JP4276854B2 - Hydrogen generating material, hydrogen generating method and hydrogen generating apparatus - Google Patents

Hydrogen generating material, hydrogen generating method and hydrogen generating apparatus Download PDF

Info

Publication number
JP4276854B2
JP4276854B2 JP2003021995A JP2003021995A JP4276854B2 JP 4276854 B2 JP4276854 B2 JP 4276854B2 JP 2003021995 A JP2003021995 A JP 2003021995A JP 2003021995 A JP2003021995 A JP 2003021995A JP 4276854 B2 JP4276854 B2 JP 4276854B2
Authority
JP
Japan
Prior art keywords
hydrogen
powder
water
hydrogen generating
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003021995A
Other languages
Japanese (ja)
Other versions
JP2004231466A (en
Inventor
和幸 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchiya Thermostat Co Ltd
Original Assignee
Uchiya Thermostat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchiya Thermostat Co Ltd filed Critical Uchiya Thermostat Co Ltd
Priority to JP2003021995A priority Critical patent/JP4276854B2/en
Publication of JP2004231466A publication Critical patent/JP2004231466A/en
Application granted granted Critical
Publication of JP4276854B2 publication Critical patent/JP4276854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水から水素を製造するために使用される水素発生材料、水素発生方法及び水素発生装置に関する。
【0002】
【従来の技術】
燃料として水素を用いる燃料電池には、部分酸化法や水蒸気改質法によってメタノール等を水素に改質し、これを燃料電池に供給するための水素発生装置が一般に併設されている。しかし、このような方法では水素とともに一酸化炭素(CO)が副生し、これが燃料電池の電極を被毒する。したがって、COを10ppm以下にまで除去する必要があるが、CO除去手段を設置すると、改質器が大型化及び高コスト化するという問題がある。また、水蒸気改質法は、約800℃の非常に高い温度まで加熱する必要がある。
【0003】
一方、COやCO2を発生しない方法として、太陽熱を利用したUT−3サイクルや、特開平07−267601号公報の方法が提案されている。しかし、これらの方法は太陽熱を利用するため、大規模なシステムが必要でコストが非常に高いという問題がある。また、アルミニウムとアルカリ金属もしくはアルカリ土類金属との合金を水に反応させて水素を発生させる方法が、特開2002−69558号公報で提案されている。しかし、この方法は700〜800℃の高温で反応を行う必要があり、装置に使用される材料にチタンを用いるなどコストが非常に高く、さらに冷却装置なども必要であるという問題がある。
【0004】
【特許文献1】
特開平07−267601号公報
【特許文献2】
特開2002−69558号公報
【0005】
【発明が解決しようとする課題】
そこで本発明は、上記の問題点を鑑み、一酸化炭素や二酸化炭素を副生せず、かつ常温で安定的に水素を生成させることができる水素発生材料、水素発生方法及び水素発生装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の水素発生材料は、アルミニウム粉末と酸化カルシウム粉末と保水剤とを含んでなり、該アルミニウム粉末と該酸化カルシウム粉末の合計を100重量%として、該アルミニウム粉末の配合比が85重量%以下であることを特徴とするものである。酸化カルシウムは、以下の式1に示すように、水と反応して水酸化カルシウムを生成する。
CaO+H2O→Ca(OH)2・・・(式1)
生成した水酸化カルシウムは、さらにアルミニウムと反応してアルミン酸カルシウムと水素を生成する。その代表的な反応を以下の式2に示す。
3Ca(OH)2+2Al→3CaO・Al23+3H2・・・(式2)
なお、アルミン酸カルシウムは、式2中の3CaO・Al23の化合物の他に、CaO・2Al23、CaO・Al23、Ca3[Al(OH)62、2Ca(OH)2・Al(OH)2・5/2H2Oなどの化合物がある。すなわち、水酸化カルシウムとアルミニウムとの反応により、上記のような複数の種類の化合物も生成しうる。
【0007】
また、式1及び式2は、アルミニウムとアルカリ又は水とを直接的に反応させるものではないので、可逆的反応ではなく、常温による穏やか反応であり、実用に適している。また、式1及び式2からわかるように、本発明に係る水素発生材料と水との反応によって、CO及びCO2は副生しない。そして、アルミニウム粉末と酸化カルシウム粉末との合計を100重量%として、アルミニウム粉末の配合比を85重量%以下にする。このような配合比にすることで、水素発生材料の単位重量当りの水素発生量を飛躍的に向上させることができる。すなわち、一酸化炭素や二酸化炭素を副生せず、かつ常温で安定的に水素を発生させることができる。なお、水素発生材料に、水酸化カルシウムでなく、酸化カルシウムの粉末を加えることで、水と酸化カルシウムの反応により高い反応熱を得ることができ、水素発生反応を促進させることができる。
CaO+H2O=Ca(OH)2 ΔH=−65.15kJ/mol(25℃、1atm)
【0008】
本発明の水素発生材料は、保水剤をさらに含む保水剤を添加することにより、長時間にわたり一定量の水素を発生させることができる。保水剤の配合比としては、アルミニウム粉末と酸化カルシウム粉末の合計100重量部に対して、10〜300重量部であることが好ましい。保水剤としては、保水量の多い材料を用いることが好ましく、例えば、アルミナ粉、シリカ粉、アルミナ系多孔質物質、シリカ系多孔質物質、バーミキュライト、パーライト、木粉、シリカゲル、ゼオライト、活性炭、吸水性ポリマーよりなる群から少なくとも1つを含むものが好ましい。
【0009】
また、本発明の水素発生材料は、通水性を有する袋に充填された水素発生剤とすることが好ましい。袋が通水性を有するので、袋に水素発生材料が充填された状態のまま水を添加しても、上記の式1及び式2の反応が起き、水素を発生させることができる。したがって、水素発生材料を袋に充填された状態で取り扱うことができるので、粉末状である水素発生材料の取り扱いを容易に行うことができる。なお、本明細書では、水素発生材料を袋詰めしたものであって、そのまま水を添加して使用できるものを水素発生剤という。
【0010】
本発明は、別の態様として、水素発生方法であって、アルミニウム粉末と酸化カルシウム粉末と保水剤とを混合し、該アルミニウム粉末と該酸化カルシウム粉末の合計を100重量%として、該アルミニウム粉末の配合比が85重量%以下である水素発生材料を調製する工程と、該水素発生材料に水を加えて水素を発生させる工程とを含んでなることを特徴とする。この水素発生工程は常温で行うことが好ましい。上記したように、式1及び式2は常温で安定的に反応が進むので、従来必要であった高温まで加熱させる工程が不要になり、電気などのエネルギーを外部から加えることなく、簡単かつ短時間に、水素を発生させることができる。
【0011】
さらに、本発明は、別の態様として、水素発生装置であって、アルミニウム粉末酸化カルシウム粉末と保水剤とを含み、該アルミニウム粉末と該酸化カルシウム粉末の合計を100重量%として、該アルミニウム粉末の配合比が85重量%以下である水素発生材料を収容するための容器と、該容器内に水を導入するための配管と、該容器内で発生した水素を排出するための配管とを含んでなることを特徴とする。前記容器には、収納された水素発生材料を交換するための開閉手段が設けられていることが好ましい。このような開閉手段としては、高い密閉性を確保できるものが好ましく、例えば、スクリュー式のキャップやヒンジ式の蓋などを用いることができる。また、前記水導入用の配管と前記水素排出用の配管は、1つの配管により兼用されていることが好ましい。
【0012】
【発明の実施の形態】
先ず、本発明に係る水素発生材料の実施の形態について説明する。本発明に係る水素発生材料は、アルミニウム粉末と酸化カルシウム粉末と保水剤とを含んでなるものである。アルミニウム粉末としては、粒度分布が20μm〜300μm、特に50〜150μmのものが好ましい。粒径が20μm未満では、反応速度が向上するが、空気中での酸化反応も速くなるため、取り扱いが難しくなる。一方、粒径が300μmより大きいと、反応速度が低下する。また、酸化カルシウム粉末としては、粒度分布が100μm以下、特に10μm〜100μmのものが好ましい。粒径が10μm未満のような微粒子になると、空気中での吸湿が高く、空気中の二酸化炭素との反応性が高まり好ましくない。一方、粒径が100μmより大きいと、粒子の中心部まで水が拡散(浸透)しにくく、反応効率が劣り、好ましくない。
【0013】
アルミニウム粉末と酸化カルシウム粉末との配合比は、これらの合計を100重量%とすると、アルミニウム粉末を85重量%以下にする必要がある。アルミニウム粉末が85重量%を超えると、酸化カルシウムが15重量%未満となってしまい、上記式1の反応によるCa(OH)2の生成が少なく、結果的に上記式2の反応による水素の発生が極端に減少してしまう(後述の図4を参照)。アルミニウム粉末と酸化カルシウム粉末のより好ましい配合比は、アルミニウム粉末が25〜85重量%、酸化カルシウム粉末が75〜15重量%である。アルミニウム粉末を25重量%未満とすると、水素発生材料の単位重量当りの水素発生量が低下する。
【0014】
本発明に係る水素発生材料は、長時間にわたり一定量の水素を発生させる目的で、保水剤をさらに配合する保水剤としては、アルミナ粉、シリカ粉、アルミナ系多孔質物質、シリカ系多孔質物質、バーミキュライト、パーライト、木粉、シリカゲル、ゼオライト、活性炭、吸水性ポリマーなど、保水量の多い材料を用いることが好ましい。保水剤の配合比は、アルミニウム粉末と酸化カルシウム粉末の合計を100重量部として、10〜300重量部、特に20〜200重量部とすることが好ましい。保水剤が10重量部未満では、式1及び式2の反応が速やかに進み、短時間で水素の発生が終わってしまう。一方、保水剤が300重量部を超えると、水素発生材料全体の重量及び体積が増加し過ぎるため、効率が悪い。
【0015】
なお、本発明に係る水素発生材料は、酸化カルシウム粉末に代えて、水酸化カルシウム粉末を使用することもできる。水酸化カルシウム粉末は、酸化カルシウム粉末と比べ、大気中でやや安定であり、また水素発生材料に水を加えた時の体積の膨張を抑えることができる点で有利である。水酸化カルシウム粉末は、粒度分布が10μm〜100μmのものが好ましい。粒径が10μm未満では、空気中での吸湿が高く、空気中の二酸化炭素との反応性も高まり、好ましくない。一方、粒径が100μmより大きいと、粒子の中心部まで水が拡散(浸透)しにくく、反応効率が劣り、好ましくない。水酸化カルシウム粉末の配合比は、アルミニウム粉末と水酸化カルシウム粉末との合計を100重量%として、アルミニウム粉末を80重量%以下にする。好ましくは20〜80重量%である。
【0016】
また、本発明に係る水素発生材料は、通水性を有する袋に充填して、水素発生剤として使用することが好ましい。袋が通水性を有するので、水素発生剤の状態のまま水を添加しても、水素を発生させることができる。これにより、粉末状である水素発生材料の取り扱いを容易に行うことができる。通水性を有する袋としては、水が浸透する所定の見付量を有する不織布、和紙、合成紙などを用いることができる。通水性の袋も、不織布など保水性を有するものは、水を徐々に水素発生材料に供給する作用があり、保水剤を入れたときと同様の効果が得られる。なお、水素発生剤は、保管や運搬する場合には、さらにアルミ箔等の非通水性を有する袋で密閉して包装されることが好ましい。
【0017】
次に、本発明に係る水素発生装置の実施の形態について説明する。図1は、本発明に係る水素発生装置の一実施の形態を示す概略図であって、(a)は平面図、(b)は(a)のB−B線における断面図である。図1に示すように、水素発生装置は、底部を有する円筒形状の容器10と、容器10とほぼ同一の外径を有するスクリュー式のキャップ20とから主に構成されている。
【0018】
容器10は、キャップ20が係合する係合部10aを有している。この係合部10aは、容器10の側面部10bより内側方向に環状に設けられており、係合部10aの外壁にはネジが切られている。また、キャップ20の側面部20aの内壁にもネジが切られており、キャップ20を左右に回転させることにより、キャップ20は容器10の係合部10aと着脱し、容器10の開閉を自在にしている。キャップ20の天井部20bの内側にはパッキン26が設けられており、これにより容器10とキャップ20との高い密閉性を確保し、容器10内で発生した水素ガスが外に漏れるのを防止している。
【0019】
また、キャップ20の天井部20bの中央部分には、天井部20bを貫通した配管28が設けられている。配管28は、容器10内に水を導入するための水源(図示省略)と、容器10内で発生した水素が供給される燃料電池(図示省略)との両方に接続されている。そして、配管28と水源及び燃料電池との間には、どちらと通じるかを適宜選択できる切替手段(図示省略)が設けられている。
【0020】
容器10及びキャップ20は、耐アルカリ性であって、80〜100℃程度の熱に耐えられる素材で作られることが好ましく、例えば、ポリエチレン、ポリプロピレン、ポリカーボネイト、ナイロン、ABS樹脂、フッ素などの樹脂や、シリカ、アルミナなどのセラミックス、フッ素樹脂やセラミックスで表面をコーティングしたステンレスやアルミニウムなどを使用することができる。
【0021】
このような構成によれば、先ず、スクリュー式のキャップ20を回転させて、キャップ20を容器10から取り外し、容器10を開く。そして、容器10内に水素発生剤30を投入する。水素発生剤30は、所定量のアルミニウム粉末と酸化カルシウム粉末を混合した水素発生材料32が、通水性を有する袋に充填されたものである。次に、配管28を介して、水源(図示省略)から所定量の水を容器10内に導入する。数分後、上記の式1及び式2の反応により水素が発生する。発生した水素は、配管28から排出され、燃料電池(図示省略)に供給される。
【0022】
反応が終了し、水素が発生しなくなったら、水素発生剤30を交換するため、キャップ20を回転させてキャップ20を取り外し、容器10内から水素発生剤30を取り出して、新しい水素発生剤30を投入する。そして、キャップ20を取り付けて、配管28から水を導入して再び反応を開始する。このようにして、一酸化炭素や二酸化炭素を副生することなく、常温で安定的に水素を発生させることができる。
【0023】
なお、上記説明では、所定量の水を一度に容器10内に導入したが、ポンプなどを用いて、容器10内に一定量の水を連続的もしくは断続的に導入していくこともできる。これにより、長期にわたって一定量の水素を発生させることができる。また、水素発生材料32に保水剤を加えることによって、所定量の水を一度に導入した場合であっても、長期にわたって一定量の水素を発生させることができる。
【0024】
また、図1では、水を導入するための配管と、水素を排出するための配管とを兼ねる1本の配管を配管28として設けたが、水導入用の配管と水素排出用の配管と別々に設けることもできる。なお、配管を2本以上設ける場合、水素排出用の配管以外には、開閉バルブや逆止弁などを設けて、容器10内で発生した水素が配管を逆流しないようにすることが好ましい。
【0025】
【実施例】
以下、本発明の実施例及び比較例について説明する。
アルミニウム粉末としては、53〜150μmの粒度分布を示す和光純薬工業株式会社製アルミニウム粉末を使用した。また、酸化カルシウム粉末としては、関東化学株式会社製の塊状酸化カルシウムを乳鉢にて粉砕後、目開き60μmのふるいにて通過した粒径60μm未満のものを使用した。保水剤であるアルミナ粉末としては、粒径75μm未満の和光純薬工業株式会社製酸化アルミニウム粉末を使用した。
【0026】
図2は、実験装置の概要を示す模式図である。図2に示すように、外径16.5mmのガラス製試験管50内に、上記のアルミニウム粉末、酸化カルシウム粉末、アルミナ粉末及び水を入れて反応させた。そして、発生した水素と反応熱により気化した水を、水のトラップ装置52へ導入した。トラップ装置52を0℃に保持することで、気化した水を凝集し、水素のみをトラップ装置52から排出した。排出された水素は、石鹸膜流量計54に導入し、単位時間当たりの水素発生量、すなわち、水素発生速度(mL/min)を測定した。なお、実験は常温(20±2℃)で行い、水は20±2℃に保たれた純水を使用した。
【0027】
(実施例1)
アルミニウム粉末2.55gと酸化カルシウム粉末0.45gを混合し、これを試験管50に充填した。次に、試験管50に水3mLを導入することで反応を開始した。そして、石鹸膜流量計54にて、反応時間の経過ごとに水素発生速度を測定した。
(実施例2〜5)
表1に示す量のアルミニウム粉末と酸化カルシウム粉末をそれぞれ使用した以外は、実施例1と同様の手順により実験を行った。
【0028】
(比較例1)
アルミニウム粉末のみ3gを試験管50に充填し、水3mLを導入した以外は、実施例1と同様の手順により実験を行った。
(比較例2〜3)
表1に示す量のアルミニウム粉末と酸化カルシウム粉末をそれぞれ使用した以外は、実施例1と同様の手順により実験を行った。
(比較例4)
酸化カルシウム粉末のみ3gを試験管50に充填し、水3mLを導入した以外は、実施例1と同様の手順により実験を行った。
【0029】
実施例1〜5及び比較例1〜4の各材料の重量(g)及び重量比(wt%)と、水素発生総量(mL)の結果を表1に示す。また、水素発生速度の時間変化の結果を図3に示す。
【0030】
【表1】

Figure 0004276854
【0031】
図3に示すように、実施例1〜5は、反応開始から約2〜3分で水素が発生し始め、アルミニウム粉末の配合比により違いがあるものの、時間の経過とともに水素発生速度は上昇し、水素発生速度が最大値となった後、反応が終了した。アルミニウム粉末の配合比が85重量%である実施例1は、水素発生速度の最大値が約150mL/minに達し、反応時間も約13分と長かった。
一方、アルミニウム粉末のみ及び酸化カルシウム粉末のみの比較例1及び4は、反応開始から10分経過しても、水素の発生は確認できなかった。また、アルミニウム粉末の配合比が90wt%及び95wt%の比較例2及び3も、反応開始から10分経過しても、水素の発生はほとんど見られなかった。
【0032】
また、実施例1〜5及び比較例1〜4の結果から、アルミニウム粉末の重量比に対する水素発生総量の関係を図4に示す。図4に示すように、アルミニウム粉末の配合比が90wt%以上(比較例1〜3)である場合、水素発生総量はほぼ0mLであったが、アルミニウム粉末の配合比を85wt%(実施例1)にした場合、飛躍的に水素発生総量が増加することがわかった。また、アルミニウム粉末の配合比を85wt%以下から減少させると、アルミニウム粉末の配合比に比例して水素発生総量も減少し、アルミニウム粉末の配合比が0wt%では水素発生総量は0mLであった。
【0033】
(実施例6)
アルミニウム粉末1.2gと酸化カルシウム粉末0.3gとを混合し、これを試験管50に充填した。次に、試験管50に水5mLを導入することで反応を開始した。そして、石鹸膜流量計54にて、反応時間の経過ごとに水素発生速度を測定した。
(実施例7)
アルミニウム粉末と酸化カルシウム粉末の混合物に、さらに、保水剤としてアルミナ粉末1.5gを混合した以外は、実施例6と同様の手順により実験を行った。
(実施例8)
アルミナ粉末を3g混合した以外は、実施例7と同様の手順により実験を行った。
【0034】
実施例6〜8の結果から、各反応時間に対する水素発生速度の関係を図5に示す。図5に示すように、アルミニウム粉末と酸化カルシウム粉末の合計重量1.5gに対して、保水剤を1.5g(実施例7)、3g(実施例8)と加えていくことで、反応速度が低い値で一定になっていき、長時間にわたって水素を発生することができた。アルミナ粉末を無添加にした実施例6では、短時間で水素を発生し、20分後には水素を発生しなくなった。それと比較して、アルミナ粉末3g添加した実施例8では、1時間にわたり水素を発生し続けることができた。このように、保水剤を加えることで、燃料電池が必要とする以上の余分な水素を発生させることなく、一定量の水素を長時間にわたり発生させることができる。
【0035】
【発明の効果】
上述してきたように、本発明によれば、一酸化炭素や二酸化炭素を副生せず、かつ常温で安定的に水素を生成させることができる水素発生材料、水素発生方法及び水素発生装置を提供することができる。
【図面の簡単な説明】
【図1】(a)は本発明に係る水素発生装置の一実施の形態の概略を示す平面図であって、(b)は(a)のB−B線における断面図である。
【図2】水素発生実験に用いた実験装置の概要を示す模式図である。
【図3】本発明の実施例及び比較例において、反応時間の経過に対する水素発生速度の変化を示すグラフである。
【図4】本発明の実施例及び比較例において、アルミニウム粉末の配合比に対する水素発生総量の関係を示すグラフである。
【図5】本発明の実施例において、反応時間の経過に対する水素発生速度の変化を示すグラフである。
【符号の説明】
10 容器
10a 係合部
10b 側面部
20 キャップ
20a 側面部
20b 天井部
26 パッキン
28 配管
30 水素発生剤
32 水素発生材料
50 試験管
52 水のトラップ装置
54 石鹸膜流量計[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen generating material, a hydrogen generating method and a hydrogen generating apparatus used for producing hydrogen from water.
[0002]
[Prior art]
A fuel cell using hydrogen as a fuel is generally provided with a hydrogen generator for reforming methanol or the like into hydrogen by a partial oxidation method or a steam reforming method and supplying the reformed fuel to the fuel cell. However, in such a method, carbon monoxide (CO) is by-produced with hydrogen, which poisons the fuel cell electrode. Therefore, it is necessary to remove CO to 10 ppm or less. However, if a CO removing means is installed, there is a problem that the reformer becomes large and expensive. In addition, the steam reforming method needs to be heated to a very high temperature of about 800 ° C.
[0003]
On the other hand, as a method that does not generate CO or CO 2 , a UT-3 cycle using solar heat and a method disclosed in Japanese Patent Laid-Open No. 07-267601 have been proposed. However, since these methods use solar heat, there is a problem that a large-scale system is required and the cost is very high. Japanese Patent Application Laid-Open No. 2002-69558 proposes a method of generating hydrogen by reacting an alloy of aluminum and an alkali metal or alkaline earth metal with water. However, this method needs to perform the reaction at a high temperature of 700 to 800 ° C., has a problem that the cost is very high such as using titanium as a material used for the apparatus, and further a cooling apparatus is necessary.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 07-267601 [Patent Document 2]
Japanese Patent Laid-Open No. 2002-69558
[Problems to be solved by the invention]
Therefore, in view of the above problems, the present invention provides a hydrogen generating material, a hydrogen generating method, and a hydrogen generating apparatus that do not produce carbon monoxide or carbon dioxide as a by-product and can stably generate hydrogen at room temperature. The purpose is to do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the hydrogen generating material of the present invention comprises an aluminum powder, a calcium oxide powder and a water retention agent, and the total amount of the aluminum powder and the calcium oxide powder is 100% by weight. The blending ratio of is not more than 85% by weight. As shown in the following formula 1, calcium oxide reacts with water to generate calcium hydroxide.
CaO + H 2 O → Ca (OH) 2 (Formula 1)
The produced calcium hydroxide further reacts with aluminum to produce calcium aluminate and hydrogen. The typical reaction is shown in the following formula 2.
3Ca (OH) 2 + 2Al → 3CaO.Al 2 O 3 + 3H 2 (Formula 2)
In addition to the 3CaO · Al 2 O 3 compound in Formula 2, calcium aluminate is not limited to CaO · 2Al 2 O 3 , CaO · Al 2 O 3 , Ca 3 [Al (OH) 6 ] 2 , 2Ca ( OH) is 2 · Al (OH) compounds, such as 2 · 5 / 2H 2 O. That is, a plurality of types of compounds as described above can be generated by the reaction of calcium hydroxide and aluminum.
[0007]
Moreover, since Formula 1 and Formula 2 do not directly react aluminum with alkali or water, they are not reversible reactions but mild reactions at room temperature, and are suitable for practical use. Further, as can be seen from Equations 1 and 2, CO and CO 2 are not by-produced by the reaction between the hydrogen generating material according to the present invention and water. And the sum total of aluminum powder and calcium oxide powder shall be 100 weight%, and the compounding ratio of aluminum powder shall be 85 weight% or less. By setting it as such a compounding ratio, the amount of hydrogen generation per unit weight of the hydrogen generating material can be dramatically improved. That is, hydrogen can be stably generated at room temperature without generating carbon monoxide or carbon dioxide as a by-product. By adding calcium oxide powder instead of calcium hydroxide to the hydrogen generating material, high reaction heat can be obtained by the reaction of water and calcium oxide, and the hydrogen generating reaction can be promoted.
CaO + H 2 O = Ca (OH) 2 ΔH = −65.15 kJ / mol (25 ° C., 1 atm)
[0008]
The hydrogen generating material of the present invention further includes a water retention agent . By adding a water retention agent, a certain amount of hydrogen can be generated over a long period of time. The mixing ratio of the water retention agent is preferably 10 to 300 parts by weight with respect to 100 parts by weight of the total of the aluminum powder and the calcium oxide powder. As the water retention agent, it is preferable to use a material having a large amount of water retention. For example, alumina powder, silica powder, alumina porous material, silica porous material, vermiculite, perlite, wood powder, silica gel, zeolite, activated carbon, water absorption Those containing at least one from the group consisting of a conductive polymer are preferred.
[0009]
The hydrogen generating material of the present invention is preferably a hydrogen generating agent filled in a bag having water permeability. Since the bag has water permeability, even if water is added while the bag is filled with the hydrogen generating material, the reactions of the above formulas 1 and 2 occur and hydrogen can be generated. Therefore, since the hydrogen generating material can be handled in a state filled in the bag, the powdered hydrogen generating material can be easily handled. In the present specification, a hydrogen generating material that is packed in a bag and that can be used by adding water as it is is referred to as a hydrogen generating agent.
[0010]
According to another aspect of the present invention, there is provided a method for generating hydrogen, wherein an aluminum powder, a calcium oxide powder, and a water retention agent are mixed, and the total amount of the aluminum powder and the calcium oxide powder is 100% by weight. It comprises a step of preparing a hydrogen generating material having a blending ratio of 85% by weight or less and a step of generating water by adding water to the hydrogen generating material. This hydrogen generation step is preferably performed at room temperature. As described above, since the reactions of Formula 1 and Formula 2 proceed stably at room temperature, the process of heating to a high temperature, which has been conventionally required, is unnecessary, and it is simple and short without applying energy such as electricity from the outside. In time, hydrogen can be generated.
[0011]
Further, according to another aspect of the present invention, there is provided a hydrogen generator, comprising an aluminum powder , a calcium oxide powder, and a water retention agent , wherein the total amount of the aluminum powder and the calcium oxide powder is 100% by weight. A container for containing a hydrogen generating material having a blending ratio of 85% by weight or less, a pipe for introducing water into the container, and a pipe for discharging hydrogen generated in the container It is characterized by the following. The container is preferably provided with opening / closing means for exchanging the stored hydrogen generating material. As such an opening / closing means, those capable of ensuring high hermeticity are preferable, and for example, a screw-type cap or a hinge-type lid can be used. Further, it is preferable that the water introduction pipe and the hydrogen discharge pipe are shared by one pipe.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
First, an embodiment of the hydrogen generating material according to the present invention will be described. The hydrogen generating material according to the present invention comprises aluminum powder, calcium oxide powder, and a water retention agent . The aluminum powder preferably has a particle size distribution of 20 μm to 300 μm, particularly 50 to 150 μm. When the particle size is less than 20 μm, the reaction rate is improved, but the oxidation reaction in air is also accelerated, so that handling becomes difficult. On the other hand, when the particle size is larger than 300 μm, the reaction rate decreases. The calcium oxide powder preferably has a particle size distribution of 100 μm or less, particularly 10 μm to 100 μm. When the particle size is less than 10 μm, moisture absorption in the air is high, and the reactivity with carbon dioxide in the air is increased, which is not preferable. On the other hand, when the particle size is larger than 100 μm, it is not preferable because water hardly diffuses (penetrates) to the center of the particle, resulting in poor reaction efficiency.
[0013]
The mixing ratio of the aluminum powder and the calcium oxide powder is required to be 85% by weight or less when the total of these is 100% by weight. When the aluminum powder exceeds 85% by weight, the calcium oxide becomes less than 15% by weight, and the production of Ca (OH) 2 by the reaction of the above formula 1 is small, resulting in the generation of hydrogen by the reaction of the above formula 2. Is extremely reduced (see FIG. 4 described later). More preferable blending ratios of the aluminum powder and the calcium oxide powder are 25 to 85% by weight for the aluminum powder and 75 to 15% by weight for the calcium oxide powder. When the aluminum powder is less than 25% by weight, the amount of hydrogen generated per unit weight of the hydrogen generating material decreases.
[0014]
The hydrogen generating material according to the present invention further contains a water retention agent for the purpose of generating a certain amount of hydrogen over a long period of time . As a water retention agent, use a material having a large water retention amount such as alumina powder, silica powder, alumina porous material, silica porous material, vermiculite, perlite, wood powder, silica gel, zeolite, activated carbon, water-absorbing polymer, etc. preferable. The mixing ratio of the water retention agent is preferably 10 to 300 parts by weight, particularly 20 to 200 parts by weight, with the total of the aluminum powder and calcium oxide powder being 100 parts by weight. When the water retention agent is less than 10 parts by weight, the reactions of Formula 1 and Formula 2 proceed rapidly, and the generation of hydrogen ends in a short time. On the other hand, when the amount of the water retention agent exceeds 300 parts by weight, the weight and volume of the entire hydrogen generating material increase excessively, resulting in poor efficiency.
[0015]
The hydrogen generating material according to the present invention can use calcium hydroxide powder instead of calcium oxide powder. Calcium hydroxide powder is advantageous in that it is slightly stable in the air and can suppress volume expansion when water is added to the hydrogen generating material, compared to calcium oxide powder. The calcium hydroxide powder preferably has a particle size distribution of 10 μm to 100 μm. If the particle size is less than 10 μm, moisture absorption in the air is high and the reactivity with carbon dioxide in the air is also increased, which is not preferable. On the other hand, when the particle size is larger than 100 μm, it is not preferable because water hardly diffuses (penetrates) to the center of the particle, resulting in poor reaction efficiency. The mixing ratio of the calcium hydroxide powder is such that the total of the aluminum powder and the calcium hydroxide powder is 100% by weight, and the aluminum powder is 80% by weight or less. Preferably it is 20 to 80 weight%.
[0016]
The hydrogen generating material according to the present invention is preferably used as a hydrogen generating agent by filling a bag having water permeability. Since the bag has water permeability, hydrogen can be generated even if water is added in the state of a hydrogen generator. Thereby, handling of the hydrogen generating material which is a powder form can be performed easily. As the bag having water permeability, a non-woven fabric, Japanese paper, synthetic paper or the like having a predetermined amount of water permeated can be used. A water-permeable bag, such as a non-woven fabric, having water retention has the effect of gradually supplying water to the hydrogen generating material, and the same effect as when a water retention agent is added can be obtained. In addition, when storing or transporting the hydrogen generating agent, it is preferable that the hydrogen generating agent is further sealed and packaged with a non-water-permeable bag such as an aluminum foil.
[0017]
Next, an embodiment of the hydrogen generator according to the present invention will be described. 1A and 1B are schematic views showing an embodiment of a hydrogen generator according to the present invention, in which FIG. 1A is a plan view and FIG. 1B is a sectional view taken along line BB in FIG. As shown in FIG. 1, the hydrogen generator mainly includes a cylindrical container 10 having a bottom and a screw-type cap 20 having an outer diameter substantially the same as that of the container 10.
[0018]
The container 10 has an engaging portion 10a with which the cap 20 is engaged. The engaging portion 10a is provided in an annular shape inward from the side surface portion 10b of the container 10, and the outer wall of the engaging portion 10a is threaded. Further, the inner wall of the side surface portion 20a of the cap 20 is also threaded. By rotating the cap 20 left and right, the cap 20 can be detached from the engaging portion 10a of the container 10 and the container 10 can be freely opened and closed. ing. A packing 26 is provided on the inner side of the ceiling 20b of the cap 20, thereby ensuring high sealing between the container 10 and the cap 20, and preventing hydrogen gas generated in the container 10 from leaking outside. ing.
[0019]
In addition, a pipe 28 penetrating the ceiling portion 20b is provided at the central portion of the ceiling portion 20b of the cap 20. The pipe 28 is connected to both a water source (not shown) for introducing water into the container 10 and a fuel cell (not shown) to which hydrogen generated in the container 10 is supplied. Switching means (not shown) is provided between the pipe 28 and the water source and the fuel cell so that it can be selected as appropriate.
[0020]
The container 10 and the cap 20 are preferably made of a material that is alkali-resistant and can withstand heat of about 80 to 100 ° C., for example, polyethylene, polypropylene, polycarbonate, nylon, ABS resin, fluorine resin, Ceramics such as silica and alumina, stainless steel and aluminum whose surface is coated with fluororesin and ceramics, and the like can be used.
[0021]
According to such a configuration, first, the screw-type cap 20 is rotated, the cap 20 is removed from the container 10, and the container 10 is opened. Then, the hydrogen generating agent 30 is put into the container 10. The hydrogen generating agent 30 is obtained by filling a bag having water permeability with a hydrogen generating material 32 obtained by mixing a predetermined amount of aluminum powder and calcium oxide powder. Next, a predetermined amount of water is introduced into the container 10 from a water source (not shown) via the pipe 28. After a few minutes, hydrogen is generated by the reactions of Equations 1 and 2 above. The generated hydrogen is discharged from the pipe 28 and supplied to a fuel cell (not shown).
[0022]
When the reaction is completed and hydrogen is no longer generated, the cap 20 is rotated to remove the cap 20, the hydrogen generator 30 is taken out from the container 10 and the new hydrogen generator 30 is replaced in order to replace the hydrogen generator 30. throw into. Then, the cap 20 is attached, water is introduced from the pipe 28, and the reaction is started again. In this way, hydrogen can be stably generated at room temperature without by-producing carbon monoxide or carbon dioxide.
[0023]
In the above description, a predetermined amount of water is introduced into the container 10 at once. However, a fixed amount of water can be introduced into the container 10 continuously or intermittently using a pump or the like. Thereby, a certain amount of hydrogen can be generated over a long period of time. Further, by adding a water retention agent to the hydrogen generating material 32, even if a predetermined amount of water is introduced at a time, a certain amount of hydrogen can be generated over a long period of time.
[0024]
In FIG. 1, one pipe serving as a pipe for introducing water and a pipe for discharging hydrogen is provided as the pipe 28, but the pipe for water introduction and the pipe for hydrogen discharge are separately provided. It can also be provided. When two or more pipes are provided, it is preferable to provide an open / close valve or a check valve in addition to the hydrogen discharge pipe so that hydrogen generated in the container 10 does not flow back through the pipe.
[0025]
【Example】
Examples of the present invention and comparative examples will be described below.
As the aluminum powder, aluminum powder manufactured by Wako Pure Chemical Industries, Ltd. having a particle size distribution of 53 to 150 μm was used. Further, as the calcium oxide powder, a powder having a particle diameter of less than 60 μm, which was obtained by pulverizing massive calcium oxide manufactured by Kanto Chemical Co., Ltd. with a mortar and passing through a sieve having an opening of 60 μm, was used. As alumina powder which is a water retention agent, aluminum oxide powder manufactured by Wako Pure Chemical Industries, Ltd. having a particle size of less than 75 μm was used.
[0026]
FIG. 2 is a schematic diagram showing an outline of the experimental apparatus. As shown in FIG. 2, the aluminum powder, calcium oxide powder, alumina powder and water were put into a glass test tube 50 having an outer diameter of 16.5 mm and reacted. The generated hydrogen and water vaporized by reaction heat were introduced into the water trap device 52. By keeping the trap device 52 at 0 ° C., the vaporized water was condensed and only hydrogen was discharged from the trap device 52. The discharged hydrogen was introduced into a soap film flow meter 54, and the hydrogen generation amount per unit time, that is, the hydrogen generation rate (mL / min) was measured. The experiment was performed at room temperature (20 ± 2 ° C.), and pure water kept at 20 ± 2 ° C. was used as water.
[0027]
(Example 1)
A test tube 50 was filled with 2.55 g of aluminum powder and 0.45 g of calcium oxide powder. Next, the reaction was started by introducing 3 mL of water into the test tube 50. And the hydrogen generation | occurence | production speed | velocity was measured for every progress of reaction time with the soap film flowmeter 54.
(Examples 2 to 5)
The experiment was performed in the same procedure as in Example 1 except that aluminum powder and calcium oxide powder in the amounts shown in Table 1 were used.
[0028]
(Comparative Example 1)
An experiment was performed in the same manner as in Example 1 except that 3 g of aluminum powder alone was filled in the test tube 50 and 3 mL of water was introduced.
(Comparative Examples 2-3)
The experiment was performed in the same procedure as in Example 1 except that aluminum powder and calcium oxide powder in the amounts shown in Table 1 were used.
(Comparative Example 4)
The experiment was performed in the same manner as in Example 1 except that 3 g of calcium oxide powder alone was filled in the test tube 50 and 3 mL of water was introduced.
[0029]
Table 1 shows the weight (g) and weight ratio (wt%) of each material of Examples 1 to 5 and Comparative Examples 1 to 4 and the total amount of hydrogen generation (mL). Moreover, the result of the time change of the hydrogen generation rate is shown in FIG.
[0030]
[Table 1]
Figure 0004276854
[0031]
As shown in FIG. 3, in Examples 1 to 5, hydrogen began to be generated in about 2 to 3 minutes from the start of the reaction, and the hydrogen generation rate increased with the passage of time, although there was a difference depending on the mixing ratio of the aluminum powder. After the hydrogen generation rate reached the maximum value, the reaction was completed. In Example 1 in which the blending ratio of the aluminum powder was 85% by weight, the maximum value of the hydrogen generation rate reached about 150 mL / min, and the reaction time was as long as about 13 minutes.
On the other hand, in Comparative Examples 1 and 4 using only the aluminum powder and only the calcium oxide powder, generation of hydrogen could not be confirmed even after 10 minutes had elapsed since the start of the reaction. Further, in Comparative Examples 2 and 3 in which the blending ratio of the aluminum powder was 90 wt% and 95 wt%, hydrogen generation was hardly observed even after 10 minutes had elapsed from the start of the reaction.
[0032]
Moreover, the relationship of the total amount of hydrogen generation with respect to the weight ratio of aluminum powder is shown in FIG. 4 from the result of Examples 1-5 and Comparative Examples 1-4. As shown in FIG. 4, when the blending ratio of the aluminum powder was 90 wt% or more (Comparative Examples 1 to 3), the total amount of hydrogen generation was almost 0 mL, but the blending ratio of the aluminum powder was 85 wt% (Example 1). ), It was found that the total amount of hydrogen generation increased dramatically. Further, when the blending ratio of the aluminum powder was reduced from 85 wt% or less, the total amount of hydrogen generation decreased in proportion to the blending ratio of the aluminum powder. When the blending ratio of the aluminum powder was 0 wt%, the total amount of hydrogen generation was 0 mL.
[0033]
(Example 6)
1.2 g of aluminum powder and 0.3 g of calcium oxide powder were mixed and filled into a test tube 50. Next, the reaction was started by introducing 5 mL of water into the test tube 50. And the hydrogen generation | occurence | production speed | velocity was measured for every progress of reaction time with the soap film | membrane flowmeter 54. FIG.
(Example 7)
An experiment was performed in the same procedure as in Example 6 except that a mixture of aluminum powder and calcium oxide powder was further mixed with 1.5 g of alumina powder as a water retention agent.
(Example 8)
The experiment was performed in the same procedure as in Example 7 except that 3 g of alumina powder was mixed.
[0034]
From the results of Examples 6 to 8, the relationship of the hydrogen generation rate with respect to each reaction time is shown in FIG. As shown in FIG. 5, the reaction rate is obtained by adding 1.5 g (Example 7) and 3 g (Example 8) of the water retention agent to 1.5 g of the total weight of the aluminum powder and the calcium oxide powder. Became constant at low values, and hydrogen could be generated over a long period of time. In Example 6 in which no alumina powder was added, hydrogen was generated in a short time, and no hydrogen was generated after 20 minutes. In comparison, in Example 8 in which 3 g of alumina powder was added, hydrogen could continue to be generated for 1 hour. Thus, by adding a water retention agent, a certain amount of hydrogen can be generated over a long period of time without generating excessive hydrogen beyond that required by the fuel cell.
[0035]
【The invention's effect】
As described above, according to the present invention, there are provided a hydrogen generating material, a hydrogen generating method, and a hydrogen generating apparatus capable of generating hydrogen stably at room temperature without generating carbon monoxide or carbon dioxide as a by-product. can do.
[Brief description of the drawings]
1A is a plan view showing an outline of an embodiment of a hydrogen generator according to the present invention, and FIG. 1B is a cross-sectional view taken along line BB in FIG.
FIG. 2 is a schematic diagram showing an outline of an experimental apparatus used in a hydrogen generation experiment.
FIG. 3 is a graph showing changes in the hydrogen generation rate with the passage of reaction time in Examples and Comparative Examples of the present invention.
FIG. 4 is a graph showing the relationship between the total amount of hydrogen generation and the blending ratio of aluminum powder in Examples and Comparative Examples of the present invention.
FIG. 5 is a graph showing a change in hydrogen generation rate with the passage of reaction time in an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Container 10a Engagement part 10b Side part 20 Cap 20a Side part 20b Ceiling part 26 Packing 28 Pipe 30 Hydrogen generating agent 32 Hydrogen generating material 50 Test tube 52 Water trap apparatus 54 Soap film flowmeter

Claims (9)

アルミニウム粉末と酸化カルシウム粉末と保水剤とを含んでなり、該アルミニウム粉末と該酸化カルシウム粉末の合計を100重量%として、該アルミニウム粉末の配合比が85重量%以下である水と反応する水素発生材料。Hydrogen generation comprising aluminum powder, calcium oxide powder, and water retention agent, and reacting with water in which the total amount of the aluminum powder and calcium oxide powder is 100% by weight, and the mixing ratio of the aluminum powder is 85% by weight or less material. 前記アルミニウム粉末と前記酸化カルシウム粉末の合計を100重量部として、前記保水剤の配合比が10〜300重量部である請求項に記載の水素発生材料。The aluminum powder and the sum of the calcium oxide powder, based on 100 parts by weight of the hydrogen generating material according to claim 1 mixing ratio of the water retention agent is 10 to 300 parts by weight. 前記保水剤が、アルミナ粉、シリカ粉、アルミナ系多孔質物質、シリカ系多孔質物質、バーミキュライト、パーライト、木粉、シリカゲル、ゼオライト、活性炭、吸水性ポリマーよりなる群から少なくとも1つを含むものである請求項1又は2に記載の水素発生材料。The water retention agent contains at least one from the group consisting of alumina powder, silica powder, alumina porous material, silica porous material, vermiculite, perlite, wood powder, silica gel, zeolite, activated carbon, and a water-absorbing polymer. Item 3. The hydrogen generating material according to Item 1 or 2 . 請求項1〜のいずれか1項に記載の水素発生材料と、この水素発生材料を充填した通水性を有する袋と含んでなる水素発生剤。A hydrogen generating agent comprising the hydrogen generating material according to any one of claims 1 to 3 and a water-permeable bag filled with the hydrogen generating material. アルミニウム粉末と酸化カルシウム粉末と保水剤とを混合し、該アルミニウム粉末と該酸化カルシウム粉末の合計を100重量%として、該アルミニウム粉末の配合比が85重量%以下である水素発生材料を調製する工程と、該水素発生材料に水を加えて水素を発生させる工程とを含んでなる水素発生方法。A step of preparing a hydrogen generating material in which an aluminum powder, a calcium oxide powder and a water retention agent are mixed, and the total amount of the aluminum powder and the calcium oxide powder is 100% by weight, and the blending ratio of the aluminum powder is 85% by weight or less. And a step of adding hydrogen to the hydrogen generating material to generate hydrogen. 前記水素発生工程を常温で行う請求項に記載の水素発生方法。The hydrogen generation method according to claim 5 , wherein the hydrogen generation step is performed at room temperature. アルミニウム粉末酸化カルシウム粉末と保水剤とを含み、該アルミニウム粉末と該酸化カルシウム粉末の合計を100重量%として、該アルミニウム粉末の配合比が85重量%以下である水素発生材料を収容するための容器と、該容器内に水を導入するための配管と、該容器内で発生した水素を排出するための配管とを含んでなる水素発生装置。An aluminum powder , a calcium oxide powder, and a water retention agent are contained, and the total amount of the aluminum powder and the calcium oxide powder is 100% by weight, and a hydrogen generating material having a compounding ratio of the aluminum powder of 85% by weight or less is contained. A hydrogen generator comprising a container, a pipe for introducing water into the container, and a pipe for discharging hydrogen generated in the container. 前記容器には、収納された水素発生材料を交換するための開閉手段が設けられている請求項に記載の水素発生装置。8. The hydrogen generator according to claim 7 , wherein the container is provided with an opening / closing means for exchanging the stored hydrogen generating material. 前記水導入用の配管と前記水素排出用の配管とが、1つの配管により兼用されている請求項7又は8に記載の水素発生装置。The hydrogen generator according to claim 7 or 8 , wherein the pipe for introducing water and the pipe for discharging hydrogen are shared by one pipe.
JP2003021995A 2003-01-30 2003-01-30 Hydrogen generating material, hydrogen generating method and hydrogen generating apparatus Expired - Lifetime JP4276854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021995A JP4276854B2 (en) 2003-01-30 2003-01-30 Hydrogen generating material, hydrogen generating method and hydrogen generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021995A JP4276854B2 (en) 2003-01-30 2003-01-30 Hydrogen generating material, hydrogen generating method and hydrogen generating apparatus

Publications (2)

Publication Number Publication Date
JP2004231466A JP2004231466A (en) 2004-08-19
JP4276854B2 true JP4276854B2 (en) 2009-06-10

Family

ID=32951187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021995A Expired - Lifetime JP4276854B2 (en) 2003-01-30 2003-01-30 Hydrogen generating material, hydrogen generating method and hydrogen generating apparatus

Country Status (1)

Country Link
JP (1) JP4276854B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108698819A (en) * 2016-01-05 2018-10-23 myFC 股份公司 Distribution of the reactant solution in fuel cassette

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771612B2 (en) 2004-08-30 2010-08-10 Nitto Denko Corporation Hydrogen generating composition
JP2006335603A (en) * 2005-06-02 2006-12-14 Nitto Denko Corp Hydrogen generating agent and hydrogen generating method
JP2006104017A (en) * 2004-10-05 2006-04-20 Nitto Denko Corp Hydrogen generation device and method
JP4813790B2 (en) * 2004-12-03 2011-11-09 セイコーインスツル株式会社 Hydrogen generator and fuel cell system
KR100837291B1 (en) * 2005-01-07 2008-06-11 히다치 막셀 가부시키가이샤 Hydrogen generating material, hydrogen generator and fuel cell
AU2006225880B2 (en) 2005-03-18 2012-01-19 Yts Science Properties Pte. Ltd. Hydrogen forming apparatus, laser reduction apparatus, energy transformation apparatus method for forming hydrogen and electricity generation system
WO2006103959A1 (en) * 2005-03-25 2006-10-05 Hitachi Maxell, Ltd. Hydrogen generating material, method for producing same, and method for producing hydrogen
JP4537337B2 (en) * 2005-04-28 2010-09-01 日立マクセル株式会社 Hydrogen generating material, method for producing hydrogen generating material, method for producing hydrogen, hydrogen producing apparatus and fuel cell
US20090267023A1 (en) * 2005-07-20 2009-10-29 Takeshi Miki Hydrogen Generating Material and Method for Producing the Same
JP4574487B2 (en) * 2005-08-08 2010-11-04 日立マクセル株式会社 Hydrogen production method, hydrogen production apparatus and power supply
US20090049749A1 (en) * 2005-08-11 2009-02-26 Takeshi Miki Hydrogen-Generating Material and Hydrogen Generator
JP4800319B2 (en) * 2005-10-31 2011-10-26 日立マクセルエナジー株式会社 Hydrogen production apparatus and fuel cell system using the same
JP5156974B2 (en) * 2005-12-05 2013-03-06 宰成光株式会社 Hydrogen purification material
JP5014649B2 (en) * 2006-03-09 2012-08-29 日東電工株式会社 Hydrogen generator and hydrogen generation method
KR100803076B1 (en) * 2006-06-21 2008-02-18 박정태 Composition for generating hydrogen gas, and hydrogen generator using the same
CN101100286B (en) * 2006-07-05 2011-11-16 罗门哈斯公司 Stable high-temperature borohydride formulation
JP2008156159A (en) * 2006-12-22 2008-07-10 Equos Research Co Ltd Hydrogen generating apparatus and power generation system
KR100803074B1 (en) * 2007-03-20 2008-02-18 박정태 Composition for generating hydrogen gas, and apparatus for generating high purity hydrogen gas using thereof
JP2008273758A (en) * 2007-04-26 2008-11-13 Hitachi Maxell Ltd Hydrogen generating material composition and hydrogen generating apparatus
JP5409367B2 (en) * 2007-08-29 2014-02-05 ルビコン株式会社 Portable hydrogen generation unit
JP5420270B2 (en) * 2008-02-22 2014-02-19 株式会社 ハイドロデバイス Hydrogen generating material and hydrogen generating method
WO2009107779A1 (en) * 2008-02-27 2009-09-03 日立マクセル株式会社 Hydrogen generator
JP5047880B2 (en) * 2008-05-30 2012-10-10 パナソニック株式会社 Hydrogen generator
JP2010110754A (en) * 2008-10-07 2010-05-20 Akira Haneda Method of manufacturing water purification material, water purification method, and solution for water purification
US8821834B2 (en) 2008-12-23 2014-09-02 Societe Bic Hydrogen generator with aerogel catalyst
JP2011011968A (en) * 2009-07-06 2011-01-20 Pal Corporation:Kk Method for easily generating gaseous hydrogen and device therefor
JP5883240B2 (en) * 2011-06-24 2016-03-09 株式会社Kri Hydrogen production method
JP6048933B2 (en) * 2013-01-17 2016-12-21 日立造船株式会社 Hydrogen production method
JP6244056B1 (en) * 2017-08-31 2017-12-06 浩章 皆川 Hydrogen generator comprising calcium oxide powder and aluminum powder
KR101937706B1 (en) 2017-09-15 2019-04-11 한국에너지기술연구원 High temperature generating device
KR102220379B1 (en) 2019-03-28 2021-02-25 한국에너지기술연구원 Heat-rising apparatus of superheated steam
KR102051476B1 (en) 2018-06-11 2019-12-04 한국에너지기술연구원 Heat-rising apparatus of superheated steam
US11054130B2 (en) 2018-06-11 2021-07-06 Korea Institute Of Energy Research Apparatus for raising the temperature of superheated steam and ultra-high temperature steam generator
KR102220366B1 (en) 2019-03-28 2021-02-25 한국에너지기술연구원 High-tmeperature steam generator with helical coiled heat exchanger
KR102210811B1 (en) 2019-03-28 2021-02-02 한국에너지기술연구원 Decompression apparatus for superheated steam
CN111410170B (en) * 2020-04-28 2022-03-29 江苏汉卓医疗科技有限公司 Composite material for generating hydrogen and application method and application device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108698819A (en) * 2016-01-05 2018-10-23 myFC 股份公司 Distribution of the reactant solution in fuel cassette

Also Published As

Publication number Publication date
JP2004231466A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP4276854B2 (en) Hydrogen generating material, hydrogen generating method and hydrogen generating apparatus
KR100803074B1 (en) Composition for generating hydrogen gas, and apparatus for generating high purity hydrogen gas using thereof
US4566281A (en) Reaction heat storage method for hydride tanks
CA2746895C (en) Hydrogen generator with aerogel catalyst
US5866090A (en) Method for separation of carbon dioxide gas
EP1728290B1 (en) Use of an ammonia storage device in production of energy
JPWO2009031578A1 (en) Hydrogen generating material composition, hydrogen generating material molded body, and method for producing hydrogen
JP2003313001A (en) Method and apparatus for producing hydrogen
JP2015051923A (en) Hydrogen gas generation method and apparatus
JP2020100597A (en) Metan manufacturing system
ZA200605051B (en) Method and apparatus for generating oxygen
JP2016204177A (en) Hydrogen generating method and hydrogen generating device
JP2007326731A (en) Manufacturing method of hydrogen
JP2001213609A (en) Process of producing hydrogen and apparatus therefor
JP2007326742A (en) Manufacturing method of hydrogen
JP4762684B2 (en) Hydrogen generating material and hydrogen production method
JP2006273609A (en) Hydrogen generator and fuel cell using the same
JPWO2009107779A1 (en) Hydrogen generator
JPH0861802A (en) Chemical heat pump reactor,output of which is improved
KR100803076B1 (en) Composition for generating hydrogen gas, and hydrogen generator using the same
JP2006143537A (en) Manufacturing method for tetrahydroborate
CN111788148B (en) Composition for generating hydrogen
JPH01135889A (en) Thermal energy storing substance capable of reversible reaction and method for storing and releasing heat
CN102730635A (en) Method, device and composition for preparing hydrogen suitable for civil use
JP2010265137A (en) Method and apparatus for producing hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Ref document number: 4276854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term