flow rate of hydrogen extracted from the inside of the reaction vessel. The supply of the silicon slurry and / or the alkaline solution is controlled so as to be kept within the pressure range.

【0012】請求項3に記載の発明に係る水素製造方法
は、耐圧構造の反応容器と、該反応容器を加温して反応
温度を維持するための恒温加熱装置と、粉体ケイ素を水
と混合してスラリー状態で貯留する第1タンクと、アル
カリ液を貯留する第2タンクと、前記第1タンク内のケ
イ素スラリー及び前記第2タンク内のアルカリ液を反応
容器内に送り込む液体供給装置と、前記反応容器内で発
生した水素を外部へ導出するための気体導出装置と、を
備えたものである。
In a third aspect of the present invention, there is provided a hydrogen production method, comprising: a reaction vessel having a pressure-resistant structure; a constant-temperature heating device for heating the reaction vessel to maintain a reaction temperature; A first tank for mixing and storing in a slurry state, a second tank for storing an alkaline liquid, and a liquid supply device for feeding the silicon slurry in the first tank and the alkaline liquid in the second tank into a reaction vessel; A gas deriving device for deriving hydrogen generated in the reaction vessel to the outside.

【0013】また、請求項4に記載の発明に係る水素製
造装置は、請求項3に記載の水素製造装置において、前
記気体導出装置が、前記反応容器内の気体圧力を計測す
る圧力測定手段と水素の導出流量を制御する気体流量制
御手段とを備え、前記液体供給装置が前記圧力測定手段
で計測された圧力値および前記気体流量制御手段で制御
された流量値に基づいて反応容器内からの水素の導出流
量に応じて反応容器内圧が予め定められた圧力範囲内に
保たれるようにケイ素スラリー及び/又はアルカリ液の
供給を制御する液体供給制御手段を備えているものであ
る。
According to a fourth aspect of the present invention, in the hydrogen production apparatus according to the third aspect, the gas derivation device includes a pressure measurement unit that measures a gas pressure in the reaction vessel. Gas flow control means for controlling the flow rate of hydrogen, and wherein the liquid supply device supplies the liquid from the inside of the reaction vessel based on the pressure value measured by the pressure measurement means and the flow rate value controlled by the gas flow control means. Liquid supply control means is provided for controlling the supply of the silicon slurry and / or the alkaline solution so that the internal pressure of the reaction vessel is maintained within a predetermined pressure range in accordance with the flow rate of hydrogen.

【0014】さらに、請求項5に記載の発明に係る水素
製造装置は、請求項4に記載の水素製造装置において、
前記気体流量制御手段が予め定められた流量で水素を導
出するための凝縮器およびマスフローコントローラーを
備えているものである。
Further, the hydrogen production apparatus according to the invention of claim 5 is the hydrogen production apparatus of claim 4,
The gas flow control means includes a condenser and a mass flow controller for deriving hydrogen at a predetermined flow rate.

【0015】また、請求項6に記載の発明に係る水素製
造装置は、請求項4に記載の水素製造装置において、前
記液体供給制御手段がポンプを備え、該ポンプの吐出流
路が反応容器に接続されると共に吸入流路がそれぞれ選
択的に開閉可能な開閉弁を介して前記第1タンクと第2
タンクに並列接続され、前記圧力測定手段で計測された
圧力値に基づいて前記ポンプの起動と停止及び各開閉弁
の開閉を行うようにしたことを特徴とするものである。
According to a sixth aspect of the present invention, in the hydrogen production apparatus according to the fourth aspect, the liquid supply control means includes a pump, and a discharge passage of the pump is connected to the reaction vessel. The first tank and the second tank are connected to each other through an on-off valve that can be connected and that can selectively open and close the suction passage.
The pump is connected in parallel, and starts and stops the pump and opens and closes each on-off valve based on the pressure value measured by the pressure measuring means.

【0016】請求項1に記載の発明による水素製造方法
は、粉体ケイ素とアルカリ液との混合により水素を発生
させる水素製造方法において原料の粉体ケイ素を予め水
と混合してスラリー状態にして供給するものであるた
め、ケイ素を粉体のまま供給する場合に比べて混合する
水の介在で反応容器内の液量が増加して溶液中のケイ酸
イオン濃度が抑えられ、水素ガス発生を阻害する原因と
なるゲル状副生成物の発生も抑えられる。またスラリー
状態でケイ素を供給すると、ケイ素とアルカリ液との接
触直後の激しい反応も抑えられるため、アルカリ液もよ
り高濃度のものが使用でき、ケイ素の高効率利用、即ち
水素ガス生成量の増加も図れる。
According to a first aspect of the present invention, there is provided a hydrogen production method for producing hydrogen by mixing powdered silicon and an alkaline solution, wherein the raw material powdered silicon is previously mixed with water to form a slurry. Since it is supplied, the amount of liquid in the reaction vessel increases due to the interposition of water to be mixed as compared with the case where silicon is supplied as powder, the silicate ion concentration in the solution is suppressed, and hydrogen gas generation is reduced. The generation of a gel-like by-product that causes inhibition is also suppressed. Also, when silicon is supplied in a slurry state, a violent reaction immediately after the contact between silicon and the alkaline liquid is suppressed, so that a higher concentration of the alkaline liquid can be used, and efficient use of silicon, that is, an increase in the amount of hydrogen gas generated. Can also be planned.

【0017】また、水素生成反応が進むと発生する水素
ガスによって反応容器内圧は高くなっていくため、単に
反応容器内に原料を追加供給して水素生成反応を継続さ
せていこうとしても、いずれ反応容器内に圧力上限値ま
で水素ガスが満たされてしまい、水素ガスを導出して容
器内圧を下げなければそれ以上水素生成反応を継続でき
ない。そこで、反応容器内に満たされていく水素ガスを
導出しながら適宜原料を追加供給していけば、水素生成
反応を継続させることが容易にできる。
In addition, since the internal pressure of the reaction vessel is increased by the hydrogen gas generated as the hydrogen production reaction proceeds, even if the hydrogen production reaction is continued by simply supplying additional raw materials into the reaction vessel, The hydrogen gas is filled up to the upper pressure limit in the container, and the hydrogen generation reaction cannot be continued further unless the hydrogen gas is led out to lower the container internal pressure. Therefore, if a raw material is additionally supplied as appropriate while deriving the hydrogen gas filling the reaction vessel, the hydrogen generation reaction can be easily continued.

【0018】その際に、請求項2に記載した如く、水素
ガスの導出流量に応じて反応容器内圧が予め定められた
圧力範囲内に保たれるようにケイ素スラリーやアルカリ
液の追加供給を制御すれば、水素発生反応を効率的に継
続でき、連続的に且つ定量的に水素を得ることができ
る。
At this time, as described in claim 2, the additional supply of the silicon slurry or the alkaline liquid is controlled so that the internal pressure of the reaction vessel is maintained within a predetermined pressure range in accordance with the flow rate of the hydrogen gas. Then, the hydrogen generation reaction can be efficiently continued, and hydrogen can be obtained continuously and quantitatively.

【0019】請求項3に記載の発明による水素製造装置
は、第1タンクに粉体ケイ素を水と混合してスラリー状
態で貯留し、第2タンクにアルカリ液を貯留し、液体供
給装置によって第1タンク内のケイ素スラリーと第2タ
ンク内のアルカリ液を耐圧構造の反応容器内に送り込
み、恒温加熱装置で反応容器を加温して反応温度を維持
しつつ水素発生反応を行い、反応容器内で発生した水素
を気体導出装置により反応容器外へ導出し回収するもの
である。
According to a third aspect of the present invention, in the hydrogen production apparatus, powder silicon is mixed with water in a first tank and stored in a slurry state, and an alkaline liquid is stored in a second tank. The silicon slurry in the first tank and the alkaline solution in the second tank are fed into a pressure-resistant reaction vessel, and the reaction vessel is heated by a constant-temperature heating device to carry out a hydrogen generation reaction while maintaining the reaction temperature. The hydrogen generated in the above is led out of the reaction vessel by a gas lead-out device and collected.

【0020】上記の如き構成を備えた装置によれば、液
体供給装置による反応容器内への原料ケイ素の供給を第
1タンクからのスラリー状態で行うため、配管の目詰ま
りや不純物ガスの混入もなく、第2タンクからのアルカ
リ液と共にケイ素の供給がスムーズで容易に制御できる
だけでなく、反応の進行に伴うゲル状副生成物の発生も
抑えられるので、水素ガス発生も良好に進行するもので
ある。従って、本装置によれば、機械的な原料の追加供
給の継続および連続反応が可能であり、効率よく連続的
な水素製造が実現できる。
According to the apparatus having the above-described configuration, the supply of the raw material silicon into the reaction vessel by the liquid supply device is performed in a slurry state from the first tank, so that clogging of the piping and mixing of impurity gas are prevented. In addition, the supply of silicon together with the alkaline solution from the second tank can be smoothly and easily controlled, and the generation of a gel-like by-product accompanying the progress of the reaction can be suppressed, so that the generation of hydrogen gas proceeds well. is there. Therefore, according to the present apparatus, continuation of the additional supply of the mechanical raw material and continuous reaction are possible, and efficient and continuous hydrogen production can be realized.

【0021】さらに、請求項4に記載した如く、気体導
出装置に、反応容器内の気体圧力を計測する圧力測定手
段と水素導出流量を制御する気体流量制御手段を備え、
液体供給装置の液体供給制御手段によって圧力測定装置
で計測された圧力値及び気体流量制御手段で制御された
流量値に基づいて反応容器内からの水素の導出流量に応
じて反応容器内圧が予め定められた圧力範囲内に保たれ
るようにケイ素スラリー及びまたはアルカリ液の追加供
給を制御すれば、自動的に水素生成反応を継続でき、連
続して定量的に水素を製造することが可能となる。
Further, as described in claim 4, the gas deriving device is provided with a pressure measuring means for measuring a gas pressure in the reaction vessel and a gas flow rate controlling means for controlling a hydrogen deriving flow rate,
Based on the pressure value measured by the pressure measuring device by the liquid supply control means of the liquid supply device and the flow rate value controlled by the gas flow rate control means, the internal pressure of the reaction vessel is determined in advance according to the flow rate of hydrogen derived from the inside of the reaction vessel. If the additional supply of the silicon slurry and / or the alkali solution is controlled so as to be kept within the specified pressure range, the hydrogen generation reaction can be automatically continued, and the hydrogen can be continuously and quantitatively produced. .

【0022】反応容器内からの水素の導出流量を制御す
る気体流量制御手段としては、凝縮器およびマスフロー
コントローラーを備えたものが簡便である。この構成に
よって予め定められた流量で水素を反応容器内から導出
することができる。
As a gas flow rate control means for controlling the flow rate of hydrogen out of the reaction vessel, one provided with a condenser and a mass flow controller is simple. With this configuration, hydrogen can be led out of the reaction vessel at a predetermined flow rate.

【0023】また本発明の水素製造装置におけ液体供給
装置の具体的構成としては、原料ケイ素がスラリー状態
であるため、ポンプを利用したものが原料供給の制御の
上で簡便で容易である。例えばポンプを介して第1タン
ク及び第2タンクからケイ素スラリーおよびアルカリ液
を反応容器へ送り込む構成とした場合、ポンプの吐出流
路を反応容器に接続し、吸入流路がそれぞれ選択的に開
閉可能な開閉弁を介して第1タンクと第2タンクに並列
に接続し、前記圧力測定手段で計測された圧力値に基づ
いてポンプの起動、停止、各開閉弁の開閉を行う構成を
液体供給制御手段とすれば、定量的な水素の導出・回収
が連続して行えるように水素生成反応を継続させるよう
な原料の追加供給を容易に制御できる。
Further, as a specific configuration of the liquid supply apparatus in the hydrogen production apparatus of the present invention, since the raw material silicon is in a slurry state, a method using a pump is simple and easy in controlling the supply of the raw material. For example, when the silicon slurry and the alkali solution are fed into the reaction vessel from the first tank and the second tank via the pump, the discharge flow path of the pump is connected to the reaction vessel, and the suction flow path can be selectively opened and closed, respectively. The liquid supply control is performed by connecting the first tank and the second tank in parallel via a simple open / close valve and starting and stopping the pump based on the pressure value measured by the pressure measuring means, and opening / closing each open / close valve. As a means, it is possible to easily control the additional supply of the raw material for continuing the hydrogen generation reaction so that the quantitative derivation and recovery of hydrogen can be continuously performed.

【0024】[0024]

【発明の実施の形態】本発明の一実施の形態としての水
素製造装置を図1の概略構成図に示す。本装置は、耐圧
構造の実容積12Lの反応容器1と、反応容器内1内の
溶液温度を確認する熱電対からなる温度センサー8の測
定結果に基づいて反応容器1を加温し反応温度を維持す
る恒加熱装置としての恒温水循環装置2とを備え、また
液体供給装置として、粉体ケイ素と水とを混合してスラ
リー状態で貯留する第1タンク3と、アルカリ液を貯留
する第2タンク4と、これら第1タンク3と第2タンク
4とにそれぞれ開閉可能な開閉弁(11,12)を介し
て吸入流路が並列に接続されていると共に吐出流路が反
応容器1に接続されているポンプ5とを備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic configuration diagram of a hydrogen production apparatus as one embodiment of the present invention. This apparatus heats the reaction vessel 1 based on the measurement result of the reaction vessel 1 having a real volume of 12 L having a pressure resistance structure and a thermocouple 8 for checking the solution temperature in the reaction vessel 1. A constant temperature water circulation device 2 as a constant heating device for maintaining; a first tank 3 for mixing powdered silicon and water and storing the slurry in a slurry state; and a second tank for storing an alkaline liquid as a liquid supply device 4 and the first tank 3 and the second tank 4 are connected in parallel with each other via on-off valves (11, 12) which can be opened and closed, respectively, and the discharge passage is connected to the reaction vessel 1. And a pump 5.

【0025】さらに、反応容器内で発生した水素ガスを
外部へ導出するための気体導出装置として、所定流量で
水素ガスを導出するためのコンデンサ6およびマスフロ
ーコントローラー7を備えている。
Further, as a gas deriving device for deriving hydrogen gas generated in the reaction vessel to the outside, a condenser 6 and a mass flow controller 7 for deriving hydrogen gas at a predetermined flow rate are provided.

【0026】なお、本装置においては、反応容器1内の
気体圧力を測定する圧力センサー(圧力測定手段)9を
備えており、この圧力センサー9で測定された圧力値お
よび前記水素ガスの流量値に基づいて、液体供給装置側
のポンプ5の起動,停止および各開閉弁(11,12)
の開閉を制御する制御装置(不図示)を備えている。
The present apparatus is provided with a pressure sensor (pressure measuring means) 9 for measuring the gas pressure in the reaction vessel 1. The pressure value measured by the pressure sensor 9 and the flow rate value of the hydrogen gas are measured. Of the pump 5 on the liquid supply device side and the on-off valves (11, 12)
A control device (not shown) for controlling the opening and closing of the camera is provided.

【0027】この制御装置によって、装置駆動中は反応
容器1内からの水素の導出に応じて反応容器内圧が所定
の圧力範囲内に保たれるように第1タンク3および第2
タンク4からのケイ素スラリーおよびアルカリ液の供
給、追加が制御され、定量的な水素導出・回収が連続し
て行えるように水素生成反応が継続される。
The control device controls the first tank 3 and the second tank 3 so that the internal pressure of the reaction vessel is maintained within a predetermined pressure range in accordance with the derivation of hydrogen from the inside of the reaction vessel 1 during operation of the apparatus.
The supply and addition of the silicon slurry and the alkaline solution from the tank 4 are controlled, and the hydrogen generation reaction is continued so that quantitative desorption and recovery of hydrogen can be continuously performed.

【0028】なお、原料の追加供給が或る程度繰り返さ
れ、反応容器1内の溶液が所定量に達した時点で、ドレ
ンバルブ13を開けば、溶液は反応容器1からドレンタ
ンク10へ排出され、ドレンバルブ13を閉じた後、再
び原料供給を開始して水素生成反応を継続することがで
きる。
When the additional supply of the raw material is repeated to some extent and the solution in the reaction vessel 1 reaches a predetermined amount, the drain valve 13 is opened and the solution is discharged from the reaction vessel 1 to the drain tank 10. After the drain valve 13 is closed, the raw material supply is started again to continue the hydrogen generation reaction.

【0029】[0029]

【実施例】本発明の第1の実施例として、図1に示した
水素製造装置を用いて水素生成反応を行い、原料の追加
供給による反応の継続で連続的な水素製造を行った場合
を以下に説明する。初期状態として、まず0.5規定水
酸化ナトリウム水溶液1Lを反応容器1内に収容し、恒
温加熱装置2により加熱して液温を80℃に維持すると
共に、第1タンク3内に粉末ケイ素と水とを撹拌混合し
ながら10wt%ケイ素スラリー状態で貯留しておき、
第2タンク4内に1規定水酸化ナトリウム水溶液を貯留
しておく。
EXAMPLE As a first example of the present invention, a case where a hydrogen production reaction was carried out using the hydrogen production apparatus shown in FIG. 1 and continuous hydrogen production was carried out by continuing the reaction by additional supply of raw materials. This will be described below. As an initial state, first, 1 L of 0.5 N sodium hydroxide aqueous solution is accommodated in the reaction vessel 1, heated by the constant temperature heating device 2 to maintain the liquid temperature at 80 ° C., and powdered silicon is placed in the first tank 3. While being stirred and mixed with water, it is stored in a 10 wt% silicon slurry state,
A 1N aqueous sodium hydroxide solution is stored in the second tank 4.

【0030】制御装置によってポンプ5を起動させると
同時に各開閉弁(11,12)を順次開いて第1タンク
3から10wt%ケイ素スラリー0.1Lを、第2タン
ク4から1規定水酸化ナトリウム水溶液0.1Lをそれ
ぞれ反応容器1内へ導入し、水素生成反応を開始する。
なお、1規定水酸化ナトリウム水溶液の追加は、スラリ
ーの水分によるアルカリ水溶液の希釈に抗するためであ
る。
At the same time when the pump 5 is started by the control device, the respective on-off valves (11, 12) are sequentially opened, and 0.1 L of 10 wt% silicon slurry is supplied from the first tank 3 and 1N aqueous sodium hydroxide solution is supplied from the second tank 4. 0.1 L is introduced into each reaction vessel 1 to start a hydrogen generation reaction.
The addition of the 1N aqueous sodium hydroxide solution is for resisting the dilution of the aqueous alkaline solution with the water content of the slurry.

【0031】反応開始以降、10分毎に水素ガス発生量
の測定および10wt%ケイ素スラリー0.1Lと1規
定水酸化ナトリウム水溶液0.1Lの追加供給を繰り返
し行い、水素生成反応を継続した。本実施形態では、当
所の原料供給後、9回の原料追加供給操作を繰り返し
た。途中、反応容器1内の溶液量がある量に達したら、
ドレンバルブ13を開けて溶液をドレンタンク10へ排
出して1Lまで減少させてから原料追加供給を再開す
る。
After the start of the reaction, the measurement of the amount of generated hydrogen gas and the additional supply of 0.1 L of a 10 wt% silicon slurry and 0.1 L of a 1N aqueous sodium hydroxide solution were repeated every 10 minutes to continue the hydrogen generation reaction. In the present embodiment, nine additional material supply operations were repeated after the supply of the raw material at the plant. On the way, when the amount of the solution in the reaction vessel 1 reaches a certain amount,
After the drain valve 13 is opened and the solution is discharged to the drain tank 10 to reduce the solution to 1 L, the additional supply of the raw material is restarted.

【0032】10分毎に測定した水素ガス発生量(L)
を棒グラフで、投入ケイ素に対する消費率(%)を折れ
線グラフでそれぞれ図2に示した。結果として、まずケ
イ素をスラリー状態で追加供給することにより、水素ガ
ス発生を阻害するゲル状副生成物を生じることなく、原
料供給毎にそれぞれ同程度の水素発生反応が継続でき、
所定間隔毎の連続的な水素製造が可能であることが確認
された。また、各間隔毎の反応でのケイ素消費率は全て
80%程度であり、水素生成反応は非常に高効率で行わ
れていた。
Hydrogen gas generation amount (L) measured every 10 minutes
Is shown in a bar graph, and the consumption rate (%) with respect to the charged silicon is shown in FIG. 2 in a line graph. As a result, by first additionally supplying silicon in a slurry state, the same degree of hydrogen generation reaction can be continued for each raw material supply without generating a gel-like by-product that hinders hydrogen gas generation,
It was confirmed that continuous hydrogen production at predetermined intervals was possible. Further, the silicon consumption rate in each reaction at each interval was about 80%, and the hydrogen generation reaction was performed with very high efficiency.

【0033】次に、第2実施例として、上記第1実施例
で行った継続反応を長時間に亘って続けた場合、原料
(10wt%ケイ素スラリー0.1Lおよび1規定水酸
化ナトリウム水溶液0.1L)の追加供給時からの水素
発生過程に変化が生じるかを検討した。即ち、反応開始
直後と、反応開始から長時間、ここでは8時間に亘って
継続反応を続けた時点における原料追加供給時から10
分間に発生する水素量の積算値を経時的に各場合で求め
た。
Next, as a second embodiment, when the continuous reaction carried out in the first embodiment is continued for a long time, the raw materials (0.1 L of a 10 wt% silicon slurry and a 0.1 N aqueous sodium hydroxide solution of 0.1 L) were added. It was examined whether a change occurs in the hydrogen generation process from the time of additional supply of 1 L). That is, immediately after the start of the reaction, and 10 hours from the time of the additional supply of the raw materials at the time when the continuous reaction is continued for a long time from the start of the reaction, here, 8 hours.
The integrated value of the amount of hydrogen generated per minute was determined over time in each case.

【0034】結果を図3の折れ線図(横軸:原料供給時
からの経過時間(分),縦軸:発生する水素量の積算値
(L.0℃換算))に示す。図3からわかるように、反
応開始直後における原料追加供給時からの水素生成は、
供給後2,3分で生成される水素のほとんどが発生して
おり、反応開始8時間後における原料追加供給時からの
水素生成は、供給後6,7分経過してからようやく水素
の発生がみられ、その生成反応の進行速度も緩やかであ
った。
The results are shown in the polygonal line diagram of FIG. 3 (horizontal axis: elapsed time (minutes) from supply of raw material, vertical axis: integrated value of generated hydrogen amount (converted to L.degree. C.)). As can be seen from FIG. 3, hydrogen generation from the time of additional supply of raw materials immediately after the start of the reaction is as follows.
Most of the hydrogen generated in a few minutes after the supply is generated, and the generation of hydrogen from the time of the additional supply of the raw material 8 hours after the start of the reaction, the hydrogen is generated only after a lapse of 6, 7 minutes after the supply. The formation reaction proceeded slowly.

【0035】従って、原料追加供給時からの水素生成
は、反応の継続状態によって一様ではなく、継続時間が
長時間に亘って反応溶液の量や成分等の変化に伴って水
素生成反応の進行が遅くなる傾向があることが確認でき
た。
Therefore, the generation of hydrogen from the time of additional supply of the raw material is not uniform depending on the continuation state of the reaction, and the continuation time is prolonged as the amount and components of the reaction solution change over a long time. Was found to be slow.

【0036】そこで、長時間に亘る水素生成反応の継続
において、反応容器からの水素の定量導出を連続的に行
うための原料追加供給のタイミングを、反応継続が繰り
返されるのに伴って水素生成状況が変化するのに対応し
てどのように制御するかを検討した。
Therefore, in the continuation of the hydrogen generation reaction over a long period of time, the timing of the additional supply of the raw material for continuously deriving the quantitative amount of hydrogen from the reaction vessel is determined by changing the hydrogen generation state as the reaction continuation is repeated. We examined how to control in response to changes in

【0037】理論的には、当初の反応で生成された水素
ガスで反応容器内が満たされた時点で水素の容器外への
定量的導出をはじめ、反応容器内の水素ガスの減少中に
原料の追加供給を行って、全水素が導出しきらないうち
に反応容器内に再び水素が満たされる状態を得るように
すれば、水素導出が途切れることなく、長時間に亘る定
量的な水素導出が行える。
Theoretically, when the inside of the reaction vessel is filled with hydrogen gas generated in the initial reaction, hydrogen is quantitatively led out of the vessel, and while the hydrogen gas in the reaction vessel is decreasing, the amount of hydrogen is reduced. If additional hydrogen is supplied to obtain a state where the hydrogen is filled again in the reaction vessel before all the hydrogen has been completely desorbed, quantitative dehydrogenation over a long period of time can be performed without interruption of hydrogen depletion. I can do it.

【0038】従って、反応容器の水素ガスの減少に伴う
内圧変化に基づいて、原料追加供給を制御すれば、水素
の定量導出を連続的に維持することが可能である。即
ち、水素導出流量に応じて、反応容器内が所定の圧力範
囲内に保たれるように水素ガスが発生するように原料供
給を制御すれば良い。
Therefore, by controlling the additional supply of the raw material based on the change in the internal pressure due to the decrease in the hydrogen gas in the reaction vessel, it is possible to continuously maintain the quantitative derivation of hydrogen. That is, the supply of the raw material may be controlled so that the hydrogen gas is generated such that the inside of the reaction vessel is kept within a predetermined pressure range in accordance with the flow rate of hydrogen.

【0039】そこで、まず上記圧力範囲として予め決定
した上限値および下限値に基づき、図1の反応容器1に
ついて最大および最小の水素導出速度について、水素導
出に伴って減少する反応容器の内圧が、どの程度の時点
で原料を追加供給すればよいのかをある条件においてシ
ミュレーションを行って求めた。
Therefore, first, based on the upper limit value and the lower limit value determined in advance as the above-mentioned pressure range, the internal pressure of the reaction vessel which decreases with the derivation of hydrogen for the maximum and minimum hydrogen desorption rates for the reaction vessel 1 in FIG. Simulation was performed under certain conditions to determine at what point in time the additional material should be supplied.

【0040】シミュレーション条件として、前記範囲圧
力の上限値を装置耐圧より0.245MPa、下限値をマ
スフローコントローラー7による安定制御が可能な下限
圧力である0.049MPaとし、まず反応容器内が水素
ガスで満たされている状態から最大水素導出速度1L/m
inおよび最小水素導出速度0.1L/minでそれぞれ水素
導出を行った場合の反応容器内圧力の変化を測定した。
結果はそれぞれ図4の(a)および(b)のグラフに示
した通り、水素の導出に応じてほぼ直線的に反応容器内
圧は減少する。
As the simulation conditions, the upper limit of the range pressure is set to 0.245 MPa from the pressure resistance of the apparatus, and the lower limit is set to 0.049 MPa, which is the lower limit pressure at which stable control by the mass flow controller 7 is possible. Maximum hydrogen derivation rate 1 L / m from the filled state
Changes in the pressure in the reaction vessel when hydrogen was discharged at in and at the minimum hydrogen discharge rate of 0.1 L / min were measured.
The results are shown in the graphs of FIGS. 4A and 4B, respectively, and the pressure inside the reaction vessel decreases almost linearly with the derivation of hydrogen.

【0041】このような最大、最小導出速度における反
応容器内圧変化に対応して、長時間(ここでは8時間程
度)に亘る反応継続の全工程で反応容器内圧が前記圧力
範囲の上下限を満たすように水素生成を行うには、各容
器内圧変化に図3に示した水素生成状況を組み合わせた
場合の上下限が前記圧力範囲内に保たれれば良いことと
なる。
In response to such a change in the internal pressure of the reaction vessel at the maximum and minimum derivation speeds, the internal pressure of the reaction vessel satisfies the upper and lower limits of the pressure range in all steps of the reaction continuation for a long time (here, about 8 hours). In order to perform the hydrogen generation as described above, the upper and lower limits when the hydrogen generation state shown in FIG. 3 is combined with the change in the internal pressure of each container may be maintained within the pressure range.

【0042】このような状態をシミュレートすると、最
大、最小導出速度において、それぞれ図5(a)および
(b)のグラフに示す結果となる。この結果から最大水
素導出速度1L/minでは反応容器内圧が0.108MPa
に達した時点で、最小水素導出速度0.1L/minでは反
応容器内圧が0.059MPaに達した時点で原料を追加
供給すれば、反応容器からの水素導出が途切れることな
く、長時間の反応継続状態に亘って、一定量の水素導出
が維持できる。
When such a state is simulated, the results are shown in the graphs of FIGS. 5A and 5B at the maximum and minimum derivation speeds, respectively. From this result, at the maximum hydrogen desorption rate of 1 L / min, the internal pressure of the reaction vessel was 0.108 MPa.
When the internal pressure of the reaction vessel reaches 0.059 MPa at the minimum hydrogen desorption rate of 0.1 L / min at the time point when the pressure reaches 0.059 MPa, the supply of hydrogen from the reaction vessel can be continued without interruption. A constant amount of hydrogen can be maintained over the continuous state.

【0043】以上の結果から、水素導出速度に応じた原
料供給を行うべき反応容器内圧力値を予め求めておけ
ば、水素生成反応の長期継続において、反応容器内の圧
力値を測定するだけで、適したタイミングで原料追加供
給を行うように制御することができ、連続的な水素の定
量導出が容易に維持できる。
From the above results, if the pressure value in the reaction vessel at which the raw material is to be supplied in accordance with the hydrogen desorption rate is determined in advance, it is only necessary to measure the pressure value in the reaction vessel during the long-term continuation of the hydrogen generation reaction. In addition, it is possible to control so as to supply the additional material at an appropriate timing, and it is possible to easily maintain continuous quantitative derivation of hydrogen.

【0044】次に、本発明の第3の実施例として、上記
シミュレーション結果を踏まえた条件設定で図1の装置
を用いて原料追加供給制御による反応の継続で水素の定
量製造を行った。本実施例では、水素の導出速度を1L
/minとし、原料追加供給を行うタイミングとなる反応容
器内圧力を0.108MPaとした。
Next, as a third embodiment of the present invention, quantitative production of hydrogen was performed by using the apparatus shown in FIG. 1 and continuing the reaction by controlling the additional supply of the raw materials under the condition setting based on the above simulation results. In this embodiment, the deriving speed of hydrogen is 1 L
/ min, and the pressure in the reaction vessel at the timing of performing the additional supply of the raw material was set to 0.108 MPa.

【0045】装置の基本操作は第1実施例と同様の手順
とする。まず、初期状態として0.5規定水酸化ナトリ
ウム水溶液1Lを反応容器1内に収容し、恒温加熱装置
2により加熱して液温を80℃に維持し、反応容器1内
を窒素ガスでパージする。
The basic operation of the apparatus is the same as that of the first embodiment. First, as an initial state, 1 L of a 0.5 N sodium hydroxide aqueous solution is accommodated in the reaction vessel 1, heated by the constant temperature heating device 2 to maintain the liquid temperature at 80 ° C., and the inside of the reaction vessel 1 is purged with nitrogen gas. .

【0046】制御装置によってポンプ5を起動させると
同時に各開閉弁(11,12)を順次開いて第1タンク
3から10wt%ケイ素スラリー0.1Lを、第2タン
ク4から1規定水酸化ナトリウム水溶液0.1Lをそれ
ぞれ反応容器1内へ導入し、所定量の原料が導入された
ら各開閉弁(11,12)は閉じ、ポンプ5を停止す
る。これら原料の反応容器1内への導入と同時に水素生
成反応が開始するが、同時に、圧力センサー9による反
応容器1内の圧力の測定も始める。
At the same time when the pump 5 is started by the control device, the on-off valves (11, 12) are sequentially opened, and 0.1 L of 10 wt% silicon slurry is supplied from the first tank 3 and 1N aqueous sodium hydroxide solution is supplied from the second tank 4. 0.1 L is introduced into the reaction vessel 1. When a predetermined amount of the raw material is introduced, the on-off valves (11, 12) are closed, and the pump 5 is stopped. The hydrogen generation reaction starts simultaneously with the introduction of these raw materials into the reaction vessel 1, and at the same time, the measurement of the pressure in the reaction vessel 1 by the pressure sensor 9 also starts.

【0047】測定圧力値が装置耐圧値に基づく上限であ
る0.196MPaに達したら、マスフローコントローラ
ー7により水素ガスを1L/minの速度で反応容器外へ導
出し回収する。圧力センサー9による測定値が0.10
8MPaに達したら、ポンプ5および各開閉弁(11,1
2)を駆動制御して第1タンク3および第2タンク4か
らそれぞれ原料(10wt%ケイ素スラリー0.1Lお
よび1規定水酸化ナトリウム水溶液0.1L)の追加供
給を行う。以上の圧力センサー9による測定値に基づい
た原料の追加供給を繰り返す。
When the measured pressure value reaches the upper limit of 0.196 MPa based on the withstand pressure value of the apparatus, the hydrogen gas is led out of the reaction vessel by the mass flow controller 7 at a rate of 1 L / min and collected. The value measured by the pressure sensor 9 is 0.10
When the pressure reaches 8 MPa, the pump 5 and each on-off valve (11, 1
2) The drive is controlled to additionally supply raw materials (0.1 L of 10 wt% silicon slurry and 0.1 L of 1N sodium hydroxide aqueous solution) from the first tank 3 and the second tank 4 respectively. The above-described additional supply of the raw material based on the value measured by the pressure sensor 9 is repeated.

【0048】なお、反応容器1内の溶液が所定量に達し
たら、水素の導出をとめてドレンバルブ13を開いて溶
液をドレンタンク10へ排出し、反応容器内液量を1L
まで減らす。その後再び原料供給を行い、容器内圧が
0.196MPaに達したら、前記所定速度で水素導出を
はじめ、同様に圧力センサー9による測定値に基づいた
原料の追加供給を繰り返す。
When the amount of the solution in the reaction vessel 1 reaches a predetermined amount, the supply of hydrogen is stopped and the drain valve 13 is opened to discharge the solution to the drain tank 10.
Reduce to Thereafter, the raw material is supplied again, and when the internal pressure of the container reaches 0.196 MPa, the supply of the raw material based on the value measured by the pressure sensor 9 is repeated, starting with the derivation of hydrogen at the predetermined speed.

【0049】以上の水素製造工程における原料追加供給
タイミングおよび容器内圧力(MPa)の変化と水素ガス
導出量(L/min)を経時的に折れ線図として図6に示し
た。以上により、反応容器内の圧力値に基づく原料追加
供給の制御だけで、定量的な水素の連続製造が行えた。
FIG. 6 is a line chart showing the change of the additional material supply timing, the pressure in the container (MPa) and the amount of hydrogen gas taken out (L / min) with time in the above hydrogen production process. As described above, quantitative continuous production of hydrogen could be performed only by controlling the additional supply of the raw material based on the pressure value in the reaction vessel.

【0050】なお、本発明における原料となるケイ素ス
ラリーは、粉末ケイ素を水と混合するものであるが、ケ
イ素の供給源は限定されるものではないが、例えば、半
導体製造ラインから発生するシリコン屑を用いても良
い。この場合、廃棄物利用であるため、水素の製造コス
トは大幅に軽減される。また、アルカリ液もアルカリ廃
液の利用が可能である。
The silicon slurry used as a raw material in the present invention is obtained by mixing powdered silicon with water. The source of silicon is not limited. For example, silicon waste generated from a semiconductor manufacturing line may be used. May be used. In this case, since the waste is used, the cost of producing hydrogen is greatly reduced. In addition, as for the alkaline liquid, an alkaline waste liquid can be used.

【0051】[0051]

【発明の効果】以上説明したとおり、本発明の水素製造
方法によれば、原料ケイ素を水と混合したスラリー状態
で供給するため、水素ガス発生を阻害する原因となるゲ
ル状副生成物の発生も抑えられると共に、ケイ素とアル
カリ液との接触直後の激しい反応も抑えられるため、ア
ルカリ液もより高濃度のものが使用でき、ケイ素の高効
率利用が可能となるだけでなく、ケイ素原料の供給も容
易になるため原料の追加供給による水素生成反応の継続
で水素ガスの連続生成も可能となる。
As described above, according to the hydrogen production method of the present invention, since the raw material silicon is supplied in a slurry state mixed with water, the generation of a gel-like by-product which may hinder the generation of hydrogen gas is generated. As well as suppressing the violent reaction immediately after the contact between silicon and the alkali solution, the alkali solution can be used at a higher concentration, which enables not only efficient use of silicon but also supply of silicon raw materials. This also facilitates the continuous generation of hydrogen gas by continuing the hydrogen generation reaction by additionally supplying the raw material.

【0052】また、本発明の水素製造装置によれば、原
料供給および生成水素の回収が容易に制御でき、水素の
機械的製造が簡便に行えるという効果がある。さらに、
反応容器内の圧力値に基づいて原料の追加供給が容易に
制御でき、反応の継続を維持して水素の定量製造を連続
して行える。
Further, according to the hydrogen production apparatus of the present invention, there is an effect that the supply of the raw material and the recovery of the produced hydrogen can be easily controlled, and the mechanical production of hydrogen can be easily performed. further,
The additional supply of the raw material can be easily controlled based on the pressure value in the reaction vessel, and the constant production of hydrogen can be continuously performed while maintaining the continuation of the reaction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態としての水素製造装置の
概略構成図である。
FIG. 1 is a schematic configuration diagram of a hydrogen production apparatus as one embodiment of the present invention.

【図2】本発明の第1の実施例として図1の装置を用い
たの水素製造工程における水素生成量とケイ素消費率の
時間変化を示す棒グラフ(横軸:経過時間(分),縦
軸:10分毎の水素ガス発生量(L))および折れ線図
(横軸:経過時間(分),縦軸:投入ケイ素に対する消
費率(%))。
FIG. 2 is a bar graph (horizontal axis: elapsed time (minutes), vertical axis) showing a time change of a hydrogen production amount and a silicon consumption rate in a hydrogen production process using the apparatus of FIG. 1 as a first embodiment of the present invention; : Hydrogen gas generation amount (L) every 10 minutes) and a line chart (horizontal axis: elapsed time (minutes), vertical axis: consumption rate (%) with respect to silicon input).

【図3】本発明の第2の実施例として原料供給時から1
0分間に発生する水素量の積算値を示す折れ線図(横
軸:経過時間(分),縦軸:0℃換算の水素積算値
(L))であり、反応開始直後での原料供給(◆:黒菱
形)の場合と反応開始8時間後での原料供給(■;黒四
角形)の場合とを示す。
FIG. 3 shows a second embodiment of the present invention, in which 1
It is a polygonal line diagram (horizontal axis: elapsed time (minutes), vertical axis: hydrogen integrated value (L) converted at 0 ° C.) showing the integrated value of the amount of hydrogen generated in 0 minutes. : Black diamond) and the raw material supply (原料; black square) 8 hours after the start of the reaction.

【図4】図1の水素製造装置における反応容器からの水
素導出に伴う反応容器内圧力の時間変化を示す線図(横
軸:時間(分),縦軸:容器内圧力(MPa))であり、
(a)は最大水素導出速度1L/minの場合、(b)は最
小水素導出速度0.1L/minの場合をそれぞれ示す。
FIG. 4 is a graph (horizontal axis: time (minutes), vertical axis: pressure (MPa)) in the hydrogen production apparatus of FIG. Yes,
(A) shows the case where the maximum hydrogen derivation rate is 1 L / min, and (b) shows the case where the minimum hydrogen desorption rate is 0.1 L / min.

【図5】図4と図3の結果に基づいて、反応開始直後
(◆:黒菱形)の場合および反応開始8時間後(■;黒
四角形)の場合で原料追加供給を行った際の反応容器内
圧力の時間変化のシミュレーション結果を示す線図(横
軸:時間(分),縦軸:容器内圧力(MPa))であり、
(a)は最大水素導出速度1L/minの場合、(b)は最
小水素導出速度0.1L/minの場合をそれぞれ示す。
FIG. 5 is a diagram showing the reaction when the additional raw material is supplied immediately after the start of the reaction (◆: black diamond) and 8 hours after the start of the reaction (■; black square) based on the results of FIGS. 4 and 3 FIG. 6 is a diagram (horizontal axis: time (minutes), vertical axis: container pressure (MPa)) showing a simulation result of the time change of the pressure in the container;
(A) shows the case where the maximum hydrogen derivation rate is 1 L / min, and (b) shows the case where the minimum hydrogen desorption rate is 0.1 L / min.

【図6】本発明の第3の実施例として、図1の水素製造
装置を用いて反応容器内の圧力値に基づいて原料の追加
供給を制御して水素の連続定量製造を行った場合の容器
内圧力の変化と水素ガス導出量を原料供給タイミングと
共に経時的に示した折れ線図(横軸:水素導出時間
(分),縦軸:容器内圧力(MPa)および水素ガス導出
量(L))である。
FIG. 6 shows a third embodiment of the present invention in which the hydrogen supply apparatus of FIG. 1 is used to control the additional supply of the raw material based on the pressure value in the reaction vessel to perform continuous quantitative production of hydrogen. Line graph showing changes in the pressure in the container and the amount of hydrogen gas taken out with time along with the raw material supply timing (horizontal axis: hydrogen outgoing time (minutes), vertical axis: container pressure (MPa) and hydrogen gas outgoing amount (L) ).

【符号の説明】[Explanation of symbols]

1:反応容器 2:恒温加熱装置 3:第1タンク 4:第2タンク 5:ポンプ 6:コンデンサー 7:マスフローコントローラー 8:温度センサー 9:圧力センサー 10:ドレンタンク 11,12:開閉弁 13:ドレンバルブ 1: Reaction vessel 2: Constant temperature heating device 3: First tank 4: Second tank 5: Pump 6: Condenser 7: Mass flow controller 8: Temperature sensor 9: Pressure sensor 10: Drain tank 11, 12: Open / close valve 13: Drain valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高沢 義昭 富山県魚津市本江2410 株式会社スギノマ シン内 (72)発明者 清水 多可美 富山県魚津市本江2410 株式会社スギノマ シン内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshiaki Takazawa 2410 Motoe, Uozu City, Toyama Prefecture Inside Suginoma Shin Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 粉体ケイ素とアルカリ液とを反応容器に
供給して反応容器内で加温下に接触反応させることによ
り水素を発生させる水素製造方法において、予め粉体ケ
イ素を水と混合してスラリー状態とし、このケイ素スラ
リーを反応容器に供給することを特徴とする水素製造方
法。
In a hydrogen production method for producing hydrogen by supplying powdered silicon and an alkaline solution to a reaction vessel and causing them to react under heating in the reaction vessel, powdered silicon is mixed with water in advance. And supplying the silicon slurry to a reaction vessel.
【請求項2】 反応容器内からの水素の導出流量に応じ
て反応容器内圧が予め定められた圧力範囲内に保たれる
ようにケイ素スラリー及び/又はアルカリ液の供給を制
御することを特徴とする請求項1に記載の水素製造方
法。
2. The supply of a silicon slurry and / or an alkali solution is controlled such that the internal pressure of the reaction vessel is maintained within a predetermined pressure range in accordance with the flow rate of hydrogen extracted from the inside of the reaction vessel. The method for producing hydrogen according to claim 1.
【請求項3】 耐圧構造の反応容器と、 該反応容器を加温して反応温度を維持するための恒温加
熱装置と、 粉体ケイ素を水と混合してスラリー状態で貯留する第1
タンクと、 アルカリ液を貯留する第2タンクと、 前記第1タンク内のケイ素スラリー及び前記第2タンク
内のアルカリ液を反応容器内に送り込む液体供給装置
と、 前記反応容器内で発生した水素を外部へ導出するための
気体導出装置と、を備えたことを特徴とする水素製造装
置。
3. A reaction vessel having a pressure-resistant structure, a constant temperature heating device for heating the reaction vessel to maintain a reaction temperature, and a first method for mixing powdered silicon with water and storing it in a slurry state.
A tank, a second tank for storing an alkaline liquid, a liquid supply device for feeding the silicon slurry in the first tank and the alkaline liquid in the second tank into a reaction vessel, and a hydrogen generated in the reaction vessel. A hydrogen production device comprising: a gas derivation device for deriving the gas to the outside.
【請求項4】 前記気体導出装置が、前記反応容器内の
気体圧力を計測する圧力測定手段と水素の導出流量を制
御する気体流量制御手段とを備え、前記液体供給装置が
前記圧力測定手段で計測された圧力値および前記気体流
量制御手段で制御された流量値に基づいて反応容器内か
らの水素の導出流量に応じて反応容器内圧が予め定めら
れた圧力範囲内に保たれるようにケイ素スラリー及び/
又はアルカリ液の供給を制御する液体供給制御手段を備
えていることを特徴とする請求項3に記載の水素製造装
置。
4. The gas discharge device includes a pressure measurement unit that measures a gas pressure in the reaction vessel and a gas flow control unit that controls a discharge flow rate of hydrogen. Silicon based on the measured pressure value and the flow rate value controlled by the gas flow rate control means so that the internal pressure of the reaction vessel is maintained within a predetermined pressure range in accordance with the flow rate of hydrogen derived from the inside of the reaction vessel. Slurry and / or
4. The hydrogen production apparatus according to claim 3, further comprising a liquid supply control unit for controlling supply of the alkaline liquid.
【請求項5】 前記気体流量制御手段が予め定められた
流量で水素を導出するための凝縮器およびマスフローコ
ントローラーを備えていることを特徴とする請求項4に
記載の水素製造装置。
5. The hydrogen production apparatus according to claim 4, wherein said gas flow rate control means includes a condenser and a mass flow controller for deriving hydrogen at a predetermined flow rate.
【請求項6】 前記液体供給制御手段がポンプを備え、
該ポンプの吐出流路が反応容器に接続されると共に吸入
流路がそれぞれ選択的に開閉可能な開閉弁を介して前記
第1タンクと第2タンクに並列接続され、前記圧力測定
手段で計測された圧力値に基づいて前記ポンプの起動と
停止及び各開閉弁の開閉を行うようにしたことを特徴と
する請求項4に記載の水素製造装置。
6. The liquid supply control means includes a pump,
The discharge flow path of the pump is connected to the reaction vessel, and the suction flow path is connected in parallel to the first tank and the second tank via open / close valves that can be selectively opened / closed, respectively, and measured by the pressure measuring means. The hydrogen production apparatus according to claim 4, wherein the pump is started and stopped and each of the on-off valves is opened and closed based on the pressure value.
JP2000020026A 2000-01-28 2000-01-28 Hydrogen production method and apparatus Expired - Fee Related JP4072985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000020026A JP4072985B2 (en) 2000-01-28 2000-01-28 Hydrogen production method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000020026A JP4072985B2 (en) 2000-01-28 2000-01-28 Hydrogen production method and apparatus

Publications (2)

Publication Number Publication Date
JP2001213609A true JP2001213609A (en) 2001-08-07
JP4072985B2 JP4072985B2 (en) 2008-04-09

Family

ID=18546647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000020026A Expired - Fee Related JP4072985B2 (en) 2000-01-28 2000-01-28 Hydrogen production method and apparatus

Country Status (1)

Country Link
JP (1) JP4072985B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307328A (en) * 2003-03-25 2004-11-04 Sanyo Electric Co Ltd Hydrogen producing method, hydrogen producing apparatus and motor equipped with the same
JP2006240935A (en) * 2005-03-04 2006-09-14 Sharp Corp Method for producing hydrogen gas
JP2006273644A (en) * 2005-03-29 2006-10-12 Yuzuru Kaneko Method for generating hydrogen gas
JP2007099535A (en) * 2005-09-30 2007-04-19 Itec Co Ltd Hydrogen production apparatus
JP2011168478A (en) * 2010-02-17 2011-09-01 Woongjin Coway Co Ltd Hydrogen energy production system and method for producing hydrogen energy utilizing silicon wastewater
CN102190289A (en) * 2011-03-28 2011-09-21 蚌埠鑫源石英材料有限公司 Silicon powder composition for generating hydrogen gas
JP2011206685A (en) * 2010-03-30 2011-10-20 Taiheiyo Cement Corp Reaction control method
CN102229429A (en) * 2011-03-28 2011-11-02 蚌埠鑫源石英材料有限公司 Renewable energy silicon energy storing and circulating system
CN102397785A (en) * 2010-09-09 2012-04-04 柳林军 Silicon-hydrogen energy catalyst
JP2013203555A (en) * 2012-03-27 2013-10-07 Ti:Kk Hydrogen generator and method of generating hydrogen
WO2014053799A1 (en) * 2012-10-01 2014-04-10 Isis Innovation Limited Composition for hydrogen generation
KR20160081902A (en) 2013-11-12 2016-07-08 가부시키가이샤 티케이엑스 Silicon material a for hydrogen gas production, silicon material b for hydrogen gas production, method for producing silicon material a for hydrogen gas production, method for producing silicon material b for hydrogen gas production, method for producing hydrogen gas, and device for producing hydrogen gas
JP2019142754A (en) * 2018-02-22 2019-08-29 バイオコーク技研株式会社 Hydrogen generator and hydrogen generation method
CN114604826A (en) * 2020-12-09 2022-06-10 中国科学院上海硅酸盐研究所 Hydrogen production method based on fine silicon powder and sodium silicate

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7493765B2 (en) 2003-03-25 2009-02-24 Sanyo Electric Co., Ltd. Hydrogen production method and apparatus and engine employing hydrogen production apparatus
JP2004307328A (en) * 2003-03-25 2004-11-04 Sanyo Electric Co Ltd Hydrogen producing method, hydrogen producing apparatus and motor equipped with the same
JP2006240935A (en) * 2005-03-04 2006-09-14 Sharp Corp Method for producing hydrogen gas
JP4520331B2 (en) * 2005-03-04 2010-08-04 シャープ株式会社 Method for producing hydrogen gas
JP2006273644A (en) * 2005-03-29 2006-10-12 Yuzuru Kaneko Method for generating hydrogen gas
JP4589779B2 (en) * 2005-03-29 2010-12-01 譲 金子 Generation method of hydrogen gas
JP2007099535A (en) * 2005-09-30 2007-04-19 Itec Co Ltd Hydrogen production apparatus
JP2011168478A (en) * 2010-02-17 2011-09-01 Woongjin Coway Co Ltd Hydrogen energy production system and method for producing hydrogen energy utilizing silicon wastewater
US8642002B2 (en) 2010-02-17 2014-02-04 Woongjin Coway Co., Ltd. Hydrogen gas production system utilizing silicon wastewater and method for production of hydrogen energy using the same
JP2011206685A (en) * 2010-03-30 2011-10-20 Taiheiyo Cement Corp Reaction control method
CN102397785A (en) * 2010-09-09 2012-04-04 柳林军 Silicon-hydrogen energy catalyst
CN102229429A (en) * 2011-03-28 2011-11-02 蚌埠鑫源石英材料有限公司 Renewable energy silicon energy storing and circulating system
CN102190289A (en) * 2011-03-28 2011-09-21 蚌埠鑫源石英材料有限公司 Silicon powder composition for generating hydrogen gas
JP2013203555A (en) * 2012-03-27 2013-10-07 Ti:Kk Hydrogen generator and method of generating hydrogen
WO2014053799A1 (en) * 2012-10-01 2014-04-10 Isis Innovation Limited Composition for hydrogen generation
US9751759B2 (en) 2012-10-01 2017-09-05 Oxford University Innovation Limited Composition for hydrogen generation
KR20160081902A (en) 2013-11-12 2016-07-08 가부시키가이샤 티케이엑스 Silicon material a for hydrogen gas production, silicon material b for hydrogen gas production, method for producing silicon material a for hydrogen gas production, method for producing silicon material b for hydrogen gas production, method for producing hydrogen gas, and device for producing hydrogen gas
JP2019142754A (en) * 2018-02-22 2019-08-29 バイオコーク技研株式会社 Hydrogen generator and hydrogen generation method
JP7178039B2 (en) 2018-02-22 2022-11-25 バイオコーク技研株式会社 Hydrogen generator and hydrogen generation method
CN114604826A (en) * 2020-12-09 2022-06-10 中国科学院上海硅酸盐研究所 Hydrogen production method based on fine silicon powder and sodium silicate

Also Published As

Publication number Publication date
JP4072985B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
JP2001213609A (en) Process of producing hydrogen and apparatus therefor
JP4276854B2 (en) Hydrogen generating material, hydrogen generating method and hydrogen generating apparatus
US6899862B2 (en) Method for controlled generation of hydrogen by dissociation of water
US6274093B1 (en) Self-regulating hydrogen generator
AU2015275332B2 (en) An Apparatus For Generating Heat
AU2001275910A1 (en) Method and apparatus for controlled generation of hydrogen by dissociation of water
WO2001077412A1 (en) Apparatus for generating fluorine gas
JP5271545B2 (en) Hydrogen generating method, hydrogen generating apparatus and catalyst
JP6891869B2 (en) Methane production system
JP2007320792A (en) Hydrogen gas generating method and hydrogen gas generator
JP2002128502A (en) System for producting hydrogen gas
JP2011214954A (en) Gas hydrate percentage measuring device and the method of controlling the same
JP2024023988A (en) Sodium borohydride manufacturing method and sodium borohydride manufacturing device
JP2016036328A5 (en)
CN101905137B (en) Inner and outer air pressure balanced reaction device of quartz tube
JP2007320793A (en) Method for producing aluminum hydroxide and apparatus therefor
JP7175227B2 (en) Methane production system
JP5567880B2 (en) Reaction control method
KR100716213B1 (en) Apparatus for manufacturing magnesite using supercritical fluid and method for thereof
JP2005029406A (en) Method of producing gaseous hydrogen
KR20110003013A (en) Method of preparing sio2 nano powder with high purity and apparatus for preparing sio2 nano powder with high purity
JP4840900B2 (en) Thermochemical hydrogen production method and thermochemical hydrogen production apparatus
CN204247179U (en) A kind of device by preparation of metals nitrate solution
JP2007099535A (en) Hydrogen production apparatus
RU192222U1 (en) A device for feeding a catalyst to the reactor of an apparatus for producing elemental sulfur

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040727

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees